WO2005016587A1 - Method for determining the position of the surface of a workpiece inside a laser machining unit - Google Patents

Method for determining the position of the surface of a workpiece inside a laser machining unit Download PDF

Info

Publication number
WO2005016587A1
WO2005016587A1 PCT/EP2004/050535 EP2004050535W WO2005016587A1 WO 2005016587 A1 WO2005016587 A1 WO 2005016587A1 EP 2004050535 W EP2004050535 W EP 2004050535W WO 2005016587 A1 WO2005016587 A1 WO 2005016587A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
mark
calibration curve
distance
carrier
Prior art date
Application number
PCT/EP2004/050535
Other languages
German (de)
French (fr)
Inventor
Uwe Metka
Original Assignee
Hitachi Via Mechanics, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Via Mechanics, Ltd. filed Critical Hitachi Via Mechanics, Ltd.
Publication of WO2005016587A1 publication Critical patent/WO2005016587A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/42Printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09818Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
    • H05K2201/09918Optically detected marks used for aligning tool relative to the PCB, e.g. for mounting of components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation

Definitions

  • the invention relates to a method for determining the surface-height position of a workpiece within a laser processing machine, a laser beam being directed via an optical deflection unit and focusing optics onto the workpiece, which is arranged on a carrier and can be moved three-dimensionally therewith.
  • Laser processing machines for drilling, structuring and labeling workpieces are used in a wide variety of technical fields.
  • such machines are used for processing electrical circuit carriers, such as printed circuit boards, especially where miniaturized circuit carriers with high packing density require very fine bores and conductor structures in the range of 100 ⁇ and less and where high processing speed is also required . Since the accuracy of the machining depends on the focus of the laser beam on the surface to be machined, it is important to know or set the working distance between the focusing optics and the workpiece surface to be machined as precisely as possible.
  • the aim of the invention is to provide a simple method for determining the high position of the workpiece surface within the machine and thus also the distance between the workpiece surface and the focusing optics, which uses the optical properties of the systems present in such a machine, so that none of them are complex Additional instruments are required.
  • this aim is achieved in that at least one mark arranged on the surface of the wearer is measured by means of a camera in a plurality of predetermined height positions of the wearer, a predetermined measurement distance formed by the mark resulting in different measured values depending on the respective height position from which a calibration curve is derived and stored, that the predetermined measuring distance is then also formed with at least one mark arranged on the surface of the workpiece and measured by means of the camera at a certain height position of the wearer, and that the height position is compared by comparing a measurement value obtained in this way with the calibration curve the workpiece surface is determined.
  • a camera is used to determine the height of the workpiece, which is present in any case in such laser machines since, among other things, it records markings for the horizontal orientation of the workpiece.
  • a calibration curve is now directly on the surface of the carrier or processing ti 200310317
  • a camera is provided, the beam path of which is guided separately from the laser beam and the focusing optics of which is guided via a separate imaging unit.
  • the measuring distance is determined by the extent of the mark in a predetermined horizontal direction, that is, for example, by a line width of the mark.
  • the calibration curve recorded in this way like a measurement curve recorded with the brand of the workpiece, each has a minimum which corresponds to the focus distance of the brand from the imaging unit. The difference between the minima of these two curves is then directly the height or thickness of the workpiece.
  • This method is preferably used for lasers with a longer wavelength, for example for CO 2 lasers.
  • the marks on the carrier and on the workpiece are observed by the camera via the focusing optics of the laser, and the measuring distance is determined by the distance between two horizontally displaced positions of the mark are determined, ie in each height position the carrier is horizontally displaced horizontally by the predetermined measuring distance, the mark being recorded by the camera in each of the two horizontally displaced positions.
  • the virtual distance between the two measuring positions measured in each height position of the carrier then results in the calibration curve, and a measuring distance is determined by two image recordings of a mark located on the surface of the workpiece in likewise two horizontal positions offset by the measuring distance 200310317
  • Calibration curve immediately gives the high value for the surface of the workpiece.
  • the distance between the focusing optics and the processing plane in laser processing machines can thus be measured at almost any point on the workpiece and can be optimized by means of an active control, without the need for additional equipment, which would also mean increased financial expenditure.
  • the method can be used several times, for example for measuring the flatness of the machining table, for measuring the tolerances of the workpieces, both the tolerances within the workpiece and the tolerances between two workpieces.
  • FIG. 1 shows a schematic arrangement for carrying out a first embodiment of the method according to the invention
  • FIG. 2 shows a calibration curve obtained with the structure of FIG. 1 on the surface of a processing table in comparison with a measurement curve obtained on a workpiece
  • 3a and 3b show the apparatus structure for a second embodiment of the method according to the invention, the beam path of the camera running over the focusing optics of the laser and the processing table being shown in two horizontally offset positions and
  • FIGS. 3a and 3b shows a calibration curve obtained with the arrangement according to FIGS. 3a and 3b.
  • FIG. 1 shows a possible apparatus construction for carrying out a method according to the invention with separate ones
  • a laser beam 2 emitted by a laser 1 is shown schematically, which is directed via a deflection device 3 and a focusing optics 4 in the form of an f- ⁇ lens to a work table 5 or a workpiece 6 arranged thereon.
  • This camera 7 is usually used to determine the horizontal position of the workpiece on the processing table in two directions x and y.
  • the camera 7 also determines the vertical position of the processing table 5 with respect to the z axis.
  • the processing table 5 can be adjusted to different height positions, for example from z -3 to z 0 to z 3 .
  • a mark 9 is attached to the work table, which in the example of FIG. 1 has the shape of an indicated cross, whereby a mark property, for example the line width B or the bar length, is determined as the measuring distance.
  • a 9 * mark is also provided on the workpiece at least once.
  • the processing table 5 is first measured without a workpiece, the mark 9 being recorded by the camera at different z positions, for example z -3 to Z 3 .
  • the predetermined measuring distance for example the line width B
  • the line width B is plotted as a function of the respective height position or 7 position, so that a curve profile as shown in FIG. 2 is obtained on the basis of the imaging properties of the imaging optics 8.
  • a b-value is thus assigned to each z-position, with which the measuring distance, ie the line width B, is measured at this corresponding height position.
  • the measurement values obtained in this way are plotted as calibration points EP -3 to EP 3 over the corresponding z values and thus form a calibration curve EK1.
  • the mark 9 * attached to the workpiece can be measured in the same way.
  • B measured values are again obtained, which are shown in FIG. 2 as measuring points MP -3 to MP 3 and together one 200310317
  • Figure 3 shows a slightly modified arrangement compared to Figure.
  • the beam path of the camera 7 is directed directly through the focusing optics 4 of the laser beam, which is not shown in this picture, so that the observation of the mark 9 on the processing table 5 or 9 * on the workpiece 6 is carried out via the Focusing optics 4 takes place.
  • two image recordings according to FIGS. 3a and 3b are now carried out in each of the possible z positions (z_ 3 to z 3 ), the processing table being horizontally one between the positions of FIGS. 3a and 3b exactly defined value Dx is moved, whereby a measuring distance Dx is fixed. This measuring distance Dx between the two image recordings is measured with a different virtual value in each height position.
  • the virtual distance determined is a direct measure of the height of the workpiece. For the illustration in FIG. 4, this means, for example, that the measuring point MA is determined at a high position zo of the table 5, the measurement in the two positions of the 200310317
  • Figures 3a and 3b gives a virtual distance that the height position z. equivalent.
  • the height or thickness of the workpiece thus corresponds to the difference ⁇ z between the height positions z 0 and zi.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention relates to a method for determining the height of the surface of a workpiece (6) inside a laser machining unit, in which a laser beam (2) is directed by a focusing lens (4) onto the workpiece (6) that is located on a support (5). According to said method, at least one mark (9) that is placed on the surface of the support is measured by means of a camera, when the support is at several predetermined heights (z-3 to z3). A measuring distance (B) that is predetermined by the mark produces different measured values at the different heights, said values enabling a calibration curve to be derived. A mark (9*) that is provided on the workpiece (6) is measured in the same way, when the support (5) is at a specific height. The exact height of the workpiece is obtained by comparing the measured value from the workpiece with the calibration curve.

Description

200310317200310317
Beschreibungdescription
Verfahren zur Bestimmung der Oberflächenposition eines Werkstuckes innerhalb einer LaserbearbeitungsmaschineMethod for determining the surface position of a workpiece within a laser processing machine
Die Erfindung betrifft ein Verfahren zur Bestimmung der Ober- flachen-Höhenposition eines Werkstucks innerhalb einer Laserbearbeitungsmaschine, wobei ein Laserstrahl über eine optische Ablenkeinheit und eine Fokussieroptik auf das Werkstuck gerichtet wird, das auf einem Trager angeordnet und mit diesem dreidimensional verfahrbar ist.The invention relates to a method for determining the surface-height position of a workpiece within a laser processing machine, a laser beam being directed via an optical deflection unit and focusing optics onto the workpiece, which is arranged on a carrier and can be moved three-dimensionally therewith.
Laserbearbeitungsmaschinen zum Bohren, Strukturieren und Beschriften von Werkstucken werden auf den verschiedensten technischen Gebieten eingesetzt. Unter anderem werden solche Maschinen zur Bearbeitung von elektrischen Schaltungstragern, wie Leiterplatten, verwendet, insbesondere dort, wo miniaturisierte Schaltungstrager mit hoher Packungsdichte sehr feine Bohrungen und Leiterstrukturen im Bereich von 100 μ und weni- ger erfordern und wo zugleich eine hohe Bearbeitungsgeschwin- digkeit notwendig ist. Da die Genauigkeit der Bearbeitung von der Fokussierung des Laserstrahls auf die zu bearbeitende Oberflache abhangt, ist es wichtig, den Arbeitsabstand zwischen der Fokussieroptik und der zu bearbeitenden Werkstuck- oberflache möglichst genau zu kennen bzw. ei n7ustellen .Laser processing machines for drilling, structuring and labeling workpieces are used in a wide variety of technical fields. Among other things, such machines are used for processing electrical circuit carriers, such as printed circuit boards, especially where miniaturized circuit carriers with high packing density require very fine bores and conductor structures in the range of 100 μ and less and where high processing speed is also required , Since the accuracy of the machining depends on the focus of the laser beam on the surface to be machined, it is important to know or set the working distance between the focusing optics and the workpiece surface to be machined as precisely as possible.
Bei bekannten Laserbearbeitungsmaschinen wird der Abstand manuell eingegeben und über den gesamten Verfahrbereich des Tragers, also des Bearbeitungstisches, konstant gehalten. Me- chanische Toleranzen des Bearbeitungstisches sowie derIn known laser processing machines, the distance is entered manually and kept constant over the entire travel range of the carrier, that is to say the processing table. Mechanical tolerances of the machining table and the
Werkstucke fuhren dazu, daß die Bearbeitung an unterschiedlichen Stellen des Verfahrbereichs mit unterschiedlichen Laserstrahl-Fleckdurchmessern und damit mit unterschiedlichen E- nergie- bzw. Leistungsdichten erfolgt. Zusatzlich fuhren die- se Toleranzen dazu, daß die maximal erzielbare Genauigkeit verschlechtert wird. Aus diesen Gründen ist es mit herkömmlichen Maschinen schwierig, gleichbleibende gute Bohr- bzw. 200310317Workpieces mean that processing takes place at different points in the travel area with different laser beam spot diameters and thus with different energy or power densities. In addition, these tolerances lead to a deterioration in the maximum achievable accuracy. For these reasons, it is difficult with conventional machines to provide consistently good drilling or 200310317
2 Strukturierqualitat an Substraten mit der geforderten Genauigkeit zu erzielen.2 To achieve structuring quality on substrates with the required accuracy.
Es wäre zwar möglich, mittels apparativ aufwendiger zusatzli- eher Sensoren den Abstand standig zu messen und dann mittels einer aktiven Steuerung diesen Abstand zwischen Werkstuck und Fokussieroptik konstant zu halten. Eine solche Losung wäre aber sehr aufwendig und teuer.It would be possible to continuously measure the distance using additional sensors, which are expensive to use, and then to keep this distance between the workpiece and the focusing optics constant by means of an active control. Such a solution would be very complex and expensive.
Ziel der Erfindung ist es, ein einfaches Verfahren zur Bestimmung der Hohenposition der Werkstuckoberflache innerhalb der Maschine und damit auch des Abstandes zwischen der Werkstuckoberflache und der Fokussieroptik anzugeben, welches die optischen Eigenschaften der in einer solchen Maschine vorhan- denen Systeme ausnutzt, so daß keine aufwendigen Zusatzinstrumente erforderlich sind.The aim of the invention is to provide a simple method for determining the high position of the workpiece surface within the machine and thus also the distance between the workpiece surface and the focusing optics, which uses the optical properties of the systems present in such a machine, so that none of them are complex Additional instruments are required.
Erfindungsgemaß wird dieses Ziel dadurch erreicht, daß zumindest eine auf der Oberflache des Tragers angeordnete Marke mittels einer Kamera in mehreren vorgegebenen Hohenpositionen des Tragers vermessen wird, wobei eine vorgegebene, durch die Marke gebildete Meßdistanz in Abhängigkeit von der jeweiligen Hohenposition zu unterschiedlichen Meßwerten fuhrt, aus denen eine Eichkurve abgeleitet und gespeichert wird, daß dann mit zumindest einer auf der Oberflache des Werkstuckes angeordnete Marke ebenfalls die vorgegebene Meßdistanz gebildet und mittels der Kamera bei einer bestimmten Hohenposition des Tragers vermessen wird und daß durch Vergleich eines derart gewonnenen Meßwertes mit der Eichkurve die Hohenposition der Werkstuckoberflache bestimmt wird.According to the invention, this aim is achieved in that at least one mark arranged on the surface of the wearer is measured by means of a camera in a plurality of predetermined height positions of the wearer, a predetermined measurement distance formed by the mark resulting in different measured values depending on the respective height position from which a calibration curve is derived and stored, that the predetermined measuring distance is then also formed with at least one mark arranged on the surface of the workpiece and measured by means of the camera at a certain height position of the wearer, and that the height position is compared by comparing a measurement value obtained in this way with the calibration curve the workpiece surface is determined.
Bei dem erfindungsgemaßen Verfahren wird zur Hohenbestimmung des Werkstucks eine Kamera verwendet, die ohnehin in derartigen Lasermaschinen vorhanden ist, da mit ihr unter anderem Markierungen zur horizontalen Ausrichtung des Werkstucks aufgenommen werden. Nach der Erfindung wird nun eine Eichkurve direkt auf der Oberflache des Tragers bzw. Bearbeitungsti 200310317In the method according to the invention, a camera is used to determine the height of the workpiece, which is present in any case in such laser machines since, among other things, it records markings for the horizontal orientation of the workpiece. According to the invention, a calibration curve is now directly on the surface of the carrier or processing ti 200310317
3 sches aufgenommen, danach werden eine oder mehrere Marken auf der Oberfläche des zu bearbeitenden Werkstucks vermessen, wobei aus dem Vergleich der Ergebnisse die Dicke des Werkstucks bestimmt werden kann. Dieses Ergebnis kann dann abgespeichert und in einer aktiven Regelung bei der nachfolgenden Bearbeitung des Werkstucks berücksichtigt werden.3 sches recorded, then one or more marks are measured on the surface of the workpiece to be machined, the thickness of the workpiece can be determined from the comparison of the results. This result can then be saved and taken into account in an active control during the subsequent machining of the workpiece.
In einer ersten Ausfuhrungsform der Erfindung wird eine Kamera vorgesehen, deren Strahlengang getrennt von dem Laser- strahl und dessen Fokussieroptik über eine eigene Abbildungseinheit gefuhrt wird. In diesem Fall wird die Meßdistanz durch die Ausdehnung der Marke in einer vorgegebenen horizontalen Richtung, also beispielsweise durch eine Linienbreite der Marke, bestimmt. Die auf diese Weise aufgenommene Eich- kurve weist ebenso wie eine mit der Marke des Werkstucks aufgenommene Meßkurve jeweils ein Minimum auf, das dem Fokusabstand der Marke von der Abbildungseinheit entspricht. Die Differenz der Minima dieser beiden Kurven ist dann direkt die Hohe bzw. Dicke des Werkstucks. Dieses Verfahren wird vor- zugsweise für Laser mit größerer Wellenlange, also beispielsweise für C02-Laser, verwendet.In a first embodiment of the invention, a camera is provided, the beam path of which is guided separately from the laser beam and the focusing optics of which is guided via a separate imaging unit. In this case, the measuring distance is determined by the extent of the mark in a predetermined horizontal direction, that is, for example, by a line width of the mark. The calibration curve recorded in this way, like a measurement curve recorded with the brand of the workpiece, each has a minimum which corresponds to the focus distance of the brand from the imaging unit. The difference between the minima of these two curves is then directly the height or thickness of the workpiece. This method is preferably used for lasers with a longer wavelength, for example for CO 2 lasers.
In einem anderen vorteilhaften Verfahren, das vorzugswei se für kurzwellige Laser, wie UV-Laser, verwendet wird, erfolgt die Beobachtung der Marken auf dem Trager und auf dem Werkstuck durch die Kamera über die Fokussieroptik des Lasers, und die Meßdistanz wird durch den Abstand zweier horizontal versetzter Positionen der Marke bestimmt, d.h. in jeder Hohenposition wird der Trager horizontal um die vorgegebene Meßdistanz horizontal versetzt, wobei die Marke in jeder der beiden horizontal versetzten Positionen durch die Kamera aufgenommen wird. Der in jeder Hohenposition des Tragers gemessene virtuelle Abstand zwischen den beiden Meßpositionen ergibt dann die Eichkurve, und durch zwei Bildaufnahmen einer auf der Oberfläche des Werkstucks befindlichen Marke in ebenfalls zwei um die Meßdistanz versetzten Horizontalpositionen wird ein Meßabstand ermittelt, der durch Vergleich mit der 200310317In another advantageous method, which is preferably used for short-wave lasers, such as UV lasers, the marks on the carrier and on the workpiece are observed by the camera via the focusing optics of the laser, and the measuring distance is determined by the distance between two horizontally displaced positions of the mark are determined, ie in each height position the carrier is horizontally displaced horizontally by the predetermined measuring distance, the mark being recorded by the camera in each of the two horizontally displaced positions. The virtual distance between the two measuring positions measured in each height position of the carrier then results in the calibration curve, and a measuring distance is determined by two image recordings of a mark located on the surface of the workpiece in likewise two horizontal positions offset by the measuring distance 200310317
Eichkurve unmittelbar den Hohenwert für die Oberflache des Werkstucks ergibt. Mit Hilfe des erfindungsgemaßen Verfahrens kann somit der Abstand zwischen Fokussieroptik und Bearbeitungsebene bei Laser-Bearbeitungsmaschinen an nahezu jeder Stelle des Werkstucks gemessen und über eine aktive Regelung optimiert werden, ohne daß ein zusätzlicher apparativer Aufwand notwendig wäre, der zugleich einen erhöhten finanziellen Aufwand bedeuten wurde. Das Verfahren ist mehrfach einsetzbar, zum Beispiel zum Vermessen der Ebenheit des Bearbei- tungstisches, zum Vermessen der Toleranzen der Werkstucke, und zwar sowohl der Toleranzen innerhalb des Werkstucks als auch der Toleranzen zwischen zwei Werkstucken.Calibration curve immediately gives the high value for the surface of the workpiece. With the aid of the method according to the invention, the distance between the focusing optics and the processing plane in laser processing machines can thus be measured at almost any point on the workpiece and can be optimized by means of an active control, without the need for additional equipment, which would also mean increased financial expenditure. The method can be used several times, for example for measuring the flatness of the machining table, for measuring the tolerances of the workpieces, both the tolerances within the workpiece and the tolerances between two workpieces.
Die Erfindung wird nachfolgend an Ausfuhrungsbeispielen an- hand der Zeichnung naher erläutert. Es zeigtThe invention is explained in more detail below using exemplary embodiments with reference to the drawing. It shows
Figur 1 eine schematische Anordnung für die Durchfuhrung einer ersten Ausfuhrungsform des erfindungsgemaßen Verfahrens, Figur 2 eine mit dem Aufbau von Figur 1 auf der Oberflache eines Bearbeitungstisches gewonnene Eichkurve im Vergleich mit einer auf einem Werkstück gewonnenen Meßkurve,1 shows a schematic arrangement for carrying out a first embodiment of the method according to the invention, FIG. 2 shows a calibration curve obtained with the structure of FIG. 1 on the surface of a processing table in comparison with a measurement curve obtained on a workpiece,
Figur 3a und Figur 3b den apparativen Aufbau für eine zweite Ausfuhrungsform des erfindungsgemaßen Verfahrens, wobei der Strahlengang der Kamera über die Fokussieroptik des Lasers verlauft und wobei der Bearbeitungstisch in zwei horizontal versetzten Positionen gezeigt ist und3a and 3b show the apparatus structure for a second embodiment of the method according to the invention, the beam path of the camera running over the focusing optics of the laser and the processing table being shown in two horizontally offset positions and
Figur 4 eine mit der Anordnung gemäß Figuren 3a und 3b gewonnene Eichkurve.4 shows a calibration curve obtained with the arrangement according to FIGS. 3a and 3b.
Figur 1 zeigt einen möglichen apparativen Aufbau zur Durch- fuhrung eines erfindungsgemaßen Verfahrens mit getrenntenFIG. 1 shows a possible apparatus construction for carrying out a method according to the invention with separate ones
Strahlengangen für den Laserstrahl und die Kamera. Dabei ist schematisch ein von einem Laser 1 emittierter Laserstrahl 2 gezeigt, der über eine Ablenkeinrichtung 3 und über eine Fokussieroptik 4 in Form eines f-θ-Ob]ektivs auf einen Bear- beitungstisch 5 bzw. auf ein darauf angeordnetes Werkstuck 6 gelenkt wird. Mittels einer Kamera 7 und einer davor angeordneten, durch Linsen 8 gebildeten Abbildungseinheit können der 200310317Beam paths for the laser beam and the camera. A laser beam 2 emitted by a laser 1 is shown schematically, which is directed via a deflection device 3 and a focusing optics 4 in the form of an f-θ lens to a work table 5 or a workpiece 6 arranged thereon. By means of a camera 7 and an imaging unit arranged in front and formed by lenses 8, the 200310317
5 Bearbeitungstisch und das Werkstuck beobachtet und vermessen werden. Üblicherweise wird mit Hilfe dieser Kamera 7 die Horizontalposition des Werkstuckes auf dem Bearbeitungstisch in zwei Richtungen x und y bestimmt.5 processing table and the workpiece can be observed and measured. This camera 7 is usually used to determine the horizontal position of the workpiece on the processing table in two directions x and y.
Gemäß der Erfindung wird mittels der Kamera 7 auch die vertikale Position des Bearbeitungstisches 5 bezuglich der z-Achse bestimmt. Zu diesem Zweck kann der Bearbeitungstisch 5 in verschiedene Hohenpositionen, beispielsweise von z-3 über z0 bis z3 verstellt werden. Zur Vermessung ist auf dem Bearbei- tungstisch eine Marke 9 angebracht, die in dem Beispiel von Figur 1 die Form eines andeutungsweise dargestellten Kreuz besitzt, wobei eine Markeneigenschaft, zum Beispiel die Linienbreite B oder auch die Balkenlange als Meßdistanz be- stimmt ist. Eine Marke 9* ist auch auf dem Werkstuck zumindest einmal vorgesehen.According to the invention, the camera 7 also determines the vertical position of the processing table 5 with respect to the z axis. For this purpose, the processing table 5 can be adjusted to different height positions, for example from z -3 to z 0 to z 3 . For the measurement, a mark 9 is attached to the work table, which in the example of FIG. 1 has the shape of an indicated cross, whereby a mark property, for example the line width B or the bar length, is determined as the measuring distance. A 9 * mark is also provided on the workpiece at least once.
Zunächst wird zur Erstellung einer Eichkurve der Bearbeitungstisch 5 ohne Werkstuck vermessen, wobei die Marke 9 an unterschiedlichen z-Positionen, zum Beispiel z-3 bis Z3 durch die Kamera aufgenommen wird. Dabei wird die vorgegebene Meß- distanz, also beispielsweise die Linienbreite B, als Funktion der jeweiligen Hohenposition oder 7-Position aufgetragen, so daß man aufgrund der Abbildungseigenschaften der Abbildungs- optik 8 einen Kurvenverlauf erhalt, wie er in Figur 2 dargestellt ist. Jeder z-Position ist also ein B-Wert zugeordnet, mit dem die Meßdistanz, also die Linienbreite B bei dieser entsprechenden Hohenposition gemessen wird. Die so gewonnenen Meßwerte werden als Eichpunkte EP-3 bis EP3 über den entspre- chenden z-Werten aufgetragen und bilden so eine Eichkurve EK1.To create a calibration curve, the processing table 5 is first measured without a workpiece, the mark 9 being recorded by the camera at different z positions, for example z -3 to Z 3 . In this case, the predetermined measuring distance, for example the line width B, is plotted as a function of the respective height position or 7 position, so that a curve profile as shown in FIG. 2 is obtained on the basis of the imaging properties of the imaging optics 8. A b-value is thus assigned to each z-position, with which the measuring distance, ie the line width B, is measured at this corresponding height position. The measurement values obtained in this way are plotted as calibration points EP -3 to EP 3 over the corresponding z values and thus form a calibration curve EK1.
Wird dann das Werkstuck 6 auf den Bearbeitungstisch aufgelegt, so kann die auf dem Werkstuck angebrachte Marke 9* in gleicher Weise vermessen werden. Für die unterschiedlichen z- Positionen erhalt man wiederum B-Meßwerte, die in Figur 2 als Meß-Punkte MP-3 bis MP3 dargestellt sind und zusammen eine 200310317If the workpiece 6 is then placed on the processing table, the mark 9 * attached to the workpiece can be measured in the same way. For the different z positions, B measured values are again obtained, which are shown in FIG. 2 as measuring points MP -3 to MP 3 and together one 200310317
6 Meßkurve MK1 ergeben. Beide Kurven, die Eichkurve EK1 und die Meßkurve MK1 besitzen ein Minimum EP0 bzw. MPi , das jeweils dem Fokusabstand der Marke 9 auf dem Bearbeitungstisch 5 bzw. auf dem Werkstück 6 entspricht. Die Differenz Δz zwischen den beiden Minima ist direkt die Werkstuckhohe .6 measurement curve MK1 result. Both curves, the calibration curve EK1 and the measurement curve MK1 have a minimum EP 0 or MPi, which corresponds in each case to the focus distance of the mark 9 on the processing table 5 or on the workpiece 6. The difference Δz between the two minima is directly the workpiece height.
Figur 3 zeigt eine gegenüber Figur letwas abgewandelte Anordnung. In diesem Fall wird der Strahlengang der Kamera 7 direkt durch die Fokussieroptik 4 des Laserstrahls, der in die- sem Bild nicht gezeigt ist, gelenkt, so daß die Beobachtung der Marke 9 auf dem Bearbeitungstisch 5 bzw. 9* auf dem Werkstuck 6 über die Fokussieroptik 4 erfolgt. Gemäß der zweiten Ausfuhrungsform der Erfindung werden nun in jeder der möglichen z-Positionen (z_3 bis z3) jeweils zwei Bildaufnahmen ge- maß Figur 3a und Figur 3b durchgeführt, wobei der Bearbeitungstisch zwischen den Positionen der Figuren 3a und 3b in Horizontalrichtung um einen genau definierten Wert Dx verfahren wird, wodurch eine Meßdistanz Dx festgelegt ist. Diese Meßdistanz Dx zwischen den beiden Bildaufnahmen wird in jeder Hohenposition mit einem unterschiedlichen virtuellen Wert gemessen. Tragt man diese virtuellen Meßwerte A der Meßdistanz Dx als Funktion der Höhenpositionen z auf, so ergibt sich eine Eichkurve EK2. Diese hat einen linearen Verlauf als Resultat der nicht optimalen Telezentrie des f-θ-Objekti vs, da der Strahlengang im Randbereich des f-θ-Objektivs nicht parallel zur optischen Achse, sondern unter einem gewissen Winkel erfolgt.Figure 3 shows a slightly modified arrangement compared to Figure. In this case, the beam path of the camera 7 is directed directly through the focusing optics 4 of the laser beam, which is not shown in this picture, so that the observation of the mark 9 on the processing table 5 or 9 * on the workpiece 6 is carried out via the Focusing optics 4 takes place. According to the second embodiment of the invention, two image recordings according to FIGS. 3a and 3b are now carried out in each of the possible z positions (z_ 3 to z 3 ), the processing table being horizontally one between the positions of FIGS. 3a and 3b exactly defined value Dx is moved, whereby a measuring distance Dx is fixed. This measuring distance Dx between the two image recordings is measured with a different virtual value in each height position. If one plots these virtual measured values A of the measuring distance Dx as a function of the height positions z, a calibration curve EK2 results. This has a linear course as a result of the non-optimal telecentricity of the f-θ object, since the beam path in the edge region of the f-θ objective is not parallel to the optical axis, but at a certain angle.
Beim Vermessen des Werkstucks 6 werden nun wiederum an der Marke 9* auf dem Werkstück zwei Bildaufnahmen durchgeführt, wobei auch in diesem Fall der Bearbeitungstisch 5 zwischen den Positionen von Figur 3a und Figur 3b horizontal um die Meßdistanz Dx verfahren wird. Der dabei bestimmte virtuelle Abstand ist ein direktes Maß für die Hohe des Werkstucks. Für die Darstellung in Figur 4 bedeutet dies beispielsweise, daß der Meßpunkt MA bei einer Hohenposition zo des Tisches 5 ermittelt wird, wobei die Messung in den beiden Positionen der 200310317When measuring the workpiece 6, two image recordings are now again carried out on the mark 9 * on the workpiece, the machining table 5 also being moved horizontally by the measuring distance Dx between the positions of FIGS. 3a and 3b in this case too. The virtual distance determined is a direct measure of the height of the workpiece. For the illustration in FIG. 4, this means, for example, that the measuring point MA is determined at a high position zo of the table 5, the measurement in the two positions of the 200310317
7 Figuren 3a und 3b einen virtuellen Abstand ergibt, der der Hohenposition z. entspricht. Die Hohe bzw. Dicke des Werkstucks entspricht also der Differenz Δz zwischen den Hohenpositionen z0 und z-i. 7 Figures 3a and 3b gives a virtual distance that the height position z. equivalent. The height or thickness of the workpiece thus corresponds to the difference Δz between the height positions z 0 and zi.

Claims

200310317Patentansprüche 200310317Patentansprüche
1. Verfahren zur Bestimmung der Oberflachen-Hohenposition eines Werkstucks (6) innerhalb einer Laserbearbeitungsmaschine, wobei ein Laserstrahl (2) über eine Fokussieroptik (4) auf das Werkstuck (6) gerichtet wird, das auf einem Trager (5) angeordnet und mit diesem dreidimensional verfahrbar ist, d a d u r c h g e k e n n z e i c h n e t , daß zumindest eine auf der Oberflache des Tragers (6) angeordnete Marke (9) mittels einer Kamera in mehreren vorgegebenen Hohenpositionen (z_3... z0... z3) des Tragers (5) vermessen wird, wobei eine vorgegebene, durch die Marke (9) gebildete Meßdistanz (B;Dx) in Abhängigkeit von der jeweiligen Hohenposition (z-3 bis z3) zu unterschiedlichen Meßwerten (EP_3 bis EP3; A-3 bis A3) fuhrt, aus denen eine Eichkurve (EK1) abgeleitet und gespeichert wird, daß dann mit zumindest einer auf der Oberflache des Werkstucks (6) angeordneten Marke (9*) ebenfalls die vorgegebene Meßdistanz (B;Dx) gebildet und mittels der Kamera (7) bei ei- ner bestimmten Hohenposition des Tragers (5) vermessen wird und daß durch den Vergleich eines derart gewonnenen Meßwertes (MP.MA) mit der F.ichkurve (F.K1; EK2) die Hohenposition der Werkstuckoberflache bestimmt wird.1. A method for determining the surface high position of a workpiece (6) within a laser processing machine, wherein a laser beam (2) is directed via a focusing lens (4) onto the workpiece (6), which is arranged on a carrier (5) and with it can be moved three-dimensionally, characterized in that at least one mark (9) arranged on the surface of the carrier (6) is measured by means of a camera in several predetermined height positions (z_ 3 ... z 0 ... z 3 ) of the carrier (5) , a predetermined measuring distance (B; Dx) formed by the mark (9) depending on the respective height position (z -3 to z 3 ) leading to different measured values (EP_ 3 to EP 3 ; A -3 to A 3 ) , from which a calibration curve (EK1) is derived and stored, that then with at least one mark (9 *) arranged on the surface of the workpiece (6) also forms the predetermined measuring distance (B; Dx) and by means of the camera (7) a certain high position is measured on the carrier (5) and that by comparing a measurement value (MP.MA) obtained in this way with the calibration curve (F.K1; EK2) the height position of the workpiece surface is determined.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Meßdistanz durch die Ausdehnung (B) der Marke (9) in einer vorgegebenen horizontalen Richtung bestimmt wird, daß die Kamera (7) eine von der Fokussieroptik (4) des Lasers (1) getrennte Abbildungseinheit (8) besitzt und daß sowohl die Eichkurve (EK1) als auch eine mit der Marke (9*) des Werkstucks (6) aufgenommene Meßkurve (MK1) ein dem Fokusabstand des Tragers (5) bzw. des Werkstücks (6) von der Abbildungseinheit (8) entsprechendes Minimum (EP0; MPj aufweist, wobei aus dem Vergleich der Minima die Hohenposition der Werkstuckoberflache ermittelt wird. 2003103172. The method according to claim 1, characterized in that the measuring distance is determined by the extent (B) of the mark (9) in a predetermined horizontal direction that the camera (7) one of the focusing optics (4) of the laser (1) separated Mapping unit (8) and that both the calibration curve (EK1) and a measurement curve (MK1) recorded with the mark (9 *) of the workpiece (6) have a focus distance of the carrier (5) or the workpiece (6) from the Imaging unit (8) has a corresponding minimum (EP 0 ; MPj, the height position of the workpiece surface being determined from the comparison of the minima. 200310317
99
3. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Meßdistanz durch den Abstand (Dx) zweier horizontal versetzter Positionen (Figur 3a, Figur 3b) der Marke (9) bestimmt wird, der in jeder Hohenposition (z_3 bis z3) durch einen vorgegebenen Horizontalversatz des Tragers (5) gebildet wird, daß in jeder Hohenposition (z-3 bis z3) zwei Aufnahmen mit der Kamera über eine die Fokussieroptik (4) des Lasersystems bildendes f-θ-Objektiv erstellt werden, daß aus dem gemessenen virtuellen Abstand (A-3 bis A3) der beiden Positionen der Marke (9) in jeder Hohenposition (z-3 bis z3) die Eichkurve (EK2) gebildet wird und daß durch zwei Bildaufnahmen einer auf der Oberflache des Werkstucks befindlichen Marke (9*) in zwei um die Meßdistanz (Dx) versetzten Horizontalpositionen ein virtueller Meßabstand (MA) ermittelt wird, der durch Vergleich mit der F.ichkurve (EK2) unmittelbar den Hohenwert für die Oberflache des Werkstucks (6) ergibt. 3. The method according to claim 1, characterized in that the measuring distance is determined by the distance (Dx) of two horizontally offset positions (Figure 3a, Figure 3b) of the mark (9), which in each height position (z_ 3 to z 3 ) by a predetermined horizontal offset of the carrier (5) is formed so that in each height position (z -3 to z 3 ) two pictures are taken with the camera via an f-θ lens forming the focusing optics (4) of the laser system, that from the measured virtual Distance (A -3 to A 3 ) between the two positions of the mark (9) in each height position (z -3 to z 3 ) the calibration curve (EK2) is formed and that two images of a mark located on the surface of the workpiece (9 *) A virtual measuring distance (MA) is determined in two horizontal positions offset by the measuring distance (Dx), which directly gives the high value for the surface of the workpiece (6) by comparison with the calibration curve (EK2).
PCT/EP2004/050535 2003-08-11 2004-04-16 Method for determining the position of the surface of a workpiece inside a laser machining unit WO2005016587A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10336861.2 2003-08-11
DE10336861A DE10336861B3 (en) 2003-08-11 2003-08-11 Determining surface position of workpiece in laser processing machine involves measuring carrier marker at several defined carrier height positions using camera, deriving and storing calibration curve

Publications (1)

Publication Number Publication Date
WO2005016587A1 true WO2005016587A1 (en) 2005-02-24

Family

ID=33441788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/050535 WO2005016587A1 (en) 2003-08-11 2004-04-16 Method for determining the position of the surface of a workpiece inside a laser machining unit

Country Status (2)

Country Link
DE (1) DE10336861B3 (en)
WO (1) WO2005016587A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034206A1 (en) * 1996-03-12 1997-09-18 Electro Scientific Industries, Inc. Multi-tool positioning system
US5948292A (en) * 1997-06-05 1999-09-07 Mitsubishi Denki Kabushiki Kaisha Laser beam machining apparatus, focus positioning device for laser beam machining apparatus, and converged laser beam diameter measuring device
US20030002055A1 (en) * 2001-06-29 2003-01-02 Alexander Kilthau Method of calibrating the optical system of a laser machine for processing electrical circuit substrates

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3209641B2 (en) * 1994-06-02 2001-09-17 三菱電機株式会社 Optical processing apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034206A1 (en) * 1996-03-12 1997-09-18 Electro Scientific Industries, Inc. Multi-tool positioning system
US5948292A (en) * 1997-06-05 1999-09-07 Mitsubishi Denki Kabushiki Kaisha Laser beam machining apparatus, focus positioning device for laser beam machining apparatus, and converged laser beam diameter measuring device
US20030002055A1 (en) * 2001-06-29 2003-01-02 Alexander Kilthau Method of calibrating the optical system of a laser machine for processing electrical circuit substrates

Also Published As

Publication number Publication date
DE10336861B3 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
EP1565288B1 (en) Method for determining the focal position of a laser beam
DE3318980C2 (en) Device for adjustment during projection copying of masks
DE2246152C2 (en) Method and apparatus for the mutual alignment of semiconductor wafers and masks
DE10131610C1 (en) Method for calibrating the optical system of a laser machine for processing electrical circuit substrates
DE2256736C3 (en) Measuring arrangement for the automatic testing of the surface quality and evenness of a workpiece surface
DE3110287C2 (en)
DE10296810B4 (en) Laser beam positioning device calculates unknown parameter, for directing laser beam to target position on workpiece, in accordance with distance between coordinates of current and target positions
DE2802416A1 (en) OPTICAL DEVICE
DE3507778A1 (en) DEVICE AND METHOD FOR CALIBRATING A MICROSCOPIC MACHINING SYSTEM BY MEANS OF AN ADJUSTING PLATE
DE102008011057A1 (en) Measuring device for a workpiece, which is mounted on a clamping table
EP1075642A1 (en) Device for measuring structures on a transparent substrate
DE69724331T2 (en) Method for producing a nozzle body and working device
DE102018118501A1 (en) Measuring device for determining a distance between a laser processing head and a workpiece, laser processing system with the same and method for determining a distance between a laser processing head and a workpiece
WO2009036716A1 (en) Method and arrangement for producing a laser beam with a linear beam cross section
WO2019011775A1 (en) Method and device for measuring and controlling a distance between a machining head and workpiece
EP2136958B1 (en) Method and device for machining a workpiece
DE19605255B4 (en) A method and apparatus for viewing wiring patterns in a printed circuit board
DE4012927A1 (en) MEASURING METHOD AND DEVICE FOR THE THREE-DIMENSIONAL POSITION CONTROL OF THE FOCAL POINT OF A HIGH-ENERGY LASER BEAM
DE102019120398B3 (en) Laser processing system and method for a central alignment of a laser beam in a processing head of a laser processing system
DE102006023321B4 (en) System for monitoring the focus during processing of a reflective substrate by means of a laser beam
EP0135673B1 (en) Process and device to determine a coordinate on the surface of a solid object
EP1097023B1 (en) Device for the laser processing of workpieces
DE3248382C2 (en)
DE10336861B3 (en) Determining surface position of workpiece in laser processing machine involves measuring carrier marker at several defined carrier height positions using camera, deriving and storing calibration curve
EP0262088B1 (en) Arrangement for positioning and synchronizing a writinglaser beam

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase