WO2002072516A1 - Method for producing bisphenol a - Google Patents
Method for producing bisphenol a Download PDFInfo
- Publication number
- WO2002072516A1 WO2002072516A1 PCT/JP2002/001924 JP0201924W WO02072516A1 WO 2002072516 A1 WO2002072516 A1 WO 2002072516A1 JP 0201924 W JP0201924 W JP 0201924W WO 02072516 A1 WO02072516 A1 WO 02072516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phenol
- exchange resin
- sulfonic acid
- ion exchange
- bisphenol
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/11—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms
- C07C37/20—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by reactions increasing the number of carbon atoms using aldehydes or ketones
Definitions
- the present invention relates to a method for producing bisphenol A, and more specifically, to produce bisphenol A [2,2-bis (4-hydroxyphenyl) propane] from phenol and acetone using a sulfonic acid type ion exchange resin catalyst.
- the present invention relates to a method for producing bisphenol A, wherein a catalyst requiring a short time for washing is selected and used by a specific simple washing method as the catalyst.
- Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or epoxy resin, and the demand for bisphenol A has been increasing in recent years.
- This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound.
- alkyl mercaptans having or not having a substituent such as methyl mercaptan, ethyl mercaptan, and thiodaricholic acid are effective (US Patent No. No. 2,359,242 and No. 2,775,620). These mercaptans have the effect of increasing the reaction rate and the selectivity.
- 2- (2-hydroxyphenyl) 1-2-(. 4-hydroxyphenyl) propane o, p'-isomer
- trisphenol and polyphenol are produced.
- a fixed bed multistage reaction apparatus in which two or more reaction groups filled with the cation exchange resin are connected in series is usually used.
- the cation exchange resin a strongly acidic sulfonic acid type ion exchange resin is frequently used from the viewpoint of catalytic activity and the like.
- the sulfonic acid-type ion-exchange resin is washed with water until the washing wastewater has a pH of 6 or more, and then the phenol is washed, and the sulfonic acid concentration in the washed phenol is 2 ppm by weight or less. How to do until (Japanese Unexamined Patent Publication No. 2000-144365).
- An object of the present invention is to provide a method for producing bisphenol A using a sulfonic acid type ion exchange resin by selecting it.
- the present inventors have conducted intensive studies to achieve the above object, and as a result, the sulfonic acid type ion exchange resin was subjected to a cleaning treatment by a specific simple cleaning method using ion exchange water and phenol, and the final treatment was carried out. It has been found that the purpose can be achieved by using a sulfonic acid type ion exchange resin having a sulfur concentration of 1 ppm by weight or less in the washed phenol obtained as a catalyst. The present invention has been completed based on such findings.
- the present invention relates to the production of bisphenol A by condensing phenol and acetone using a sulfonic acid type ion exchange resin as a catalyst and mercaptans as a cocatalyst, Acid type After washing the ion-exchange resin with ion-exchanged water having a volume of 5 to 20 times the water swelling volume, the resin is washed in a phenol having a volume of 1 to 3 times the water swelling volume at a temperature of 50 to 80 at a temperature of 50 to 80.
- the present invention also provides a method for producing bisphenol A, characterized by using a washing phenol having a sulfur concentration of 1 ppm by weight or less after solid-liquid separation after washing with stirring for up to 5 hours.
- the method of the present invention is a method for producing bisphenol A by condensing fuynol and acetone using a sulfonic acid type ion exchange resin as a catalyst and mercaptans as a cocatalyst, wherein the sulfonic acid type ion exchange resin is Is not particularly limited as long as it is a strongly acidic cation exchange resin having a sulfonic acid group.
- Examples thereof include a sulfonated styrene dibutyl benzene copolymer, a sulfonated crosslinked styrene polymer, a phenol formaldehyde sulfonic acid resin, and a benzene formaldehyde sulfonate. And a sulfonic acid resin. These may be used alone or in combination of two or more.
- a fixed bed continuous reaction system in which phenol, acetone and mercaptans are continuously supplied and reacted in a reaction tower filled with the above-mentioned sulfonic acid type ion exchange resin.
- the number of reactors may be one, or two or more reactors may be arranged in series or in parallel, but industrially, two or more reactors filled with sulfonic acid type ion exchange resin are connected in series.
- the sulfonic acid-type ion-exchange resin When the sulfonic acid-type ion-exchange resin is used as a catalyst, sulfonic acid is desorbed from the ion-exchange resin after the reaction starts, as described in "Background Art", and the sulfonic acid eluted in the reaction solution is removed. However, when exposed to high temperatures in a later step, it causes the decomposition of bisphenol A and produces colored by-products. The mold ion-exchange resin is washed with water and then treated with phenol. When the sulfonic acid type ion exchange resin filled in such a reactor is washed with water and then with fininol, depending on the ion exchange resin, the above-mentioned washing treatment takes a long time, which is economically disadvantageous. It may be.
- the water and then the sulfonic acid type ion exchange resin having a short washing treatment time with phenol are selected and used by a simple washing method described below. .
- the sulfonic acid type ion exchange resin is washed with ion exchange water having a volume of 5 to 20 times its water swelling volume, and then having a phenol having a volume of 1 to 3 times its water swelling volume. Washing with stirring at a temperature of 50 to 80 ° C for 2 to 5 hours, and selecting a sulfonic acid type ion exchange resin having a sulfur concentration of 1 ppm by weight or less in the washed phenol after solid-liquid separation.
- a sulfonic acid type ion exchange resin is placed in a container, and then ion exchange water having a volume about twice the water swelling volume of the ion exchange resin is added. After stirring, the mixture is left standing. Drain the supernatant to the interface of the ion exchange resin. This operation is repeated several times until the total volume of ion-exchanged water becomes 5 to 20 times the water swelling volume of the sulfonic acid type ion exchange resin.
- This washing treatment with ion-exchanged water is performed at room temperature, that is, at a temperature of about 10 to 30 ° C.
- the water-washed sulfonic acid-type ion-exchange resin is returned to the recycle container.
- phenol having a volume of 1 to 3 times the water swelling volume of the sulfonic acid type ion exchange resin is added, and the mixture is washed with stirring at a temperature of 50 to 80 ° C for 2 to 5 hours.
- the sulfur concentration in the supernatant phenol is measured, and a sulfonate-type ion-exchange resin having a value of 1 ppm by weight or less is used as a catalyst.
- the amount of the phenol used is less than 1 volume, the resin is not sufficiently washed with the phenol, and resin fine particles may be taken in when collecting the supernatant. If the volume is more than 3 times the volume, the difference in the amount of eluted material when washing with phenol is unlikely to appear between the compared resins.
- the mercaptans used in the present invention are compounds having an SH group in a free form in the molecule.
- examples of such a compound include alkyl mercaptans, carboxyl groups, amino groups, and hydroxyl groups.
- Alkyl mercaptans having one or more groups, for example, mercaptocarboxylic acid, aminoalkanethiol, mercaptoalcohol and the like can be used.
- Examples of such mercaptans include methyl mercaptan, ethyl mercaptan, n-butynolemercaptan,
- Thiocarboxylic acids such as mercaptopropionic acid; aminoaminothiols such as 2-aminoethanethiol and 2,2-dimethylthiazolidine; and mercapto alcohols such as mercaptoethanol.
- alkyl mercaptan is useful. Particularly preferred in terms of the effect as a catalyst. Further, these mercaptans may be used alone or in combination of two or more.
- mercaptans can be immobilized on the sulfonic acid-type ion exchange resin to function as a promoter.
- the amount of the mercaptans class generally against acetone raw material is selected preferably from 1 to 1 0 mol% of the range.
- the ratio of phenol and acetone used, it is desirable that the amount of unreacted acetone be as small as possible in view of the ease of purification and economical efficiency of the produced bisphenol A. It is advantageous to use the phenol in excess of the stoichiometric amount. Usually, 3 to 30 moles, preferably 5 to 15 moles, of phenol are used per mole of acetone.
- the reaction solvent is generally not required, except that the reaction liquid is reacted at a low temperature at which the viscosity of the reaction liquid is too high or the solidification makes operation difficult.
- phenol, acetone, and the mercaptans are continuously supplied to a reaction tower filled with a sulfonic acid-type ion exchange resin, which requires a short time for catalyst cleaning, which is selected by the above-described simple cleaning method.
- a washing treatment of the sulfonic acid type ion exchange resin filled in the reaction tower is performed prior to the reaction. In this cleaning, first, water is flowed through a reaction tower filled with a sulfonic acid-type ion exchange resin, and the water is washed until the pH of the washing wastewater becomes about 5.5 to 7.
- phenol, acetone and mercaptans are continuously supplied to the reaction tower, and the reaction is carried out by a fixed bed continuous reaction system.
- the acetone nophenol molar ratio is usually selected in the range of lZ30 to l / 3, preferably 1 to 15 to 1/5. If the molar ratio is less than 1/30, the reaction rate may be too slow. If the molar ratio is more than 1 Z3, impurities may be generated more and the selectivity of bisphenol A tends to decrease.
- the mercaptans Zaceton • The molar ratio is usually selected from the range of 0.1 to 100 to 20100, preferably 1 to 100 to 100. It is.
- the reaction temperature is selected in the range of usually 40 to 150 ° C, preferably 60 to 110 ° C. If the temperature is lower than 40 ° C, the reaction rate is low, the viscosity of the reaction solution is extremely high, and in some cases, there is a possibility of solidification. If the temperature exceeds 150 ° C, the reaction control becomes difficult, and bisphenol A The selectivity of (p, p'-isomer) decreases, and the sulfonic acid type ion exchange resin of the catalyst may decompose or deteriorate. Furthermore, the raw material mixture LHSV (liquid hourly space velocity) is generally 0. 2 to 30 h r- preferably 0.5 5: is selected in the range of L 0 hr 1.
- the reaction mixture that has come out of the reaction tower is subjected to post-treatment by a known method, and bisphenol A is taken out.
- concentration is performed prior to crystallization.
- the concentration is usually performed at a temperature of 130 to 170 ° C and a pressure of 13 to 53 kPa. If the temperature is lower than 130 ° C, a high vacuum is required. If the temperature is higher than 170 ° C, impurities may increase or coloring may occur.
- the concentration of bisphenol A in the concentrated residue is 25 to 40% by weight. Advantageously it is in the range / 0 . If the concentration is less than 25% by weight, the recovery of bisphenol A is low, and if it exceeds 40% by weight, it becomes difficult to transfer the slurry after crystallization.
- Crystallization of the adduct of bisphenol A and phenol from the concentrated residue is usually carried out by vacuum cooling crystallization, which utilizes the latent heat of vaporization of water under reduced pressure.
- vacuum cooling crystallization which utilizes the latent heat of vaporization of water under reduced pressure.
- this vacuum cooling crystallization method about 3 to 20% by weight of water is added to the concentrated residue, and crystallization is performed at a normal temperature of 40 to 70 ° C and a pressure of 3 to 13 kPa.
- An analysis process is performed. If the amount of water added is less than 3% by weight, the heat removal ability is not sufficient, and if it exceeds 20% by weight, the dissolution loss of bisphenol A increases, which is not preferable.
- the crystallization temperature is lower than 40 ° C, the viscosity of the crystallization liquid may increase or solidify. If the crystallization temperature exceeds 70 ° C, the dissolution loss of bisphenol A increases, which is not preferable.
- the adduct of bisphenol A and phenol thus crystallized is separated by a known method, and is usually subjected to a washing treatment with phenol.
- the washed adduct is separated into bisphenol A and phenol, in which case the temperature is usually from 130 to 200 ° C, preferably from 150 to 180 ° C.
- the pressure is usually selected in the range of 3 to 20 kPa.
- Bisphenol A obtained by this separation treatment is substantially completely removed of the residual phenol therein by a method such as steam stripping, so that high-quality bisphenol A can be obtained.
- the ion exchange water was added until the total volume including the resin reached 100 milliliter. added. Then, after stirring, let it stand still, The supernatant was drained to the interface. After this operation was repeated 10 times, the solution was filtered under reduced pressure with an aspirator using a glass filter, and water was roughly removed.
- This sulfonic acid type ion exchange resin was returned to the 100 milliliter sample bottle again, and phenol was added until the total volume including the resin reached 100 milliliter, followed by stirring at 70 ° C for 3 hours. After the stirring, the mixture was allowed to stand, and the supernatant was collected, and the sulfur concentration was measured. As a result, it was less than 1 wt p ⁇ .
- the temperature of the resin layer was raised to 70 ° C., and phenol was flown at 10 ml / h for 25 hours to perform dehydration. After 25 hours, the water concentration in the ethanol was 0.3% by weight. At this time, the sulfur concentration in the phenol and the hue of the phenol were measured, and as a result, the sulfur concentration was 4 wt ppm and the hue was 30 or more in APHA.
- Example 1 The same sulfonic acid type ion exchange resin as that used in Example 1 was stored in the air for 2 months, and then the same operation as in Example 1 (1) was performed. The supernatant phenol was collected, and the sulfur concentration was measured. As a result, it was 4 wt ppm.
- Example 1 (2) The same operation as in Example 1 (2) was performed using a sulfonic acid type ion exchange resin kept in the same air as that used in (1) above for 2 months.
- the sulfonic acid type which requires a short time for cleaning by a specific simple cleaning method is used as the catalyst.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
A method for producing bisphenol A through condensing phenol and acetone using a sulfonic acid based ion exchange resin as a catalyst and a mercaptan as an auxiliary catalyst, characterized in that use is made of a sulfonic acid based ion exchange having a washability such that, when it is washed with ion-exchanged water in a volume 5 to 20 times its volume swollen with water and then is agitated in a phenol in a volume 1 to 3 times its volume swollen with water at a temperature of 50 to 80°C for 2 to 5 hr, the phenol after solid-liquid separation has a sulfur content of 1 ppm by weight or less. The method can be used for producing bisphenol A advantageously from an economical view point, since the above washing method is easy and simple to operate and a sulfonic acid based ion exchange resin which does not need a long time can be easily selected using the above washing method.
Description
明 細 書 ビスフユノール Aの製造方法 技術分野 Description Bisfuynol A Production Method Technical Field
本発明はビスフエノール Aの製造方法に関し、 さらに詳しくは、 スルホン酸型 イオン交換樹脂触媒を用いて、 フエノールとアセトンからビスフエノール A 〔2 , 2—ビス ( 4ーヒ ドロキシフエニル) プロパン〕 を製造するに際し、 該触媒と して、 特定の簡易洗浄法により、 洗浄に要する時間の短いものを選別して使用す るビスフエノール Aの製造方法に関するものである。 背景技術 The present invention relates to a method for producing bisphenol A, and more specifically, to produce bisphenol A [2,2-bis (4-hydroxyphenyl) propane] from phenol and acetone using a sulfonic acid type ion exchange resin catalyst. In this regard, the present invention relates to a method for producing bisphenol A, wherein a catalyst requiring a short time for washing is selected and used by a specific simple washing method as the catalyst. Background art
ビスフエノール Aはポリカーボネート樹脂やポリアリレート樹脂などのェンジ ニァリングプラスチック、 あるいはエポキシ樹脂などの原料として重要な化合物 であることが知られており、 近年その需要はますます増大する傾向にある。 Bisphenol A is known to be an important compound as a raw material for engineering plastics such as polycarbonate resin and polyarylate resin, or epoxy resin, and the demand for bisphenol A has been increasing in recent years.
このビスフエノール Aは、 酸性触媒及ぴ場合により用いられる硫黄化合物など の助触媒の存在下に、 過剰のフエノールとァセトンとを縮合させることにより製 造される。 This bisphenol A is produced by condensing excess phenol and acetone in the presence of an acidic catalyst and optionally a cocatalyst such as a sulfur compound.
この反応における酸触媒としては、 従来、 硫酸や塩化水素などの無機鉱酸が用 いられていたが、 近年、 陽イオン交換樹脂が注目され (英国特許第 8 4 2 2 0 9 号明細書、 同第 8 4 9 5 6 5号明細書、 同第 8 8 3 3 9 1号明細書) 、 工業的に 用いられるようになった。 Conventionally, inorganic acid such as sulfuric acid or hydrogen chloride has been used as an acid catalyst in this reaction. In recent years, cation exchange resins have attracted attention (British Patent No. 8422209, Nos. 8495655 and 883391) have come to be used industrially.
一方、 助触媒として用いられる硫黄化合物としては、 メチルメルカブタン、 ェ チルメルカプタン、 チォダリコール酸などの置換基を有する若しくは有しないァ ルキルメルカブタン類が有効であることが知られている (米国特許第 2 3 5 9 2 4 2号明細書、 同第 2 7 7 5 6 2 0号明細書) 。 このメルカブタン類は、 反応速 度を上げるとともに、 選択率を向上させる作用を有している。 例えば、 ビスフエ ノール Aの製造において、 反応副生物として、 主に 2— (2—ヒ ドロキシフエ二 ル) 一2— (.4ーヒ ドロキシフエュル) プロパン (o, p ' —体) が生成し、 そ
の他トリスフヱノール、 ポリフエノールなどが生成する。 特に、 ポリカーボネー ト樹脂やポリアリレート樹脂などの原料として用いる場合、 これらの副生物の含 有量が少なく、 着色のない高純度のビスフエノール Aが要求される。 このため、 反応速度を上げるとともに、 上記副生物の生成を抑え、 選択率を高めるために、 助触媒としてメルカプタン類が用いられる。 On the other hand, as a sulfur compound used as a cocatalyst, it is known that alkyl mercaptans having or not having a substituent such as methyl mercaptan, ethyl mercaptan, and thiodaricholic acid are effective (US Patent No. No. 2,359,242 and No. 2,775,620). These mercaptans have the effect of increasing the reaction rate and the selectivity. For example, in the production of bisphenol A, 2- (2-hydroxyphenyl) 1-2-(. 4-hydroxyphenyl) propane (o, p'-isomer) is mainly produced as a by-product of the reaction. In addition, trisphenol and polyphenol are produced. In particular, when used as a raw material for a polycarbonate resin or a polyarylate resin, bisphenol A of high purity with little content of these by-products and no coloring is required. For this reason, mercaptans are used as a co-catalyst to increase the reaction rate, suppress the generation of the by-products, and increase the selectivity.
フエノールとァセトンを縮合させてビスフエノール Aを工業的に製造する場合、 一般に、 前記陽イオン交換樹脂を充填した反応塔に、 原料のフエノールとァセト ン及び助触媒のメルカプタン類を連続的に供給する固定床連続反応方式が採用さ れる。 When bisphenol A is produced industrially by condensing phenol and acetone, generally, phenol and acetone as raw materials and mercaptans as a cocatalyst are continuously supplied to a reaction tower filled with the cation exchange resin. A fixed bed continuous reaction system is adopted.
この固定床連続反応方式においては、 通常該陽イオン交換榭脂を充填した反応 基を 2基以上直列に連結した固定床多段式反応装置が用いられる。 また、 陽ィォ ン交換樹脂としては、 触媒活性などの点から、 強酸性のスルホン酸型イオン交換 樹脂が多用されている。 In this fixed bed continuous reaction system, a fixed bed multistage reaction apparatus in which two or more reaction groups filled with the cation exchange resin are connected in series is usually used. As the cation exchange resin, a strongly acidic sulfonic acid type ion exchange resin is frequently used from the viewpoint of catalytic activity and the like.
しかしながら、 このスルホン酸型イオン交換樹脂を触媒とした場合、 反応開始 後に該イオン交換樹脂からスルホン酸の脱離が起こり、 反応液中に溶出したスル ホン酸が、 後の工程で高温に曝された際に、 ビスフエノール Aの分解を引き起こ し、 着色した副生物を生成することが知られている。 この着色不純物は、 製品ビ スフェノール Aの色相を悪化させるなど、 好ましくない事態を招来するため、 特 に光ディスクや光ファイバ一などの光学部材の素材として用いられるポリカーボ ネート樹脂向けのビスフエノール Aにおいては、 これらの着色不純物を可及的に 低減し、 着色のない色相の良好なものが求められている。 However, when this sulfonic acid type ion exchange resin is used as a catalyst, sulfonic acid is eliminated from the ion exchange resin after the reaction starts, and the sulfonic acid eluted in the reaction solution is exposed to a high temperature in a later step. Is known to cause the decomposition of bisphenol A and produce colored by-products. These colored impurities may cause undesirable situations such as deterioration of the hue of bisphenol A product, and particularly in bisphenol A for polycarbonate resin used as a material for optical members such as optical discs and optical fibers. Therefore, there is a demand for a colorant having as little color impurities as possible and having a good hue without coloring.
したがって、 該スルホン酸型イオン交換樹脂の前処理として、 これまで様々な '洗浄方法が試みられている。 例えば洗液の比伝導率が、 2 5 °Cで約 5 0 μ Ω -1ノ c m未満になるまで触媒を脱イオン水で洗浄し、 次いで洗浄したィォン交換樹脂 を脱水処理する方法 (特開平 9一 1 7 3 8 5 8号公報) 、 酸性陽イオン交換樹脂 を水、 次いでフ ノールで洗浄する方法 (特開平 9 - 1 7 6 0 6 9号公報) 、 ス ルホン酸型イオン交換樹脂を反応器に充填後、 該スルホン酸型ィオン交換樹脂の 水洗を、 洗浄廃水の p Hが 6以上になるまで行い、 次いでフエノール洗浄を、 洗 浄フエノール中の脱離スルホン酸濃度が 2重量 p p m以下になるまで行う方法
(特開 2 0 0 0— 1 4 3 5 6 5号公報) などが開示されている。 Therefore, as a pretreatment of the sulfonic acid type ion exchange resin, various cleaning methods have been tried so far. For example, a method in which the catalyst is washed with deionized water until the specific conductivity of the washing solution becomes less than about 50 μΩ- 1 cm at 25 ° C., and then the washed ion-exchange resin is subjected to a dehydration treatment (Japanese Unexamined Patent Application Publication No. A method of washing an acidic cation exchange resin with water and then with a phenol (Japanese Patent Application Laid-Open No. Hei 9-16969) discloses a method of washing a sulfonic acid type ion exchange resin. After filling in the reactor, the sulfonic acid-type ion-exchange resin is washed with water until the washing wastewater has a pH of 6 or more, and then the phenol is washed, and the sulfonic acid concentration in the washed phenol is 2 ppm by weight or less. How to do until (Japanese Unexamined Patent Publication No. 2000-144365).
このように、 酸型陽イオン交換樹脂の場合、 水洗浄及びフエノール洗浄が有効 であることは公知であり、 この洗浄を充分に行うことにより、 触媒充填又は交換 後の製品の色相を良好に維持し得ることも公知である。 しかしながら、 現状では、 触媒を反応器に充填したのち、 水洗浄及ぴフエノール洗浄に非常に時間がかか り、 経済性が著しく損なわれるという事態が発生している。 例えば湿潤状態で長 期間空気中で保存されていたスルホン酸型イオン交換樹脂では、 その表面及び細 孔内部に、 ポリスチレンスルホン酸からなる着色した溶出物が発生し、 洗浄に長 時間を要する。 As described above, in the case of an acid-type cation exchange resin, it is known that water washing and phenol washing are effective, and by carrying out this washing sufficiently, the hue of the product after catalyst filling or exchange is maintained well. It is also known that this can be done. However, at present, after the catalyst is filled in the reactor, water cleaning and phenol cleaning take a very long time, resulting in a situation in which economic efficiency is significantly impaired. For example, in the case of a sulfonic acid type ion exchange resin that has been stored in the air for a long time in a wet state, a colored eluate composed of polystyrenesulfonic acid is generated on the surface and inside the pores, and it takes a long time to wash.
したがって、 スルホン酸型イオン交換樹脂を流通式反応器に充填する前に、 簡 易的に該樹脂の洗浄性能、 すなわ 水洗浄及ぴフエノール洗浄にどの程度の時間 を要するかを見極めることが必要とされている。 発明の開示 Therefore, before filling the flow-through reactor with the sulfonic acid-type ion exchange resin, it is necessary to easily determine the washing performance of the resin, that is, how much time is required for water washing and phenol washing. It has been. Disclosure of the invention
本発明は、 このような状況下で、 スルホン酸型イオン交換樹脂触媒を用い、 フ ェノールとアセトンからビスフエノール Aを製造するに際し、 該触媒として、 簡 易洗浄法により、 洗浄に要する時間の短いスルホン酸型イオン交換樹脂を選別し て使用するビスフエノール Aの製造方法を提供することを目的とするものである。 本発明の他の目的は、 明細書の以下の記載により明らかにされる。 In the present invention, in such a situation, when producing bisphenol A from phenol and acetone using a sulfonic acid type ion exchange resin catalyst, the time required for washing is reduced by an easy washing method as the catalyst. An object of the present invention is to provide a method for producing bisphenol A using a sulfonic acid type ion exchange resin by selecting it. Other objects of the present invention will become apparent from the following description of the specification.
本発明者らは、 前記目的を達成するために鋭意研究を重ねた結果、 スルホン酸 型イオン交換樹脂を、 イオン交換水とフエノールを用いる特定の簡易洗浄法によ り、 洗浄処理を行い、 最終的に得られる洗浄フエノール中の硫黄分濃度が 1重量 p p m以下であるスルホン酸型イオン交換樹脂を、 触媒として用いることにより、 その目的を達成し得ることを見出した。 本発明は、 かかる知見に基づいて完成し たものである。 The present inventors have conducted intensive studies to achieve the above object, and as a result, the sulfonic acid type ion exchange resin was subjected to a cleaning treatment by a specific simple cleaning method using ion exchange water and phenol, and the final treatment was carried out. It has been found that the purpose can be achieved by using a sulfonic acid type ion exchange resin having a sulfur concentration of 1 ppm by weight or less in the washed phenol obtained as a catalyst. The present invention has been completed based on such findings.
すなわち、 本発明は、 スルホン酸型イオン交換樹脂を触媒とし、 かつメルカプ タン類を助触媒として、 フエノールとァセトンを縮合させてビスフエノール Aを 製造するに当たり、 上記スルホン酸型イオン交換樹脂として、 スルホン酸型ィォ
ン交換樹脂を、 その水膨潤容積の 5〜2 0倍容量のイオン交換水で洗浄したのち、 該水膨潤容積の 1〜 3倍容量のフエノール中にて 5 0〜8 0での温度で2〜5 時間攪拌洗浄し、 固液分離後の洗浄フエノール中の硫黄濃度が 1重量 p p m以下 であるものを用いることを特徴とするビスフエノール Aの製造方法を提供するも のである。 発明を実施するための最良の形態 That is, the present invention relates to the production of bisphenol A by condensing phenol and acetone using a sulfonic acid type ion exchange resin as a catalyst and mercaptans as a cocatalyst, Acid type After washing the ion-exchange resin with ion-exchanged water having a volume of 5 to 20 times the water swelling volume, the resin is washed in a phenol having a volume of 1 to 3 times the water swelling volume at a temperature of 50 to 80 at a temperature of 50 to 80. The present invention also provides a method for producing bisphenol A, characterized by using a washing phenol having a sulfur concentration of 1 ppm by weight or less after solid-liquid separation after washing with stirring for up to 5 hours. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の方法は、 スルホン酸型イオン交換樹脂を触媒とし、 かつメルカプタン 類を助触媒として、 フユノールとァセトンを縮合させてビスフエノール Aを製造 する方法であって、 該スルホン酸型イオン交換樹脂については、 スルホン酸基を 有する強酸性陽ィオン交換樹脂であればよく特に制限されず、 例えばスルホン化 スチレンージビュルベンゼンコポリマー、 スルホン化架橋スチレンポリマー、 フ ェノールホルムアルデヒ ドースルホン酸樹脂、 ベンゼンホルムアルデヒ ド一スル ホン酸樹脂などが挙げられる。 これらはそれぞれ単独で用いてもよく、 二種以上 を組み合わせて用いてもよい。 The method of the present invention is a method for producing bisphenol A by condensing fuynol and acetone using a sulfonic acid type ion exchange resin as a catalyst and mercaptans as a cocatalyst, wherein the sulfonic acid type ion exchange resin is Is not particularly limited as long as it is a strongly acidic cation exchange resin having a sulfonic acid group. Examples thereof include a sulfonated styrene dibutyl benzene copolymer, a sulfonated crosslinked styrene polymer, a phenol formaldehyde sulfonic acid resin, and a benzene formaldehyde sulfonate. And a sulfonic acid resin. These may be used alone or in combination of two or more.
本発明におけるフエノールとァセトンとの縮合においては、 一般に前記のスル ホン酸型イオン交換樹脂を充填した反応搭に、 フエノールとァセトンとメルカプ タン類を連続的に供給して反応させる固定床連続反応方式が用いられる。 この際、 反応搭は 1基でもよく、 また 2基以上を直列又は並列に配置してもよいが、 工業 的には、 スルホン酸型イオン交換樹脂を充填した反応搭を 2基以上直列に連結し、 固定床多段連続反応方式を採用するのが、 特に有利である。 In the condensation of phenol and acetone in the present invention, generally, a fixed bed continuous reaction system in which phenol, acetone and mercaptans are continuously supplied and reacted in a reaction tower filled with the above-mentioned sulfonic acid type ion exchange resin. Is used. At this time, the number of reactors may be one, or two or more reactors may be arranged in series or in parallel, but industrially, two or more reactors filled with sulfonic acid type ion exchange resin are connected in series. However, it is particularly advantageous to employ a fixed-bed multistage continuous reaction system.
前記スルホン酸型イオン交換榭脂を触媒とした場合、 「背景技術」 において 説明したように、 反応開始後に該イオン交換榭脂からスルホン酸の脱離が起こり、 反応液中に溶出したスルホン酸が、 後の工程で高温に曝された際に、 ビスフエ ノール Aの分解を引き起こし、 着色した副生物を生成することから、 一般に該ス ルホン酸型イオン交換樹脂を反応器に充填後、 このスルホン酸型ィオン交換樹脂 の水洗を行い、 次いでフエノール洗浄する処置がとられる。 このような反応器に 充填したスルホン酸型イオン交換樹脂を水洗浄、 次いでフニノール洗浄を行う際 に、 該イオン交換榭脂によっては、 上記洗浄処理に長時間を要し、 経済的に不利
となる場合がある。 When the sulfonic acid-type ion-exchange resin is used as a catalyst, sulfonic acid is desorbed from the ion-exchange resin after the reaction starts, as described in "Background Art", and the sulfonic acid eluted in the reaction solution is removed. However, when exposed to high temperatures in a later step, it causes the decomposition of bisphenol A and produces colored by-products. The mold ion-exchange resin is washed with water and then treated with phenol. When the sulfonic acid type ion exchange resin filled in such a reactor is washed with water and then with fininol, depending on the ion exchange resin, the above-mentioned washing treatment takes a long time, which is economically disadvantageous. It may be.
本発明の方法においては、 このような事態に対処するために、 以下に示す簡易 洗浄法によって、 前記の水、 次いでフエノールによる洗浄処理時間が短いスルホ ン酸型イオン交換樹脂を選別して使用する。 In the method of the present invention, in order to cope with such a situation, the water and then the sulfonic acid type ion exchange resin having a short washing treatment time with phenol are selected and used by a simple washing method described below. .
本発明におけるこの簡易洗浄法においては、 スルホン酸型イオン交換樹脂をそ の水膨潤容積の 5〜 2 0倍容量のイオン交換水で洗浄したのち、 該水膨潤容積の 1〜 3倍容量のフエノール中にて 5 0〜8 0 °Cの温度で 2〜 5時間攪拌洗浄し、 固液分離後の洗浄フエノール中の硫黄濃度が 1重量 p p m以下であるスルホン酸 型イオン交換樹脂を選別する。 In this simple washing method of the present invention, the sulfonic acid type ion exchange resin is washed with ion exchange water having a volume of 5 to 20 times its water swelling volume, and then having a phenol having a volume of 1 to 3 times its water swelling volume. Washing with stirring at a temperature of 50 to 80 ° C for 2 to 5 hours, and selecting a sulfonic acid type ion exchange resin having a sulfur concentration of 1 ppm by weight or less in the washed phenol after solid-liquid separation.
具体的には、 まず容器にスルホン酸型イオン交換樹脂を入れ、 次いで当該ィォ ン交換樹脂の水膨潤容積の 2倍容量程度のイオン交換水を加えたのち、 攪拌後、 静置し、 当該イオン交換樹脂の界面まで上澄み液を抜く。 この操作を使用するィ オン交換水の全量が、 当該スルホン酸型イオン交換樹脂の水膨潤容積の 5〜 2 0 倍容量になるまで、 複数回繰り返す。 このイオン交換水による洗浄処理は、 常温、 すなわち 1 0〜3 0 °C程度の温度で行う。 この際、 イオン交換水の全使用量が 5倍容量未満では水による洗浄効果が不充分となり、 後の処理で水で溶出し得る ものもフエノールにより溶出し、 純粋なフニノールによる溶出物の測定ができな くなる。 また、 2 0倍容量より多いと比較する樹脂の間でフエノール洗浄時の溶 出物量の差が表れにくくなる。 Specifically, first, a sulfonic acid type ion exchange resin is placed in a container, and then ion exchange water having a volume about twice the water swelling volume of the ion exchange resin is added. After stirring, the mixture is left standing. Drain the supernatant to the interface of the ion exchange resin. This operation is repeated several times until the total volume of ion-exchanged water becomes 5 to 20 times the water swelling volume of the sulfonic acid type ion exchange resin. This washing treatment with ion-exchanged water is performed at room temperature, that is, at a temperature of about 10 to 30 ° C. At this time, if the total amount of ion-exchanged water used is less than 5 times the volume, the washing effect with water will be insufficient. become unable. In addition, a difference in the amount of eluted material during phenol washing between resins to be compared with a resin having a volume of more than 20 times the volume is less likely to appear.
このようにして、 イオン交換水による洗浄処理終了後、 グラスフィルターなど を用いて減圧ろ過したのち、 水洗浄スルホン酸型イオン交換樹脂を再ぴ容器に戻 す。 次いで、 当該スルホン酸型イオン交換樹脂の水膨潤容積の 1〜 3倍容量のフ ェノ一ルを加え、 5 0〜8 0 °Cの温度で 2〜5時間攪拌洗浄する。 次いで静置後 、 上澄みフエノール中の硫黄濃度を測定し、 この値が 1重量 p p m以下であるス ルホン酸型イオン交換樹脂を触媒として使用する。 After the completion of the washing treatment with ion-exchanged water in this way, after filtration under reduced pressure using a glass filter or the like, the water-washed sulfonic acid-type ion-exchange resin is returned to the recycle container. Next, phenol having a volume of 1 to 3 times the water swelling volume of the sulfonic acid type ion exchange resin is added, and the mixture is washed with stirring at a temperature of 50 to 80 ° C for 2 to 5 hours. Then, after standing, the sulfur concentration in the supernatant phenol is measured, and a sulfonate-type ion-exchange resin having a value of 1 ppm by weight or less is used as a catalyst.
この際、 フエノールの使用量が 1倍容量よりも少ないと、 フエノールによる樹 脂の洗浄が充分に行われにくい上、 上澄みの採取に際し、 樹脂の微粒子が取り込 まれる場合がある。 また 3倍容量より多いと、 比較する榭脂の間で、 フエノール 洗浄時の溶出物量の差が表れにくい。
次に、 本発明の方法において、 前記のスルホン酸型イオン交換樹脂を触媒とし、 かつメルカプタン類を助触媒として、 フエノールとアセ トンを縮合させて、 ビス フエノール Aを製造する方法について説明する。 At this time, if the amount of the phenol used is less than 1 volume, the resin is not sufficiently washed with the phenol, and resin fine particles may be taken in when collecting the supernatant. If the volume is more than 3 times the volume, the difference in the amount of eluted material when washing with phenol is unlikely to appear between the compared resins. Next, in the method of the present invention, a method for producing bisphenol A by condensing phenol and acetone with the sulfonic acid-type ion exchange resin as a catalyst and mercaptans as a co-catalyst will be described.
本発明において用いられるメルカプタン類は、 分子内に S H基を遊離の形で有 する化合物であって、 このようなものとしては、 アルキルメルカプタンや、 カル ボキシル基、 アミノ基、 ヒ ドロキシル基などの置換基一種以上を有するアルキル メルカプタン類、 例えばメルカプトカルボン酸、 アミノアルカンチオール、 メル カプトアルコールなどを用いることができる。 このようなメルカプタン類の例と しては、 メチルメルカプタン、 ェチルメルカプタン、 n—ブチノレメルカプタン、 The mercaptans used in the present invention are compounds having an SH group in a free form in the molecule. Examples of such a compound include alkyl mercaptans, carboxyl groups, amino groups, and hydroxyl groups. Alkyl mercaptans having one or more groups, for example, mercaptocarboxylic acid, aminoalkanethiol, mercaptoalcohol and the like can be used. Examples of such mercaptans include methyl mercaptan, ethyl mercaptan, n-butynolemercaptan,
—メルカプトプロピオン酸などのチォカルボン酸、 2—アミノエタンチオール、 2, 2 -ジメチルチアゾリジンなどのァミノアル力ンチオール、 メルカプトエタ ノールなどのメルカプトアルコールなどが挙げられるが、 これらの中で、 アルキ ルメルカプタンが助触媒としての効果の点で、 特に好ましい。 また、 これらのメ ルカブタン類は、 単独で用いてもよく、 二種以上を組み合わせて用いてもよい。 Thiocarboxylic acids such as mercaptopropionic acid; aminoaminothiols such as 2-aminoethanethiol and 2,2-dimethylthiazolidine; and mercapto alcohols such as mercaptoethanol. Among them, alkyl mercaptan is useful. Particularly preferred in terms of the effect as a catalyst. Further, these mercaptans may be used alone or in combination of two or more.
これらのメルカブタン類は、 前記スルホン酸型イオン交換樹脂上に固定化させ、 助触媒として機能させることもできる。 These mercaptans can be immobilized on the sulfonic acid-type ion exchange resin to function as a promoter.
前記メルカブタン類の使用量は、 一般に原料のアセ トンに対して、 0 . 1〜 2 0モル0 /0、 好ましくは、 1〜 1 0モル%の範囲で選定される。 The amount of the mercaptans class generally against acetone raw material, 0.1 to 2 0 mole 0/0, is selected preferably from 1 to 1 0 mol% of the range.
また、 フエノールとアセ トンとの使用割合については特に制限はないが、 生成 するビスフエノール Aの精製の容易さや経済性などの点から、 未反応のァセトン の量は出来るだけ少ないことが望ましく、 したがって、 フエノールを化学量論的 量よりも過剰に用いるのが有利である。 通常、 アセ トン 1モル当たり、 3〜3 0 モル、 好ましくは 5〜 1 5モルのフエノールが用いられる。 また、 このビスフエ ノール Aの製造においては、 反応溶媒は、 反応液の粘度が高すぎたり、 凝固して 運転が困難になるような低温で反応させる以外は、 一般に必要ではない。 Although there is no particular limitation on the ratio of phenol and acetone used, it is desirable that the amount of unreacted acetone be as small as possible in view of the ease of purification and economical efficiency of the produced bisphenol A. It is advantageous to use the phenol in excess of the stoichiometric amount. Usually, 3 to 30 moles, preferably 5 to 15 moles, of phenol are used per mole of acetone. In the production of bisphenol A, the reaction solvent is generally not required, except that the reaction liquid is reacted at a low temperature at which the viscosity of the reaction liquid is too high or the solidification makes operation difficult.
本発明においては、 前述の簡易洗浄法により選別された、 触媒洗浄に要する時 間が短いスルホン酸型イオン交換樹脂を充填した反応搭に、 フエノールとァセト ンと前記メルカプタン類を連続的に供給して反応させる固定床連続反応方式が用
いられる。 本発明においては、 反応に先立ち、 反応搭に充填されたスルホン酸 型イオン交換樹脂の洗浄処理を行う。 この洗浄では、 まずスルホン酸型イオン交 換榭脂が充填された反応搭に水を流して、 洗浄廃水の pHが 5. 5〜 7程度にな るまで水洗浄を行う。 次いで、 反応搭のイオン交換榭脂温度を 50〜 80°C程度 に保持しながらフエノールを流し、 該スルホン酸型イオン交換樹脂中の水をフエ ノールで置換すると共に、 フエノール洗浄を、 洗浄フエノール中の硫黄濃度が 1 重量 p pm以下になるまで行う。 In the present invention, phenol, acetone, and the mercaptans are continuously supplied to a reaction tower filled with a sulfonic acid-type ion exchange resin, which requires a short time for catalyst cleaning, which is selected by the above-described simple cleaning method. Fixed bed continuous reaction system You can. In the present invention, prior to the reaction, a washing treatment of the sulfonic acid type ion exchange resin filled in the reaction tower is performed. In this cleaning, first, water is flowed through a reaction tower filled with a sulfonic acid-type ion exchange resin, and the water is washed until the pH of the washing wastewater becomes about 5.5 to 7. Then, phenol is flown while maintaining the ion exchange resin temperature of the reaction tower at about 50 to 80 ° C., and water in the sulfonic acid type ion exchange resin is replaced with phenol, and phenol washing is performed in the washing phenol. Until the sulfur concentration in the mixture becomes 1 wt.
次に、 反応搭にフエノールとァセトンとメルカプタン類を連続的に供給して、 固定床連続反応方式により、 反応を行う。 Next, phenol, acetone and mercaptans are continuously supplied to the reaction tower, and the reaction is carried out by a fixed bed continuous reaction system.
この固定床連続反応方式における反応条件について説明する。 The reaction conditions in this fixed bed continuous reaction system will be described.
まず、 アセトンノフエノールモル比は、 通常 lZ30〜l/3、 好ましくは 1 ノ 1 5〜 1ノ 5の範囲で選ばれる。 このモル比が 1 / 30より小さい場合、 反応 速度が遅くなりすぎるおそれがあり、 1 Z3より大きいと不純物の生成が多くな り、 ビスフヱノール Aの選択率が低下する傾向がある。 一方、 メルカプタン類が スルホン酸型イオン交換樹脂に固定化されない場合、 メルカプタン類 Zァセトン • モル比は、 通常 0. 1ノ 100〜 20 1 00、 好ましくは 1 100〜10/ 1 00の範囲で選ばれる。 このモル比が 0. 1 / 100より小さい場合、 反応速 度やビスフエノール Aの選択率の向上効果が十分に発揮されないおそれがあり、 20/ 1 00より大きいとその量の割りには効果の向上はあまり認められない。 また、 反応温度は、 通常 40〜150°C、 好ましくは 60〜1 10°Cの範囲で 選ばれる。 該温度が 40°C未満では反応速度が遅い上、 反応液の粘度が極めて高 く、 場合により、 固化するおそれがあり、 1 50°Cを超えると反応制御が困難と なり、 かつビスフエノール A ( p , p ' —体) の選択率が低下する上、 触媒のス ルホン酸型イオン交換樹脂が分解又は劣化することがある。 さらに、 原料混合物 の LHSV (液空間速度) は、 通常 0. 2〜30 h r- 好ましくは 0. 5〜: L 0 h r 1の範囲で選ばれる。 First, the acetone nophenol molar ratio is usually selected in the range of lZ30 to l / 3, preferably 1 to 15 to 1/5. If the molar ratio is less than 1/30, the reaction rate may be too slow. If the molar ratio is more than 1 Z3, impurities may be generated more and the selectivity of bisphenol A tends to decrease. On the other hand, when the mercaptans are not immobilized on the sulfonic acid type ion exchange resin, the mercaptans Zaceton • The molar ratio is usually selected from the range of 0.1 to 100 to 20100, preferably 1 to 100 to 100. It is. If the molar ratio is less than 0.1 / 100, the effect of improving the reaction rate and the selectivity of bisphenol A may not be sufficiently exhibited. There is not much improvement. The reaction temperature is selected in the range of usually 40 to 150 ° C, preferably 60 to 110 ° C. If the temperature is lower than 40 ° C, the reaction rate is low, the viscosity of the reaction solution is extremely high, and in some cases, there is a possibility of solidification. If the temperature exceeds 150 ° C, the reaction control becomes difficult, and bisphenol A The selectivity of (p, p'-isomer) decreases, and the sulfonic acid type ion exchange resin of the catalyst may decompose or deteriorate. Furthermore, the raw material mixture LHSV (liquid hourly space velocity) is generally 0. 2 to 30 h r- preferably 0.5 5: is selected in the range of L 0 hr 1.
本発明の方法においては、 反応塔から出てきた反応混合物は、 公知の方法によ り後処理が施され、 ビスフエノール Aが取り出される。 次に、 この後処理の一例 について説明すると、 まず晶析に先立って濃縮を行う。 濃縮条件については特に
制限はないが、 通常温度 1 3 0〜1 7 0 °C、 圧力 1 3〜5 3 k P aの条件で濃縮 が行われる。 温度が 1 3 0 °C未満では高真空が必要となり、 1 7 0 °Cを超えると 不純物が増加したり、 着色の原因となる。 また、 濃縮残液のビスフエノール Aの 濃度は 2 5〜4 0重量。 /0の範囲にあるのが有利である。 この濃度が 2 5重量%未 満ではビスフエノール Aの回収率が低く、 4 0重量%を超えると晶析後のスラリ 一の移送が困難となる。 In the method of the present invention, the reaction mixture that has come out of the reaction tower is subjected to post-treatment by a known method, and bisphenol A is taken out. Next, an example of this post-treatment will be described. First, concentration is performed prior to crystallization. Especially regarding the concentration conditions Although there is no limitation, the concentration is usually performed at a temperature of 130 to 170 ° C and a pressure of 13 to 53 kPa. If the temperature is lower than 130 ° C, a high vacuum is required. If the temperature is higher than 170 ° C, impurities may increase or coloring may occur. The concentration of bisphenol A in the concentrated residue is 25 to 40% by weight. Advantageously it is in the range / 0 . If the concentration is less than 25% by weight, the recovery of bisphenol A is low, and if it exceeds 40% by weight, it becomes difficult to transfer the slurry after crystallization.
濃縮残液からのビスフエノール Aとフヱノールの付加物の晶析は、 通常減圧下 で水の蒸発潜熱を利用して冷却する真空冷却晶析法によって行われる。 この真空 冷却晶析法においては、 該濃縮残液に、 水を 3〜2 0重量%程度添加し、 通常温 度 4 0〜 7 0 °C、 圧力 3〜 1 3 k P aの条件で晶析処理が行われる。 上記水の添 加量が 3重量%未満では除熱能力が十分ではなく、 2 0重量%を超えるとビスフ ヱノール Aの溶解ロスが大きくなり、 好ましくない。 また晶析温度が 4 0 °C未満 では晶析液の粘度の増大や固化をもたらすおそれがあり、 7 0 °Cを超えるとビス フエノール Aの溶解ロスが大きくなり好ましくない。 Crystallization of the adduct of bisphenol A and phenol from the concentrated residue is usually carried out by vacuum cooling crystallization, which utilizes the latent heat of vaporization of water under reduced pressure. In this vacuum cooling crystallization method, about 3 to 20% by weight of water is added to the concentrated residue, and crystallization is performed at a normal temperature of 40 to 70 ° C and a pressure of 3 to 13 kPa. An analysis process is performed. If the amount of water added is less than 3% by weight, the heat removal ability is not sufficient, and if it exceeds 20% by weight, the dissolution loss of bisphenol A increases, which is not preferable. If the crystallization temperature is lower than 40 ° C, the viscosity of the crystallization liquid may increase or solidify. If the crystallization temperature exceeds 70 ° C, the dissolution loss of bisphenol A increases, which is not preferable.
次に、 このようにして晶析されたビスフエノール Aとフエノールの付加物は、 公知の方法により分離したのち、 通常、 フエノールにより洗浄処理が施される。 次いで、 洗浄処理された付加物をビスフエノール Aとフヱノールとに分離処理す るが、 この場合、 温度は通常 1 3 0〜2 0 0 °C、 好ましくは 1 5 0〜 1 8 0 °Cの 範囲で選ばれ、 一方圧力は通常 3〜 2 0 k P aの範囲で選ばれる。 Next, the adduct of bisphenol A and phenol thus crystallized is separated by a known method, and is usually subjected to a washing treatment with phenol. Next, the washed adduct is separated into bisphenol A and phenol, in which case the temperature is usually from 130 to 200 ° C, preferably from 150 to 180 ° C. The pressure is usually selected in the range of 3 to 20 kPa.
この分離処理により得られたビスフエノール Aは、 その中の残留フエノールを スチームストリツビングなどの方法により、 実質上完全に除去することによって、 高品質のビスフエノール Aが得られる。 Bisphenol A obtained by this separation treatment is substantially completely removed of the residual phenol therein by a method such as steam stripping, so that high-quality bisphenol A can be obtained.
次に、 本発明を実施例により、 さらに詳細に説明するが、 本発明は、 この例に よってなんら限定されるものではない。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
実施例 1 Example 1
( 1 ) 簡易洗浄テス ト (1) Simple cleaning test
1 0 0ミリ リツトル容のサンプル瓶に、 スルホン酸型イオン交換樹脂を水膨潤 容積で 5 0ミリリツトル充填した後、 イオン交換水を、 該樹脂を含めた総容積が 1 0 0ミリ リツトルになるまで加えた。 次いで、 攪拌したのち、 静置し、 樹脂の
界面まで上澄みを抜いた。 この操作を 1 0回繰り返したのち、 グラスフィルター を用い、 ァスピレーターで減圧ろ過し、 概略水を切った。 After filling the sample bottle of 100 milliliter volume with the sulfonic acid type ion exchange resin in a water swelling volume of 50 milliliter, the ion exchange water was added until the total volume including the resin reached 100 milliliter. added. Then, after stirring, let it stand still, The supernatant was drained to the interface. After this operation was repeated 10 times, the solution was filtered under reduced pressure with an aspirator using a glass filter, and water was roughly removed.
このスルホン酸型イオン交換樹脂を、 再び 1 00ミリ リツトル容サンプルびん に戻し、 フエノールを樹脂を含めた総容積が 100ミリリツトルになるまで入れ、 70°Cで 3時間攪拌した。 攪拌終了後、 静置し、 上澄みフユノールを採取し、 硫 黄濃度を測定した結果、 1重量 p ρπα未満であった。 This sulfonic acid type ion exchange resin was returned to the 100 milliliter sample bottle again, and phenol was added until the total volume including the resin reached 100 milliliter, followed by stirring at 70 ° C for 3 hours. After the stirring, the mixture was allowed to stand, and the supernatant was collected, and the sulfur concentration was measured. As a result, it was less than 1 wt p ρπα.
(2) 連続流通テスト (2) Continuous distribution test
上記 (1) で用いたものと同じスルホン酸型イオン交換榭脂 7 0ミリ リットル を、 内径 14 mm、 長さ 450 mmのステンレススチール管に充填した。 次いで、 この反応器にイオン交換水を 1 0ミリリツトル Zhで 25時間連続的に流通さ せた。 2 5時間後の洗浄廃水の p Hを測定したところ、 5. 5であり、 リ トマス 試験紙では中性を示した。 70 ml of the same sulfonic acid type ion exchange resin used in (1) above was filled in a stainless steel tube having an inner diameter of 14 mm and a length of 450 mm. Next, ion-exchanged water was continuously passed through the reactor at 10 milliliter Zh for 25 hours. The pH of the washing wastewater measured 25 hours later was 5.5, indicating that the litmus paper was neutral.
次に、 樹脂層の温度を 70°Cに上げ、 フエノールを 10ミリリットル/ hで 2 5時間流し、 脱水を行った。 2 5時間後のフ; cノール中の水濃度は 0. 3重量% であつた。 この時点でフエノール中の硫黄濃度とフヱノールの色相を測定した結 果、 硫黄濃度は 4重量 p p mで、 色相は APHAで 30以上であった。 Next, the temperature of the resin layer was raised to 70 ° C., and phenol was flown at 10 ml / h for 25 hours to perform dehydration. After 25 hours, the water concentration in the ethanol was 0.3% by weight. At this time, the sulfur concentration in the phenol and the hue of the phenol were measured, and as a result, the sulfur concentration was 4 wt ppm and the hue was 30 or more in APHA.
次いで、 フエノール洗浄を、 上記の脱水条件と同様の条件で行った。 このフエ ノール洗浄を開始してから 1 0時間後に洗浄フエノール中の硫黄濃度が 1重量 p pmまで低下した。 この際、 洗浄フエノールの色相は APHAで 1 5であった。 Next, phenol washing was performed under the same conditions as the above-mentioned dehydration conditions. Ten hours after the start of the phenol washing, the sulfur concentration in the washed phenol dropped to 1 wt ppm. At this time, the hue of the washed phenol was 15 with APHA.
比較例 1 Comparative Example 1
(1) 簡易洗浄テスト (1) Simple cleaning test
実施例 1で用いたものと同じスルホン酸型イオン交換樹脂を、 空気中で 2ヶ月 間保存したのち、 実施例 1 (1) と同様な操作を行った。 上澄みフエノールを採 取して、 硫黄濃度を測定した結果、 4重量 p pmであった。 The same sulfonic acid type ion exchange resin as that used in Example 1 was stored in the air for 2 months, and then the same operation as in Example 1 (1) was performed. The supernatant phenol was collected, and the sulfur concentration was measured. As a result, it was 4 wt ppm.
(2) 連続流通テスト (2) Continuous distribution test
上記 (1) で用いたものと同じ空気中で 2ヶ月間保持したスルホン酸型イオン 交換樹脂を用い、 実施例 1 (2) と同様な操作を行った。 The same operation as in Example 1 (2) was performed using a sulfonic acid type ion exchange resin kept in the same air as that used in (1) above for 2 months.
水洗浄 25時間後の洗浄廃水の p Hを測定したところ p Hは 5. ◦であり、 リ トマス試験紙では中性を示した。 また、 フエノールによる脱水 25時間後のフエ
ノ一ル中の水濃度は 0 . 3重量%であった。 この時点でフエノール中の硫黄濃度 とフエノールの色相を測定した結果、 硫黄濃度は 8重量 ppm で、 色相は A P H A で 3 0以上であった。 When the pH of the washing wastewater after 25 hours of water washing was measured, the pH was 5. °, and the litmus test paper showed neutrality. In addition, phenol after 25 hours of dehydration with phenol The water concentration in the nozzle was 0.3% by weight. At this time, the sulfur concentration in the phenol and the hue of the phenol were measured, and as a result, the sulfur concentration was 8 ppm by weight, and the hue was 30 or more by APHA.
次いで、 フユノール洗浄を、 上記の脱水条件と同様の条件で行った。 このフエ ノール洗浄を開始してから 4 0時間後に洗浄フエノール中の硫黄濃度が 1重量 pp m まで低下した。 この際、 洗浄フエノールの色相は A P H Aで 2 0であった。 実施例 1と比較例 1から分かるように、 簡易洗浄テスト結果と連続流通系での 確認結果に相関が見られた。 産業上の利用の可能性 Next, fuñol washing was performed under the same conditions as the dehydration conditions described above. Forty hours after the start of the phenol washing, the sulfur concentration in the washed phenol dropped to 1 wt ppm. At this time, the hue of the washed phenol was 20 in APHA. As can be seen from Example 1 and Comparative Example 1, there was a correlation between the result of the simple cleaning test and the result of confirmation in the continuous flow system. Industrial applicability
本発明によれば、 スルホン酸型イオン交換樹脂触媒を用い、 フユノールとァセ トンからビスフ ノール Aを製造するに際し、 該触媒として、 特定の簡易洗浄法 により、 洗浄に要する時間の短いスルホン酸型イオン交換樹脂を選別して使用す ることにより、 ビスフエノール Aを経済的に有利に製造することができる。
According to the present invention, when bisphenol A is produced from fuunol and acetone using a sulfonic acid type ion exchange resin catalyst, the sulfonic acid type which requires a short time for cleaning by a specific simple cleaning method is used as the catalyst. By selecting and using an ion exchange resin, bisphenol A can be produced economically and advantageously.
Claims
請 求 の 範 囲 The scope of the claims
1 スルホン酸型イオン交換樹脂を触媒とし、 かつメルカブタン類を助触媒と して、 フエノールとァセトンを縮合させてビスフエノール Aを製造するに当た り、 上記スルホン酸型イオン交換樹脂として、 スルホン酸型イオン交換樹脂を、 その水膨潤容積の 5〜2 0倍容量のイオン交換水で洗浄したのち、 該水膨潤容 積の 1〜 3倍容量のフエノール中にて 5 0〜 8 0 °Cの温度で 2〜 5時間攪拌洗 浄し、 固液分離後の洗浄フエノール中の硫黄濃度が 1重量 p p m以下であるも のを用いることを特徴とするビスフ: ノール Aの製造方法。 (1) In producing bisphenol A by condensing phenol and acetone with a sulfonic acid type ion exchange resin as a catalyst and mercaptans as a cocatalyst, sulfonic acid is used as the sulfonic acid type ion exchange resin. The ion-exchange resin is washed with ion-exchanged water having a volume of 5 to 20 times the water swelling volume, and then washed at 50 to 80 ° C in phenol having a volume of 1 to 3 times the water swelling volume. A process for producing bisphenol A, comprising washing with stirring at a temperature for 2 to 5 hours and using a phenol having a sulfur concentration of 1 ppm by weight or less in the washed phenol after solid-liquid separation.
2 助触媒としてのメルカプタン類が、 アルキルメルカプタン類、 チォカル ボン酸、 アミノアルカンチオールおよびメルカプトアルコールからなる群か ら選ばれたものである請求項 1記載のビスフヱノール Aの製造方法。 2. The process for producing bisphenol A according to claim 1, wherein the mercaptan as the co-catalyst is selected from the group consisting of alkyl mercaptans, thiocarbonic acid, aminoalkanethiol and mercapto alcohol.
3 ァノレキルメルカプタン類が、 メチルメルカプタン、 ェチルメルカプタン、 n -プチルメルカプタンぉょぴ n—ォクチルメルカプタンからなる群から選ば れたものであり、 アセトンに対して 0 . 1〜 2 0モル%の量で使用される請求 項 2記載のビスフヱノール Aの製造方法。 3 The phenolic mercaptans are selected from the group consisting of methyl mercaptan, ethyl mercaptan, n-butyl mercaptan n-octyl mercaptan, and 0.1 to 20 mol% based on acetone. 3. The method for producing bisphenol A according to claim 2, wherein the bisphenol A is used in an amount of:
4 ァセトン Zフエノールモル比が 1 / 3 0 ~ l Z 3で、 反応温度が 4 0〜 1 5 0 °Cの条件下でフ: ノールとァセトンを反応させる請求項 1記載のビス フエノール Aの製造方法。 ·
4.Production of bisphenol A according to claim 1, wherein the phenol and aceton are reacted under the condition that the molar ratio of acetone Z phenol is 1/30 to lZ3 and the reaction temperature is 40 to 150 ° C. Method. ·
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-64671 | 2001-03-08 | ||
JP2001064671A JP2002265403A (en) | 2001-03-08 | 2001-03-08 | Method for producing bisphenol a |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002072516A1 true WO2002072516A1 (en) | 2002-09-19 |
Family
ID=18923457
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/001924 WO2002072516A1 (en) | 2001-03-08 | 2002-03-01 | Method for producing bisphenol a |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2002265403A (en) |
TW (1) | TWI310376B (en) |
WO (1) | WO2002072516A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007112762A (en) * | 2005-10-21 | 2007-05-10 | Idemitsu Kosan Co Ltd | Method for producing bisphenol a and method for judging ion exchange resin |
EP3585832B1 (en) * | 2017-06-16 | 2021-07-21 | SABIC Global Technologies B.V. | Use of sulfonic acid as stabilizer in polycarbonate |
WO2019156391A1 (en) * | 2018-02-09 | 2019-08-15 | 주식회사 엘지화학 | Method for washing ion exchange resin and method for preparing bisphenol a |
KR102260725B1 (en) | 2018-02-09 | 2021-06-07 | 주식회사 엘지화학 | Method for washing of ion exchange resin and method for producing of bisphenol a |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0910598A (en) * | 1995-06-30 | 1997-01-14 | Chiyoda Corp | Method for packaging catalyst for producing bisphenol a in reactor and preparation of high quality bisphenol a |
JPH09176069A (en) * | 1995-12-26 | 1997-07-08 | Nippon Steel Chem Co Ltd | Production of bisphenols |
JP2000143565A (en) * | 1998-11-12 | 2000-05-23 | Idemitsu Petrochem Co Ltd | Pretreatment of catalyst for producing bisphenol a and production of bisphenol a having stable hue |
-
2001
- 2001-03-08 JP JP2001064671A patent/JP2002265403A/en active Pending
-
2002
- 2002-03-01 WO PCT/JP2002/001924 patent/WO2002072516A1/en active Application Filing
- 2002-03-07 TW TW91104296A patent/TWI310376B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0910598A (en) * | 1995-06-30 | 1997-01-14 | Chiyoda Corp | Method for packaging catalyst for producing bisphenol a in reactor and preparation of high quality bisphenol a |
JPH09176069A (en) * | 1995-12-26 | 1997-07-08 | Nippon Steel Chem Co Ltd | Production of bisphenols |
JP2000143565A (en) * | 1998-11-12 | 2000-05-23 | Idemitsu Petrochem Co Ltd | Pretreatment of catalyst for producing bisphenol a and production of bisphenol a having stable hue |
Also Published As
Publication number | Publication date |
---|---|
TWI310376B (en) | 2009-06-01 |
JP2002265403A (en) | 2002-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4723105B2 (en) | Method for producing bisphenol A | |
US4847432A (en) | Method for the purification of ion exchange resins used in the production of bisphenol A | |
JPH06172241A (en) | Production of bisphenol | |
JPH0840963A (en) | Purifying method for bisphenol | |
JP2001199919A (en) | Method for producing bisphenol a | |
JP2002205966A (en) | Method for producing bisphenol a | |
WO2002072516A1 (en) | Method for producing bisphenol a | |
KR100698424B1 (en) | Method for Conditioning Ion Exchangers | |
WO2003082785A1 (en) | Process for production of bisphenol a | |
US6608234B2 (en) | Process for producing bisphenol A | |
JP4658355B2 (en) | Method for producing bisphenol A | |
WO2002072515A1 (en) | Method for producing bisphenol a | |
US4443635A (en) | Removal of color bodies in bisphenol production | |
JP4689059B2 (en) | Method for producing bisphenol A | |
WO2005102520A1 (en) | Catalyst for bisphenol production | |
JP2000143565A (en) | Pretreatment of catalyst for producing bisphenol a and production of bisphenol a having stable hue | |
WO2007046474A1 (en) | Process for production of bisphenol a and method for judgment of ion-exchange resin | |
JP4388893B2 (en) | Method for producing bisphenol A | |
JPH0655079A (en) | Method for washing ion exchange resin | |
JP4995372B2 (en) | Method for producing bisphenol A | |
JP4338966B2 (en) | Method for producing bisphenol A | |
JPH0632755A (en) | Production of 2,2-bis@(3754/24)4-hydroxyphenyl)propane | |
JPH05980A (en) | Production of 9,9-bis(hydroxyphenyl)fluorenes | |
JPH11269114A (en) | Production of bisphenol compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): BR CN ID IN KR SG US ZA |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |