WO2005021155A1 - Method of preparing modified catalyst for bisphenol a production - Google Patents

Method of preparing modified catalyst for bisphenol a production Download PDF

Info

Publication number
WO2005021155A1
WO2005021155A1 PCT/JP2004/012861 JP2004012861W WO2005021155A1 WO 2005021155 A1 WO2005021155 A1 WO 2005021155A1 JP 2004012861 W JP2004012861 W JP 2004012861W WO 2005021155 A1 WO2005021155 A1 WO 2005021155A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
exchange resin
preparation
aqueous solution
compound
Prior art date
Application number
PCT/JP2004/012861
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Iwahara
Jun Mase
Shuichi Masuda
Hideki Sato
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to KR1020067004242A priority Critical patent/KR101083168B1/en
Publication of WO2005021155A1 publication Critical patent/WO2005021155A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/08Ion-exchange resins
    • B01J31/10Ion-exchange resins sulfonated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/34Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
    • B01J2231/3411,2-additions, e.g. aldol or Knoevenagel condensations
    • B01J2231/3471,2-additions, e.g. aldol or Knoevenagel condensations via cationic intermediates, e.g. bisphenol A type processes

Definitions

  • the present invention relates to a method for preparing a catalyst used for producing bisphenol A [2,2-bis (4-hydroxyphenyl) propane]. Specifically, the present invention relates to a method for partially modifying a strongly acidic ion-exchange resin with a diamine compound containing iodine. Technology for the preparation of modified catalysts for the production of bisphenol A
  • Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, and epoxy resin, and its demand has been increasing in recent years. is there.
  • a strongly acidic ion-exchange resin partially modified with an iodiamine-containing compound is used as a catalyst.
  • a method for preparing such a catalyst includes a fixed-bed reactor in a fixed-bed reactor.
  • a method is employed in which a sulfonic acid-type ion exchange resin is modified by adding an iodiamine-containing compound at a time.
  • a sulfonate-type ion-exchange resin is denatured by batch addition of a diopamine compound in a fixed-bed reactor, the sulfonate compound in the fixed-bed resin is modified with an acid. Transfer (adsorption to sulfonic acid group, desorption and transfer from sulfonic acid group).
  • the iodiamine-containing compound moves from the inlet to the outlet of the fixed-bed reactor, but the sulfonate-type ion-exchange resin is not uniformly denatured by a single transfer.
  • the concentration of the iodiamin-containing compound during the transfer of the iodiamin-containing compound is determined by the fixed-bed reactor.
  • the fixed bed reactor has a low concentration (denaturation rate is about 5 to 30%), resulting in a high concentration (denaturation rate of about 30 to 80%).
  • the sulfonic acid-type ion exchange resin is not uniformly denatured by only one transfer.
  • a method for preparing a catalyst for producing bisphenols a method of injecting a dilute solution of an iodamine-containing compound while stirring an ion exchange resin in a reaction vessel (for example, see JP-A-9-124279),
  • the reactor is filled with acidic cation exchange resin, and while or after the aqueous solution of iodamine compound is charged, bubbles are passed from the lower part of the reactor to uniformly neutralize the acidic cation exchange resin.
  • a large-scale diluted solution storage facility is required, and the batch-type production using impeller agitation causes damage to the ion-exchange resin. Requires refilling.
  • the preparation since the preparation is carried out at pH 6 or higher, it is difficult to homogenize the diamine-containing compound, and this results in a heterogeneous modified catalyst, which degrades the catalytic performance. Disclosure of the invention
  • the present invention has been made in view of the above circumstances, and is intended to prepare a modified catalyst for producing bisphenol A, which has no damage to a strongly acidic ion exchange resin, uniformly modifies the strongly acidic ion exchange resin, and has excellent catalytic performance. It is intended to provide a method.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, filled a fixed-bed reactor with a strongly acidic ion-exchange resin, and contained an acid aqueous solution and a concentration that would be equilibrium in the acid aqueous solution. It has been found that the above object can be achieved by injecting a diopamine compound and modifying the strongly acidic ion exchange resin.
  • the present invention has been completed based on such findings.
  • the present invention provides a method for preparing a modified catalyst for the production of bisphenol A, which is obtained by partially modifying a strongly acidic ion exchange resin with an iodamine compound, wherein the fixed bed reactor is filled with the strongly acidic ion exchange resin.
  • a method for preparing a modified catalyst for the production of bisphenol A characterized by injecting an aqueous solution and an iodiamine-containing compound in a concentration equilibrium in the aqueous acid solution to modify the strongly acidic ion exchange resin. Is what you do. BEST MODE FOR CARRYING OUT THE INVENTION
  • Examples of the strongly acidic ion exchange resin used in the present invention include a sulfonic acid type ion exchange resin such as a sulfonated styrene divinyl benzene copolymer, a snorehonig crosslinked styrene polymer, a phenol formaldehyde sulfonic acid resin, and a benzene formaldehyde sulfonic acid resin.
  • a sulfonic acid type ion exchange resin such as a sulfonated styrene divinyl benzene copolymer, a snorehonig crosslinked styrene polymer, a phenol formaldehyde sulfonic acid resin, and a benzene formaldehyde sulfonic acid resin.
  • a sulfonic acid type ion exchange resin such as a sulfonated styrene divinyl
  • examples of the iodamine-containing compound used for modifying the strongly acidic ion exchange resin include mercaptopyridines such as 3-mercaptopyridine, mercaptoalkylamines such as 2-mercaptoethylamine, and 2,2-dimethyl.
  • examples thereof include thiazolidines such as thiazolidine, aminothiophenols such as 4-aminothiophenol, and pyridinealkanethiols such as 4-pyridineethanethiol. Of these, 4-pyridineethanethiol, 2,2-dimethylthiazolidine and 2-mercaptoethylamine are preferred. These can be used alone or in combination of two or more.
  • the rate of modification of the strongly acidic ion exchange resin with the iodiamine-containing compound is usually about 5 to 45%, preferably 8 to 35%, more preferably 10 to 30%.
  • the “denaturation rate” of the strongly acidic ion exchange resin means a molar modification rate of the strongly acidic ion exchange resin by the iodamine compound containing the strongly acidic ion exchange group.
  • an organic acid or an inorganic acid can be used.
  • the organic acid include aromatic sulfonic acids such as benzenesnolephonic acid, paratonolenesnolephonic acid, and xylene zolefonic acid, alkyl sulfonic acids such as methanesulfonic acid and ethanesulfonic acid, acetic acid, and formic acid.
  • aromatic sulfonic acids are preferred, and paratoluenesulfonic acid is more preferred.
  • an acidic aqueous solution obtained by washing the sulfonate-type ion exchange resin with water is also suitable.
  • the inorganic acid include phosphoric acid, boric acid and sulfuric acid, with phosphoric acid being preferred.
  • the use of aromatic sulfonic acids or phosphoric acid has the advantage of almost no equipment corrosion.
  • the concentration of the aqueous acid solution is selected from aromatic sulfonic acids, alkyl sulfonic acids and sulfuric acid.
  • a strong acid such as an acid
  • it is usually about 0.01 to 5% by mass, preferably 0.03 to 2% by mass. / 0 .
  • a weak acid such as acetic acid, formic acid or phosphoric acid
  • it is usually about 0.01 to 8% by mass, preferably 0.05 to 3% by mass.
  • the concentration of the diamine compound which equilibrates in an aqueous acid solution (hereinafter, referred to as “ ), which is economically preferable because the amount of acid used and the loss of the iodiamin compound are small.
  • the lower limit of the acid concentration to about 0.01% by mass, the equilibrium concentration of the diamine-containing compound does not become too low, so that the time required for denaturation does not become too long.
  • the equilibrium concentration of the iodiamine-containing compound in the acid aqueous solution is determined as follows. For example, an acid solution is added to a water-swollen strongly acidic ion exchange resin, and the mixture is repeatedly stirred and filtered to replace water with the acid solution. Then, a 10% by mass aqueous solution of a diamine-containing compound is replaced with an ion exchange resin. Add slowly with stirring. Up to this point, the preparation of the catalyst using a patch has been described. Then, a part of this aqueous solution is sampled, and the total nitrogen analysis is performed, and the concentration of the diopamine compound is determined from the total nitrogen concentration.
  • the strongly acidic ion exchange resin prior to denaturation of the strongly acidic ion exchange resin, it is preferable to replace the water contained in the fixed bed (strongly acidic ion exchange resin) of the fixed bed reactor with an aqueous acid solution.
  • the water-swelling type of the gel-type ion exchange resin usually used as a strongly acidic ion exchange resin contains about 50% by mass of water.
  • the temperature of the catalyst preparation (denaturation of the strongly acidic ion-exchange resin with a diamine-containing compound) is usually about 0 to 120 ° C, preferably 20 to 100 ° C. Touch By setting the upper limit of the medium preparation temperature to about 120 ° C, the ion exchange resin is not decomposed, and by setting the lower limit to about 0 ° C, the problem of solidification of the acid aqueous solution does not occur.
  • the injection of the acid aqueous solution and the iodamine compound is usually performed by injecting a prepared solution in which the iodamine compound is dissolved in the acid aqueous solution.
  • the injection amount of the aqueous solution is usually about 1 to 20 h1 in LHSV (liquid hourly space velocity), preferably 0.2 to 10 h- 1 , more preferably 0.4. ⁇ 5 h- 1 .
  • the linear velocity of the prepared solution is usually about 0.1 to 10 OmZh, preferably 0.2 to 5 OmZh, and more preferably 0.5 to 2 OmZh.
  • the time required for preparing the catalyst is determined by the concentration and type of acid in the aqueous acid solution, the equilibrium concentration of the diamine compound, the modification ratio of the strongly acidic ion exchange resin with the diamine compound, LHSV, and the like.
  • the amount of the diamine compound to be consumed in the preparation of the catalyst is determined by the modification ratio.
  • the concentration of the iodamine-containing compound injected into the fixed bed reactor is the equilibrium concentration of the iodamine-containing compound.
  • the concentration of the iodamine compound in the preparation liquid flowing out from the outlet of the fixed bed reactor measure the concentration of the iodamine compound in the preparation liquid flowing out from the outlet of the fixed bed reactor, and add an amount of the iodamine compound that is equivalent to the equilibrium concentration of the iodamine compound.
  • the concentration of the iodamine-containing compound is determined by measuring the nitrogen concentration in the preparation containing the iodamine compound and the acid. Can be obtained by doing Since the total injection time is roughly determined by the equilibrium concentration of the ioamine compound to be injected and the denaturation ratio of the ion exchange resin, the measurement interval of the ioamine compound concentration can be usually set to every 2 to 20 hours.
  • the injection amount (circulation amount) to the fixed bed reactor can be the same LHSV and linear velocity as described above.
  • the flow of the preparation solution containing the acid and the ioamine compound in the fixed bed reactor may be either a down flow or an up flow.
  • the expansion (floating, flowing, etc.) of the ion-exchange resin increases as the injection amount of the preparation liquid increases. Therefore, the downflow is preferred in the present invention.
  • the condensation reaction between phenol and acetone may be any of a batch type and a continuous type, but a fixed bed continuous reaction system in which phenol and acetone are continuously supplied to a reaction tower filled with a denaturing catalyst and reacted. Is preferred.
  • the strongly acidic ion exchange resin is not damaged, the strongly acidic ion exchange resin is uniformly denatured, the time for uniform denaturation is short, and the catalyst performance is improved.
  • An excellent modified catalyst for producing bisphenol A can be prepared. .
  • a reactor As a reactor, four reactors with an inner diameter of 1 O mm and a length of 1200 mm are connected in series, and the outlet side and the inlet side are connected by piping, and the prepared solution discharged from the reactor outlet Was circulated to the inlet side.
  • This reactor was filled with 300 milliliters of a water-swelled sulfonic acid-type cation exchange resin (trade name: Diaion SK-104, manufactured by Mitsubishi Chemical Corporation), and distilled water was passed through a down port. Washed at 500 milliliters. Next, the water in the reactor and the piping was replaced with a 0.3% by mass aqueous solution of phosphoric acid.
  • a water-swelled sulfonic acid-type cation exchange resin trade name: Diaion SK-104, manufactured by Mitsubishi Chemical Corporation
  • a 0.3% by weight aqueous solution of phosphoric acid and 2,2-dimethylthiazolidine in which 2,2-dimethylthiazolidine had a concentration of 117 ppm by mass were added to a reactor of 300 ml.
  • the target denaturation rate with 2,2-dimethylthiazolidine was 2'3% .
  • the above preparation was continuously injected for 298 hours, and the above ion exchange resin was modified at 25 ° C. .
  • the above prepared solution flowing out from the outlet of the fourth reactor was circulated to the first reactor and recycled.
  • the acid equivalent was measured by a titration method using an aqueous sodium hydroxide solution, a neutralization ratio was calculated based on the following equation, and this neutralization ratio was defined as a modification ratio.
  • Neutralization rate (%) 100 X ⁇ 1-[acid equivalent of modified resin (meq./g) Z acid equivalent of unmodified resin (meq. / G)] ⁇
  • Example 1 a prepared solution containing 4.4% by mass of 2,2-dimethylthiazolidine prepared using an aqueous solution of 1.0% by mass of phosphoric acid instead of the aqueous solution of 0.3% by mass of phosphoric acid was continuously used for 79 hours.
  • a modified catalyst was obtained in the same manner as in Example 1 except that the injection was performed. The same evaluation as in Example 1 was performed on the resulting modified catalyst. The results are shown in Table 1.
  • Example 1 a preparation containing 52 mass ppm of 2-mercaptoethylamine instead of 2,2-dimethylthiazolidine was used, and a target denaturation rate of 15% was used. This preparation was continuously used for 280 hours.
  • a modified catalyst was obtained in the same manner as in Example 1 except that the catalyst was injected. The same evaluation as in Example 1 was performed for the obtained modified catalyst. The results are shown in Table 1.
  • Example 1 a preparation solution containing 2,3-dimethylthiazolidine 13 1 mass ppm was prepared by using a 0.3 mass% paratoluenesulfonic acid aqueous solution instead of the 0.3 mass% phosphoric acid aqueous solution.
  • a modified catalyst was obtained in the same manner as in Example 1, except that injection was continued for 6 hours. The same evaluation as in Example 1 was performed for the obtained modified catalyst. The results are shown in Table 1.
  • Example 1 a total of 10.1 g of 2,2-dimethylthiazolidine was injected in 0.5 hours, and a 0.3% by mass phosphoric acid aqueous solution was circulated and recycled for the same time as in Example 1.
  • a modified catalyst was obtained in the same manner as in Example 1. The same evaluation as in Example 1 was performed for the obtained modified catalyst. Table 1 shows the results.
  • Example 2 a total of 10.1 g of 2,2-dimethylthiazolidine was injected in 0.5 hours, and a 1.0% by mass aqueous phosphoric acid solution was circulated and recycled for the same time as in Example 2.
  • a modified catalyst was obtained.
  • the same evaluation as in Example 1 was performed for the obtained modified catalyst. Table 1 shows the results.
  • Example 3 a total amount of 4.2 g of 2,2-mereptethylamine used was injected in 0.5 hours, and a 0.3% by mass aqueous phosphoric acid solution was circulated for the same time as in Example 1.
  • a modified catalyst was obtained in the same manner as in Example 3 except that the catalyst was recycled. The same evaluation as in Example 1 was performed for the obtained modified catalyst. Table 1 shows the results.
  • Example 4 a total amount of 10.1 g of 2,2-dimethylthiazolidine used was injected in 0.5 hours, and a 0.3% by mass aqueous phosphoric acid solution was circulated and recycled for the same time as in Example 4.
  • Example 4 a modified catalyst was obtained.
  • the same evaluation as in Example 1 was performed for the obtained modified catalyst. Table 1 shows the results.
  • a modified catalyst for producing bisphenol A having excellent catalytic performance can be provided.

Abstract

A method of preparing a modified catalyst for bisphenol A production by partially modifying a strongly acid ion-exchange resin with a sulfurized amine compound. It comprises packing a strongly acid ion-exchange resin into a fixed-bed reactor, introducing therein an aqueous acid solution, and further introducing a sulfurized amine compound in such an amount that its concentration in the aqueous acid solution reaches equilibrium to thereby modify the strongly acid ion-exchange resin. By the method, the strongly acid ion-exchange resin is evenly modified without breaking, and a modified catalyst for bisphenol A production which has excellent catalytic performance can be prepared.

Description

ビスフエノール A製造用変性触媒の調製方法 技術分野  Method for preparing modified catalyst for production of bisphenol A
本発明は、 ビスフエノール A [ 2 , 2—ビス (4ーヒドロキシフエ- ル) プロパン] の製造に用いる触媒の調製方法に関し、 詳しくは、 強酸性 ィォン交換樹脂を含ィォゥアミン化合物で部分的に変性してなるビスフェ ノール A製造用変性触媒の調製方法に関する 背景技術  The present invention relates to a method for preparing a catalyst used for producing bisphenol A [2,2-bis (4-hydroxyphenyl) propane]. Specifically, the present invention relates to a method for partially modifying a strongly acidic ion-exchange resin with a diamine compound containing iodine. Technology for the preparation of modified catalysts for the production of bisphenol A
ビスフエノール Aはポリ力一ボネート榭脂やポリアリレート樹脂などの エンジニアリングプラスチック、 あるいはエポキシ榭脂などの原料として 重要な化合物であることが知られており、 近年その需要はますます増大す る傾向にある。  Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, and epoxy resin, and its demand has been increasing in recent years. is there.
このビスフエノール Aの製造には、 含ィォゥァミン化合物で部分的に変 性された強酸性ィオン交換樹脂が触媒として用いられており、 このような 触媒の調製方法としては、 固定床反応器中で、 含ィォゥァミン化合物を一 括添加し、 スルホン酸型イオン交換樹脂を変性する方法が採用されている。 通常、 固定床反応器中で、 含ィォゥァミン化合物を一括添加し、 スルホ ン酸型イオン交換榭脂を変性するとき、 含ィォゥァミン化合物は、 酸によ り固定床である樹脂中のスルホン酸基を移動 (スルホン酸基への吸着、 ス ルホン酸基からの脱離及ぴ移動) する。 このとき、 含ィォゥァミン化合物 は、 固定床反応器の入口から出口へと移動するが、 1回の移動だけではス ルホン酸型イオン交換樹脂が均一に変性されない。 すなわち、 含ィォゥァ ミン化合物の移動に際し、 含ィォゥァミン化合物の濃度は、 固定床反応器 の出口が高濃度 (変性率が 30〜 80%程度の高変性率) となり、 固定床 反応器の入口が低濃度 (変性率が 5〜3 0%程度の低変性率) となるため、 1回の移動だけではスルホン酸型ィォン交換樹脂が均一に変性されないと いう問題がある。 In the production of this bisphenol A, a strongly acidic ion-exchange resin partially modified with an iodiamine-containing compound is used as a catalyst. A method for preparing such a catalyst includes a fixed-bed reactor in a fixed-bed reactor. A method is employed in which a sulfonic acid-type ion exchange resin is modified by adding an iodiamine-containing compound at a time. Usually, when a sulfonate-type ion-exchange resin is denatured by batch addition of a diopamine compound in a fixed-bed reactor, the sulfonate compound in the fixed-bed resin is modified with an acid. Transfer (adsorption to sulfonic acid group, desorption and transfer from sulfonic acid group). At this time, the iodiamine-containing compound moves from the inlet to the outlet of the fixed-bed reactor, but the sulfonate-type ion-exchange resin is not uniformly denatured by a single transfer. In other words, the concentration of the iodiamin-containing compound during the transfer of the iodiamin-containing compound is determined by the fixed-bed reactor. Of the fixed bed reactor has a low concentration (denaturation rate is about 5 to 30%), resulting in a high concentration (denaturation rate of about 30 to 80%). There is a problem that the sulfonic acid-type ion exchange resin is not uniformly denatured by only one transfer.
含ィォゥァミン化合物で中和された陽イオン交換樹脂固定床は種々の方 法で調製されており、 例えば酸性陽イオン交換樹脂が含ィォゥァミン化合 物で中和された酸性陽イオン交換樹脂固定床の調製方法 (例えば、 特開平 6 -296 8 7 1号公報、 特開 200 1— 286 7 70号公報、 特開平 8 -4096 1号公報及ぴ特開 200 1— 288 1 3 2号公報参照) が開示 されている。 また、 榭脂固定床中に塩酸を添加した含ィォゥァミン化合物 水溶液を循環させる方法 (例えば、 特開昭 5 3 - 14680号公報参照) が開示されているが、 多量の塩酸を使用すると、 設備が腐食するおそれが ある。  Various methods have been used to prepare fixed beds of cation exchange resins neutralized with iodiamin-containing compounds.For example, preparation of fixed beds of acidic cation exchange resins in which acidic cation exchange resins are neutralized with iodiamin-containing compounds. The method (see, for example, JP-A-6-296871, JP-A-2001-286770, JP-A-8-40961 and JP-A-2001-288138) is described. It has been disclosed. Further, a method of circulating an aqueous solution of an iodamine compound containing hydrochloric acid in a fixed resin bed is disclosed (see, for example, JP-A-53-14680). Corrosion may occur.
また、 ビスフエノール類製造用触媒の調製方法として、 反応容器中のィ オン交換樹脂を攪拌しながら、 含ィォゥァミン化合物の希薄溶液を注入す る方法 (例えば、 特開平 9一 24279号公報参照) 、 反応器に酸性陽ィ オン交換榭脂を充填し、 含ィォゥァミン化合物の水溶液を装入しながら又 は装入した後、 反応器下部から気泡を流通させて酸性陽イオン交換樹脂を 均一に中和する方法 (例えば、 特開 2000— 254523号公報参照) が開示されている。 しかしながら、 前者の場合、 大規模の希薄溶液貯蔵設 備が必要であり、 また、 インペラ攪拌によるバッチ式製造であるため、 ィ オン交換樹脂の破損が生じる上、 固定床形成のためイオン交換樹脂の再充 填を必要とする。 後者の場合、 調製は pH6以上で行っているため、 含ィ ォゥアミン化合物の均一化が困難であり、 このため不均一な変性触媒とな るため、 触媒性能が低下するという問題がある。 発明の開示 Further, as a method for preparing a catalyst for producing bisphenols, a method of injecting a dilute solution of an iodamine-containing compound while stirring an ion exchange resin in a reaction vessel (for example, see JP-A-9-124279), The reactor is filled with acidic cation exchange resin, and while or after the aqueous solution of iodamine compound is charged, bubbles are passed from the lower part of the reactor to uniformly neutralize the acidic cation exchange resin. (See, for example, JP-A-2000-254523). However, in the former case, a large-scale diluted solution storage facility is required, and the batch-type production using impeller agitation causes damage to the ion-exchange resin. Requires refilling. In the latter case, since the preparation is carried out at pH 6 or higher, it is difficult to homogenize the diamine-containing compound, and this results in a heterogeneous modified catalyst, which degrades the catalytic performance. Disclosure of the invention
本発明は、 上記事情に鑑みなされたもので、 強酸性イオン交換樹脂の破 損がなく、 強酸性イオン交換樹脂が均一に変性され、 かつ触媒性能に優れ たビスフエノール A製造用変性触媒の調製方法を提供することを目的とす るものである。  The present invention has been made in view of the above circumstances, and is intended to prepare a modified catalyst for producing bisphenol A, which has no damage to a strongly acidic ion exchange resin, uniformly modifies the strongly acidic ion exchange resin, and has excellent catalytic performance. It is intended to provide a method.
本発明者らは、 上記課題を解決するために鋭意研究を重ねた結果、 固定 床反応器に強酸性イオン交換樹脂を充填し、 酸水溶液と、 この酸水溶液中 において平衡となる濃度分の含ィォゥァミン化合物を注入して、 強酸性ィ オン交換樹脂の変性を行うことにより、 上記目的が達成されることを見出 した。 本発明はかかる知見に基づいて完成したものである。  The present inventors have conducted intensive studies to solve the above problems, and as a result, filled a fixed-bed reactor with a strongly acidic ion-exchange resin, and contained an acid aqueous solution and a concentration that would be equilibrium in the acid aqueous solution. It has been found that the above object can be achieved by injecting a diopamine compound and modifying the strongly acidic ion exchange resin. The present invention has been completed based on such findings.
すなわち、 本発明は、 強酸性イオン交換樹脂を含ィォゥァミン化合物で 部分的に変性してなるビスフ ノール A製造用の変性触媒を調製する方法 において、 固定床反応器に強酸性イオン交換樹脂を充填し、 これに水溶液 と、 該酸水溶液中において平衡となる濃度分の含ィォゥァミン化合物を注 入し、 強酸性イオン交換樹脂を変性することを特徴とするビスフエノール A製造用変性触媒の調製方法を提供するものである。 発明を実施するための最良の形態  That is, the present invention provides a method for preparing a modified catalyst for the production of bisphenol A, which is obtained by partially modifying a strongly acidic ion exchange resin with an iodamine compound, wherein the fixed bed reactor is filled with the strongly acidic ion exchange resin. A method for preparing a modified catalyst for the production of bisphenol A, characterized by injecting an aqueous solution and an iodiamine-containing compound in a concentration equilibrium in the aqueous acid solution to modify the strongly acidic ion exchange resin. Is what you do. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において用いる強酸性イオン交換榭脂としては、 スルホン化スチ レンージビエノレベンゼンコポリマー、 スノレホンィヒ架橋スチレンポリマー、 フエノールホルムアルデヒ ドースルホン酸樹脂、 ベンゼンホルムアルデヒ ドースルホン酸樹脂等のスルホン酸型イオン交換樹脂などが挙げられる。 強酸性イオン交換樹脂は固定床反応器に充填される。 固定床に直接イオン 交換樹脂を充填するため、 イオン交換樹脂の変性工程においてイオン交換 樹脂が破損することがなく、 また、 パッチ反応器や変性触媒調製槽からの 移送もないため、 製造コス ト的に有利である。 本発明において、 強酸性イオン交換樹脂の変性に用いる含ィォゥァミン 化合物としては、 3—メルカプトピリジン等のメルカプトピリジン類、 2 一メルカプトェチルァミン等のメルカプトアルキルァミン類、 2 , 2—ジ メチルチアゾリジン等のチアゾリジン類、 4一アミノチォフエノール等の アミノチォフエノール類、 4—ピリジンエタンチオール等のピリジンアル カンチオール類などが挙げられる。 このなかで、 4一ピリジンエタンチォ ール、 2 , 2—ジメチルチアゾリジン及び 2—メルカプトェチルアミンが 好ましい。 これらは一種を単独で又は二種以上を組み合わせて用いること ができる。 Examples of the strongly acidic ion exchange resin used in the present invention include a sulfonic acid type ion exchange resin such as a sulfonated styrene divinyl benzene copolymer, a snorehonig crosslinked styrene polymer, a phenol formaldehyde sulfonic acid resin, and a benzene formaldehyde sulfonic acid resin. Can be The strongly acidic ion exchange resin is charged to a fixed bed reactor. Since the fixed bed is directly filled with the ion exchange resin, the ion exchange resin is not damaged during the denaturation process of the ion exchange resin, and there is no transfer from the patch reactor or denaturing catalyst preparation tank. Is advantageous. In the present invention, examples of the iodamine-containing compound used for modifying the strongly acidic ion exchange resin include mercaptopyridines such as 3-mercaptopyridine, mercaptoalkylamines such as 2-mercaptoethylamine, and 2,2-dimethyl. Examples thereof include thiazolidines such as thiazolidine, aminothiophenols such as 4-aminothiophenol, and pyridinealkanethiols such as 4-pyridineethanethiol. Of these, 4-pyridineethanethiol, 2,2-dimethylthiazolidine and 2-mercaptoethylamine are preferred. These can be used alone or in combination of two or more.
含ィォゥァミン化合物による強酸性イオン交換樹脂の変性率は、 通常 5 〜 4 5 %程度、 好ましくは 8〜 3 5 %、 より好ましくは 1 0〜 3 0 %であ る。 この変性率の上限を 4 5 %程度とすることにより、 触媒活性が低くな ることがなく、 また、 下限を 5 %程度とすることにより、 触媒寿命が短く なったり、 触媒活性や選択率が低くなることがない。 ここで、 強酸性ィォ ン交換樹脂の 「変性率」 とは、 強酸性イオン交換樹脂の強酸性イオン交換 基の含ィォゥァミン化合物によるモル変性率を意味する。  The rate of modification of the strongly acidic ion exchange resin with the iodiamine-containing compound is usually about 5 to 45%, preferably 8 to 35%, more preferably 10 to 30%. By setting the upper limit of the modification rate to about 45%, the catalyst activity does not decrease, and by setting the lower limit to about 5%, the catalyst life is shortened, and the catalyst activity and selectivity are reduced. It does not get lower. Here, the “denaturation rate” of the strongly acidic ion exchange resin means a molar modification rate of the strongly acidic ion exchange resin by the iodamine compound containing the strongly acidic ion exchange group.
酸としては有機酸や無機酸を用いることができる。 有機酸の酸としては、 ベンゼンスノレホン酸、 パラトノレエンスノレホン酸、 キシレンスゾレホン酸等の 芳香族スルホン酸類、 メタンスルホン酸、 エタンスルホン酸等のアルキル スルホン酸類、 酢酸及び蟻酸などが挙げられる。 このなかで、 芳香族スル ホン酸類が好ましく、 パラトルエンスルホン酸がより好ましい。 また、 ス ルホン酸型ィォン交換樹脂の水洗処理で得られる酸性水溶液も好適である。 無機酸の酸としては、 リン酸、 硼酸及び硫酸などが挙げられ、 リン酸が好 ましい。 芳香族スルホン酸類やリン酸を用いると、 設備の腐食がほとんど ないという利点がある。  As the acid, an organic acid or an inorganic acid can be used. Examples of the organic acid include aromatic sulfonic acids such as benzenesnolephonic acid, paratonolenesnolephonic acid, and xylene zolefonic acid, alkyl sulfonic acids such as methanesulfonic acid and ethanesulfonic acid, acetic acid, and formic acid. Can be Of these, aromatic sulfonic acids are preferred, and paratoluenesulfonic acid is more preferred. Further, an acidic aqueous solution obtained by washing the sulfonate-type ion exchange resin with water is also suitable. Examples of the inorganic acid include phosphoric acid, boric acid and sulfuric acid, with phosphoric acid being preferred. The use of aromatic sulfonic acids or phosphoric acid has the advantage of almost no equipment corrosion.
酸水溶液の濃度は、 芳香族スルホン酸類、 アルキルスルホン酸類及ぴ硫 酸等の強酸を用いる場合、 通常 0 . 0 1〜5質量%程度、 好ましくは 0 . 0 3〜2質量。 /0である。 酢酸、 蟻酸及びリン酸等の弱酸を用いる場合、 通 常 0 . 0 1〜 8質量%程度、 好ましくは 0 . 0 5〜3質量%である。 酸の 濃度の上限を、 強酸の場合 5質量%程度とすることにより、 また、 弱酸の 場合 8質量%程度とすることにより、 酸水溶液中において平衡となる含ィ ォゥァミン化合物の濃度 (以下、 「含ィォゥァミン化合物の平衡濃度」 と 記す。 ) が高くなることがないので、 酸の使用量も含ィォゥァミン化合物 のロスも少なく、 経済的に好ましい。 また、 酸の濃度の下限を 0 . 0 1質 量%程度とすることにより、 含ィォゥアミン化合物の平衡濃度が低くなり 過ぎることがないため、 変性に要する時間が長くなりすぎることがない。 The concentration of the aqueous acid solution is selected from aromatic sulfonic acids, alkyl sulfonic acids and sulfuric acid. When a strong acid such as an acid is used, it is usually about 0.01 to 5% by mass, preferably 0.03 to 2% by mass. / 0 . When a weak acid such as acetic acid, formic acid or phosphoric acid is used, it is usually about 0.01 to 8% by mass, preferably 0.05 to 3% by mass. By setting the upper limit of the acid concentration to about 5% by mass in the case of a strong acid, or to about 8% by mass in the case of a weak acid, the concentration of the diamine compound which equilibrates in an aqueous acid solution (hereinafter, referred to as “ ), Which is economically preferable because the amount of acid used and the loss of the iodiamin compound are small. By setting the lower limit of the acid concentration to about 0.01% by mass, the equilibrium concentration of the diamine-containing compound does not become too low, so that the time required for denaturation does not become too long.
ここで、 酸水溶液中における含ィォゥァミン化合物の平衡濃度は以下の ようにして求める。 例えば、 水膨潤した強酸性イオン交換樹脂に酸溶液を 加えて攪拌、 ろ過を繰り返し、 水を酸溶液で置換し、 次に、 含ィォゥアミ ン化合物の 1 0質量%水溶液を、 イオン交換榭脂を攪拌しながら、 ゆつく りと添加する。 なお、 ここまではパッチでの触媒調製である。 その後、 こ の水溶液の一部をサンプリングし、 全窒素分析を行い、 全窒素濃度から含 ィォゥァミン化合物の濃度を求める。  Here, the equilibrium concentration of the iodiamine-containing compound in the acid aqueous solution is determined as follows. For example, an acid solution is added to a water-swollen strongly acidic ion exchange resin, and the mixture is repeatedly stirred and filtered to replace water with the acid solution. Then, a 10% by mass aqueous solution of a diamine-containing compound is replaced with an ion exchange resin. Add slowly with stirring. Up to this point, the preparation of the catalyst using a patch has been described. Then, a part of this aqueous solution is sampled, and the total nitrogen analysis is performed, and the concentration of the diopamine compound is determined from the total nitrogen concentration.
本発明においては、 強酸性イオン交換樹脂の変性に先立ち、 固定床反応 器の固定床 (強酸性イオン交換樹脂) に含まれる水を酸水溶液で置換する ことが好ましい。 これは、 通常、 強酸性イオン交換樹脂として使用される ゲル型イオン交換樹脂の水膨潤タイプは、 5 0質量%程度含水しているか らである。 このような置換を行うことより、 反応器の出口から流出した酸 水溶液を循環させてリサイクルする場合に、 酸濃度が一定に保たれるとい う効果が得られる。  In the present invention, prior to denaturation of the strongly acidic ion exchange resin, it is preferable to replace the water contained in the fixed bed (strongly acidic ion exchange resin) of the fixed bed reactor with an aqueous acid solution. This is because the water-swelling type of the gel-type ion exchange resin usually used as a strongly acidic ion exchange resin contains about 50% by mass of water. By performing such substitution, when the acid aqueous solution flowing out of the outlet of the reactor is circulated and recycled, an effect is obtained that the acid concentration is kept constant.
触媒調製 (含ィォゥアミン化合物による強酸性ィオン交換樹脂の変性) の温度は、 通常 0〜1 2 0 °C程度、 好ましくは 2 0〜1 0 0 °Cである。 触 媒調製温度の上限を 1 20°C程度とすることにより、 イオン交換樹脂の分 解が起こらず、 また、 下限を 0°C程度とすることにより、 酸水溶液が固化 するという問題が生じない。 The temperature of the catalyst preparation (denaturation of the strongly acidic ion-exchange resin with a diamine-containing compound) is usually about 0 to 120 ° C, preferably 20 to 100 ° C. Touch By setting the upper limit of the medium preparation temperature to about 120 ° C, the ion exchange resin is not decomposed, and by setting the lower limit to about 0 ° C, the problem of solidification of the acid aqueous solution does not occur.
酸水溶液と含ィォゥァミン化合物の注入は、 通常、 酸水溶液に含ィォゥ ァミン化合物を溶解した調製液を注入することにより行われる。 この水溶 液の注入量は、 酸濃度や調製時間の観点から、 LHSV (液空間速度) で 通常 1〜20 h 1程度、 好ましくは 0. 2〜1 0 h— 1、 より好ましく は 0. 4〜5 h— 1である。 また、 この調製液の線速は、 通常 0. 1〜1 0 OmZh程度、 好ましくは 0. 2〜5 OmZh、 より好ましくは 0. 5〜 2 OmZhである。 The injection of the acid aqueous solution and the iodamine compound is usually performed by injecting a prepared solution in which the iodamine compound is dissolved in the acid aqueous solution. From the viewpoint of acid concentration and preparation time, the injection amount of the aqueous solution is usually about 1 to 20 h1 in LHSV (liquid hourly space velocity), preferably 0.2 to 10 h- 1 , more preferably 0.4. ~ 5 h- 1 . The linear velocity of the prepared solution is usually about 0.1 to 10 OmZh, preferably 0.2 to 5 OmZh, and more preferably 0.5 to 2 OmZh.
触媒調製に要する時間は、 酸水溶液における酸の濃度や酸の種類、 含ィ ォゥァミン化合物の平衡濃度、 含ィォゥァミン化合物による強酸性イオン 交換樹脂の変性率及び LH S Vなどにより決定される。 触媒調製で消費す る含ィォゥァミン化合物の量は、 変性率により決定される。 固定床反応器 に注入する含ィォゥァミン化合物の濃度は、 含ィォゥァミン化合物の平衡 濃度である。  The time required for preparing the catalyst is determined by the concentration and type of acid in the aqueous acid solution, the equilibrium concentration of the diamine compound, the modification ratio of the strongly acidic ion exchange resin with the diamine compound, LHSV, and the like. The amount of the diamine compound to be consumed in the preparation of the catalyst is determined by the modification ratio. The concentration of the iodamine-containing compound injected into the fixed bed reactor is the equilibrium concentration of the iodamine-containing compound.
触媒調製において、 酸水溶液に含ィォゥァミン化合物を溶解させた調製 液の一定量が固定床反応器の入口から注入され、 この反応器に充填された 強酸性ィオン交換樹脂を通過した調製液は、 固定床反応器の出口から流出 する。 この調製液の処理としては、 廃棄、 あるいは循環させてリサイクル する方法があるが、 廃液量が少量となり、 また、 含ィォゥァミン化合物や 酸の使用量が少なくなる点から、 循環させてリサイクルする方法が好まし い。 循環リサイクルする場合、 固定床反応器の出口から流出した調製液中 の含ィォゥァミン化合物の濃度を測定し、 含ィォゥァミン化合物が平衡濃 度となる量の含ィォゥァミン化合物を追加する。 含ィォゥァミン化合物の 濃度は、 含ィォゥァミン化合物及び酸を含む調製液中の窒素濃度を測定す ることにより求めることができる。 含ィォゥアミン化合物濃度の測定間隔 は、 注入する含ィォゥァミン化合物の平衡濃度やイオン交換樹脂の変性率 により、 全注入時間が概略決まるので、 通常 2〜2 0時間毎とすることが できる。 なお、 含ィォゥァミン化合物及び酸を含む調製液を循環させる場 合、 固定床反応器への注入量 (循環量) は、 上記と同様の L H S V及ぴ線 速とすることができる。 In the preparation of the catalyst, a fixed amount of the prepared solution obtained by dissolving the iodamine compound in an aqueous acid solution was injected from the inlet of the fixed bed reactor, and the prepared solution passed through the strongly acidic ion-exchange resin filled in this reactor was fixed. It flows out of the outlet of the bed reactor. As a treatment of this prepared solution, there is a method of discarding or circulating and recycling it.However, the method of circulating and recycling is used because the amount of waste solution becomes small and the amount of iodamine-containing compound and acid used becomes small. I like it. In the case of cyclic recycling, measure the concentration of the iodamine compound in the preparation liquid flowing out from the outlet of the fixed bed reactor, and add an amount of the iodamine compound that is equivalent to the equilibrium concentration of the iodamine compound. The concentration of the iodamine-containing compound is determined by measuring the nitrogen concentration in the preparation containing the iodamine compound and the acid. Can be obtained by doing Since the total injection time is roughly determined by the equilibrium concentration of the ioamine compound to be injected and the denaturation ratio of the ion exchange resin, the measurement interval of the ioamine compound concentration can be usually set to every 2 to 20 hours. When circulating the preparation solution containing the iodamine-containing compound and the acid, the injection amount (circulation amount) to the fixed bed reactor can be the same LHSV and linear velocity as described above.
触媒調製において、 固定床反応器での酸と含ィォゥァミン化合物を含む 調製液の流れは、 ダウンフロー及ぴアップフローのいずれであってもよレ、。 しかし、 アップフローの場合、 調製液の注入量が多くなると、 イオン交換 樹脂の展開 (浮遊、 流動等) が高くなるので、 本発明においてはダウンフ ローが好ましい。  In the preparation of the catalyst, the flow of the preparation solution containing the acid and the ioamine compound in the fixed bed reactor may be either a down flow or an up flow. However, in the case of an upflow, the expansion (floating, flowing, etc.) of the ion-exchange resin increases as the injection amount of the preparation liquid increases. Therefore, the downflow is preferred in the present invention.
上記のようにして調製された変性触媒を用い、 フエノールとアセトンを 原料としてビスフエノール Aを製造する。 固定床反応器での変性触媒の原 料に対する添加は、 触媒調製したときの条件 (L H S V及び線速) とほぼ 同じ条件で添加することができる。 フエノールとァセトンとの使用割合に ついては特に制限はないが、 生成するビスフエノール Aの精製の容易さや 経済性などの点から、 未反応のァセトンの量はできるだけ少ないことが望 ましく、 したがって、 フヱノールを化学量論的量よりも過剰に用いるのが 有利である。 通常、 アセトン 1モル当たり、 3〜3 0モル程度、 好ましく は 5〜1 5モルのフエノールが用いられる。 また、 反応温度は、 通常 4 0 〜 1 5 0 °C程度、 好ましくは 6 0〜1 1 0 °Cの範囲である。  Using the modified catalyst prepared as described above, bisphenol A is produced using phenol and acetone as raw materials. The addition of the modified catalyst to the raw material in the fixed-bed reactor can be performed under almost the same conditions as when the catalyst was prepared (LHSV and linear velocity). There is no particular limitation on the ratio of phenol and acetone used, but it is desirable that the amount of unreacted acetone be as small as possible in view of the ease of purification of bisphenol A to be produced and the economical efficiency. Is advantageously used in excess of the stoichiometric amount. Usually, about 3 to 30 moles, preferably 5 to 15 moles of phenol are used per mole of acetone. The reaction temperature is usually about 40 to 150 ° C, preferably 60 to 110 ° C.
フエノールとァセトンとの縮合反応は、 回分式及び連続式のいずれであ つてもよいが、 変性触媒を充填した反応塔に、 フヱノールとアセトンを連 続的に供給して反応させる固定床連続反応方式が好ましい。  The condensation reaction between phenol and acetone may be any of a batch type and a continuous type, but a fixed bed continuous reaction system in which phenol and acetone are continuously supplied to a reaction tower filled with a denaturing catalyst and reacted. Is preferred.
本発明によれば、 強酸性イオン交換樹脂の破損がなく、 強酸性イオン交 換樹脂が均一に変性され、 均一に変性される時間が短く、 かつ触媒性能に 優れたビスフエノール A製造用変性触媒を調製することができる。 . According to the present invention, the strongly acidic ion exchange resin is not damaged, the strongly acidic ion exchange resin is uniformly denatured, the time for uniform denaturation is short, and the catalyst performance is improved. An excellent modified catalyst for producing bisphenol A can be prepared. .
次に、 本発明を実施例によりさらに具体的に説明するが、 本発明はこれ らの例によつて何ら限定されるものではない。  Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
実施例 1 Example 1
反応器として、 内径 1 O mm、 長さ 1 2 0 0 mmの反応器 4本を直列に 連結し、 さらに出口側と入口側を配管で接続して、 反応器出口から排出さ れた調製液が入口側に循環されるようにした反応器を用いた。 この反応器 に、 水膨潤状態のスルホン酸型陽イオン交換樹脂 (三菱化学社製、 商品名 : ダイヤイオン S K— 1 0 4 ) 3 0 0ミリ リツトルを充填し、 ダウンフ口 一にて蒸留水 1 5 0 0ミリリツトルで洗浄した。 次いで、 0 . 3質量%リ ン酸水溶液で反応器内及び配管内の水を置換した。 0 . 3質量%リン酸水 溶液に、 2, 2—ジメチルチアゾリジンの濃度が 1 1 7質量 p p mとなる ように 2, 2 —ジメチルチアゾリジンを加えた調製液を、 反応器に 3 0 0 ミリ リットル Z h ( L H S V = 1 h— 線速 = 3 . 8 m/ h ) で注入した。 2 , 2 _ジメチルチアゾリジンによる目標変性率は 2 '3 %であり、 上記調 製液を 2 9 8時間、 連続的に注入し、 2 5 °Cにて上記イオン交換樹脂の変 性を行った。 4本目の反応器出口から流出した上記調製液は、 1本目の反 応器に循環させてリサイクルした。 この際、 4本目の反応器出口から流出 した調製液中の 2, 2 一ジメチルチアゾリジン含有量を全窒素分析計によ り 2 0時間毎に測定し、 1 1 7質量 p p mを保つ量の 2 , 2—ジメチルチ ァゾリジンを追加した。  As a reactor, four reactors with an inner diameter of 1 O mm and a length of 1200 mm are connected in series, and the outlet side and the inlet side are connected by piping, and the prepared solution discharged from the reactor outlet Was circulated to the inlet side. This reactor was filled with 300 milliliters of a water-swelled sulfonic acid-type cation exchange resin (trade name: Diaion SK-104, manufactured by Mitsubishi Chemical Corporation), and distilled water was passed through a down port. Washed at 500 milliliters. Next, the water in the reactor and the piping was replaced with a 0.3% by mass aqueous solution of phosphoric acid. A 0.3% by weight aqueous solution of phosphoric acid and 2,2-dimethylthiazolidine in which 2,2-dimethylthiazolidine had a concentration of 117 ppm by mass were added to a reactor of 300 ml. The injection was performed at Z h (LHSV = 1 h—linear velocity = 3.8 m / h). The target denaturation rate with 2,2-dimethylthiazolidine was 2'3% .The above preparation was continuously injected for 298 hours, and the above ion exchange resin was modified at 25 ° C. . The above prepared solution flowing out from the outlet of the fourth reactor was circulated to the first reactor and recycled. At this time, the content of 2,21-dimethylthiazolidine in the preparation flowing out from the outlet of the fourth reactor was measured every 20 hours using a total nitrogen analyzer, and the amount of 2,21-dimethylthiazolidine was kept at 17 mass ppm. , 2-Dimethylthiazolidine was added.
リン酸水溶液に 2 , 2—ジメチルチアゾリジンを加えた調製液の注入が 終了した後、 反応器から変性触媒を抜き出し、 蒸留水にてリン酸水溶液を 除去した。 この変性触媒を乾燥させ、 下記の方法により変性率の測定を行 つた。 結果を表 1に示す。  After the injection of the prepared solution obtained by adding 2,2-dimethylthiazolidine to the phosphoric acid aqueous solution was completed, the denaturing catalyst was extracted from the reactor, and the phosphoric acid aqueous solution was removed with distilled water. The modified catalyst was dried, and the modification rate was measured by the following method. The results are shown in Table 1.
く変性率の測定 > 水酸化ナトリゥム水溶液を用いて滴定法により酸当量を測定し、 下記式 に基づいて中和率を算出し、 この中和率を変性率とした。 Measurement of denaturation rate> The acid equivalent was measured by a titration method using an aqueous sodium hydroxide solution, a neutralization ratio was calculated based on the following equation, and this neutralization ratio was defined as a modification ratio.
中和率 (%) = 1 0 0 X { 1 - [変性樹脂の酸当量 (meq. /g) Z未変性 樹脂の酸当量(meq. /g) ] }  Neutralization rate (%) = 100 X {1-[acid equivalent of modified resin (meq./g) Z acid equivalent of unmodified resin (meq. / G)]}
実施例 2 Example 2
実施例 1において、 0 . 3質量%リン酸水溶液の代わりに 1 . 0質量% リン酸水溶液を用いて調製した、 2, 2 _ジメチルチアゾリジンを 4 4 0 質量 p p m含む調製液を 7 9時間連続的に注入した以外は実施例 1と同様 にして変性触媒を得た。 得られた変性触媒について実施例 1と同様の評価 を行った。 結果を表 1に示す。  In Example 1, a prepared solution containing 4.4% by mass of 2,2-dimethylthiazolidine prepared using an aqueous solution of 1.0% by mass of phosphoric acid instead of the aqueous solution of 0.3% by mass of phosphoric acid was continuously used for 79 hours. A modified catalyst was obtained in the same manner as in Example 1 except that the injection was performed. The same evaluation as in Example 1 was performed on the resulting modified catalyst. The results are shown in Table 1.
実施例 3 Example 3
実施例 1において、 2 , 2—ジメチルチアゾリジンの代わりに 2—メル カプトェチルァミン 5 2質量 p p m含む調製液を使用し、 目標変性率を 1 5 %として、 この調製液を 2 8 0時間連続的に注入した以外は実施例 1と 同様にして変性触媒を得た。 得られた変性触媒について実施例 1と同様の 評価を行った。 結果を表 1に示す。  In Example 1, a preparation containing 52 mass ppm of 2-mercaptoethylamine instead of 2,2-dimethylthiazolidine was used, and a target denaturation rate of 15% was used. This preparation was continuously used for 280 hours. A modified catalyst was obtained in the same manner as in Example 1 except that the catalyst was injected. The same evaluation as in Example 1 was performed for the obtained modified catalyst. The results are shown in Table 1.
実施例 4 Example 4
実施例 1において、 0 . 3質量%リン酸水溶液の代わりに 0 . 3質量% パラトルエンスルホン酸水溶液を用いて調製した、 2, 2—ジメチルチア ゾリジン 1 3 1質量 p p mを含む調製液を 2 6 6時間連続的に注入した以 外は実施例 1と同様にして変性触媒を得た。 得られた変性触媒について実 施例 1と同様の評価を行った。 結果を表 1に示す。  In Example 1, a preparation solution containing 2,3-dimethylthiazolidine 13 1 mass ppm was prepared by using a 0.3 mass% paratoluenesulfonic acid aqueous solution instead of the 0.3 mass% phosphoric acid aqueous solution. A modified catalyst was obtained in the same manner as in Example 1, except that injection was continued for 6 hours. The same evaluation as in Example 1 was performed for the obtained modified catalyst. The results are shown in Table 1.
比較例 1 Comparative Example 1
実施例 1において、 2, 2—ジメチルチアゾリジンの全使用量 1 0 . 1 gを 0 . 5時間で注入し、 0 . 3質量%リン酸水溶液を実施例 1と同様の 時間、 循環リサイクルした以外は実施例 1と同様にして変性触媒を得た。 得られた変性触媒について実施例 1と同様の評価を行った。 結果を表 1に 示す。 In Example 1, a total of 10.1 g of 2,2-dimethylthiazolidine was injected in 0.5 hours, and a 0.3% by mass phosphoric acid aqueous solution was circulated and recycled for the same time as in Example 1. A modified catalyst was obtained in the same manner as in Example 1. The same evaluation as in Example 1 was performed for the obtained modified catalyst. Table 1 shows the results.
比較例 2 Comparative Example 2
実施例 2において、 2, 2—ジメチルチアゾリジンの全使用量 1 0 . 1 gを 0 . 5時間で注入し、 1 . 0質量%リン酸水溶液を実施例 2と同様の 時間、 循環リサイクルした以外は実施例 2と同様にして変性触媒を得た。 得られた変性触媒について実施例 1と同様の評価を行った。 結果を表 1に 示す。  In Example 2, a total of 10.1 g of 2,2-dimethylthiazolidine was injected in 0.5 hours, and a 1.0% by mass aqueous phosphoric acid solution was circulated and recycled for the same time as in Example 2. In the same manner as in Example 2, a modified catalyst was obtained. The same evaluation as in Example 1 was performed for the obtained modified catalyst. Table 1 shows the results.
比較例 3 Comparative Example 3
実施例 3において、 2 , 2 —メルェプトェチルァミンの全使用量 4 . 2 gを 0 . 5時間で注入し、 0 . 3質量%リン酸水溶液を実施例 1と同様の 時間、 循環リサイクルした以外は実施例 3と同様にして変性触媒を得た。 得られた変性触媒について実施例 1と同様の評価を行った。 結果を表 1に 示す。  In Example 3, a total amount of 4.2 g of 2,2-mereptethylamine used was injected in 0.5 hours, and a 0.3% by mass aqueous phosphoric acid solution was circulated for the same time as in Example 1. A modified catalyst was obtained in the same manner as in Example 3 except that the catalyst was recycled. The same evaluation as in Example 1 was performed for the obtained modified catalyst. Table 1 shows the results.
比較例 4 Comparative Example 4
実施例 4において、 2 , 2—ジメチルチアゾリジンの全使用量 1 0 . 1 gを 0 . 5時間で注入し、 0 . 3質量%リン酸水溶液を実施例 4と同様の 時間、 循環リサイクルした以外は実施例 4と同様にして変性触媒を得た。 得られた変性触媒について実施例 1と同様の評価を行った。 結果を表 1に 示す。 In Example 4, a total amount of 10.1 g of 2,2-dimethylthiazolidine used was injected in 0.5 hours, and a 0.3% by mass aqueous phosphoric acid solution was circulated and recycled for the same time as in Example 4. In the same manner as in Example 4, a modified catalyst was obtained. The same evaluation as in Example 1 was performed for the obtained modified catalyst. Table 1 shows the results.
表 1 table 1
Figure imgf000012_0001
産業上の利用可能性
Figure imgf000012_0001
Industrial applicability
本発明によれば、 触媒性能に優れたビスフエノール A製造用変性触媒を 提供することができる。  According to the present invention, a modified catalyst for producing bisphenol A having excellent catalytic performance can be provided.

Claims

請求の範囲 The scope of the claims
1 . 強酸性イオン交換榭脂を含ィォゥァミン化合物で部分的に変性して なるビスフエノール A製造用の変性触媒を調製する方法において、 固定床 反応器に強酸性イオン交換樹脂を充填し、 これに酸水溶液と、 該酸水溶液 中において平衡となる濃度分の含ィォゥアミン化合物を注入し、 強酸性ィ オン交換樹脂を変性することを特徴とするビスフエノール A製造用変性触 媒の調製方法。 1. In a method for preparing a modified catalyst for the production of bisphenol A, which is obtained by partially modifying a strongly acidic ion exchange resin with an iodiamine compound, a fixed bed reactor is charged with a strongly acidic ion exchange resin, and A method for preparing a modified catalyst for producing bisphenol A, which comprises injecting an acid aqueous solution and an ioamine compound containing an equilibrium concentration in the acid aqueous solution to modify a strongly acidic ion exchange resin.
2 . 含ィォゥアミン化合物が、 メルカプトアルキルァミン類、 チアゾリ ジン類及ぴメルカプトアルキルピリジン類から選ばれる一種以上である請 求の範囲第 1項に記載の調製方法。 2. The method according to claim 1, wherein the diamine-containing compound is at least one selected from mercaptoalkylamines, thiazolidines and mercaptoalkylpyridines.
3 . 酸が、 芳香族スルホン酸類、 アルキルスルホン酸類、 酢酸及び蟻酸 から選ばれる有機酸である請求の範囲第 1項に記載の調製方法。 3. The method according to claim 1, wherein the acid is an organic acid selected from aromatic sulfonic acids, alkyl sulfonic acids, acetic acid and formic acid.
4 . 酸が、 芳香族スルホン酸類の 0 . 0 1〜 5質量%水溶液である請求 の範囲第 3項に記載の調製方法。 4. The preparation method according to claim 3, wherein the acid is a 0.01 to 5% by mass aqueous solution of an aromatic sulfonic acid.
5 . 酸が、 芳香族スルホン酸類の 0 . 0 3〜2質量%水溶液である請求 の範囲第 4項に記載の調製方法。 5. The preparation method according to claim 4, wherein the acid is a 0.03 to 2% by mass aqueous solution of an aromatic sulfonic acid.
6 . 酸が、 リン酸、 硼酸及び硫酸から選ばれる無機酸である請求の範囲 第 1項に記載の調製方法。 6. The method according to claim 1, wherein the acid is an inorganic acid selected from phosphoric acid, boric acid and sulfuric acid.
7 . 酸が、 リン酸の 0 . 0 1〜8質量%水溶液である請求の範囲第 6項 に記載の調製方法。 7. The method according to claim 6, wherein the acid is a 0.1 to 8% by mass aqueous solution of phosphoric acid. Preparation method described in 1.
8. 酸が、 リン酸の 0. 05〜3質量%水溶液である請求の範囲第 7項 に記載の調製方法。 8. The preparation method according to claim 7, wherein the acid is a 0.05 to 3% by mass aqueous solution of phosphoric acid.
9. 酸が、 スルホン酸型イオン交換樹脂の水洗処理で得られる酸性水溶 液である請求の範囲第 1項に記載の調製方法。 9. The preparation method according to claim 1, wherein the acid is an acidic aqueous solution obtained by washing the sulfonic acid type ion exchange resin with water.
1 0. 含ィォゥァミン化合物による強酸性イオン交換樹脂の変性を 0〜 1 20でにおいて行う請求の範囲第 1項に記載の調製方法。 10. The method according to claim 1, wherein the denaturation of the strongly acidic ion exchange resin with the iodiamine-containing compound is carried out at 0 to 120.
1 1. 含ィォゥァミン化合物による強酸性イオン交換樹脂の変性率が 5 〜45%である請求の範囲第 1項に記載の調製方法。 1 1. The preparation method according to claim 1, wherein the modification ratio of the strongly acidic ion exchange resin with the iodiamine-containing compound is 5 to 45%.
1 2. 酸水溶液と含ィォゥァミン化合物の注入が、 酸水溶液に含ィォゥ ァミン化合物を溶解した調製液の注入であり、 該調製液の注入量が、 LH S V (液空間速度) で 0. 1〜20 h 1である請求の範囲第 1項〜第 1 1 項のいずれかに記載の調製方法。 1 2. The injection of the acid aqueous solution and the iodamine compound is the injection of a prepared solution in which the iodamine compound is dissolved in the acid aqueous solution, and the injection amount of the prepared solution is 0.1 to LH SV (liquid space velocity). the preparation method according to any one of 20 h 1 in the range of claims is the first term - the first (1).
1 3. 酸水溶液に含ィォゥァミン化合物を溶解した調製液の注入量が、 LHS V (液空間速度) で 0. 2〜1 0 h 1である請求の範囲第 1 2項に 記載の調製方法。 1 3. Injection volume of preparation by dissolving a free Iowamin compound aqueous acid solution, preparation method according to the first two terms claims is 0. 2 to 1 0 h 1 in LHS V (liquid hourly space velocity).
PCT/JP2004/012861 2003-09-01 2004-08-30 Method of preparing modified catalyst for bisphenol a production WO2005021155A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020067004242A KR101083168B1 (en) 2003-09-01 2004-08-30 Method of preparing modified catalyst for bisphenol a production

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-308990 2003-09-01
JP2003308990A JP4298438B2 (en) 2003-09-01 2003-09-01 Method for preparing modified catalyst for production of bisphenol A

Publications (1)

Publication Number Publication Date
WO2005021155A1 true WO2005021155A1 (en) 2005-03-10

Family

ID=34269537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012861 WO2005021155A1 (en) 2003-09-01 2004-08-30 Method of preparing modified catalyst for bisphenol a production

Country Status (5)

Country Link
JP (1) JP4298438B2 (en)
KR (1) KR101083168B1 (en)
CN (2) CN102886277B (en)
TW (1) TW200510064A (en)
WO (1) WO2005021155A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932976B2 (en) 2007-06-14 2015-01-13 Dow Global Technologies Llc Preparation of catalyst for bisphenols production

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4971663B2 (en) * 2006-03-31 2012-07-11 三井化学株式会社 Method for preparing catalyst for production of bisphenols
JP5189439B2 (en) * 2008-09-02 2013-04-24 トヨタ自動車株式会社 Cloth detection apparatus and cloth detection method
US8293137B2 (en) * 2009-12-30 2012-10-23 Jiangsu Sinorgchem Technology Co., Ltd. Solid acid catalyst and method for preparing and using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314680A (en) * 1976-07-26 1978-02-09 Shell Int Research Method of manufacturing fixed bed of partially neutralized cation exchange resin
JP2001286770A (en) * 2000-04-04 2001-10-16 Idemitsu Petrochem Co Ltd Preparation method of fixed bed of acidic cation exchange resin for bisphenol production
JP2001348350A (en) * 2000-06-07 2001-12-18 Idemitsu Petrochem Co Ltd Method for preparing fixed bed of acidic cation exchange resin for producing bisphenols

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034398C (en) * 1991-09-16 1997-04-02 中国石油化工总公司 Prodn. technology and apparatus of on-exchange resin catalyst used in bisphenol synthesis
US6429343B1 (en) * 2000-01-07 2002-08-06 Idemitsu Petrochemical Co., Ltd. Process for producing bisphenol a

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314680A (en) * 1976-07-26 1978-02-09 Shell Int Research Method of manufacturing fixed bed of partially neutralized cation exchange resin
JP2001286770A (en) * 2000-04-04 2001-10-16 Idemitsu Petrochem Co Ltd Preparation method of fixed bed of acidic cation exchange resin for bisphenol production
JP2001348350A (en) * 2000-06-07 2001-12-18 Idemitsu Petrochem Co Ltd Method for preparing fixed bed of acidic cation exchange resin for producing bisphenols

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8932976B2 (en) 2007-06-14 2015-01-13 Dow Global Technologies Llc Preparation of catalyst for bisphenols production

Also Published As

Publication number Publication date
KR20060117905A (en) 2006-11-17
JP2005074332A (en) 2005-03-24
TWI370017B (en) 2012-08-11
CN102886277A (en) 2013-01-23
KR101083168B1 (en) 2011-11-11
TW200510064A (en) 2005-03-16
CN102886277B (en) 2016-04-27
JP4298438B2 (en) 2009-07-22
CN1845790A (en) 2006-10-11

Similar Documents

Publication Publication Date Title
US5302774A (en) Process for the production of bisphenols
EP0324080B1 (en) A method for the purification of ion exchange resins used in the production of bisphenol a
CN101875626A (en) Method for synthesizing N-benzyl maleimide from immobilized supported acid catalyst
WO2005021155A1 (en) Method of preparing modified catalyst for bisphenol a production
Aragon et al. Self-condensation of cyclohexanone catalyzed by Amberlyst-15. Study of diffusional resistances and deactivation of the catalyst
ES2771152T3 (en) A process for the preparation of unsaturated ketones
JP4452058B2 (en) Method for preparing modified catalyst for production of bisphenol A
RU2373994C2 (en) Bisphenol synthesis catalyst
WO2005023424A1 (en) Method of preparing modified catalyst for bisphenol a production
CN102076647B (en) Process for producing bisphenol-a
JP2003514657A (en) Conditioning method of ion exchanger
KR20140095717A (en) Producing device of bisphenol a
JP4048240B2 (en) Dehydration of reaction using ion exchange resin as catalyst
US20050119111A1 (en) Catalytic reactions using thermally stable resins
TW572788B (en) Method for preparing acidic cation exchange resin fixed bed for producing bisphenols
JPH09176069A (en) Production of bisphenols
CN106008179B (en) The method of the double ether compounds of mixed matching heteropoly acid catalysis benzaldehyde synthesis
CN101291899A (en) Method for producing bisphenol A and method for determining ion exchange resin
JP3864462B2 (en) Method for producing trioxane
JP4971663B2 (en) Method for preparing catalyst for production of bisphenols
WO2002072516A1 (en) Method for producing bisphenol a
WO2000053315A1 (en) Process for preparing catalyst for use in bisphenol production
US8410184B2 (en) Regeneration of acidic ion exchangers
CN113333026A (en) Solid acid catalyst for synthesizing bis-OPP-A and preparation method and application thereof
RU2122974C1 (en) Method of preparing coagulant for treating natural and waste waters

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025087.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067004242

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020067004242

Country of ref document: KR