WO2005018055A1 - Borne de cable et ensemble cable - Google Patents

Borne de cable et ensemble cable Download PDF

Info

Publication number
WO2005018055A1
WO2005018055A1 PCT/US2003/023844 US0323844W WO2005018055A1 WO 2005018055 A1 WO2005018055 A1 WO 2005018055A1 US 0323844 W US0323844 W US 0323844W WO 2005018055 A1 WO2005018055 A1 WO 2005018055A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
cable terminal
ring portion
locking ring
terminal body
Prior art date
Application number
PCT/US2003/023844
Other languages
English (en)
Inventor
William Roderick
Original Assignee
Gator Loc, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gator Loc, Llc filed Critical Gator Loc, Llc
Priority to PCT/US2003/023844 priority Critical patent/WO2005018055A1/fr
Priority to AU2003257936A priority patent/AU2003257936A1/en
Publication of WO2005018055A1 publication Critical patent/WO2005018055A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/11End pieces or tapping pieces for wires, supported by the wire and for facilitating electrical connection to some other wire, terminal or conductive member
    • H01R11/28End pieces consisting of a ferrule or sleeve
    • H01R11/281End pieces consisting of a ferrule or sleeve for connections to batteries

Definitions

  • the present invention relates generally to cable terminals and cable assemblies such as may be used to connect to a battery post terminal.
  • a common type of battery terminal on a car battery is a post terminal, which is basically shaped as a truncated cone and made of lead alloy.
  • Typical cable terminals for attaching a cable to the battery post have a split, tapered hole that clamps onto the battery post when a clamping bolt is tightened. This can distort the tapered hole, reducing contact area between the cable terminal and the battery terminal, thus increasing series resistance.
  • the clamping bolt is also typically a metal that is galvanically dissimilar from the metal of the cable terminal. This can result in corrosion, particularly in light of the proximity of battery acid and the availability of moisture in the environment.
  • a locking ring-type battery connector was developed to avoid the disadvantages associated with the bolt-type cable terminal clamp.
  • This connector uses a single type of metal for two pieces in a cam-type locking arrangement.
  • Such a connector is generally described in U.S. Patent No. 4,664,468 entitled BATTERY CONNECTOR by Woodworth, issued May 12, 1987. Unfortunately, this connector suffers from a number of problems.
  • the rotating locking ring must be aligned with the fixed rings of the battery connector when being connected to the battery post.
  • the locking ring is a separate part that may be dropped and lost when attaching or removing the battery connector from the battery.
  • the body of the locking ring-type connector can be molded onto a cable. This can suffer from the same galvanic corrosion and cable loosening described above.
  • the battery connector is also described as being connected to a cable using an expansion screw to force the strands of the cable against an inner surface of a cavity in the battery clamp.
  • the expansion screw creates a source of galvanic corrosion and also creates another path for electrolyte incursion into the cavity containing the cable end. Even a lead-plated steel screw loses the plating and pinholes, allowing moisture to infiltrate to the cable end and exposing dissimilar metal, which will accelerate galvanic corrosion. [0010] Therefore, a secure, corrosion resistant cable terminal suitable for attaching to post connectors is desirable. It is further desirable that the terminal be easy to manipulate when connecting or disconnecting the cable.
  • a cable terminal has a cable terminal body with a first ring portion and a second ring portion and a locking ring.
  • the cable terminal body and locking ring are made of galvanically similar materials.
  • the cable terminal body and the locking ring are cast from a lead alloy.
  • the cable terminal and locking ring are cast from other metal(s), such as brass, bronze, or aluminum, or are machined, or made using a combination and variety of methods.
  • the locking ring operates as a cam lock to hold a terminal post against the fixed ring portions.
  • a crimp tube extends from the cable terminal body and is configured to be crimped to a cable end of a preselected size that is stripped of insulation.
  • the crimp tube is a metal that is galvanically compatible with the cable terminal body and locking ring material(s).
  • the crimp tube is a lead-plated copper tube that is cast into the cable terminal body, which is made from a castable lead-antimony or lead-calcium alloy, to form a sealed crimp socket.
  • the stripped end of the cable is tinned with lead-based solder and the tinned cable strands cold weld to the lead-plated interior of the crimp tube during the crimping process.
  • the corrosion-resistant cable terminal is joined to a cable by crimping.
  • a piece of heat-shrink tubing with heat-sensitive adhesive (sealant) is formed over the end of the crimp tube where the cable exits, thus sealing the crimp socket and cable end from moisture.
  • Fig. 1 is a simplified perspective view of a portion of a cable assembly according to an embodiment of the present invention.
  • Fig. 2A is a simplified top view of a cable terminal body according to an embodiment of the present invention.
  • Fig. 2B is a simplified side view of the cable terminal body shown in Fig. 2A.
  • Fig. 2C is a simplified bottom view of a locking ring according to an embodiment of the present invention.
  • Fig. 3 A is a simplified cross section of a cable terminal body according to an embodiment of the present invention.
  • Fig. 3B is a simplified cross section of a cable terminal body and captive locking ring according to another embodiment of the present invention.
  • Fig. 4 is a simplified flow chart of a method of fabricating a cable assembly according to an embodiment of the present invention.
  • a cable terminal for attaching to a post-type connector exposes only galvanically similar metal.
  • a tube or sleeve is cast into the connector body. The stripped cable end is then crimped or swaged in the tube, providing a secure connection.
  • battery cables of various lengths may be made up according to the intended application using a few simple tools, which avoids the need to stock multiple lengths of cable assemblies.
  • the cam-locking cable terminal allows it to be attached to and removed from a battery terminal post without tools.
  • the locking ring is captivated in the cable terminal so that it will not fall out and be lost or damaged when installing or removing the cable terminal from the battery.
  • Embodiments of the present invention may be used in a variety of applications, such as automotive battery cables, but may be particularly desirable in high-reliability applications, such as marine, heavy construction equipment, and military vehicles and equipment, and in maintenance applications, particularly where it might be impractical to stock a comprehensive selection of pre-made cable assemblies.
  • Fig. 1 is a simplified perspective view of a cable assembly 10 according to an embodiment of the present invention.
  • the cable assembly includes a cable terminal 12 connected to a cable 14.
  • the cable is typically a multi-strand copper cable, and in a particular embodiment is made from 30 AWG strands of 99.9% pure copper for flexibility and conductivity. While thicker strands can be used, the sealed crimp pocket of this embodiment of the invention protects the fine copper strands from galvanic corrosion.
  • the copper strands are covered with insulation, such as plastic, neoprene, or cross-linked ethylene-propylene-diene-monomer ("EPDM”) rubber, which is resistant to fuels, lubricants, and moisture, and thus suitable for automotive-type applications.
  • insulation such as plastic, neoprene, or cross-linked ethylene-propylene-diene-monomer ("EPDM") rubber, which is resistant to fuels, lubricants, and moisture, and thus suitable for automotive-type applications.
  • EPDM cross-linked ethylene-propylene-diene-monomer
  • the insulation is rated at 600 Volts from -50 °C to 105 °C.
  • the opposite end of the cable (not shown) is typically terminated with a lug-type connector, of which several types are known in the art.
  • the cable terminal 12 includes a body portion 16 and a locking ring portion 18. After fitting the cable terminal over a battery post (not shown), the locking ring portion is rotated with respect to the body portion to achieve a "cam lock" connection. This type of connection is discussed further in U.S. Patent No. 4,664,468. A typical offset between the locking ring opening and body opening is 0.025 inches for a nominally 0.75 inch opening; however, this offset is merely exemplary, and greater of lesser values may be appropriate, depending on the intended use. [0024]
  • the body portion 16 includes several features according to various embodiments of the present invention.
  • the cable 14 is crimped in a metal tube (see Fig. 2A, ref. num.
  • heat-shrink tubing 20 that includes heat-activated adhesive 22.
  • the heat-shrink tubing extends beyond the end 23 of the crimp tube, which provides a moisture-proof seal not only at the ends of the heat-shrink tubing, but also laterally along the crimp tube and the covered portion of the cable insulation.
  • the shrink tubing in combination with the heat-activated adhesive forms a seal between the insulation of the cable and the crimp tube.
  • the crimp tube is plated with a metal that is galvanically similar to the metal of the body and locking ring, thus no dissimilar metals are exposed on the cable terminal to cause galvanic corrosion.
  • the appropriate cable size 24 is cast into the body, as are die settings 26, 28 that indicate the appropriate crimper or die to use with this particular connector and cable.
  • Several cable sizes are possible, such as 6 gauge, 4 gauge, 2/1 gauge, 0 gauge, and 00 gauge, for example, for a suitably sized cable terminal.
  • a reliable, corrosion resistant replacement cable assembly could thus be made from a stock roll of cable and suitable cable terminal end without needing to stock a wide assortment of pre-made cable assemblies in various lengths.
  • the opposite end of the cable terminal typically has a lug- type (bolt-on) connector, which can be soldered or crimped, for example.
  • the lug is a closed-end lug and a piece of shrink tubing is applied over the end of the lug and cable to seal the junction.
  • the first die setting 26 indicates the proper crimper of one selected manufacturer
  • the second die setting 28 indicates the proper crimper of another selected manufacturer.
  • the first die setting could be for a crimping tool made by THOMAS AND BETTS while the second die setting is for a tool made by AMPTM.
  • the polarity indicator 30 may also be cast into the body. Some batteries may have different posts for the positive and negative polarity, so the cable terminals may have different bores for the opposite polarities. It is understood that the term "crimping" is used herein for purposes of convenient discussion, and is intended to include the process commonly known as swaging and similar processes.
  • a circular opening 32 accepts the post terminal.
  • Battery posts are typically tapered at an angle of about 2.5-3 degrees, and the final taper is machined in the cast cable terminal body and locking ring for a precise fit. In other applications, such as attaching cables to plating ingots or fuel cells, the posts might not be tapered and the center opening might be cylindrical.
  • the circular opening in the locking ring is concentric with the circular openings in the body when the locking ring is in a first position. In a second position, achieved by rotating the locking ring with respect to the body, the circular opening in the locking ring is eccentric with respect to the circular openings in the body.
  • a hexagonal "nut" 33 is cast as part of the terminal body, usually in a standard SAE or metric size.
  • This nut facilitates holding the terminal body in a vise or with a wrench or other tool while the crimp tube is crimped to the cable end, without unduly distorting the cable terminal body.
  • the crimp tube is replaced with a threaded cable insert tube of approximately the same configuration, namely with a "blind" pocket.
  • a compression nut can then be placed over the stripped cable end and screwed into the threaded cable insert tube to secure the cable to the cable terminal. It is desirable that only galvanically compatible materials are exposed on the cable terminal after tightening the compression nut. Shrink tubing can then be formed over the insert tube and compression nut. In this embodiment, the nut cast into the terminal body facilitates tightening the compression nut.
  • Fig. 2 A is a simplified top view of a cable terminal body portion 16 according to an embodiment of the present invention.
  • the crimp tube 34 is cast into the body of the cable terminal.
  • the crimp tube is a lead plated copper tube and the body is a castable lead alloy, such as an antimony-lead (e.g. 9% antimony 81% lead) alloy or a calcium-lead alloy (e.g. about 0.01-17% calcium with essentially the remainder lead).
  • an antimony-lead e.g. 9% antimony 81% lead
  • a calcium-lead alloy e.g. about 0.01-17% calcium with essentially the remainder lead.
  • galvanically similar metal i.e. lead or lead alloy
  • Other metals can be included in suitable alloys, such as tin, particularly in the lower ranges of calcium.
  • a number of suitable castable calcium-lead alloys are provided in Properties of Lead and Lead Alloys, available from Lead Industries Association, Inc., 292 Madison Avenue, New York, NY 10017. Generally speaking, harder lead alloys are more easy to machine, if necessary.
  • Corrosion potential for pure metals is typically shown in an electromotive force ("emf ') series for a metal and its ions in equilibrium under standard conditions. In the case of battery clamps and terminal posts, the metals are typically alloys (not pure metal) and equilibrium under standard conditions rarely occurs.
  • the propensity for galvanic corrosion arising from galvanic mismatch of metal alloys is typically indicated by a galvanic series, without an absolute (i.e. calibrated) numerical value for the galvanic potential.
  • Galvanic corrosion arises because at least two corroding metals are electrically connected in the presence of an electrolyte, such as battery fumes and environmental moisture. Therefore, it is understood that non-galvanic corrosion typically occurs on the battery cable terminal. Fortunately, the oxide coating that often forms on lead-based connectors is relatively benign and is reasonably electrically conductive. Galvanic corrosion, if it occurs, typically accelerates the corrosion of the more galvanically active (anodic) part relative to the less galvanically active (cathodic) part.
  • a cable te ⁇ ninal for use in an intended environment have galvanically similar metals, that is, metals that are closer on a galvanic series for the intended application environment than antimony-lead (9%-81%) and plain steel.
  • the cable terminal itself exposes only galvanically similar metals, it is understood that the appropriate cable terminal is selected in light of the intended terminal post that it is to be connected to.
  • a cable terminal made from lead-based alloys should be connected to a lead-based battery terminal, and a brass or bronze cable terminal should be connected to a brass or bronze battery terminal. Accordingly, it would generally be undesirable to connect a lead-based cable terminal to a bronze battery terminal, or vice versa.
  • Calcium-lead alloys are typically harder than corresponding antimony-lead alloys, but melt at a higher temperature and thus the casting process is slower because additional heat must be removed from the mold for each part that is produced, typically increasing cycle time.
  • a harder alloy can be used in a cam-lock type connector than would be desirable in a conventional clamping-bolt type connector because the cam-lock connector does not distort when being attached to the battery post, as do connectors with squeeze bolts.
  • the harder alloy in turn, preserves the dimensions of the center bore, and provides a secure, high contact area connection to the battery post.
  • the calcium-lead alloy is also more resistant to ordinary corrosion than antimony-lead alloy.
  • the crimp tube 34 is lead plated on the inside, and the tinned cable end can be crimped inside the tube.
  • the solder (tinning) cold flows with the lead plating inside the crimp tube to form an excellent electrical connection.
  • the deformation of the copper tube around the cable strands also provides an excellent structural connection.
  • the cable end is not turned, and in a yet further embodiment, the inside of the crimp tube is not plated.
  • the heat-shrink tubing provides a seal against moisture, thus avoiding galvanic corrosion by forming a barrier against electrolyte intrusion into the crimp pocket.
  • the crimp tube is cast with the connector body from a metal alloy that is sufficiently strong to form a secure mechanical connection to the cable end after crimping, and sufficiently ductile to be crimped without cracking.
  • Fig. 2B is a simplified side view of the cable terminal body shown in Fig. 2A.
  • a pair of bifurcated ring portions 36, 38 form a gap for receiving the locking ring.
  • the holes through the upper 36 and lower 38 ring portions are substantially co-axial, and are generally tapered to accept a battery terminal post, but may be cylindrical in other applications.
  • Fig. 2C is a simplified bottom view of a locking ring 18 ' according to an embodiment of the present invention.
  • the locking ring is cast from the same alloy as the cable terminal body shown in Figs. 2A and 2B, but this is not required.
  • a corrosion- resistant cable clamp can be made if the locking ring is made of a galvanically similar metal as the body.
  • the locking ring can be made of a non-metallic material, but this reduces the possible electrical contact area between the cable terminal and the battery post.
  • the body and or locking ring can be machined out of a metal, rather than cast.
  • the locking ring 18 ' includes a channel or groove 42 formed in the bottom face of the ring and a tab 44 that provides a convenient feature for tightening and loosening the cable terminal.
  • a blind hole is cast or drilled into the body of the cable terminal, and, after assembling the locking ring into the gap between the bifurcated ring portions, a punch is used to deform the bottom of the blind hole into the groove in the locking ring. This captivates the ring in the assembly while allowing the ring to rotate with respect to the bifurcated ring portions.
  • the groove is illustrated as being partially circumferential, but could be fully circumferential. In another embodiment, a galvanically compatible pin could be partially inserted into the groove.
  • a galvanically compatible pin could be made from a galvanically similar metal or a non-conductor, for example.
  • the opening 46 is on one side of the cable terminal along the centerline of the crimp tube. This allows much greater cam surface to be utilized when tightening the terminal.
  • the eccentricity is fully “open” when the tab is rotated to be stopped against the connector body (either fully clockwise or fully counterclockwise, depending on a design choice, as viewed from above). Rotating the tab away from the stopped position "closes” the eccentricity, thus tightening the battery post in the cable connector opening. Prior devices were fully open when the tab was in the center of the connector body, tightening when the tab was rotated in either direction from the center position.
  • Fig. 3 A is a simplified cross section of a cable terminal body 16 according to an embodiment of the present invention.
  • the crimp tube 34 is cast into the body and includes a chamfer 48 to assist in the insertion of the cable into the crimp tube.
  • a blind hole 50 is cast into the bottom of the cable terminal body.
  • the interior surface of the circular opening 32 is splined 52, which helps in the cold weld process of attaching the lead connector to a lead battery post. Similar splines are cut into the center opening of the locking ring, if desired. The splines are about 1-5 mils deep and are typically cut into the sides of the center opening.
  • the crimp tube is cast in the cable terminal body to form a socket for the cable end.
  • the socket is sealed at the terminal end and another sealant can be applied at the chamfered end of the crimp tube, typically extending over a portion of the cable insulation, after inserting the cable end and crimping the terminal on.
  • the interior of the crimp tube is thus moisture-resistant and preferably anaerobic to avoid corrosion of fine- gauge wires and possibly degrade the electrical contact between the cable terminal and the cable.
  • portion of the crimp tube extending out of the cable terminal body provides a gauge for stripping the insulation from the end of an associated cable to be inserted into the crimp tube.
  • Fig. 3B is a simplified cross section of a cable terminal body 16 and captive locking ring 18 ' according to another embodiment of the present invention.
  • the bottom of the blind hole 50 has been punched to form a dimple 54 that extends into the groove 42 in the locking ring 18' .
  • the location of the bind hole is only illustrative, and could be moved to another location on the bottom of the body of the cable terminal, or to the top of the body of the cable terminal if the groove in the locking ring is on its topside.
  • the dimple captivates the locking ring while allowing it to move without introducing or exposing any galvanically dissimilar metals.
  • the cable terminal might be formed of other metals.
  • the cable terminal body, locking ring, and perhaps even the cable could be made of metal compatible with the plating process, such as an all- aluminum or all-copper cable assembly.
  • the crimp tube might not be cast into the cable terminal body, but might be machined. In such an application it may be acceptable to omit the shrink tubing seal between crimp tube and cable.
  • Fig. 4 is a simplified flow chart of a method 400 of fabricating a cable assembly according to an embodiment of the present invention.
  • the cable assembly may be made- up ahead of time for a particular application, or may be made up as needed from components.
  • the latter approach is particularly desirable in repair-type situations where stocking a comprehensive selection of pre-made cable assemblies (e.g. cable assemblies with the cables cast into the cable terminal) may be impractical.
  • pre-made cable assemblies e.g. cable assemblies with the cables cast into the cable terminal
  • Hundreds of different cable lengths might be necessary to cover just one common cable gauge, and several cable gauges are used in various applications.
  • a replacement cable might not be in stock, and having to special order the part might keep a valuable piece of equipment out of operation.
  • the insulation is stripped to form a bare cable end (step 402).
  • the amount of insulation removed is generally selected according to the depth of a crimp socket on an associated cable terminal.
  • the cable end is optionally tinned in lead-based solder (step 404) before being inserted into the crimp socket (step 406) and crimped (step 408) to attach the cable terminal.
  • Heat shrink tubing with a heat-sensitive adhesive or sealant on the interior of the heat shrink tubing is placed over the other end of the cable (step 410) and formed (heat shrunk) over the joint between the cable and the crimp end (step 412) to seal the crimp socket.
  • the cable terminal does not have any galvanically dissimilar metals exposed, thereby avoiding galvanic corrosion.
  • a locking ring rotates relative to the crimp terminal body to press the post terminal against fixed rings in the terminal.

Landscapes

  • Connections Effected By Soldering, Adhesion, Or Permanent Deformation (AREA)

Abstract

L'invention concerne une borne de câble présentant une bague de serrage et un tube serti compatible du point de vue galvanique, laquelle borne est connectée à un câble pour former un ensemble câble résistant à la corrosion. Selon un mode de réalisation particulier, cette borne de câble est coulée à partir d'un alliage de plomb et le tube serti est un tube de cuivre plombé. Le plombage sur le tube serti à froid s'écoule au cours du sertissage et forme une connexion électrique et mécanique sûre et fiable. Selon encore un autre mode de réalisation, la bague de serrage présente une rainure circulaire et est prise dans la borne de câble par l'intermédiaire d'un cran, formé dans le corps de la borne de câble et s'étendant dans la rainure.
PCT/US2003/023844 2003-07-29 2003-07-29 Borne de cable et ensemble cable WO2005018055A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/US2003/023844 WO2005018055A1 (fr) 2003-07-29 2003-07-29 Borne de cable et ensemble cable
AU2003257936A AU2003257936A1 (en) 2003-07-29 2003-07-29 Cable terminal and cable assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2003/023844 WO2005018055A1 (fr) 2003-07-29 2003-07-29 Borne de cable et ensemble cable

Publications (1)

Publication Number Publication Date
WO2005018055A1 true WO2005018055A1 (fr) 2005-02-24

Family

ID=34192529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/023844 WO2005018055A1 (fr) 2003-07-29 2003-07-29 Borne de cable et ensemble cable

Country Status (2)

Country Link
AU (1) AU2003257936A1 (fr)
WO (1) WO2005018055A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198048B1 (fr) * 2014-09-25 2020-02-26 Wieland-Werke AG Bornes électriques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1624047A (en) * 1922-06-19 1927-04-12 William E Gill Battery connection
US1920608A (en) * 1930-11-28 1933-08-01 Thompson Dorsey Battery connection
US2208791A (en) * 1939-09-05 1940-07-23 Harry J Ellen Battery terminal clamp
US4664468A (en) * 1982-11-17 1987-05-12 Woodworth Albert H Battery connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1624047A (en) * 1922-06-19 1927-04-12 William E Gill Battery connection
US1920608A (en) * 1930-11-28 1933-08-01 Thompson Dorsey Battery connection
US2208791A (en) * 1939-09-05 1940-07-23 Harry J Ellen Battery terminal clamp
US4664468A (en) * 1982-11-17 1987-05-12 Woodworth Albert H Battery connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3198048B1 (fr) * 2014-09-25 2020-02-26 Wieland-Werke AG Bornes électriques

Also Published As

Publication number Publication date
AU2003257936A1 (en) 2005-03-07

Similar Documents

Publication Publication Date Title
US6623315B1 (en) Cable terminal and cable assembly
US8047868B1 (en) Stud-type junction block
US6538203B1 (en) Connection of an electrical aluminum cable with a connection piece of copper or similar material
US4210381A (en) Electrical connector contacts
US7329157B2 (en) Mechanically advantaged band clamp and associated method
RU2670955C2 (ru) Обжимной контакт
CN113454849B (zh) 电导体以及用于制造电导体的方法
CA2948831C (fr) Connecteurs electriques et dispositifs de connexion et methodes les incluant
US20230187887A1 (en) Friction welding connector and its method of production
US20220149547A1 (en) Electrical Connection Console for a Motor-Vehicle Electrical System Conductor
WO2002056422A1 (fr) Boulon electrique de contact revetu et procede de fixation d'un contact electrique
EP1737072A2 (fr) Système de connexion pour connecteurs de batterie
JP6803877B2 (ja) 端子付き電線
JP2003338350A (ja) 端子接続方法及び端子接続構造
US4636025A (en) Universal battery terminal connector
US20070015052A1 (en) Battery terminal
DE102009011934B4 (de) Verfahren zur Herstellung einer Batteriepolklemme und eine nach dem Verfahren hergestellte Batteriepolklemme
US7052332B2 (en) Connecting pole for an accumulator
WO2005018055A1 (fr) Borne de cable et ensemble cable
FR3102015A1 (fr) Contact électrique de puissance en deux pièces pour un circuit de recharge d’un véhicule électrique
US6902444B1 (en) Battery terminal connection assembly
EP0094122B1 (fr) Collier
US9490572B2 (en) Electrical plug connector
US7001226B2 (en) Connecting cable
US4664468A (en) Battery connector

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A DATED 17-08-2006)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase