WO2005019370A2 - Materiau d'isolation thermique et agencement d'une couche d'isolation thermique comportant ledit materiau - Google Patents

Materiau d'isolation thermique et agencement d'une couche d'isolation thermique comportant ledit materiau Download PDF

Info

Publication number
WO2005019370A2
WO2005019370A2 PCT/EP2004/051632 EP2004051632W WO2005019370A2 WO 2005019370 A2 WO2005019370 A2 WO 2005019370A2 EP 2004051632 W EP2004051632 W EP 2004051632W WO 2005019370 A2 WO2005019370 A2 WO 2005019370A2
Authority
WO
WIPO (PCT)
Prior art keywords
thermal insulation
insulation material
phosphor
insulation layer
rare earth
Prior art date
Application number
PCT/EP2004/051632
Other languages
German (de)
English (en)
Other versions
WO2005019370A3 (fr
Inventor
Ulrich Bast
Wolfgang Rossner
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to US10/566,980 priority Critical patent/US20060177676A1/en
Priority to EP04766341A priority patent/EP1664231A2/fr
Publication of WO2005019370A2 publication Critical patent/WO2005019370A2/fr
Publication of WO2005019370A3 publication Critical patent/WO2005019370A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/20Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using thermoluminescent materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment

Definitions

  • the invention relates to a heat insulation material for a heat insulation layer of a support body for containing heat transfer between the support body and an environment of the support body, the heat insulation material having at least one phosphor which can be excited to emit luminescent light with a specific emission wavelength, and the phosphor at least one metal oxide with at least one trivalent metal A.
  • the thermal insulation material an arrangement of at least one thermal insulation layer with the thermal insulation material on a carrier body is specified.
  • the carrier body is a component of a gas turbine.
  • the carrier body is made of a metal. Due to a high temperature of over 1200 ° C. occurring in a gas turbine in the vicinity of the component, the metal of the component can be damaged. To prevent this, a thermal barrier coating (TBC) is applied to the component.
  • TBC thermal barrier coating
  • Thermal insulation layer ensures that there is a reduced heat exchange between the metal carrier body and the environment. As a result, a metal surface of the component heats up less. One occurs on the metal surface of the component
  • the thermal insulation material forms a base material for the thermal insulation layer.
  • the thermal insulation layer essentially depend on the properties of the thermal insulation material.
  • the base material the known thermal barrier coating is a metal oxide.
  • the metal oxide is, for example, a zirconium oxide (YSZ) stabilized with yttrium.
  • the thermal conductivity of this thermal insulation material is between 1 W / mK and 3 W / mK.
  • the thickness of the thermal insulation layer is approximately 250 ⁇ m.
  • zirconium oxide stabilized with yttrium a metal oxide in the form of an yttrium aluminum garnet is specified as the thermal insulation material.
  • a metallic intermediate layer made of a metal alloy is applied to the surface of the component.
  • a ceramic intermediate layer made of a ceramic material, for example aluminum oxide, can additionally be arranged between the thermal insulation layer and the component.
  • thermal luminescence indicator is embedded in the thermal insulation layer.
  • This indicator is a phosphor (luminophore) that can be excited to emit a luminescent light with a specific emission wavelength by excitation with excitation light of a specific excitation wavelength.
  • the excitation light is, for example, UV light.
  • the emission light is, for example, visible light.
  • the phosphor used is a so-called recombination phosphor.
  • the lighting process is caused by electronic transitions between the energy states of the activator.
  • Such a phosphor consists, for example, of a
  • Solid body with a crystal lattice in which a so-called activator is embedded.
  • the solid is doped with the activator.
  • the activator is involved in the lighting process of the phosphor together with the entire solid.
  • the respective base material of the thermal insulation layer is doped with an activator.
  • the activator used is a rare earth element. In the case of zirconium oxide stabilized with yttrium, the rare earth element is, for example, europium.
  • the thermal insulation material yttrium aluminum garnet is doped with the rare earth elements dysprosium or terbium.
  • the known thermal barrier coating takes advantage of the fact that an emission property of the luminescent light of the phosphor, for example an emission intensity or an emission decay time, is dependent on the phosphor temperature of the phosphor. Because of this dependence on the temperature of the phosphor
  • Thermal insulation layer closed with the phosphor. So that this connection can be established, the thermal insulation layer is optically accessible for the excitation light in the UV range. At the same time, it is ensured that the luminescent light of the phosphor can be emitted from the thermal insulation layer and detected.
  • a single thermal insulation layer with the phosphor is arranged on the carrier body.
  • a further heat insulation layer is applied to the heat insulation layer, which is transparent to the excitation light and the luminescent light of the phosphor. The luminescent light from the phosphor can pass through the further thermal insulation layer.
  • thermal insulation layer made of one of the luminescent thermal insulation materials mentioned
  • the object of the present invention is therefore to provide a luminescent thermal insulation material for a thermal insulation layer of a carrier body which is stable beyond a temperature of 1200 ° C.
  • a thermal insulation material for a thermal insulation layer of a carrier body to contain a
  • thermo insulation material has at least one phosphor that is used to emit
  • Luminescent light can be excited with a certain emission wavelength, and the phosphor at least one
  • the thermal insulation material is characterized in that the metal oxide is a mixed oxide selected from the group perovskite with the formula AAO3 and / or pyrochlore with the formula A2B2O7, where A 'is a trivalent metal and B is a tetravalent metal.
  • an arrangement of at least one thermal insulation layer on a support body for containing heat transfer between the support body and an environment of the support body is also specified, the heat insulation layer having the heat insulation material described with the phosphor.
  • a thermal barrier coating made of a perovskite and / or a pyrochlore (pyrochlore phase) is characterized by a high stability against temperatures of over 1200 ° C. These stable thermal insulation layers have a phosphor.
  • the thermal barrier coating can be single-phase or multi-phase. Single-phase means that a ceramic phase of the thermal insulation layer formed by the thermal insulation material essentially consists only of the phosphor.
  • the The insulating material of the thermal insulation layer is the phosphor. In the case of a multi-phase thermal insulation layer, the thermal insulation material and the phosphor are different.
  • the thermal insulation material contains phosphor particles from the phosphor.
  • the ceramic phase is made up of different materials.
  • the phosphor particles are preferably distributed homogeneously over the thermal barrier coating.
  • the thermal insulation material and the phosphor consist of essentially the same type of solid.
  • the phosphor and the thermal insulation material consist of the same metal oxide. The only difference between the two substances is their optical properties.
  • the phosphor is doped, for example.
  • the phosphor is a recombination phosphor.
  • Emission of the luminescent light is preferably based on the presence of an activator.
  • an activator or several activators the emission property of the phosphor, for example the emission wavelength and the emission intensity, can be varied relatively easily.
  • the phosphor has an activator selected from the group cerium and / or europium and / or dysprosium and / or terbium to excite the emission of luminescent light.
  • Rare earth elements are generally very easy to incorporate into the crystal lattices of perovskites and pyrochlores due to their ionic radii. Activators in the form of rare earth elements are therefore generally suitable. The listed rare earth elements have proven to be particularly good activators.
  • the activator When an activator is used, its proportion in the phosphor is selected such that the thermal and mechanical properties of the metal oxide of the phosphor are almost unaffected. The mechanical and thermal properties of the metal oxide are retained despite the doping.
  • the activator is contained in the phosphor in a proportion of up to 10 mol%. The proportion is preferably less than 2 mol%. For example, the proportion is 1 mol%. It has been shown that this low proportion of the activator is sufficient to achieve a usable emission intensity of the phosphor.
  • the trivalent metal A and / or the trivalent metal A ' is a rare earth element Re.
  • the trivalent metal A and / or the trivalent metal A ' is in particular a rare earth element selected from the group consisting of lanthanum and / or gadolinium and / or samarium. Other rare earth elements are also conceivable.
  • an activator in the form of a rare earth element can be very easily built into the crystal lattice of the perovskite or pyrochlorine due to the similar ionic radii.
  • One of the trivalent metals A and A "of the perovskite is a main group or subgroup element.
  • the tetravalent metal B of the pyrochlor is also a main or subgroup element. In both cases, mixtures of different main and subgroup elements can be provided. Due to the different ionic radii, the Rare earth elements and the main or subgroup elements preferably occupy different places in the perovskite or pyrochlore crystal lattice.
  • the perovskite is therefore a rare earth alumina
  • the overall formula is ReAl ⁇ 3, where Re stands for a rare earth element
  • the rare earth aluminate is preferably a gadolinium-lanthanum aluminate
  • the empirical formula is, for example, Gdg f 25 La 0, 75 Al0 3 •
  • the tetravalent metal B of pyrochlorine is that
  • Sub-group elements hafnium and / or titanium and / or
  • the pyrochlore is therefore preferably selected from the group of rare earth titanate and / or side earth hafnate and / or rare earth zirconate. In particular that is
  • Rare earth zirconate from the group Gadolinium zirconate and / or
  • Samarium zirconate selected.
  • the preferred empirical formulas are Gd2Zr2 ⁇ 7 and Sm2Zr2 ⁇ 7.
  • the rare earth hafnate is preferably lanthanum hafnate.
  • the empirical formula is La2Hf2O7.
  • the phosphor is excited optically to emit luminescent light.
  • the phosphor is illuminated with excitation light of a specific excitation wavelength. By absorbing the excitation light, the phosphor is excited to emit luminescent light.
  • the excitation light is, for example, UV light and the luminescent light is low-energy, visible light.
  • the excitation of the phosphor with excitation light is suitable for checking a state of a thermal insulation layer with the phosphor that is optically accessible for the excitation light and the luminescent light.
  • a thermal insulation layer with the phosphor that is optically accessible for the excitation light and the luminescent light.
  • only the thermal barrier coating with the phosphor is applied to the carrier body.
  • At least one further thermal insulation layer is present which is essentially free of the phosphor.
  • Essentially free means that a luminescent light that cannot be evaluated cannot be detected due to a very small proportion of the phosphor.
  • the further heat insulation layer can be arranged between the carrier body and the heat insulation layer with the phosphor.
  • the outermost thermal insulation layer is formed by the thermal insulation layer with the phosphor.
  • a transmission property of the further thermal insulation layer with respect to the luminescent light and / or the excitation light does not matter.
  • the thermal insulation layer with the phosphor is optically accessible. Such a solution is advantageous, for example, for a thermal insulation layer made from a pyrochlore.
  • a further thermal insulation layer made of a zirconium oxide stabilized with yttrium is applied directly to the metallic intermediate layer.
  • the heat insulation layer with the phosphor is applied over this further heat insulation layer.
  • the further thermal barrier coating can, however, also be transparent to the excitation light and the luminescent light of the phosphor.
  • the excitation light and the luminescent light can pass through the further thermal insulation layer.
  • the heat insulation layer can be arranged between the further heat insulation layer and the carrier body. Due to the transmission property of the further thermal insulation layer, the thermal insulation layer with the phosphor is constantly optically accessible. In this way, as in the cases in which either only the thermal barrier layer with the phosphor is present or the thermal barrier layer with the phosphor forms the outermost thermal barrier layer of a multilayer structure, a state of the thermal barrier layer can be determined by observing one of the emission properties of the luminescent light. For example, the temperature of the thermal barrier coating can be inferred.
  • the excitation light and / or the luminescent light can through the further thermal insulation layer due to the transmission or
  • the heat insulation layer is arranged between the support body and the further heat insulation layer in such a way that the excitation light of the phosphor and / or the luminescent light of the phosphor can essentially only get into the surroundings of the support body through openings in the further heat insulation layer.
  • Such openings are, for example, cracks or gaps in the further thermal insulation layer.
  • An opening is also conceivable, which has been created by erosion (removal) of further thermal insulation material from the further thermal insulation layer. These openings can easily be made visible. The visualization succeeds by illuminating the arrangement with the excitation light.
  • the phosphor is excited to emit the luminescent light.
  • the luminescent light again reaches the surroundings of the carrier body through the openings and can be detected there. Due to the openings, a luminescent light appears that clearly stands out from the background.
  • the thermal insulation layer of a carrier body used in the device can be checked in a simple and safe manner during a break in operation of a device.
  • the device is, for example, a gas turbine.
  • the carrier body is, for example, a turbine blade of the gas turbine.
  • the multilayer structure with the thermal insulation layers is located on the turbine blade. By illuminating the turbine blade and observing the luminescent light of the phosphor, those points of the further, outermost thermal insulation layer that have openings become visible.
  • the state of the thermal barrier coating to be checked during operation of the device.
  • a combustion chamber of the gas turbine described above, in which the turbine blades are used has a window provided, through which the luminescence of the phosphor can be observed.
  • the occurrence of luminescent light is an indication that the further, outermost thermal insulation layer of at least one turbine blade has a crack or a gap or is eroded.
  • thermal insulation material is also removed with the phosphor as a result of advanced erosion.
  • the fluorescent substance can be detected in an exhaust gas of the gas turbine by means of appropriate detectors. This is a sign that erosion has progressed to the thermal insulation layer with the phosphor.
  • the carrier body is a component of an internal combustion engine.
  • the internal combustion engine is, for example, a diesel engine.
  • the internal combustion engine is a gas turbine.
  • the carrier body can be a tile with which a combustion chamber of the gas turbine is lined.
  • the carrier body is a turbine blade of the gas turbine. It is conceivable that the different carrier bodies are provided with heat-insulating layers with phosphors that emit different luminescent light. This makes it easy to determine the component that is damaged.
  • any coating method can be carried out to apply the various layers, in particular the thermal insulation layer and the further thermal insulation layer.
  • the coating process is particularly a
  • the coating process can also be a vapor deposition process, for example PVD (Physical Vapor Deposition) or CVD (Chemical Vapor Deposition).
  • PVD Physical Vapor Deposition
  • CVD Chemical Vapor Deposition
  • the materials used are stable at temperatures above 1200 ° C. This makes them particularly suitable for use in internal combustion engines, for example in a gas turbine.
  • the mixed oxides used are specifically doped with activators. Thereby thermally and mechanically stable thermal insulation layers with luminescent phosphors are obtained even at temperatures of over 1200 ° C, with the aid of which the condition of the thermal insulation layers can be checked in a simple manner during operation or during breaks in operation of the carrier body.
  • Figures 1 to 3 each show a section of a lateral cross section of an arrangement of a heat insulation layer made of a heat insulation material with a phosphor from the side.
  • the arrangement 1 consists of a carrier body 2 on which a thermal insulation layer 3 is arranged (FIG. 1).
  • the carrier body 2 is a turbine blade of a gas turbine.
  • the turbine blade is made of a metal. Temperatures of over 1200 ° C. can occur in the combustion chamber of the gas turbine, which represents the surroundings 7 of the carrier body 2, during operation of the gas turbine.
  • the thermal insulation layer 3 available.
  • the thermal barrier coating 3 serves to contain heat transfer between the carrier body 2 and the surroundings 7 of the carrier body 2.
  • a metallic intermediate layer 4 (bond coat) made of a metal alloy is applied between the thermal insulation layer 3 and the carrier body 2.
  • the thermal insulation layer 3, the intermediate layer 4 and optionally the further thermal insulation layer 5 are applied to the surface 8 of the carrier body 2 with the aid of a plasma spraying process.
  • the heat insulation material of the heat insulation layer 3 is a metal oxide in the form of a rare earth aluminate with the formula
  • the rare earth aluminate is mixed with 1 mol% EU2O3.
  • Rare earth aluminate has the activator europium with a share of 1 mol%. Excitation of the phosphor with UV light results in a red luminescent light with an emission maximum at approximately 610 nm.
  • the excitation wavelength is, for example, 254 nm.
  • the rare earth aluminate is doped with 1 mol% terbium.
  • the result is a phosphor with green luminescent light with an emission wavelength at 544 nm.
  • Thermal insulation layer 3 consists of a pyrochlore.
  • Pyrochlore is a gadolinium zirconate with the empirical formula Gd2Zr2Ü7.
  • the phosphor is produced with 1 mol% of the pyrochlore. E 2O3 added.
  • the gadolinium zirconate has the activator
  • a further heat insulation layer 5 is present between the bond coat layer 4 and the heat insulation layer 3 with the phosphor.
  • the further thermal insulation layer 5 consists of zirconium oxide, which is stabilized with yttrium.
  • FIG. 3 There is also a multilayer structure (FIG. 3).
  • the heat insulation layer 3 with the phosphor is arranged between the further heat insulation layer 5 and the carrier body 5.
  • the further thermal insulation layer 5 is opaque for the excitation light and / or the luminescent light of the phosphor. The luminescent light of the phosphor in the vicinity of the carrier body can only be detected if the further thermal insulation layer 5 has an opening 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Laminated Bodies (AREA)
  • Thermal Insulation (AREA)

Abstract

L'invention concerne un matériau d'isolation thermique pour une couche d'isolation thermique (3) d'un corps de support (2), ledit matériau servant à empêcher un transfert de chaleur entre le corps de support et une zone environnante (7) de ce dernier. Ce matériau d'isolation thermique présente au moins une substance luminescente pouvant être excitée pour émettre une lumière par luminescence, présentant une longueur d'onde d'émission déterminée. La substance luminescente contient au moins un oxyde métallique comportant au moins un métal trivalent (A). L'invention concerne également un agencement d'au moins une couche d'isolation thermique, comportant ledit matériau d'isolation thermique, sur un corps de support. Ce matériau d'isolation thermique est caractérisé en ce que l'oxyde métallique est un oxyde mixte sélectionné dans le groupe de la pérovskite, de formule brute AA'03, et/ou du pyrochlore, de formule brute A2B207, A' représentant un métal trivalent et B un métal tétravalent. Cette couche d'isolation thermique, comportant ledit matériau d'isolation thermique, s'utilise de préférence dans une turbine à gaz.
PCT/EP2004/051632 2003-08-13 2004-07-28 Materiau d'isolation thermique et agencement d'une couche d'isolation thermique comportant ledit materiau WO2005019370A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/566,980 US20060177676A1 (en) 2003-08-13 2004-07-28 Heat-insulation material and arrangement of a heat-insulation layer containing said heat-insulation material
EP04766341A EP1664231A2 (fr) 2003-08-13 2004-07-28 Materiau d'isolation thermique et agencement d'une couche d'isolation thermique comportant ledit materiau

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10337287 2003-08-13
DE10337287.3 2003-08-13

Publications (2)

Publication Number Publication Date
WO2005019370A2 true WO2005019370A2 (fr) 2005-03-03
WO2005019370A3 WO2005019370A3 (fr) 2006-08-31

Family

ID=34201530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051632 WO2005019370A2 (fr) 2003-08-13 2004-07-28 Materiau d'isolation thermique et agencement d'une couche d'isolation thermique comportant ledit materiau

Country Status (3)

Country Link
US (1) US20060177676A1 (fr)
EP (1) EP1664231A2 (fr)
WO (1) WO2005019370A2 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1783248A1 (fr) * 2005-11-04 2007-05-09 Siemens Aktiengesellschaft Revêtement de barrière thermique en deux couches contenant une phase pyrochlore
WO2007080041A1 (fr) * 2006-01-09 2007-07-19 Siemens Aktiengesellschaft Systeme de couches comportant deux phases pyrochlore
EP1818424A1 (fr) * 2006-02-09 2007-08-15 Siemens Aktiengesellschaft Procédé de production d'un revêtement comprenent un material thermoluminescent et le systeme revêtement
GB2439389A (en) * 2006-06-22 2007-12-27 Southside Thermal Sciences Multi layer coatings
EP1990330A1 (fr) * 2007-05-07 2008-11-12 Siemens Aktiengesellschaft Poudre céramique, couche céramique et système de couche comportant une phrase pyrochlore et des oxydes
EP1990329A1 (fr) * 2007-05-07 2008-11-12 Siemens Aktiengesellschaft Système de couche à double épaisseur comportant une phase pyrochlore et des oxydes
US8034469B1 (en) 2007-05-07 2011-10-11 Siemens Aktiengesellschaft Two-level layer system with pyrochlore phase and oxides
US9045830B2 (en) 2005-08-24 2015-06-02 New Sts Limited Luminescent material compositions and structures incorporating the same
FR3030751A1 (fr) * 2014-12-17 2016-06-24 Snecma Procede de controle de l'etat d'une barriere thermique par endoscopie
US9611551B2 (en) 2005-11-24 2017-04-04 Siemens Aktiengesellschaft Layer system comprising gadolinium solid solution pyrochlore phase
DE102016203251A1 (de) * 2016-02-29 2017-08-31 Siemens Aktiengesellschaft Beschichtung mit Temperatursensor sowie damit beschichtetes Bauteil

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5286551B2 (ja) * 2006-08-14 2013-09-11 東洋製罐株式会社 燃料電池用コイルスプリング
JP2008088349A (ja) * 2006-10-04 2008-04-17 Sharp Corp 蛍光体
US8158428B1 (en) * 2010-12-30 2012-04-17 General Electric Company Methods, systems and apparatus for detecting material defects in combustors of combustion turbine engines
US9395301B2 (en) 2014-10-02 2016-07-19 General Electric Company Methods for monitoring environmental barrier coatings
US9964455B2 (en) 2014-10-02 2018-05-08 General Electric Company Methods for monitoring strain and temperature in a hot gas path component
DE102016203246A1 (de) * 2016-02-29 2017-08-31 Siemens Aktiengesellschaft Beschichtung mit Temperatursensor sowie damit beschichtetes Bauteil
US11739410B2 (en) 2016-06-15 2023-08-29 The Penn State Research Foundation Thermal barrier coatings

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006796A1 (fr) * 1998-07-27 2000-02-10 Imperial College Of Science, Technology And Medicine Revetement a barriere thermique comprenant un materiau indicateur thermoluminescent integre
WO2002014580A2 (fr) * 2000-08-17 2002-02-21 Siemens Westinghouse Power Corporation Revetement a barriere thermique a stabilite de phase elevee
US20030056520A1 (en) * 2001-09-26 2003-03-27 Chris Campbell Catalyst element having a thermal barrier coating as the catalyst substrate
WO2003057941A1 (fr) * 2002-01-11 2003-07-17 Forschungszentrum Jülich GmbH Production d'un materiau ceramique pour une couche calorifuge et couche calorifuge correspondante contenant ledit materiau

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177200B1 (en) * 1996-12-12 2001-01-23 United Technologies Corporation Thermal barrier coating systems and materials
US6117560A (en) * 1996-12-12 2000-09-12 United Technologies Corporation Thermal barrier coating systems and materials
RU2218447C2 (ru) * 1997-11-03 2003-12-10 Сименс Акциенгезелльшафт Изделие, подвергаемое воздействию горячего агрессивного газа, в частности, деталь газовой турбины (варианты) и способ изготовления теплоизоляционного слоя для изделия

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000006796A1 (fr) * 1998-07-27 2000-02-10 Imperial College Of Science, Technology And Medicine Revetement a barriere thermique comprenant un materiau indicateur thermoluminescent integre
WO2002014580A2 (fr) * 2000-08-17 2002-02-21 Siemens Westinghouse Power Corporation Revetement a barriere thermique a stabilite de phase elevee
US20030056520A1 (en) * 2001-09-26 2003-03-27 Chris Campbell Catalyst element having a thermal barrier coating as the catalyst substrate
WO2003057941A1 (fr) * 2002-01-11 2003-07-17 Forschungszentrum Jülich GmbH Production d'un materiau ceramique pour une couche calorifuge et couche calorifuge correspondante contenant ledit materiau

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045830B2 (en) 2005-08-24 2015-06-02 New Sts Limited Luminescent material compositions and structures incorporating the same
GB2431932B (en) * 2005-11-04 2011-07-27 Siemens Ag Two-layer barrier system using pyrochlores
EP1783248A1 (fr) * 2005-11-04 2007-05-09 Siemens Aktiengesellschaft Revêtement de barrière thermique en deux couches contenant une phase pyrochlore
WO2007051695A1 (fr) * 2005-11-04 2007-05-10 Siemens Aktiengesellschaft Systeme stratifie bicouche de protection thermique comportant une phase pyrochlore
US9611551B2 (en) 2005-11-24 2017-04-04 Siemens Aktiengesellschaft Layer system comprising gadolinium solid solution pyrochlore phase
US8057924B2 (en) 2006-01-09 2011-11-15 Siemens Aktiengesellschaft Layer system comprising two pyrochlore phases
WO2007080041A1 (fr) * 2006-01-09 2007-07-19 Siemens Aktiengesellschaft Systeme de couches comportant deux phases pyrochlore
EP1818424A1 (fr) * 2006-02-09 2007-08-15 Siemens Aktiengesellschaft Procédé de production d'un revêtement comprenent un material thermoluminescent et le systeme revêtement
WO2007090711A1 (fr) * 2006-02-09 2007-08-16 Siemens Aktiengesellschaft Procédé de fabrication d'une couche avec substance luminescente thermographique et système de couches
GB2439389A (en) * 2006-06-22 2007-12-27 Southside Thermal Sciences Multi layer coatings
US8034469B1 (en) 2007-05-07 2011-10-11 Siemens Aktiengesellschaft Two-level layer system with pyrochlore phase and oxides
US8084382B2 (en) 2007-05-07 2011-12-27 Siemens Aktiengesellschaft Ceramic powder, ceramic layer and layer system with pyrochlore phase and oxides
EP1990329A1 (fr) * 2007-05-07 2008-11-12 Siemens Aktiengesellschaft Système de couche à double épaisseur comportant une phase pyrochlore et des oxydes
EP1990330A1 (fr) * 2007-05-07 2008-11-12 Siemens Aktiengesellschaft Poudre céramique, couche céramique et système de couche comportant une phrase pyrochlore et des oxydes
FR3030751A1 (fr) * 2014-12-17 2016-06-24 Snecma Procede de controle de l'etat d'une barriere thermique par endoscopie
DE102016203251A1 (de) * 2016-02-29 2017-08-31 Siemens Aktiengesellschaft Beschichtung mit Temperatursensor sowie damit beschichtetes Bauteil

Also Published As

Publication number Publication date
WO2005019370A3 (fr) 2006-08-31
EP1664231A2 (fr) 2006-06-07
US20060177676A1 (en) 2006-08-10

Similar Documents

Publication Publication Date Title
EP1807685A1 (fr) Ensemble comprenant au moins une couche d'isolation thermique a luminescence sur un corps support
EP1664231A2 (fr) Materiau d'isolation thermique et agencement d'une couche d'isolation thermique comportant ledit materiau
EP1688723B1 (fr) Elément revêtu et procédé de fabrication
DE69916149T2 (de) Verbesserte Aluminid-Diffusionsverbundschicht für thermische Sperrschichtsysteme und Verfahren dazu
DE60103904T2 (de) Wärmedämmschicht mit hoher phasenstabilität
WO2005019784A1 (fr) Agencement d'au moins une couche d'isolation thermique sur un corps de support
DE60108508T2 (de) Faserbeschichtungszusammensetzung für verstärkte verbundwerkstoffe mit keramischer matrix
EP1132938A2 (fr) Ecran à plasma ayant une couche émettant de la lumière UV
EP2097559A1 (fr) Système de couches
EP2115092A1 (fr) Substances luminescentes constituées de grenats dopés pour des del à conversion par luminophore
EP1074603B1 (fr) Procédé et dispositif de production de nanocristaux d'oxyde
DE19944202A1 (de) Plasmabildschirm mit UV-Licht reflektierender Frontplattenbeschichtung
EP1866459A1 (fr) Matrice et systeme de couches
EP1334220B1 (fr) Materiau pour substrats soumis a des contraintes thermiques
DE102011085801A1 (de) Bauelement und Turbomaschine mit einem Bauelement
EP2011901B1 (fr) Composant doté d'une couche céramique dans laquelle sont dispergées des particules et son procédé de fabrication
DE4433514C2 (de) Produkt mit einer selbstregenerierenden Schutzschicht zur Verwendung in einer reaktiven Umgebung
DE60312699T2 (de) Mit Siliziumoxynitrid passivierte,mit seltenen Erden Aktivierte Thioaluminatphosphor-Materialien für Elektrolumineszente anzeigen
EP2031361B1 (fr) Procédé pour caractériser et déterminer la durée de fonctionnement d'un composant
DE102012220656A1 (de) In-situ Dotierung zur Herstellung strukturierter oder gradierter Leuchtstoffkeramiken
DE102011003728A1 (de) Filter zum Reinigen von Abgas und Verfahren zu dessen Herstellung
EP1670613A1 (fr) Procede pour produire un systeme stratifie
DE112004002320T5 (de) EL-Faser und Photokatalyse-Reaktionsgefäss
EP1111089A1 (fr) Procédé pour sceller une couche poreuse à la surface d'un objet, en particulier pour sceller une couche obtenue par pulvérisation thermique
DE19919401A1 (de) Gesintertes Material, Ofenmaterial und hitzebeständiges Schutzrohr sowie Schutzelement unter Verwendung desselben

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004766341

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006177676

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10566980

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004766341

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10566980

Country of ref document: US