WO2005021514A1 - Novel unnatural histidine analog amino acid - Google Patents

Novel unnatural histidine analog amino acid Download PDF

Info

Publication number
WO2005021514A1
WO2005021514A1 PCT/JP2004/011889 JP2004011889W WO2005021514A1 WO 2005021514 A1 WO2005021514 A1 WO 2005021514A1 JP 2004011889 W JP2004011889 W JP 2004011889W WO 2005021514 A1 WO2005021514 A1 WO 2005021514A1
Authority
WO
WIPO (PCT)
Prior art keywords
histidine
amino acid
protein
analog
compound
Prior art date
Application number
PCT/JP2004/011889
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunari Taira
Yutaka Ikeda
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Publication of WO2005021514A1 publication Critical patent/WO2005021514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins

Definitions

  • Natural proteins are composed of 20 types of amino acids, and among these 20 types of amino acids, there are those that function as acids, those that function as bases, those that are hydrophobic, those that are hydrophilic . Proteins perform a variety of functions as they form clever sequences and higher-order structures. Recently, protein engineering has been actively carried out by artificially designing this amino acid sequence or by in vivo or in vitro selection by random mutation.
  • FIG. 1 shows the structures of histidine (compound 1) and its analog (compounds 2-5) used in the following Examples.
  • the amino acid of compound (3) in Fig. 1 was patented in the United States in 1955 (US Patent No. 2,719,849: Patent Document 1) and is said to be useful as an intermediate for hypertensive drugs. ing.
  • HMDA N-methyl-D-aspartate
  • the present inventors have considered designing and synthesizing a non-naturally occurring amino acid in order to obtain a new tool for modifying the function of a protein. Therefore, it is an object of the present invention to obtain a novel non-natural amino acid having a different chemical structure from a naturally occurring amino acid. Furthermore, it is also an object of the present invention to open the way to impart a new function to a protein by introducing the unnatural amino acid thus obtained into the protein.
  • the present invention has provided a novel unnatural histidine analog, ⁇ _ (1,2,3-triazol-4-yl) -DL-alanine.
  • the amino acid provides a stronger analog than histidine as an acid.
  • the novel amino acid was successfully introduced into a protein (chitin binding domain) using a system based on Escherichia coli.
  • Histidine has an acid dissociation constant of 7, and acts as an acid-base catalyst in various proteins.
  • the imidazole group of histidine plays an important role in various enzymes.
  • the non-natural histidine analog of the present invention is obtained by replacing the imidazole ring (two nitrogen atoms) of natural histidine with a triazole ring (three nitrogen atoms), and has a very similar structure. Therefore, it is thought that even if the unnatural histidine analog of the present invention is introduced into a protein, its structure is hardly distorted.
  • histidine analog of the present invention is introduced into a portion where histidine acts as an acid in a protein, its activity is considered to be increased.
  • 1 shows the structures of natural histidine (Formula 2) and a novel histidine analog of the present invention (Lig Formula 3).
  • FIG. 1 is a diagram showing the structure of histidine and its analog used in Examples of the present invention.
  • FIG. 2 is a diagram showing a synthesis scheme of the unnatural histidine analog of the present invention.
  • FIG. 3 is a photograph of a blotting showing incorporation of histidine and a histidine analog into a protein.
  • ⁇ - (1,2,3-triazol-4-yl) -DL-alanine which is an unnatural histidine analog of the present invention, is preferably synthesized by the synthetic scheme shown in FIG.
  • the synthetic scheme is not limited to this, and it is naturally possible to use various modified methods commonly used in the field of chemical synthesis. Therefore, it should be understood that modifications and improvements of various synthesis methods by the ingenuity of those skilled in the art are also within the scope of the present invention.
  • the protein into which the histidine analog is introduced is not limited to the chitin binding domain, and the non-natural histidine analog of the present invention can be introduced into various proteins depending on the purpose.
  • E. coli is usually histidine itself Histidine-deficient strains do not have this function. Therefore, the present inventors have studied whether the structure of the histidine analog synthesized this time is very similar to histidine, and it could be introduced simply by adding these unnatural amino acids to the medium. Therefore, the present inventors selected a protein called a chitin binding domain, and tried to introduce the ⁇ -1,2,3- (triazol-4-yl) -DL-alanine of the present invention into this protein.
  • Expression vector fragments were prepared using normal inverse PCR. 1 ⁇ g of the synthetic DNA primer was mixed with commercially available pGEX-4T_3 (Pharmacia, Apsala, Sweden) containing the tac promoter for high expression, and PCR was performed with Ex.Taq DNA polymerase.
  • the sense and antisense primers used here were 5'-GCCAAAGCATATGGGATCCCCGAATTCCCG-3 'and 5'-CCGGGATCC, respectively.
  • the sense primer had an EcoRI site and the antisense primer contained a BamHI site (underlined).
  • the PCR product (ca. 4kbp) was isolated on 1% agarose gel electrophoresis and was digested with BamHI and EcoRI. The digested product was purified by phenol / chloroform extraction and ethanol precipitated.
  • the plasmid vector pHEX-CBD was constructed as follows. A commercially available CBD expression vector, pTYBl (New England Biolabs, Beverly, MA) was subjected to a PCR reaction with Ex.Taq DNA polymerase (Takara). The sequences of the sense and antisense primers were 5, _GCGGGATCCACGACAAATCCTGGTGTATC_3 'and 5,
  • PCR products were isolated on 4% polyacrylamide gel electrophoresis and digested with EcoRI and BamHI. The digested product was purified by phenol / chloroform extraction, and ethanol precipitated. The precipitated DNA fragment was ligated to the EcoRI and BamHI sites of the above expression vector fragment.
  • E. coli JM109 strain was used to manipulate the pHEX plasmid and the pHEX_CBD plasmid described above.
  • E. coli strains were transformed with each plasmid and bacteria were placed on LB containing ampicillin. A single colony was cultured in 3 ml of YT medium, and the plasmid was isolated using a plasmid miniprep kit (Qiagen, Hilden, Germany). Plasmid The sequence was confirmed by DNA sequence analysis.
  • the bacterial pellet was resuspended in 1 ml of 0.1% (v / v) Triton II-100 in PBS buffer ( ⁇ 7.4) and sonicated on ice (50 W, 5 times for 15 seconds). The lysate was centrifuged at 12000 ⁇ m for 1 minute, and the chitin binding domain protein in the supernatant was detected as described below.
  • the SDS-PAGE was performed on a 15% gel to confirm that the chitin binding domain mutated from the wild type was generated. It was confirmed by performing Western blotting using an antibody. Apply a fixed amount (1 aL) of lysate to 9 ⁇ L of water and 2xSB (sample buffer; lOOMm Tris-HCl, pH6.8, 8% sodium dodecyl sulfate, 4% 2-mercaptoethanol, 24% glycerol, 0.01% Bromophenol blue). This solution was incubated at 95 ° C. for 5 minutes, 5 of the solution was subjected to gel electrophoresis, and an electric plot was made on a PVDF membrane. 37. Membrane in Tris-buffered saline (containing 20 mM Tris / HCl, 150 mM NaCl and 0.1% Tween_20). By incubating for 1 hour
  • FIG. 3 is a photograph of a blotting showing the incorporation of histidine and histidine analog into a protein.
  • lane 1 is the result of a sample to which IPTG was not added
  • lane 2 was the result of a sample to which histidine was not added to the analog of the present invention
  • lane 3 was the result of a sample to which histidine was added.
  • lanes 4, 5, 6, and 7 are the results of samples analyzed for compounds 2, 3, 4, and 5 in FIG.
  • the introduction of the target amino acid was observed only in compounds 2 and 3.
  • the histidine analog of the present invention I-Danied Compound 2 was efficiently introduced into the protein.
  • the histidine analog of the present invention is a novel unnatural amino acid.
  • the histidine analog of the present invention has been reported to be effective as a medicament for other histidine analogs. May be useful as medicines.
  • the triazole ring contained in the novel histidine analog of the present invention has a higher acidity and a stronger function as an acid catalyst than the imidazole ring, by introducing the histidine analog of the present invention into a protein, the acid catalyst of the protein can be obtained. Can increase activity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

It is intended to provide β-(1,2,3-triazol-4-yl)-DL-alanine which is a novel unnatural histidine analog. By using a histidine-requiring Escherichia coli strain, this novel amino acid is successfully transferred into a protein (chitin-binding domain). This unnatural histidine analog provides a new tool for imparting a new function to a protein.

Description

新規な非天  A new non-heavenly
技術分野  Technical field
[0001] 本発明は、下記の化学式  [0001] The present invention provides the following chemical formula
(化 1)  (Formula 1)
Figure imgf000002_0001
からなる構造を有することを特徴とするアミノ酸に関する。即ち、本発明は新規の非天 然ヒスチジンアナログである、 β -(1, 2,3-トリァゾール -4-ィル) -DL-ァラニンに関する
Figure imgf000002_0001
An amino acid having a structure consisting of: That is, the present invention relates to a novel non-natural histidine analog, β- (1,2,3-triazol-4-yl) -DL-alanine.
背景技術 Background art
[0002] 天然のタンパク質は 20種類のアミノ酸力 構成されており、それら 20種類のァミノ 酸中には酸として機能するもの、塩基として機能するもの、疎水性のもの、親水性の ものなどがある。それらが巧みな配列と高次構造を構成することにより、タンパク質は 様々な機能を担っている。このアミノ酸配列を人工的に設計することにより、またラン ダム変異により in vivo又は in vitro選択などを行うことにより、タンパク質をエンジニアリ ングすることが最近盛んに行われてレ、る。  [0002] Natural proteins are composed of 20 types of amino acids, and among these 20 types of amino acids, there are those that function as acids, those that function as bases, those that are hydrophobic, those that are hydrophilic . Proteins perform a variety of functions as they form clever sequences and higher-order structures. Recently, protein engineering has been actively carried out by artificially designing this amino acid sequence or by in vivo or in vitro selection by random mutation.
[0003] し力、しながら、天然に存在するアミノ酸だけではアミノ酸の化学的性質 (酸性'塩基 性の強さ)に限界があるため、酵素活性の pH依存性や温度依存性の向上または変 化を試みても限界があると考えられる。そこで近年天然に存在しないアミノ酸の合成 なども試みられており、その一環として、米国などを中心にヒスチジンのアナログなど が報告されている。下記の実施例において使用したヒスチジン (化合物 1)及びそのァ ナログ (化合物 2— 5)の構造を図 1に示す。 [0004] 例えば図 1の化合物 (3)のアミノ酸については 1955年にアメリカで特許が取得され ており(米国特許番号 2,719,849 :特許文献 1)高血圧の薬の中間体として有用であ ると言われている。また、図 1の化合物 (4)のアミノ酸については [0003] However, naturally occurring amino acids alone have limitations in the chemical properties of amino acids (the strength of acidity and basicity), so that the pH or temperature dependence of enzyme activity is improved or altered. It seems that there is a limit even if we try to make it. In recent years, attempts have been made to synthesize non-naturally occurring amino acids, and as part of this, histidine analogs have been reported mainly in the United States. FIG. 1 shows the structures of histidine (compound 1) and its analog (compounds 2-5) used in the following Examples. [0004] For example, the amino acid of compound (3) in Fig. 1 was patented in the United States in 1955 (US Patent No. 2,719,849: Patent Document 1) and is said to be useful as an intermediate for hypertensive drugs. ing. The amino acids of compound (4) in Fig. 1
N-methyl-D-aspartate(HMDA) receptorの拮抗薬としての可能性が示唆されている (Bioorganic & Medical chemistry letters (1993) 3 (1) 43—48)。  It has been suggested that N-methyl-D-aspartate (HMDA) receptor may be an antagonist (Bioorganic & Medical chemistry letters (1993) 3 (1) 43-48).
発明の開示  Disclosure of the invention
[0005] そこで本発明者は、タンパク質の機能を改変するための新たなツールを得るために 、天然には存在しないアミノ酸を設計して合成することを考えた。よって天然に存在 するアミノ酸とは異なった化学構造を有する、新規な非天然のアミノ酸を得ることが本 発明の課題である。更に、そのようにして得られた非天然のアミノ酸をタンパク質中に 導入することにより、タンパク質に新たな機能を付与する途を開くこともまた本発明の 課題である。  [0005] Therefore, the present inventors have considered designing and synthesizing a non-naturally occurring amino acid in order to obtain a new tool for modifying the function of a protein. Therefore, it is an object of the present invention to obtain a novel non-natural amino acid having a different chemical structure from a naturally occurring amino acid. Furthermore, it is also an object of the present invention to open the way to impart a new function to a protein by introducing the unnatural amino acid thus obtained into the protein.
[0006] よって本発明により、新規な非天然ヒスチジンアナログである β _(1,2,3-トリァゾール -4-ィル) -DL-ァラニンが与えられた。当該アミノ酸は、ヒスチジンよりも酸として強いァ ナログを提供するものである。また、大腸菌によるシステムを用いて、当該新規アミノ 酸をタンパク質 (キチンバインディングドメイン)に導入することに成功した。  [0006] Thus, the present invention has provided a novel unnatural histidine analog, β_ (1,2,3-triazol-4-yl) -DL-alanine. The amino acid provides a stronger analog than histidine as an acid. The novel amino acid was successfully introduced into a protein (chitin binding domain) using a system based on Escherichia coli.
[0007] ヒスチジンは酸解離定数が 7であり、様々なタンパク質において酸 ·塩基触媒として 働いており、ヒスチジンのイミダゾール基は種々の酵素において重要な役割を果たし ている。本発明の非天然ヒスチジンアナログは、天然のヒスチジンのイミダゾール環( 窒素原子 2つ)をトリァゾール環(窒素原子 3つ)にしたものであって構造が非常によく 似ている。よって、本発明の非天然ヒスチジンアナログをタンパク質中に導入しても、 その構造をほとんど歪めないと考えられる。本発明の新規ヒスチジンアナログに含ま れるトリアゾール環はイミダゾール環に比べて酸性が強く(pKa=2)、酸触媒としての機 能が強い。よって、タンパク質中においてヒスチジンが酸として働いている部分に本 発明のヒスチジンアナログを導入すれば、その活性が上がると考えられる。天然のヒ スチジン (化学式 2)と本発明の新規ヒスチジンアナログ (ィヒ学式 3)の構造を示す。  [0007] Histidine has an acid dissociation constant of 7, and acts as an acid-base catalyst in various proteins. The imidazole group of histidine plays an important role in various enzymes. The non-natural histidine analog of the present invention is obtained by replacing the imidazole ring (two nitrogen atoms) of natural histidine with a triazole ring (three nitrogen atoms), and has a very similar structure. Therefore, it is thought that even if the unnatural histidine analog of the present invention is introduced into a protein, its structure is hardly distorted. The triazole ring contained in the novel histidine analog of the present invention is more acidic (pKa = 2) than the imidazole ring, and has a strong function as an acid catalyst. Therefore, if the histidine analog of the present invention is introduced into a portion where histidine acts as an acid in a protein, its activity is considered to be increased. 1 shows the structures of natural histidine (Formula 2) and a novel histidine analog of the present invention (Lig Formula 3).
[0008] (化 2) [0008] (Chemical 2)
Figure imgf000004_0001
Figure imgf000004_0001
[0009] (化 3) [0009]
O O
It  It
H2N— CH- C- OH H 2 N— CH- C- OH
Figure imgf000004_0002
図面の簡単な説明
Figure imgf000004_0002
Brief Description of Drawings
[0010] [図 1]図 1は、本発明の実施例において使用したヒスチジン及びそのアナログの構造 を示した図である。  FIG. 1 is a diagram showing the structure of histidine and its analog used in Examples of the present invention.
[図 2]図 2は、本発明の非天然ヒスチジンアナログの合成スキームを示した図である。  FIG. 2 is a diagram showing a synthesis scheme of the unnatural histidine analog of the present invention.
[図 3]図 3はヒスチジン及びヒスチジンアナログのタンパク質への取り込みを示す、ブロ ッティングの写真である  [FIG. 3] FIG. 3 is a photograph of a blotting showing incorporation of histidine and a histidine analog into a protein.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の非天然ヒスチジンアナログである β -(1,2,3-トリァゾール -4-ィル) -DL-ァラ ニンは、好ましくは図 2に示す合成スキームにより合成される。し力し合成スキームは それに限定されるものではなぐ化学合成の分野で通常に行われる種々の改変した 方法を用いることも当然に可能である。よって当業者の創意工夫によって種々の合 成方法の改変や改良を行うことも、本発明の範囲内であると解されるべきである。  [0011] β- (1,2,3-triazol-4-yl) -DL-alanine, which is an unnatural histidine analog of the present invention, is preferably synthesized by the synthetic scheme shown in FIG. The synthetic scheme is not limited to this, and it is naturally possible to use various modified methods commonly used in the field of chemical synthesis. Therefore, it should be understood that modifications and improvements of various synthesis methods by the ingenuity of those skilled in the art are also within the scope of the present invention.
[0012] また、下記の実施例において、本発明の非天然ヒスチジンアナログである β  [0012] In the following examples, β, which is an unnatural histidine analog of the present invention,
-(1,2,3_トリァゾール_4_ィル)_0し_ァラニンを、ヒスチジン要求性の大腸菌の系を用 いて、タンパク質であるキチンバインディングドメインに導入している。本発明の非天 然ヒスチジンアナログを導入するタンパク質はキチンバインディングドメインに限定さ れるものではなぐその目的に応じて種々のタンパク質中に本発明の非天然ヒスチジ ンアナログを導入することが可能である。 -(1,2,3_Triazole_4_yl) _0 _______________________________________________________________________ Re introduceded to the protein chitin binding domain using a histidine-requiring E. coli system. Non-heavenly of the present invention Of course, the protein into which the histidine analog is introduced is not limited to the chitin binding domain, and the non-natural histidine analog of the present invention can be introduced into various proteins depending on the purpose.
[0013] 非天然アミノ酸を導入するために利用できる方法はいくつか存在する (Liu, D. R., Schultz, P. G. (1999) Pro Natl. Acad. Sci. USA, 96, 4780-4785 ; Kochendoerfer, G. G., Kent, S. B. (1999) Curr. Opin. Chem. Biol., 3, 665-671; Sisido, M., Hohsaka, T. (1999) Bull. Chem. Soc. Jpn., 72, 1409-1425)。また、天然のアミノ酸の 他にいくつかのアナログをタンパク質に導入した例が報告されている (Koide, H., Yokoyama S., Katayama, Υ·, Muto, Υ·, igawa, Ί ., Kohno, Τ·, Takusan, H., Uishi, M., Takahashi, S., Tsukumoto, K et al. (1994) Biochemistry. , 33, 7470 - 7476; [0013] There are several methods available for introducing unnatural amino acids (Liu, DR, Schultz, PG (1999) Pro Natl. Acad. Sci. USA, 96, 4780-4785; Kochendoerfer, GG, Kent , SB (1999) Curr. Opin. Chem. Biol., 3, 665-671; Sisido, M., Hohsaka, T. (1999) Bull. Chem. Soc. Jpn., 72, 1409-1425). In addition, examples have been reported in which some analogs are introduced into proteins in addition to natural amino acids (Koide, H., Yokoyama S., Katayama, Υ ·, Muto, Υ ·, igawa, Ί., Kohno, Τ ·, Takusan, H., Uishi, M., Takahashi, S., Tsukumoto, K et al. (1994) Biochemistry., 33, 7470-7476;
Koide, H., Yokoyama S., Kawai, G., Ha JM., Oka, T., Kawai, S. , Miyake, Τ· , Fuwa, Τ· , Miyazawa, T. (1988) Pro Natl. Acad. Sci. USA.. , 85, 6237-6241 ; van Hest, J. C. M. , Kiick, K.し, Tirrell, D. A. (2000) J. Am. Chem. Soc" 122, 1282-1288)。そし て、翻訳されたタンパク質について検討されたところ、非天然のアミノ酸は天然のアミ ノ酸を類似した構造を示したという報告がされている (van Hest, J. C. M. , Kiick, K. L., Tirrell, D. A. (2000) J. Am. Chem. Soc, 122, 1282-1288)。  Koide, H., Yokoyama S., Kawai, G., Ha JM., Oka, T., Kawai, S., Miyake, Τ ·, Fuwa, Τ ·, Miyazawa, T. (1988) Pro Natl. Acad. Sci. USA., 85, 6237-6241; van Hest, JCM, Kiick, K., Tirrell, DA (2000) J. Am. Chem. Soc "122, 1282-1288). Investigations on proteins have reported that unnatural amino acids have similar structures to natural amino acids (van Hest, JCM, Kiick, KL, Tirrell, DA (2000) J. Am. Chem. Soc, 122, 1282-1288).
実施例  Example
[0014] 以下の実施例は、本発明の範囲をいかなる意味においても限定するものではない 。なお、本実施例において使用した試薬、および使用した実験条件は以下のとおり である。また下記の実施例 1の合成例において各化合物に付与した番号は、図 2の 合成スキームにおける化合物の番号である。  [0014] The following examples do not limit the scope of the invention in any way. The reagents used in this example and the experimental conditions used are as follows. The numbers given to each compound in the synthesis examples of Example 1 below are the numbers of the compounds in the synthesis scheme of FIG.
(a) DCC (2.2当量), MeOH (1.5当量), CH C1 ,室温, 12時間  (a) DCC (2.2 eq), MeOH (1.5 eq), CH C1, room temperature, 12 hours
(b) LiBH (0.5当量), THF還流, 3時間  (b) LiBH (0.5 equivalent), refluxed in THF, 3 hours
(c) TBDMSCl (1.5当量), imidazole (2.0当量), DMF,室温, 24時間  (c) TBDMSCl (1.5 eq), imidazole (2.0 eq), DMF, room temperature, 24 hours
(d) n-BuLi (0.95当量),トリメチルシリルジァゾメタン(1.2当量), Et 0, 0°C, 3時間 (d) n-BuLi (0.95 equivalent), trimethylsilyldiazomethane (1.2 equivalent), Et 0, 0 ° C, 3 hours
(e) TBAF (2.2当量), THF,室温, 2時間 (e) TBAF (2.2 equivalents), THF, room temperature, 2 hours
(f) PDC (3.5当量), DMF,室温, 24時間  (f) PDC (3.5 equivalents), DMF, room temperature, 24 hours
(g) TFA, CH CI ,室温, 12時間, Dowex 50WX- 200. [0015] (実施例 1 : -1,2,3-(トリァゾール-4-ィル)-0レァラニンの合成 (g) TFA, CH CI, room temperature, 12 hours, Dowex 50WX-200. (Example 1: Synthesis of -1,2,3- (triazol-4-yl) -0 lealanine
(1) 2L-tert -ブトキシカルボニルァミノ- 3-シァノ -プロピオン酸メチルエーテル:化合 物 7の合成  (1) Synthesis of 2L-tert-butoxycarbonylamino-3-cyano-propionic acid methyl ether: Compound 7
N_ひ_Boc-L-ァスパラギン(ィ匕合物6) (l·54 g, 6.65 mmol) を CH C1 (15 mL)に溶  Dissolve N_hi_Boc-L-asparagine (I-Dragon Compound 6) (l · 54 g, 6.65 mmol) in CH C1 (15 mL).
2 2  twenty two
解させ DCC (3.02 g, 14.6 mmol)を加えた。室温で 6時間撹拌した後、メタノール (400 μ L, 9.98 mmol)を加え、さらに 6時間撹拌した。 不溶のジシクロへキシルゥレアをろ 過して除き、 5% NaHCO で洗浄した。その後、飽和食塩水と水で洗いエバポレーショ  DCC (3.02 g, 14.6 mmol) was added. After stirring at room temperature for 6 hours, methanol (400 μL, 9.98 mmol) was added, and the mixture was further stirred for 6 hours. The insoluble dicyclohexyl perea was removed by filtration and washed with 5% NaHCO. Then, wash with saturated saline and water and evaporate
3  Three
ンで溶媒を除き、カラムで精製して化合物 7を 1.06 g (70%)得た。  The solvent was removed with a solvent, and the residue was purified by a column to obtain 1.06 g (70%) of compound 7.
'Η NMR (CDCl ): δ 1.41 (s, 9Η, C(CH ) ); 2.92 (dd, J = 16.8, 5.3, 2H, CH CN);  'Η NMR (CDCl): δ 1.41 (s, 9Η, C (CH)); 2.92 (dd, J = 16.8, 5.3, 2H, CH CN);
3 3  3 3
3.79 (s, 3H, CH ); 4.49 (m, 1H, CH CH); 5.55 (m, 1H, NH). 13C NMR (CDCl ): δ 3.79 (s, 3H, CH); 4.49 (m, 1H, CH CH); 5.55 (m, 1H, NH). 13 C NMR (CDCl): δ
3 2 3 3 2 3
21.9, 28.4, 50.4, 53.5, 81.1, 116.5, 155.1, 169.7. IR (KBr): 3350 br (NH); 2253 (CN); 1739 (C=〇,エステル); 1678 (C=〇,力ルバメート). HRMS found 229.1179. Calcd for (MH+) C H N O : 229.1187. 21.9, 28.4, 50.4, 53.5, 81.1, 116.5, 155.1, 169.7. IR (KBr): 3350 br (NH); 2253 (CN); 1739 (C = 〇, ester); 1678 (C = 〇, olebamate) HRMS found 229.1179. Calcd for (MH + ) CHNO: 229.1187.
10 17 2 4  10 17 2 4
[0016] (2) 2L- tert-ブトキシカルボニルァミノ- 3-シァノ-プロパノール:化合物 8の合成  (2) Synthesis of 2L-tert-butoxycarbonylamino-3 -cyano-propanol: Compound 8
2L-タート-ブトキシカルボニルァミノ- 3-シァノ -プロピオン酸メチルエーテル (ィ匕合物 7X1.48 g, 6.51 mmom)を THF (6.8 mL)に溶角军させ LiBH (70.8 mg, 3.23 mmol)を窒  2L-tert-butoxycarbonylamino-3-cyano-propionic acid methyl ether (7X1.48 g, 6.51 mmom) was dissolved in THF (6.8 mL) and LiBH (70.8 mg, 3.23 mmol) was added. Nitrification
4  Four
素雰囲気下で加え、 3時間還流させて反応させた。 3時間後、冷却して 2 M KHSOを  The reaction was performed under reflux for 3 hours. After 3 hours, cool down to 2 M KHSO
4 用いて酸性にした (pH4)。ろ過した後、溶媒をエバポレーシヨンで除いた。残留物を CHC1 で抽出した後に水で洗浄した。エバポレーシヨンで溶媒を除き、カラムで精製 4 and acidified (pH 4). After filtration, the solvent was removed by evaporation. The residue was extracted with CHC1 and washed with water. Remove solvent by evaporation and purify by column
3 Three
して化合物 8を 1.17 g (90%)得た。  This gave 1.17 g (90%) of compound 8.
¾ NMR (CDCl ): δ 1.44 (s, 9Η, C(CH ) ); 2.22 (br s, 1H, CH OH); 2.71 (m, 2H,  ¾ NMR (CDCl): δ 1.44 (s, 9Η, C (CH)); 2.22 (br s, 1H, CH OH); 2.71 (m, 2H,
3 3 3 2  3 3 3 2
CH CN); 3.77 (dd, J = 10.9, 4.1, 2H, CH OH); 3.93 (m, 1H, CH CH); 5.12 (m, 1H, CH CN); 3.77 (dd, J = 10.9, 4.1, 2H, CH OH); 3.93 (m, 1H, CH CH); 5.12 (m, 1H,
2 2 2 2 2 2
NH). 13C NMR (CDCl ): δ 20.3, 28.5, 49.0, 62.9, 80.6, 117.9, 155.7. IR (KBr)/ cm NH). 13 C NMR (CDCl): δ 20.3, 28.5, 49.0, 62.9, 80.6, 117.9, 155.7. IR (KBr) / cm
3  Three
— 3339 br (NH); 2253 (CN); 1695 (C=〇). HRMS found MH+ 201.1264. C H N〇  — 3339 br (NH); 2253 (CN); 1695 (C = 〇). HRMS found MH + 201.1264. C H N〇
9 17 2 3 requires 201.1238.  9 17 2 3 requires 201.1238.
[0017] (3) 2L_tert-ブトキシカルボニルァミノ- 3-シァノ -プロピル -tert -ブチルジメチルシリ ノレエーテル:化合物 9の合成  (3) 2L_tert-Butoxycarbonylamino-3-cyano-propyl-tert-butyldimethylsilylene ether: Synthesis of Compound 9
2L_tert-ブトキシカルボニルァミノ- 3-シァノ -プロパノール (ィ匕合物 8)(1.17g, 5.86 mmol)を DMFに溶解させ、 tert-ブチルジメチルクロロシラン(1.32 g, 8.79 mmol)とイミ ダゾーノレ (798 mg, 11.72 mmol)を加え一日撹拌した。溶媒をエバポレーシヨンで除き 、残留物を CHC1 に溶解させた後、水で洗浄した。エバポレーシヨンで溶媒を除き力 2L_tert-Butoxycarbonylamino-3-cyano-propanol (I-Daijutsu 8) (1.17 g, 5.86 mmol) was dissolved in DMF, tert-butyldimethylchlorosilane (1.32 g, 8.79 mmol) and imidazonole (798 mg, 11.72 mmol) were added, and the mixture was stirred for one day. The solvent was removed by evaporation, and the residue was dissolved in CHC1 and washed with water. Remove solvent by evaporation
3  Three
ラムで精製して化合物 9を 1.44 g (78%)得た。  Purification by ram gave 1.44 g (78%) of compound 9.
'Η NMR (CDCl ): δ 0.06 (s, 6H, Si(CH ) ); 0.87 (s, 9H, SiC(CH ) ); 1.42 (s, 9H,  'Η NMR (CDCl): δ 0.06 (s, 6H, Si (CH)); 0.87 (s, 9H, SiC (CH)); 1.42 (s, 9H,
3 3 2 3 3  3 3 2 3 3
C(CH ) ); 2.61 (d, J = 6.6, 2H, CH CN); 3.68 (dd, J = 10.1, 5.0, 2H, CH〇Si); 3.92 C (CH)); 2.61 (d, J = 6.6, 2H, CH CN); 3.68 (dd, J = 10.1, 5.0, 2H, CH〇Si); 3.92
3 3 2 2 3 3 2 2
(m, 1H, CH CH); 4.83 (m, 1H, NH). 13C NMR (CDCl ): δ 5.7, 18.0, 19.9, 25.7, (m, 1H, CH CH); 4.83 (m, 1H, NH). 13 C NMR (CDCl): δ 5.7, 18.0, 19.9, 25.7,
2 3  twenty three
28.2, 48.6, 63.1, 79.6, 117.2, 154.8. IR (KBr): 3358 br (NH); 2251 (CN); 1718 (C=0). HRMS found 314.2034. Calcd for (MH+) C H N O Si : 314.2024. 28.2, 48.6, 63.1, 79.6, 117.2, 154.8. IR (KBr): 3358 br (NH); 2251 (CN); 1718 (C = 0) .HRMS found 314.2034.Calcd for (MH + ) CHNO Si: 314.2024.
15 30 2 3 1  15 30 2 3 1
[0018] (4) 2DL- tert-ブトキシカルボニルァミノ -(4_トリメチルシリル- 1,2,3-トリァゾール _5_ィ ノレ) -プロピル- tert-ブチルジメチルシリルエーテル:ィ匕合物 10の合成  [0018] (4) Synthesis of 2DL-tert-butoxycarbonylamino- (4_trimethylsilyl-1,2,3-triazole_5_inole) -propyl-tert-butyldimethylsilyl ether: i-conjugate 10
2.73 ml (4.34 mmol)の n_ブチルリチウム(1.59 Mへキサン溶液)をトリメチノレシリ ノレジァゾメタン(2.0 Mへキサン溶液, 2.74 mL, 5.48 mmol)のジェチノレエーテノレ (28 mL)溶液に、 0 °Cで滴下した。 その後 20分間攪拌し、更に化合物 9 (1.44 g, 4.57 mmol)のジェチルエーテル (14 mL)溶液を 0 °Cで滴下し、 3時間撹拌した。 3時間後 、飽和塩化アンモニゥム水溶液を加え、ジェチルエーテルで抽出した。ジェチルェ 一テル層を水で洗レ、、その後、エバポレーシヨンで溶媒を除きカラムで精製して化合 物 10を 1.47 g (75%)得た。  2.73 ml (4.34 mmol) of n_butyllithium (1.59 M hexane solution) was added to a solution of trimethinolecinolenoresazomethane (2.0 M hexane solution, 2.74 mL, 5.48 mmol) in getinoleateno (28 mL) at 0 ° C. Was dropped. After stirring for 20 minutes, a solution of compound 9 (1.44 g, 4.57 mmol) in dimethyl ether (14 mL) was added dropwise at 0 ° C, and the mixture was stirred for 3 hours. Three hours later, a saturated aqueous solution of ammonium chloride was added, and the mixture was extracted with getyl ether. The Jetillu-ter layer was washed with water, and then purified by a column after removing the solvent by evaporation to obtain 1.47 g (75%) of Compound 10.
JH NMR (CDCl ): δ 0.02 (s, 6H, Si(CH ) ); 0.35 (s, 9H, Si(CH ) ); 0.86 (s, 9H, J H NMR (CDCl): δ 0.02 (s, 6H, Si (CH)); 0.35 (s, 9H, Si (CH)); 0.86 (s, 9H,
3 3 2 3 3  3 3 2 3 3
SiC(CH ) ); 1.34 (s, 9H, C(CH ) ); 3.00 (dd, J = 15.0, 5.4, 2H, CH C=C); 3.62 (dd, SiC (CH)); 1.34 (s, 9H, C (CH)); 3.00 (dd, J = 15.0, 5.4, 2H, CH C = C); 3.62 (dd,
3 3 3 3 23 3 3 3 2
J = 9.9, 6.0, 2H, CH OSi); 3.95 (m, 1H, CH CH); 5.34 (m, 1H, NH). 1 C NMR J = 9.9, 6.0, 2H, CH OSi); 3.95 (m, 1H, CH CH); 5.34 (m, 1H, NH). 1 C NMR
2 2  twenty two
(CDCl ): δ 5.5, -1.0, 18.2, 25.9, 27.5, 28.3, 52.2, 58.1, 64.3, 79.0, 155.6. IR (CDCl): δ 5.5, -1.0, 18.2, 25.9, 27.5, 28.3, 52.2, 58.1, 64.3, 79.0, 155.6.IR
3 Three
(KBr): 3134 br (NH); 1716 (C=〇); 1687 (C=N). HRMS found MH+ 429.2678. Calcd for C H N O Si : 429.2715.  (KBr): 3134 br (NH); 1716 (C = 〇); 1687 (C = N). HRMS found MH + 429.2678. Calcd for C H N O Si: 429.2715.
19 41 4 3 2  19 41 4 3 2
[0019] (5) 2DL_tert_ブトキシカルボニルァミノ- (1,2,3-トリァゾール _4-ィル) -プロパノール: 化合物 11の合成  (5) Synthesis of Compound 11: 2DL_tert_butoxycarbonylamino- (1,2,3-triazole_4-yl) -propanol
2DL-tert-ブトキシカルボニルァミノ _(4 -トリメチルシリル- 1,2,3 -トリアゾール _5 -ィル )-プロピル- tert-ブチルジメチルシリルエーテル (ィ匕合物 10) (1.46 g, 3.23 mmol)を THF (7.1 mL)に溶解させ、 TBAF (1.0 M THF溶液, 7.1 mL, 7.1 mmol)を加え 2時間 撹拌した。エバポレーシヨンで THFを除き、アンモニゥム塩をイオン交換カラム( Dowex 50WX-200イオン交換樹脂)で除き、カラムで精製して化合物 11を得た (81 %) 2DL-tert-butoxycarbonylamino _ (4-trimethylsilyl-1,2,3-triazol_5-yl) -propyl-tert-butyldimethylsilyl ether (I-conjugate 10) (1.46 g, 3.23 mmol) The residue was dissolved in THF (7.1 mL), TBAF (1.0 M THF solution, 7.1 mL, 7.1 mmol) was added, and the mixture was stirred for 2 hours. The THF was removed by evaporation, the ammonium salt was removed by an ion-exchange column (Dowex 50WX-200 ion-exchange resin), and the column was purified to obtain compound 11 (81%).
'Η NMR (CDCl ): δ 1.32 (s, 9H, C(CH ) ); 2.98 (d, J = 6.6, 2H, CH C=C); 3.57 (d, 'Η NMR (CDCl): δ 1.32 (s, 9H, C (CH)); 2.98 (d, J = 6.6, 2H, CH C = C); 3.57 (d,
3 3 3 2  3 3 3 2
J = 3.9, 2H, CH OH); 3.88 (m, 1H, CH CH); 5.48 (m, 1H, NH); 7.55 (s, 1H,  J = 3.9, 2H, CH OH); 3.88 (m, 1H, CH CH); 5.48 (m, 1H, NH); 7.55 (s, 1H,
2 2  twenty two
C=CH).1 C NMR (CDCl ): δ 28.5, 52.2, 63.4, 80.1, 110.0, 156.4. IR (KBr)/ cm—1: C = CH). 1 C NMR (CDCl): δ 28.5, 52.2, 63.4, 80.1, 110.0, 156.4. IR (KBr) / cm— 1 :
3  Three
3312br (NH I OH); 1685 (C=0 I C=N). HRMS found MH+ 243.1455. C H N〇 3312br (NH I OH); 1685 (C = 0 IC = N). HRMS found MH + 243.1455. CHN〇
10 19 4 3 requires 243.1453.  10 19 4 3 requires 243.1453.
[0020] (6) ^^_ひ_800- /3 -(1,2,3-トリァゾール_4-ィル)-0し-ァラニン:ィ匕合物12の合成  [0020] (6) Synthesis of ^^ _ hi_800- / 3- (1,2,3-triazol_4-yl) -0-s-alanine: di-animal compound 12
2DL-tert-ブトキシカルボニルァミノ -(1,2,3-トリァゾール -4-ィル) -プロパノール(ィ匕 合物 11) (634 mg, 2.62 mmol)を DMF (25 mL)に溶解させ、 PDC (3.44 g, 9.17 mmol) とセライト (5.1 g)を加えて一日撹拌した。不要物をセライトで除き、エバポレーシヨンで 溶媒を除き、化合物 12を 658 mg (98%)得た。  Dissolve 2DL-tert-butoxycarbonylamino- (1,2,3-triazol-4-yl) -propanol (di-conjugated compound 11) (634 mg, 2.62 mmol) in DMF (25 mL) and add PDC (3.44 g, 9.17 mmol) and celite (5.1 g) were added, and the mixture was stirred for one day. Unnecessary substances were removed with Celite, and the solvent was removed with evaporation to obtain 658 mg (98%) of Compound 12.
HRMS found M+ 256.1164. C H N O requires 256.1123. HRMS found M + 256.1164.CHNO requires 256.1123.
10 16 4 4  10 16 4 4
[0021] (7) j3 -1,2, 3- (トリアゾール -4-ィル) -DL-ァラニンの合成  [0021] (7) Synthesis of j3 -1,2,3- (triazol-4-yl) -DL-alanine
Ν- α -Boc- - (1,2,3-トリァゾール -4-ィル) - DL-ァラニン (ィ匕合物 12) (658 mg, 2.57 mmol)を CH CI に溶解させ TFAとァニソールを加え、室温で 12時間撹拌した。溶媒  Ν-α-Boc-(1,2,3-triazol-4-yl) -DL-alanine (I-Danied Compound 12) (658 mg, 2.57 mmol) was dissolved in CH CI, and TFA and anisol were added. The mixture was stirred at room temperature for 12 hours. Solvent
2 2  twenty two
をエバポレーシヨンで除き、ジェチルエーテルで結晶化させると TFAの塩が得られた 。この塩を Dowex 50WX-200 ion-exchange-resinで脱塩し、 -1,2,3_ (トリアゾール —4_ィル)_0レァラニンを612 mg (98%)得た。 Was removed by evaporation and crystallized from getyl ether to give a salt of TFA. This salt was desalted with Dowex 50WX-200 ion-exchange-resin to obtain 612 mg (98%) of -1,2,3_ (triazole- 4- yl) _0 realanin.
mp 244-245°C, 'Η NMR (D O) : δ 3.25 (m, 2H, CH ); 3.95 (dd, J = 6.8, 5.2, 1H,  mp 244-245 ° C, 'Η NMR (D O): δ 3.25 (m, 2H, CH); 3.95 (dd, J = 6.8, 5.2, 1H,
2 2  twenty two
CH); 7.69 (s, 1H, C=CH). IR (KBr) 3100 2000 br (NH ); 1597 (C=0); 1549  CH); 7.69 (s, 1H, C = CH). IR (KBr) 3100 2000 br (NH); 1597 (C = 0); 1549
2  2
(C=N). Anal. Calcd for C H N O : C, 38.45; H, 5.17; N, 35.89. Found: C, 38.47;  (C = N). Anal. Calcd for C H N O: C, 38.45; H, 5.17; N, 35.89. Found: C, 38.47;
5 8 4 2  5 8 4 2
H, 5.12; N, 35.46.  H, 5.12; N, 35.46.
[0022] (実施例 2:非天然ヒスチジンアナログのタンパク質への導入)  (Example 2: Introduction of unnatural histidine analog into protein)
調製できるタンパク質の量や簡便性、経済性を考え、非天然アミノ酸のタンパク質 への導入法として大腸菌の系を用いることを試みた。大腸菌は通常、 自身でヒスチジ ンを合成し、タンパク質中に取り込んでいるが、ヒスチジン欠損株はこの機能を持たな レ、。そこで本発明者らは、今回合成したヒスチジン類似体の構造がヒスチジンに極め てよく似ているため、培地にこれら非天然アミノ酸を加えるだけで導入できないかと考 えて検討を行った。そこで本発明者は、キチンバインディングドメインというタンパク質 を選択し、このタンパク質に本発明の β -1,2,3 -(トリアゾール -4-ィル) -DL -ァラニンを 導入することを試みた。 Considering the amount of protein that can be prepared, simplicity, and economy, we attempted to use the E. coli system as a method for introducing unnatural amino acids into proteins. E. coli is usually histidine itself Histidine-deficient strains do not have this function. Therefore, the present inventors have studied whether the structure of the histidine analog synthesized this time is very similar to histidine, and it could be introduced simply by adding these unnatural amino acids to the medium. Therefore, the present inventors selected a protein called a chitin binding domain, and tried to introduce the β-1,2,3- (triazol-4-yl) -DL-alanine of the present invention into this protein.
[0023] (プラスミドの構築)  (Construction of plasmid)
通常のインバース PCRを用いて発現ベクター断片を調製した。 1 μ gの合成 DNAプ ライマーを、高発現させるために tacプロモーターを含んでレ、る市販の pGEX-4T_3 (フ アルマシア、ァプサラ、スウェーデン)と混合し、 Ex.TaqDNAポリメラーゼと共に PCR反 応を行った。ここで用いたセンスとアンチセンスのプライマーは、それぞれ 5' -GCCAAAGCATATGGGATCCCCGAATTCCCG-3 'と 5 ' - CCGGGATCC  Expression vector fragments were prepared using normal inverse PCR. 1 μg of the synthetic DNA primer was mixed with commercially available pGEX-4T_3 (Pharmacia, Apsala, Sweden) containing the tac promoter for high expression, and PCR was performed with Ex.Taq DNA polymerase. Was. The sense and antisense primers used here were 5'-GCCAAAGCATATGGGATCCCCGAATTCCCG-3 'and 5'-CCGGGATCC, respectively.
CTCTTCATATTTTTCTTCAAGA-3'であった。センスプライマーは EcoRIサイトを有 し、アンチセンスプライマーは BamHIサイト(下線)を含んでいた。 1%ァガロースゲル電 気泳動上で PCR産物(ca. 4kbp)が単離され、 BamHIと EcoRIで消ィヒされた。消化され た産物はフエノール/クロロフオルム抽出によって精製し、エタノール沈殿した。  CTCTTCATATTTTTCTTCAAGA-3 '. The sense primer had an EcoRI site and the antisense primer contained a BamHI site (underlined). The PCR product (ca. 4kbp) was isolated on 1% agarose gel electrophoresis and was digested with BamHI and EcoRI. The digested product was purified by phenol / chloroform extraction and ethanol precipitated.
[0024] プラスミドベクター pHEX-CBDを下記の様に構築した。市販の CBD発現ベクターで ある pTYBl (ニューイングランドバイオラブス、ビバリー、 MA)を Ex.TaqDNAポリメラー ゼ (タカラ)と共に PCR反応を行った。センスとアンチセンスプライマーの配列はそれ ぞれ、 5,_GCGGGATCCACGACAAATCCTGGTGTATC_3' と 5,  [0024] The plasmid vector pHEX-CBD was constructed as follows. A commercially available CBD expression vector, pTYBl (New England Biolabs, Beverly, MA) was subjected to a PCR reaction with Ex.Taq DNA polymerase (Takara). The sequences of the sense and antisense primers were 5, _GCGGGATCCACGACAAATCCTGGTGTATC_3 'and 5,
- CGGAATTCTCATTGAAGCTGCCACAAGG- 3,であった。 PCR産物を 4%のポリア クリルアミドゲル電気泳動上で単離し、 EcoRIと BamHIで消化した。消化した産物をフ ヱノール/クロ口ホルム抽出で精製し、エタノール沈殿した。沈殿した DNA断片を上 記の発現ベクター断片の EcoRIと BamHIサイトに結合させた。  -CGGAATTCTCATTGAAGCTGCCACAAGG-3. PCR products were isolated on 4% polyacrylamide gel electrophoresis and digested with EcoRI and BamHI. The digested product was purified by phenol / chloroform extraction, and ethanol precipitated. The precipitated DNA fragment was ligated to the EcoRI and BamHI sites of the above expression vector fragment.
[0025] pHEXプラスミドと上記の pHEX_CBDプラスミドを操作するために、大腸菌 JM109株 を使用した。各々のプラスミドで大腸菌株を形質転換し、アンピシリンンを含んでいる LB上に細菌を置いた。 3mlの YT培地中でシングルコロニーを培養し、プラスミドミニプ レップキット(キアゲン、ヒルデン、ドイツ)を用いてプラスミドを単離した。プラスミドの 配列を DNA配列解析によって確認した。 E. coli JM109 strain was used to manipulate the pHEX plasmid and the pHEX_CBD plasmid described above. E. coli strains were transformed with each plasmid and bacteria were placed on LB containing ampicillin. A single colony was cultured in 3 ml of YT medium, and the plasmid was isolated using a plasmid miniprep kit (Qiagen, Hilden, Germany). Plasmid The sequence was confirmed by DNA sequence analysis.
[0026] (キチンバインディングドメインの発現) [0026] (Expression of chitin binding domain)
ヒスチジン要求性のバクテリア発現宿主である UTH780コンビ一テント細胞を、 pHEX_CBD発現ベクターで形質転換した。その形質転換体を、 20 μ g/mlのアンピシ リンを添加した 5mlの最小培地 (1リットルあたり、 Fe(NH ) (SO ) 10 mg, MgSO ·6Η〇  UTH780 combi-tent cells, a histidine-requiring bacterial expression host, were transformed with the pHEX_CBD expression vector. The transformant was added to 5 ml of a minimal medium supplemented with 20 μg / ml of ampicillin (10 mg of Fe (NH 2) (SO 2)
4 2 4 3 4 2 4 2 4 3 4 2
55 mg, KH PO 4.4 g, K HPO - 3H〇 6.0 g, NH CI 1.0 g,グルコース 6 g,チアミン 10 55 mg, KH PO 4.4 g, K HPO-3H〇 6.0 g, NH CI 1.0 g, glucose 6 g, thiamine 10
2 4 2 4 2 4  2 4 2 4 2 4
mg,ヒスチジン 20 mg, pH7)中で、 600nmにおける濁度(A )力 .6になるまで37°〇で  mg, histidine 20 mg, pH 7) at 37 ° 〇 until the turbidity (A) force at 600 nm reaches
600  600
-トした。  -He's done.
[0027] 3000rpmで 10分間遠心分離することによって細菌を回収し、 M9培地で 2回洗浄し、 ヒスチジンを欠く最小培地 5mL中に再懸濁した。細胞を 37°Cで 20分間震盪することに より細胞内のヒスチジンを実質的に除去した。そしてヒスチジン又はヒスチジン同等物 を培地に添カ卩した。イソプロピル j3 _D-チォガラタトシド(IPTG、最終濃度 0.4mM)を 添加することにより誘導を行い、細菌を更に 37°Cで 4時間培養し、 3000rpmで 10分間 遠心分離することにより回収した。細菌のペレットを、 1mlの 0.1%(v/v)Triton Χ-100を 含む PBSバッファー(ρΗ 7.4)中に再懸濁し、氷上でソニケートした(50W, 15秒間 5回 )。ライゼートを 12000卬 mで 1分間遠心分離し、上清中のキチンバインディングドメイン タンパク質を下記のようにして検出した。  [0027] Bacteria were collected by centrifugation at 3000 rpm for 10 minutes, washed twice with M9 medium, and resuspended in 5 mL of minimal medium lacking histidine. Histidine in the cells was substantially removed by shaking the cells at 37 ° C for 20 minutes. Then, histidine or histidine equivalent was added to the medium. Induction was performed by addition of isopropyl j3_D-thiogalatatoside (IPTG, final concentration 0.4 mM), and the bacteria were further cultured at 37 ° C for 4 hours and collected by centrifugation at 3000 rpm for 10 minutes. The bacterial pellet was resuspended in 1 ml of 0.1% (v / v) Triton II-100 in PBS buffer (ρΗ7.4) and sonicated on ice (50 W, 5 times for 15 seconds). The lysate was centrifuged at 12000 卬 m for 1 minute, and the chitin binding domain protein in the supernatant was detected as described below.
[0028] (野生型と変異したキチンバインディングドメインの検出)  (Detection of chitin binding domain mutated from wild type)
野生型と変異したキチンバインディングドメインが生成していることを、 15%ゲル上で SDS-PAGEを行レ、、次いで抗キチンバインディングドメイン抗体(ニューイングランドバ ィオラブス)及びアルカリホスファターゼでラベルした抗ゥサギ IgG抗体を用いたウェス タンブロッテイングを行うことにより確認した。一定量(1 a L)のライゼートを 9 μ Lの水と 2xSB (サンプルバッファー; lOOMm Tris-HCl, pH6.8, 8%ドデシル硫酸ナトリウム、 4% 2-メルカプトエタノーノレ, 24%グリセロール, 0.01%ブロモフエノールブルー)と混合した 。この溶液を 95°Cで 5分間インキュベートし、その溶液の 5 をゲル電気泳動にかけ 、 PVDF膜上に電気プロットした。膜をトリス緩衝生理食塩水(20 mM Tris/HCl, 150 mM NaClと 0.1% Tween_20を含む)中で 37。C1時間インキュベートすることにより  The SDS-PAGE was performed on a 15% gel to confirm that the chitin binding domain mutated from the wild type was generated. It was confirmed by performing Western blotting using an antibody. Apply a fixed amount (1 aL) of lysate to 9 μL of water and 2xSB (sample buffer; lOOMm Tris-HCl, pH6.8, 8% sodium dodecyl sulfate, 4% 2-mercaptoethanol, 24% glycerol, 0.01% Bromophenol blue). This solution was incubated at 95 ° C. for 5 minutes, 5 of the solution was subjected to gel electrophoresis, and an electric plot was made on a PVDF membrane. 37. Membrane in Tris-buffered saline (containing 20 mM Tris / HCl, 150 mM NaCl and 0.1% Tween_20). By incubating for 1 hour
3%BSAでブロッキングし、同じバッファーで 1:5000に希釈した抗キチンバインディング ドメイン抗体とインキュベートした。洗浄した後、 1:5000で希釈したアルカリホスファタ ーゼ結合抗ゥサギ IgG抗体とインキュベートし、ウェスタンブルーサブストレート (プロメ ガ、マジソン、 WI)を用いてブロットを可視化した。 Anti-chitin binding blocked with 3% BSA and diluted 1: 5000 in the same buffer Incubated with domain antibodies. After washing, the plate was incubated with an alkaline phosphatase-conjugated anti-Peacock IgG antibody diluted 1: 5000, and the blot was visualized using a Western Blue substrate (Promega, Madison, WI).
[0029] 図 3はヒスチジン及びヒスチジンアナログのタンパク質への取り込みを示す、ブロッ ティングの写真である。各レーンにおいて、レーン 1は IPTGを添加しなかったサンプ ノレであり、レーン 2はヒスチジンも本発明のアナログの添加しなかったサンプルの結果 であり、レーン 3はヒスチジンが添加されたサンプルの結果であり、レーン 4、 5、 6、 7 は図 1の化合物 2、 3、 4、 5について解析を行ったサンプルの結果である。図 3の写 真において、 目的アミノ酸の導入は化合物 2、 3のみに認められた。すなわち、本発 明のヒスチジンアナログ (ィ匕合物 2)について、タンパク質中に効率良く導入されてい ることが確認された。 FIG. 3 is a photograph of a blotting showing the incorporation of histidine and histidine analog into a protein. In each lane, lane 1 is the result of a sample to which IPTG was not added, lane 2 was the result of a sample to which histidine was not added to the analog of the present invention, and lane 3 was the result of a sample to which histidine was added. Yes, lanes 4, 5, 6, and 7 are the results of samples analyzed for compounds 2, 3, 4, and 5 in FIG. In the photograph of FIG. 3, the introduction of the target amino acid was observed only in compounds 2 and 3. In other words, it was confirmed that the histidine analog of the present invention (I-Danied Compound 2) was efficiently introduced into the protein.
産業上の利用可能性  Industrial applicability
[0030] 本発明のヒスチジンアナログは新規な非天然アミノ酸である力 類似した他のヒスチ ジンアナログにつレ、て医薬として効果が報告されてレ、るために、本発明の非天然アミ ノ酸は医薬として有用である可能性がある。また、本発明の新規ヒスチジンアナログ に含まれるトリァゾール環はイミダゾール環に比べて酸性が強く酸触媒としての機能 が強いために、本発明のヒスチジンアナログをタンパク質に導入することにより、当該 タンパク質の酸触媒活性を上げることができる。 The histidine analog of the present invention is a novel unnatural amino acid. The histidine analog of the present invention has been reported to be effective as a medicament for other histidine analogs. May be useful as medicines. Further, since the triazole ring contained in the novel histidine analog of the present invention has a higher acidity and a stronger function as an acid catalyst than the imidazole ring, by introducing the histidine analog of the present invention into a protein, the acid catalyst of the protein can be obtained. Can increase activity.

Claims

請求の範囲 [1] 下記の化学式 Claims [1] The following chemical formula
(化 1 )  (Formula 1)
0  0
II  II
H2N— CH- C— OH H 2 N— CH- C— OH
Figure imgf000012_0001
力 なる構造を有することを特徴とするアミノ酸。
Figure imgf000012_0001
An amino acid having a strong structure.
[2] 下記の化学式  [2] The following chemical formula
(化 2)  (Formula 2)
0 0
II  II
H2N― CH- C— OH H 2 N— CH- C— OH
Figure imgf000012_0002
力 なる構造を有するアミノ酸を製造する方法。
Figure imgf000012_0002
A method for producing an amino acid having a strong structure.
[3] 下記の化学式 [3] The following chemical formula
(化 3)  (Formula 3)
0 0
II  II
H2 —— CH- C—— OH H 2 —— CH- C—— OH
Figure imgf000012_0003
力 なる構造を有するアミノ酸が導入されたことを特徴とする蛋白質。 [4] 下記の化学式
Figure imgf000012_0003
A protein characterized by the introduction of an amino acid having a strong structure. [4] The following chemical formula
(化 4)  (Formula 4)
0  0
II  II
H2N— CH-C— OH H 2 N— CH-C— OH
Figure imgf000013_0001
Figure imgf000013_0001
からなる構造を有するアミノ酸が導入された蛋白質を製造する方法。  A method for producing a protein into which an amino acid having a structure comprising
PCT/JP2004/011889 2003-08-29 2004-08-19 Novel unnatural histidine analog amino acid WO2005021514A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003307192A JP2005075765A (en) 2003-08-29 2003-08-29 New non-natural histidine analog amino acid
JP2003-307192 2003-08-29

Publications (1)

Publication Number Publication Date
WO2005021514A1 true WO2005021514A1 (en) 2005-03-10

Family

ID=34269426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011889 WO2005021514A1 (en) 2003-08-29 2004-08-19 Novel unnatural histidine analog amino acid

Country Status (2)

Country Link
JP (1) JP2005075765A (en)
WO (1) WO2005021514A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007932A1 (en) * 2006-07-14 2008-01-17 University Of Ulsan Foundation For Industry Cooperation Chitosan complex containing ph sensitive imidazole group and preparation method thereof
WO2010081882A2 (en) 2009-01-16 2010-07-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Synthesis of new protected azahistidines, their processes and their use in synthesises

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719849A (en) * 1954-02-04 1955-10-04 Lilly Co Eli beta-(1, 2, 4-triazolyl-3)-alanine and its salts and the preparation thereof
JPS61186397A (en) * 1985-02-12 1986-08-20 サノフイ Peptide derivative for controlling rennin and acid protease

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2719849A (en) * 1954-02-04 1955-10-04 Lilly Co Eli beta-(1, 2, 4-triazolyl-3)-alanine and its salts and the preparation thereof
JPS61186397A (en) * 1985-02-12 1986-08-20 サノフイ Peptide derivative for controlling rennin and acid protease

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHANG ET AL.: "Histidine decarboxylase of Lactobacillus 30a. II. Purification, substrate specificity and stereospecificity", BIOCHEMISTRY, vol. 7, 1968, pages 2005 - 2012 *
CHEMICAL ABSTRACTS, vol. 69, no. 2, 1968, Columbus, Ohio, US; page 1536-37; XP002982480 *
IKEDA YUTAKA ET AL.: "Synthesis of a novel histidine analogue and its efficient incorporation into a protein in vivo", PROTEIN ENGINEERING, vol. 16, no. 9, 2003, pages 699 - 706, XP002982482 *
TROUT GORDON E.: "Synthesis of some histidine analogs and their effects on the growth of a histidine-requiring mutant of Leuconostoc mesenteroides", JOURNAL OF MEDICINAL CHEMISTRY, vol. 15, no. 12, 1972, pages 1259 - 1261, XP002982481 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007932A1 (en) * 2006-07-14 2008-01-17 University Of Ulsan Foundation For Industry Cooperation Chitosan complex containing ph sensitive imidazole group and preparation method thereof
WO2010081882A2 (en) 2009-01-16 2010-07-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Synthesis of new protected azahistidines, their processes and their use in synthesises
EP2210882A1 (en) 2009-01-16 2010-07-28 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Synthesis of new protected azahistidine, their processes and their use in synthesises

Also Published As

Publication number Publication date
JP2005075765A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
KR20220113442A (en) Particle Delivery System
JP5469786B2 (en) Methods and compositions for enhancing and purifying protein expression
KR20160067219A (en) Polynucleotides encoding low density lipoprotein receptor
KR20120014940A (en) Recombinant production of peptides
WO2000015641A1 (en) Compounds alkylating specific base sequence of dna and method for synthesizing the same
CN108341781B (en) Method for analyzing related enzymes in biosynthetic pathway of plant secondary metabolites
JP2021525528A (en) ADH protein family mutants and their use
WO2009150865A1 (en) Method for production of modified protein and modified protein produced by the method, and protein modification kit
CN113930404B (en) Method for synthesizing chiral tofacitinib citrate intermediate by enzymatic method
WO2000040695A2 (en) Sequence-determined dna fragments and corresponding polypeptides encoded thereby
JP2982908B2 (en) DNA encoding human FK506 binding protein
WO2005021514A1 (en) Novel unnatural histidine analog amino acid
WO2012017400A1 (en) Synthesis of acyl-pantetheine derivatives and the use thereof in the synthesis of acyl-coenzyme a derivatives
JP2506322B2 (en) DNA encoding GRF precursor
WO2006084888A2 (en) C-terminally pegylated growth hormones
Patel et al. Investigations of coronatine biosynthesis. Overexpression and assay of CmaT, a thioesterase involved in coronamic acid biosynthesis
Kastrinsky et al. A convergent synthesis of chiral diaminopimelic acid derived substrates for mycobacterial L, D-transpeptidases
WO1999045107A1 (en) Novel calpain and dna encoding the same
Platko et al. Heterologous expression of Mytilus californianus foot protein three (Mcfp-3) in Kluyveromyces lactis
WO2019216248A1 (en) Peptide macrocyclase
TW200811099A (en) Novel enzymatic process for BOC-DAP-OH
CN112898172A (en) Synthesis method of amphiphilic functional group compound capable of being enzymolyzed by carboxypeptidase
WO2023048262A1 (en) Peptide ligation using enzyme
KR101223665B1 (en) Method for preparing a carboxylic acid using nitrilase RMN2
KR101223666B1 (en) Method for preparing a carboxylic acid using nitrilase ORN

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase