WO2005014803A1 - West nile virus vaccine - Google Patents

West nile virus vaccine Download PDF

Info

Publication number
WO2005014803A1
WO2005014803A1 PCT/JP2004/011041 JP2004011041W WO2005014803A1 WO 2005014803 A1 WO2005014803 A1 WO 2005014803A1 JP 2004011041 W JP2004011041 W JP 2004011041W WO 2005014803 A1 WO2005014803 A1 WO 2005014803A1
Authority
WO
WIPO (PCT)
Prior art keywords
west nile
nile virus
wnv
virus
vaccine
Prior art date
Application number
PCT/JP2004/011041
Other languages
French (fr)
Japanese (ja)
Inventor
Kengo Sonoda
Yuji Ishikawa
Kiyoto Nishiyama
Shoji Kuzuhara
Yoichiro Kino
Original Assignee
Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juridical Foundation The Chemo-Sero-Therapeutic Research Institute filed Critical Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Publication of WO2005014803A1 publication Critical patent/WO2005014803A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5254Virus avirulent or attenuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24161Methods of inactivation or attenuation
    • C12N2770/24164Methods of inactivation or attenuation by serial passage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to a West Nile virus (hereinafter sometimes referred to as “WNV”) vaccine.
  • WNV-infected cells obtained by culturing cell lines (Vero cells) derived from the kidney of African green lantern seeded with WNV, or a culture solution thereof.
  • a method for highly purifying WNV which is obtained by the method.
  • the present invention relates to WNV and a vaccine containing the WNV or an antigen component thereof.
  • West Nile virus is a single-stranded RNA virus having a diameter of about 50 nm and belonging to the Flaviviridae family, which uses birds such as crows, pigeons and sparrows as natural hosts. WNV also infects pests and humans through the transmission of mosquitoes, such as the Koga takae power, which breeds in paddy fields, the mosquito power that lives in urban areas, and the Aedes albopictus power. In the case of infectious diseases caused by the Japanese encephalitis virus (QEV) belonging to the same flaviviridae family, the mosquitoes that carry JEV are almost limited to the mosquito mosquitoes. Because they are transmitted by various mosquitoes, they are widespread, including in urban areas.
  • QEV Japanese encephalitis virus
  • WNV was first isolated from a febrile patient in Kenya in 1937. WNV infection has spread in Egypt, Israel, France, South Africa, and elsewhere since the 1950s, and has spread to African countries, the Middle East, Asia, and Europe since 1994. Outbreaks in four states on the mainland in 1999 resulted in 62 cases of infection. Mosquito control by spraying insecticides, etc., has reduced the number of infected people, but it has not been able to control the activity of the virus. confirmed. The epidemic of the year ultimately resulted in 284 deaths out of 4,156 infected individuals. Vaccines for pests against WNV infection have already been developed, and none have been developed for humans, which has greatly contributed to the prevention of infectious diseases. At present, WNV infection is prevented indirectly by mosquito control, and the development of an effective vaccine is urgently needed.
  • WNV is directly used as a vaccine material.
  • a live vaccine attenuated by passage of WNV with mosquito cells was effective against geese (see Non-Patent Document 1). It has been reported that WNV obtained from human brain was inactivated with formalin and administered with oil adjuvant, and then WNV challenge test showed 52-80% efficacy (see Non-Patent Document 2). I have.
  • vaccines that use infected mouse brain emulsion as a starting material may cause allergic central nervous system damage or contamination with pathogenic microorganisms due to contaminants derived from mouse brain. It has been pointed out that the use of animals is becoming difficult, and the production cost is high. In addition, the use of animals must be avoided as much as possible from the viewpoint of animal welfare. For live attenuated vaccines, a long-term vaccine effect can be expected, but there is concern that the pathogenicity may be restored by mutation.
  • flaviviridae viruses include a coat glycoprotein called E protein, which is a major infection-protecting antigen common to flaviviruses, and the potential of WNV vaccines using these proteins is also being studied.
  • E protein a coat glycoprotein
  • M. Malkinson and colleagues have confirmed that gooses have some WNV protective effects with a commercial vaccine derived from the Israeli Turkey Meningoencephalitis (TME) virus.
  • TME Israeli Turkey Meningoencephalitis
  • Non-patent document 1 S. Lustig et al, Viral Immunology, 13, 4, p.401-10 (2000)
  • Non-Patent Document 2 M. Malkinson et al., New York Academy of Sciences, 951, p.255-61 (2001)
  • Non-Patent Document 3 R.B.Tesh et al., Infectious Disease, 8, 3, p.245-51 (2002)
  • Non-Patent Document 4 N. Kanesa-Thasan et al, American Journal of Tropical Medicine and
  • Non-patent document 5 T. Wang et al., Journal of Immunology, 167, 9, p. 5273-7 (2001)
  • Non-patent document 6 JS Yang et al., Journal of Infectious Disease, 184, 7, p. 809-16 (2001)
  • Non-Patent Document 7 BS Davis et al, Journal of Virology, 75, 9, p. 4040-7 (2001)
  • Non-Noon Document 8 AG Pletnev et al., Proceeding of National Academy of Sciences USA, 99, 5, p. .3036-41 (2002)
  • an object of the present invention is to provide a highly purified WNV, a method for producing a WNV actin using the purified WNV, and a WNV vaccine produced by the method.
  • WNV was inoculated into Vero cells adhered to microcarriers and cultured at a high density, and this was inoculated with serum-free serum for virus culture.
  • Medium We found that WNV was produced in extremely large amounts by culturing under appropriate culture conditions in VP-SFM. In addition, this WNV was completely inactivated by formalin, and the inactivated WNV was highly purified by sucrose density gradient centrifugation and, optionally, further column chromatography.
  • the inactivated vaccine prepared using purified WNV was found to induce antibodies having high neutralizing ability against WNV and related Japanese encephalitis virus, and completed the present invention.
  • the present invention provides a method of inoculating WNV into Vero italocytes adhered to microcarriers and cultured at high density, and culturing them in a serum-free medium for virus culture VP-SFM under appropriate culture conditions. And a method for producing a purified and inactivated WNV, which comprises a step of inactivating the obtained virus solution with formalin, and purifying the virus solution by sucrose density gradient centrifugation, and optionally column chromatography. [0014] The present invention also includes purified and inactivated WNV highly purified by the above-mentioned production method and having a neutralizing activity against WNV and Japanese encephalitis virus.
  • a highly purified inactivated WNV and a method for producing the same are provided.
  • a serum-free, low-concentration protein medium is used to reduce the amount of impurity protein to be removed from the culture solution during virus growth.
  • the purification step can be simplified, so that the production time can be reduced, the yield of WNV can be improved, and high-purity WNV can be obtained. This will enable low cost, mass production and stable supply of WNV vaccines.
  • a serum-free medium since a serum-free medium is used, the possibility of contamination with unknown pathogens derived from serum can be reduced.
  • the purified and inactivated WNV of the present invention since the purified and inactivated WNV of the present invention has an ability to induce a neutralizing antibody against both WNV and Japanese encephalitis virus, it protects not only infections caused by WNV but also infections caused by Japanese encephalitis virus. It can be used as a vaccine with the efficacy of BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention provides (1) a step of inoculating WNV into Vero cells attached to a microcarrier and culturing it at a high density, (2) a step of inactivating WNV with formalin, and (3) a sucrose gradient.
  • the present invention relates to a method for producing purified inactivated WNV, which further comprises a step of optionally purifying WNV by column chromatography, and a purified inactivated WNV obtained by the production method.
  • the WNV used in the present invention a clinical isolate can be used, but the type of the strain is not particularly limited.
  • the CDC Centers for Disease Control
  • EglOl hereinafter, also referred to as “EG strain”
  • NY99-35262-ll hereinafter sometimes referred to as “NY stock”.
  • any animal cell can be used as long as it is an animal cell in which WNV is grown.
  • a host cell for obtaining a high-concentration virus solution is used. It is preferable to use a cell line that allows density culture.
  • Such cell lines include Vero cells, CHO cells, MDCK cells and the like. Preferably, Vero cells are used.
  • a medium used for growing Vero cells a commercially available medium generally used for tissue culture, such as an Ml99 medium or an Eagle MEM medium, may be prepared according to the attached use method.
  • a serum-free, low-concentration protein medium that does not contain animal serum.
  • VP-SFM GIBC II
  • EX-CELL series Nichirei
  • SFM-101 SFM-101 (Nissi), etc.
  • the pH of the medium is adjusted to 78, preferably 7.4, suitable for growing animal cells.
  • microcarriers for attaching Vero cells various types of microbeads having different types such as size, shape, density, surface charge, and surface coat material are commercially available. And use it.
  • microbeads such as Cytodex I (Cytodex I, Amersham Bioscience), Biosilon (Nargennuk International), and CELLYARD (Pentax) are preferred.
  • the amount of the cytodettas used is 1 to 10 g, preferably 3 to 5 g, per liter of the culture solution.
  • High-density culturing is achieved by culturing cells adhered to the microcarrier in a fermenter by the Fedo batch method.
  • Vero cells To attach Vero cells to cytodettas, put the cytodettas and the above-mentioned culture solution into a fermenter so that the concentration becomes 3 g / L, add 15 ⁇ 10 8 cells to this, and add the culture solution at a speed of 20 40 rpm. Is cultured while rotating and agitating, and the Itoda cells are allowed to adhere to cytodettas and proliferate.
  • the cultivation temperature and cultivation period are controlled by a combination of the number of cells to be attached, the culture scale, etc.
  • the cultivation temperature is 32 to 38 ° C, and the cultivation period is 2 to 7 days.
  • WNV inoculation is performed after the growth of Vero cells reaches a stable period.
  • the medium is aspirated off, and cells without serum or cells washed several times with phosphate buffered saline are inoculated with a viral load of 0.01 0.0001 (MOI).
  • Culture of virus-infected cells Cultivation is performed at 32-38 ° C for 115 days using a VP-SFM medium supplemented with L-glutamic acid.
  • the cells are cultured at 37 ° C for 2-3 days.
  • For the pH drop and nutrient deficiency that occur during the culture period add 2 to 10%, preferably 6% glucose, 10 to 20%, preferably 15% sodium carbonate solution as needed by the Fued-batch method.
  • no-nores contains an extremely high concentration of virus.
  • the above-mentioned virus stock solution is concentrated with an ultrafiltration membrane having an exclusion limit molecular weight of 100,000 to 500,000, preferably 30.500,000, and a final concentration of 0.02 0.1% This is done by adding formalin to the soy sauce and leaving it at about 4 ° C for 11 months.
  • the inactivation may be performed on the virus solution during or after purification. Completion of the inactivation is confirmed by inoculating a part of the inactivated virus stock solution into Vero cells, culturing the cells, and observing the presence or absence of virus growth.
  • the virus stock solution after the inactivation treatment is purified by sucrose density gradient centrifugation at 20,000-50,000 rpm for 2-24 hours. Preferably, sucrose density gradient centrifugation at 30,000 rpm for 16 hours is performed.
  • the virus-containing fraction thus obtained is highly purified, and is desalted by ultrafiltration or dialysis, or diluted with an appropriate buffer, and then sterile-filtered with a membrane filter to obtain the vaccine starting material.
  • Used as The vaccine raw materials include immunostimulants such as aluminum hydroxide, aluminum phosphate, mineral oil and non-mineral oil, stabilizers such as polysorbate 80, sugars such as amino acids and ratatose sucrose, and formalin, thimerosal, and 2-phenoki.
  • Formulation is carried out by appropriately selecting and adding a preservative such as ciethanol, benzyl alcohol, benzethonium chloride, and salt of benzenikonium.
  • a preservative such as ciethanol, benzyl alcohol, benzethonium chloride, and salt of benzenikonium.
  • a sugar such as ratatose or sucrose having an effect as an excipient is added, it can be formulated as a lyophilized preparation.
  • the virus-containing fraction after the above sucrose density gradient centrifugation is further purified by column chromatography depending on the purpose of use.
  • column chromatography include cation chromatography, anion chromatography, and adsorption chromatography, which are generally used for purification of proteins and polypeptides.
  • WNV granules Cellulose sulfate gel which can purify the particles with high purity is used.
  • Efficacy as a vaccine can be determined by inoculating an animal with the vaccine and conducting an challenge test or by measuring the virus neutralizing ability of the serum of the vaccinated animal. More specifically, mice are immunized with a suitably diluted WNV vaccine solution to produce antibodies against WNV. The effectiveness of the antibody as a vaccine can be examined by measuring the neutralizing activity of this antibody by the 50% plaque reduction method.
  • the method of immunization of a mouse may be a commonly used immunization method. For example, an immune serum is obtained by booster injection 13 to 13 weeks after the first vaccination with WNV vaccine, blood sampling 1 week after the booster vaccination, and serum separation.
  • the vaccine obtained according to the present invention not only induces a neutralizing antibody against W NV but also can induce a neutralizing antibody against Japanese encephalitis virus.
  • Vaccine According to a report by Ben-Nathan D et al. (J. Infect. Dis., 2003 Jul. 1; 188 (1), 5_12), it is clear that antibodies play an important role in the treatment and prevention of WNV infection. It has been suggested that the WNV vaccine of the present invention is extremely effective in preventing WNV infection. In addition, the vaccine of the present invention is expected to be a more effective vaccine when mixed with a vaccine derived from another W NV strain, for example, an EG strain.
  • At least one vaccine selected from the group consisting of vaccines against other viruses (eg, Japanese encephalitis virus, hepatitis A virus, rabies virus) and bacteria (eg, pertussis and diphtheria 'tetanus bacteria). By combining them, they can be used as a combination vaccine.
  • viruses eg, Japanese encephalitis virus, hepatitis A virus, rabies virus
  • bacteria eg, pertussis and diphtheria 'tetanus bacteria.
  • Vero cells (CCL-81 strain) purchased from ATCC were used as cell lines for virus propagation. This was suspended in M199 medium containing 10% serum and cultured in a 5% CO 2 incubator at 37 ° C. for 5-7 days. The obtained cells were stored as a cell bank. Cells were grown up to the tank culture using Dulbecco's MEM medium containing 5% Under the same conditions. For tank cultivation, use a 5 liter fermentation tank. Add 5 x 10 8 Vero cells and 15 g of cytodetase to 5 L of Dulbecco's MEM medium containing 5% serum, and add 3 to 7 at 37 ° C and 40 rpm. Cultured for days. This culture yields 1 ⁇ 10 6 or more cells per mL.
  • the cells attached to the cytodettas were washed with serum-free Dulbecco's MEM to remove serum and other cell metabolites generated during cell culture, and then infected with VP-S FM medium to an infection efficiency of 0.01%.
  • One liter of a WNV solution adjusted to be 1 was added, and the culture was continued.
  • the cells were cultured at 37 ° C. and a rotation speed of 20 rpm for 90 minutes.
  • the rotation speed was increased to 40 rpm, and the culture was continued while maintaining the dissolved oxygen content of 2 ppm.
  • the pH during the culture was maintained at 7.4 by adding a 15% sodium carbonate solution containing 6% gnorecose (Glu) as needed.
  • the culture solution was collected, and the virus content was measured by the plaque assay.
  • Table 1 shows the relationship between the above pH maintenance and the presence or absence of glucose addition and the virus content in the medium. Numerical values indicate virus production (nLoglO).
  • the harvested virus solution was subjected to coarse centrifugation at 3,000 rpm for 5 minutes to remove cytodotes and cells, and then concentrated to 10 to 30 times using an ultrafiltration membrane (exclusion limit molecular weight: 300,000).
  • SARTOCON SLICE DISPORSABLE Fuji filter
  • Formalin was added to the concentrated solution to a concentration of 0.08% and left at 4 ° C for 70-120 days to inactivate the virus.
  • virus particles were purified by sucrose density gradient centrifugation.
  • Rotor PR42 (Hitachi) was used, and 10-30 mL of 50% sucrose solution, 10-30 mL of 30% sucrose solution, and 10-30 mL of virus-inactivated sample solution were sequentially layered on a centrifuge tube, and then 30,000 rpm, 4 Centrifugation was performed at ° C for 16 hours. After centrifugation, sucrose concentration 40 at which OD280 absorbance is observed. Fractions lOOmL above / o were pooled. Then, after dialysis in 10 L of phosphate buffer at 4 ° C. for 1 day, the solution was sterile filtered to obtain a purified inactivated antigen. This was diluted with phosphate buffered saline so as to contain a protein amount of 30 zg / mL, and polysonolate 80 was added to this at a concentration of 0.01% to prepare a prototype vaccine.
  • a part of the purified inactivated antigen obtained by the sucrose density gradient ultracentrifugation was dialyzed against a buffer having a pH shown in Table 2 below. The same buffer was applied to a column filled with sulfated cell mouth fines. After washing with the same buffer, elution was carried out with the same buffer containing 0-3 M sodium chloride. The recovery was calculated from the absorbance of the eluted fraction and the liquid volume.
  • the purified inactivated antigen obtained by additional purification by column chromatography as described above was diluted with phosphate-buffered saline to contain a protein amount of 30 zg / mL, and polysorbate 80 was added thereto.
  • the prototype vaccine was added to make it 01%.
  • DNA extractor kit (Wako) was used for nucleic acid extraction from the specimen.
  • the obtained nucleic acid is converted to Biodot SF ( Bio-Rad), followed by hybridization with Vero cell-derived DNA labeled with the Gene Image Labeling System (Amersham Pharmacia Biotech), followed by Gene Image Detection Kit (Amersham). (Pharmacia Biotech).
  • the signal from chemiluminescence was quantified, and the amount of nucleic acid in the sample was determined using the standard sample as a standard. A known amount of Vero cell-derived nucleic acid was used as a standard sample.
  • the detection limit was 6.72 pg / mL, and the relative reproducibility was 37.04%.
  • the content of DNA derived from the host was less than lng per inoculum (15 ⁇ g of protein) before purification by chromatography, and less than lOOpg after purification by chromatography.
  • the protein obtained from the culture supernatant of Vero cells was immunized to rabbits and guinea pigs to prepare anti-Vero protein antibodies.
  • the anti-Vero protein guinea pig antibody was adsorbed to a 96-well plate (Nunc) at 500 ng / well, and an appropriately diluted prototype vaccine solution was added thereto, followed by incubation at 37 ° C for 2 hours. Next, add anti-Vero protein / sagi antibody in 100 ng / well and incubate at 37 ° C for 2 hours. And developed the color.
  • the protein amount was determined from a calibration curve created using known amounts of Vero protein.
  • the quantitation limit was 2.284 ng / mL, and the relative reproducibility was 8.84%. As a result, as shown in Table 4, it was shown that the amount was less than 100 ng per inoculation amount (protein amount: 15 zg).
  • test vaccine solution is used as it is or diluted 4-fold with phosphate-buffered saline, and inoculated in the abdominal cavity of ddY mouse (female, 4-week-old) in 0.5 mL aliquots into 20 mice, and boosted with the same volume one week later After one week, blood was collected and serum separated.
  • the neutralized antibody titer of the obtained serum was measured by a 50% plaque reduction method using Vero cells.
  • Vero cells As a control, Japanese encephalitis vaccine immune serum was used. Table 5 shows the results.
  • ddY mice (SPF, 3w female) were purchased from SLC Japan and used. After acclimation for about one week, the vaccines shown in Table 6 below were diluted 4-fold with PBS, and 0.5 mL was intraperitoneally administered twice a week at an interval of one week. One week after the administration, the WNV-NY99 strain was intraperitoneally administered with the dose shown in Table 6 below using the JEV Beijing strain as an aggressive virus, followed by observation for two weeks.
  • Table 6 shows the results after two weeks. The number is the number of surviving mice / number of test mice.
  • WNV was used as the challenge virus
  • most of the non-immunized mouse groups developed and died.
  • the JEV vaccine-administered group partially died of onset, which resulted in death, but there were some individuals who lost their energies, indicating that the protective effect of the JEV vaccine against WNV attack was partial. Indicated.
  • the WNV-NY strain vaccine showed perfect protection at all doses, with no transient deprivation.
  • JEV was used as the aggressive virus, half of the non-immunized mouse group developed part of the mice and died.
  • the JEV vaccine-administered group showed almost perfect protection against onset.
  • W NV—NY strain vaccine showed perfect protection.
  • the JEV vaccine is effective against JEV, but its efficacy against WNV is partial and insufficient.
  • the WNV vaccine did not show any transient desensitization or onset to WNV or JEV, indicating a complete protective effect.
  • the inactivated West Nile virus (WNV) obtained by the method of the present invention is highly purified and has a neutralizing activity against WNV and Japanese encephalitis virus. It can be used as an antigen material for vaccines against WNV and Japanese encephalitis virus infection by using it together with immunostimulants, dispersants, stabilizers, preservatives and the like.
  • the WNV of the present invention is used as an antigen for producing monoclonal antibodies and polyclonal antibodies, or as a research material relating to the binding of an anti-WNV antibody to WNV, for example, a detection system material such as ELISA and WB. Available.

Abstract

It is intended to provide process for producing a West Nile Virus (WNV) vaccine and an attenuated WNV vaccine produced by this method. A process which comprises culturing an established cell line (Vero cells) originating in the kidney of a WNV-inoculated vervet monkey at a high density, attenuating the WNV-infected cells or a liquid culture medium thereof thus obtained, and then highly purifying WNV by sucrose density gradient centrifugation; WNV obtained by this process; and an attenuated WNV vaccine comprising the WNV or an antigenic component thereof as the main component and being substantially free from any nucleic acids or proteins originating in a host.

Description

明 細 書 技術分野  Description Technical field
[0001] 本願発明は、西ナイルウィルス(以下、「WNV」と称することもある)ワクチンに関す る。詳細には、 WNVを接種したアフリカミドリザノレ腎臓由来の株化細胞 (Vero細胞) を培養して得られる WNV感染細胞又はその培養液力 WNVを高度に精製する方 法、当該方法により得られる WNV、及び当該 WNV又はその抗原成分を含むワクチ ンに関する。  The present invention relates to a West Nile virus (hereinafter sometimes referred to as “WNV”) vaccine. In detail, WNV-infected cells obtained by culturing cell lines (Vero cells) derived from the kidney of African green lantern seeded with WNV, or a culture solution thereof. A method for highly purifying WNV, which is obtained by the method. The present invention relates to WNV and a vaccine containing the WNV or an antigen component thereof.
^景技術  ^ Scenic technology
[0002] 西ナイルウィルス (WNV)は、カラス、ハト、スズメ等の鳥類を自然宿主とする、フラ ビウィルス科に属する直径約 50nmの一本鎖 RNAウィルスである。 WNVは、水田域 を繁殖の場とするコガタァカイエ力や都市部でも生息するァカイエ力、ヒトスジシマ力 等の蚊の媒介により、ゥマ、ヒトにも感染する。同じフラビウィルス科に属する日本脳 炎ウィルス QEV)による感染症の場合、 JEVを媒介する蚊がコガタァカイエ力にほぼ 限定されるため、その流行範囲は局地的である力 WNV感染症は、 WNVが種々の 蚊によって媒介されるため、都市部を含む広範囲に亘つて流行する。  [0002] West Nile virus (WNV) is a single-stranded RNA virus having a diameter of about 50 nm and belonging to the Flaviviridae family, which uses birds such as crows, pigeons and sparrows as natural hosts. WNV also infects pests and humans through the transmission of mosquitoes, such as the Koga takae power, which breeds in paddy fields, the mosquito power that lives in urban areas, and the Aedes albopictus power. In the case of infectious diseases caused by the Japanese encephalitis virus (QEV) belonging to the same flaviviridae family, the mosquitoes that carry JEV are almost limited to the mosquito mosquitoes. Because they are transmitted by various mosquitoes, they are widespread, including in urban areas.
[0003] WNVがヒトに感染した場合、 84%は不顕性であるか又は夏風邪様の軽い症状を 呈した後治癒するが、発疹、筋肉痛、肝炎などのデング熱様症状、脳炎などの重い 症状を引き起こす場合もある。このような重い症状を呈した場合、発症者の 93%は入 院治療を余儀なくされ、その内の 31 %に対して集中治療が行われる。発症者のうち 、 33%が神経系の後遺症を残し、 9%が死亡する。この傾向は、高齢者ほど高い。  [0003] When WNV is transmitted to humans, 84% are subclinical or have mild symptoms like a summer cold and then heal. However, dengue-like symptoms such as rash, myalgia, hepatitis, encephalitis, etc. May cause severe symptoms. In the case of such severe symptoms, 93% of affected individuals are required to be hospitalized, with 31% receiving intensive care. Of the affected individuals, 33% will have sequelae of the nervous system and 9% will die. This tendency is higher for older people.
[0004] WNVは 1937年にウガンダで有熱症状の患者からはじめて分離された。 WNV感 染症は、 1950年代以降、エジプト、イスラエル、フランス、南アフリカ等で流行し、 19 94年以降には、アフリカ諸国や中東、アジア、ヨーロッパにも広がった。 1999年にァ メリ力本土の 4つの州で流行したときは、 62名の感染者が確認された。殺虫剤散布等 による蚊の駆除により、ー且は、感染者数は減少したが、ウィルスの活動を抑えること はできず、 2002年に流行したときは、アメリカ本土のほぼ全域からウィルス感染者が 確認された。この年の流行により、最終的には 4156名の感染者のうち、 284名が死 亡するという大きな被害がもたらされた。 WNV感染症に対するゥマ用のワクチンは既 に開発され、その感染症予防に大いに役立っている力 ヒト用に開発されたものはな レ、。現在、 WNV感染予防には、蚊の駆除による間接的な手法がとられており、早急 に有効なワクチンの開発が望まれるところである。 [0004] WNV was first isolated from a febrile patient in Uganda in 1937. WNV infection has spread in Egypt, Israel, France, South Africa, and elsewhere since the 1950s, and has spread to African countries, the Middle East, Asia, and Europe since 1994. Outbreaks in four states on the mainland in 1999 resulted in 62 cases of infection. Mosquito control by spraying insecticides, etc., has reduced the number of infected people, but it has not been able to control the activity of the virus. confirmed. The epidemic of the year ultimately resulted in 284 deaths out of 4,156 infected individuals. Vaccines for pests against WNV infection have already been developed, and none have been developed for humans, which has greatly contributed to the prevention of infectious diseases. At present, WNV infection is prevented indirectly by mosquito control, and the development of an effective vaccine is urgently needed.
[0005] これまでに、レ、くつかの異なるタイプの WNVワクチンの開発が試みられている。一 つは、直接、 WNVをワクチン材料とするもので、 WNVを蚊の細胞で継代して弱毒し た生ワクチンがガチョウに対して有効であったこと(非特許文献 1参照)及び幼少マウ スの脳から得た WNVをホルマリンで不活化してオイルアジュバントとともに投与した 後、 WNV攻撃試験を行うと 52— 80%の有効性が認められたこと (非特許文献 2参照 )が報告されている。しかしながら、感染したマウス脳乳剤を出発材料とするワクチン に対しては、マウス脳由来の汚染物質によるアレルギー性中枢神経障害や病原微生 物の混入の恐れがあること、製造に際して大量にマウスを供給することが困難になり つつあり、その製造コストも高いことなどの問題が指摘されており、加えて動物愛護の 点から動物の使用は極力避けることが求められている。弱毒生ワクチンについては、 長期にわたるワクチン効果が期待できるが、突然変異による病原性の復帰が懸念さ れる。 [0005] To date, development of several different types of WNV vaccines has been attempted. One is that WNV is directly used as a vaccine material. A live vaccine attenuated by passage of WNV with mosquito cells was effective against geese (see Non-Patent Document 1). It has been reported that WNV obtained from human brain was inactivated with formalin and administered with oil adjuvant, and then WNV challenge test showed 52-80% efficacy (see Non-Patent Document 2). I have. However, vaccines that use infected mouse brain emulsion as a starting material may cause allergic central nervous system damage or contamination with pathogenic microorganisms due to contaminants derived from mouse brain. It has been pointed out that the use of animals is becoming difficult, and the production cost is high. In addition, the use of animals must be avoided as much as possible from the viewpoint of animal welfare. For live attenuated vaccines, a long-term vaccine effect can be expected, but there is concern that the pathogenicity may be restored by mutation.
[0006] また、フラビウィルス科のウィルスには、フラビウィルスに共通の主要な感染防御抗 原である、 E蛋白と呼ばれる外皮糖蛋白質があり、これを利用した WNVワクチンの可 能性も検討されている。例えば、 M. Malkinsonらは、イスラエル七面鳥髄膜脳炎(TM E)ウィルス由来の巿販ワクチンで一定の WNV防御効果をガチョウにぉレ、て確認し ている。ホルマリンで不活化した TMEウィルスをオイルアジュバントとともに投与した 後の WNV攻撃試験では 39 %— 72 %の効果が認められた (非特許文献 2参照)。  [0006] In addition, flaviviridae viruses include a coat glycoprotein called E protein, which is a major infection-protecting antigen common to flaviviruses, and the potential of WNV vaccines using these proteins is also being studied. ing. For example, M. Malkinson and colleagues have confirmed that gooses have some WNV protective effects with a commercial vaccine derived from the Israeli Turkey Meningoencephalitis (TME) virus. In a WNV challenge test after administration of a formalin-inactivated TME virus together with an oil adjuvant, an effect of 39% to 72% was observed (see Non-Patent Document 2).
Teshらは、ハムスターに日本脳炎ワクチン、野生型セントルイス脳炎ウィルス及び黄 熱病ワクチンを予防的に投与することにより、西ナイルワクチンの感染後の症状が軽 減されたことを報告している(非特許文献 3参照)。し力、し、 N. Kanesa-Thasanらは、ヒ トに日本脳炎ワクチンとデング熱ワクチンを投与したところ、これらに対する防御抗体 は惹起できたものの西ナイルイルスに対する中和抗体は誘導できなかったことを報告 しており(非特許文献 4参照)、 WNV感染に対する効果は、必ずしも一定しない。 Tesh et al. Reported that prophylactic administration of Japanese encephalitis vaccine, wild-type St. Louis encephalitis virus, and yellow fever vaccine to hamsters reduced symptoms following West Nile vaccine infection (non-patented). Reference 3). N. Kanesa-Thasan et al. Reported that when humans were administered Japanese encephalitis vaccine and dengue vaccine, protective antibodies against them were elicited, but neutralizing antibodies against West Nile virus could not be induced. (See Non-Patent Document 4), and its effect on WNV infection is not always constant.
[0007] 一方、遺伝子組換え技術を利用した WNVワクチンの開発も進められている。 T. [0007] On the other hand, development of WNV vaccines using genetic recombination technology is also in progress. T.
Wangらは、大腸菌で発現させた WNVの E蛋白が WNV感染者血清と反応したこと、 この E蛋白を免疫して得たマウス抗体が WNVの感染を防御したことを明らかにし、い わゆる、組換えコンポーネントワクチンの可能性を報告している(非特許文献 5参照) 。また、 J. S. Yangらは、 WNVの力プシド蛋白遺伝子をコードする DNAをマウスに免 疫すると、強力な細胞性免疫と液性免疫が誘導されることを明らかにし (非特許文献 6参照)、 B. S. Davisらは、 WNVのプレメンブレン蛋白(preM)と E蛋白遺伝子をコー ドする DNAを免疫したマウス及びゥマは WNV感染から防御されることを示した(非 特許文献 7参照)。これらの結果は、発現ベクターを直接に生体内に導入する DNA ワクチンの可能性を示唆する。  Wang et al. Showed that WNV E protein expressed in Escherichia coli reacted with sera from WNV-infected individuals and that mouse antibodies obtained by immunizing this E protein protected WNV infection. It reports the potential of a recombinant component vaccine (see Non-Patent Document 5). JS Yang et al. Showed that immunization of mice with DNA encoding the WNV force psid protein gene induces strong cellular and humoral immunity (see Non-Patent Document 6). Davis et al. Have shown that mice and horses immunized with DNA encoding the WNV premembrane protein (preM) and E protein gene are protected from WNV infection (see Non-Patent Document 7). These results suggest the possibility of a DNA vaccine that directly introduces an expression vector into a living body.
[0008] 更に、複数のウィルス感染を防御するキメラワクチンの可能性も検討されている。 G. [0008] Furthermore, the possibility of a chimeric vaccine that protects against multiple virus infections is also being investigated. G.
Pletnevらはデングウィルス 4型のプレメンブレン蛋白(preM)とエンベロープ蛋白(E )をコードする遺伝子領域を西ナイルウィルスのそれと置き換えたキメラウィルスは動 物実験では神経病原性も低ぐ WNV攻撃試験においてもマウスに高い防御効果を 付与したことを明らかにした (非特許文献 8参照)。また、米国では、黄熱病ウィルスヮ クチン株である 17D株のウィルスゲノムに、 WNVの外被膜糖蛋白(E蛋白)遺伝子と その上流の PreM遺伝子を組み込んだキメラウィルスワクチンの開発が進められてい る(非特許文献 9参照)。遺伝子組換え技術を利用した上記の試みは、いずれも現在 基礎的な検討段階にあり、ワクチンとして使用できる程度に高度に精製したとの報告 はなぐ実用化に至るまでには、精製や製剤化方法、安全性、有効性、コストなど、解 決すべき課題が多い。  Pletnev and colleagues reported that a chimeric virus in which the gene regions encoding the dengue virus type 4 premembrane protein (preM) and envelope protein (E) were replaced with that of West Nile virus had low neuropathogenicity in animal experiments in WNV challenge tests. Also conferred a high protective effect on mice (see Non-Patent Document 8). In the United States, the development of a chimeric virus vaccine in which WNV outer coat glycoprotein (E protein) gene and its upstream PreM gene have been integrated into the virus genome of the yellow fever virus bacterium strain 17D strain ( Non-Patent Document 9). All of the above trials using genetic recombination technology are currently in the basic examination stage, and it has not been reported that they have been highly purified enough to be used as vaccines. There are many issues to be resolved, such as methods, safety, effectiveness, and costs.
[0009] 非特許文献 1: S. Lustig et al, Viral Immunology, 13, 4, p.401-10 (2000) [0009] Non-patent document 1: S. Lustig et al, Viral Immunology, 13, 4, p.401-10 (2000)
非特許文献 2 : M. Malkinson et al., New York Academy of Sciences, 951, p.255-61 (2001)  Non-Patent Document 2: M. Malkinson et al., New York Academy of Sciences, 951, p.255-61 (2001)
非特許文献 3 : R. B. Tesh et al., Infectious Disease, 8, 3, p.245-51 (2002)  Non-Patent Document 3: R.B.Tesh et al., Infectious Disease, 8, 3, p.245-51 (2002)
非特許文献 4 : N. Kanesa-Thasan et al, American Journal of Tropical Medicine and Non-Patent Document 4: N. Kanesa-Thasan et al, American Journal of Tropical Medicine and
Hygiene, 66, 2, p.115-6 (2002) 非特許文献 5 : T. Wang et al., Journal of Immunology, 167, 9, p.5273-7 (2001) 非特許文献 6 : J. S. Yang et al., Journal of Infectious Disease, 184, 7, p.809-16 (2001) Hygiene, 66, 2, p.115-6 (2002) Non-patent document 5: T. Wang et al., Journal of Immunology, 167, 9, p. 5273-7 (2001) Non-patent document 6: JS Yang et al., Journal of Infectious Disease, 184, 7, p. 809-16 (2001)
非特許文献 7 : B. S. Davis et al, Journal of Virology, 75, 9, p.4040-7 (2001) 非特午文献 8 : A. G. Pletnev et al., Proceeding of National Academy of Sciences U. S. A., 99, 5, p.3036-41 (2002)  Non-Patent Document 7: BS Davis et al, Journal of Virology, 75, 9, p. 4040-7 (2001) Non-Noon Document 8: AG Pletnev et al., Proceeding of National Academy of Sciences USA, 99, 5, p. .3036-41 (2002)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0010] 上述したように、 WNV感染に対する種々のワクチンの可能性が検討されている力 現在までに、西ナイルウィルス (WNV)の感染を効果的に阻止し、安全性、低コスト、 安定供給等の条件を満足できる WNVワクチン及びその製造方法は存在しない。 [0010] As described above, the potential of various vaccines against WNV infection is being studied. Until now, West Nile virus (WNV) infection has been effectively prevented, and safety, low cost, and stable supply have been achieved. There is no WNV vaccine that satisfies such conditions and a method for producing the same.
[0011] したがって、本願発明は、高度に精製した WNV及び精製 WNVを用いた WNVヮ クチンの製造方法並びに当該方法により製造される WNVワクチンを提供することを 目的とする。 [0011] Accordingly, an object of the present invention is to provide a highly purified WNV, a method for producing a WNV actin using the purified WNV, and a WNV vaccine produced by the method.
課題を解決するための手段  Means for solving the problem
[0012] 本願発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、マイクロ キャリアに付着させて高密度に培養した Vero細胞に WNVを接種し、これをウィルス 培養用無血清培地 VP— SFM中で適切な培養条件下に培養することにより、 WNV が極めて大量に産生されることを見出した。更に、この WNVはホルマリンによって完 全に不活化されること、不活化された WNVはショ糖密度勾配遠心法により、及び任 意にカラムクロマトグラフィーを更に行うことにより高度に精製されること、この精製 W NVを用いて調製した不活化ワクチンは、 WNV及び類縁の日本脳炎ウィルスに対し て高い中和能を有する抗体を誘導することを見出し、本願発明を完成するに至った。  [0012] The inventors of the present application have conducted intensive studies in order to achieve the above object, and as a result, WNV was inoculated into Vero cells adhered to microcarriers and cultured at a high density, and this was inoculated with serum-free serum for virus culture. Medium We found that WNV was produced in extremely large amounts by culturing under appropriate culture conditions in VP-SFM. In addition, this WNV was completely inactivated by formalin, and the inactivated WNV was highly purified by sucrose density gradient centrifugation and, optionally, further column chromatography. The inactivated vaccine prepared using purified WNV was found to induce antibodies having high neutralizing ability against WNV and related Japanese encephalitis virus, and completed the present invention.
[0013] したがって、本願発明は、マイクロキャリアに付着させて高密度に培養した Vero糸田 胞に WNVを接種し、これをウィルス培養用無血清培地 VP— SFM中で適切な培養 条件下に培養し、得られたウィルス液をホルマリンで不活化し、これをショ糖密度勾 配遠心法により、更に任意にカラムクロマトグラフィーにより精製する工程を含む精製 不活化 WNVの製造方法を包含する。 [0014] また、本願発明は、上記の製造方法により高度に精製された、且つ WNV及び日本 脳炎ウィルスに対して中和活性を有する精製不活化 WNVを包含する。 [0013] Accordingly, the present invention provides a method of inoculating WNV into Vero italocytes adhered to microcarriers and cultured at high density, and culturing them in a serum-free medium for virus culture VP-SFM under appropriate culture conditions. And a method for producing a purified and inactivated WNV, which comprises a step of inactivating the obtained virus solution with formalin, and purifying the virus solution by sucrose density gradient centrifugation, and optionally column chromatography. [0014] The present invention also includes purified and inactivated WNV highly purified by the above-mentioned production method and having a neutralizing activity against WNV and Japanese encephalitis virus.
発明の効果  The invention's effect
[0015] 本願発明によれば、高度に精製された不活化 WNV及びその製造方法が提供され る。マイクロキャリアに付着させた Vero細胞に WNVを感染させて、これを高密度培 養することにより、高濃度のウィルス液を得ることが可能となる。本願発明では、ウィル スの増殖時には、培養液中の除去すべき不純蛋白量を低減する為に、無血清、低 濃度蛋白の培地が使用される。これにより、精製ステップを簡素化することができるの で、製造時間の短縮、 WNVの収率向上、且つ高純度 WNVの取得を達成すること ができる。これは、 WNVワクチンの低コスト、大量生産、安定供給を可能にする。また 、無血清培地を使用するので、血清由来の未知病原体混入の可能性を低減すること ができる。  According to the present invention, a highly purified inactivated WNV and a method for producing the same are provided. By infecting Vero cells attached to microcarriers with WNV and culturing them at high density, it is possible to obtain a high-concentration virus solution. In the present invention, a serum-free, low-concentration protein medium is used to reduce the amount of impurity protein to be removed from the culture solution during virus growth. As a result, the purification step can be simplified, so that the production time can be reduced, the yield of WNV can be improved, and high-purity WNV can be obtained. This will enable low cost, mass production and stable supply of WNV vaccines. In addition, since a serum-free medium is used, the possibility of contamination with unknown pathogens derived from serum can be reduced.
[0016] また、本願発明の精製不活化 WNVは、 WNV及び日本脳炎ウィルスの両方に対 する中和抗体の誘発能を有するので、 WNVによる感染症だけでなぐ 日本脳炎ウイ ノレスによる感染症を防御する効力を備えたワクチンとして使用することができる。 発明を実施するための最良の形態  [0016] Further, since the purified and inactivated WNV of the present invention has an ability to induce a neutralizing antibody against both WNV and Japanese encephalitis virus, it protects not only infections caused by WNV but also infections caused by Japanese encephalitis virus. It can be used as a vaccine with the efficacy of BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 本願発明は、(1)マイクロキャリアに付着させた Vero細胞に WNVを接種して高密 度培養する工程、(2)ホルマリンで WNVを不活化する工程、(3)ショ糖密度勾配遠 心により、更に任意にカラムクロマトグラフィーにより WNVを精製する工程を含む精 製不活化 WNVの製造方法、及びその製造方法によって得られる精製不活化 WNV に関する。 [0017] The present invention provides (1) a step of inoculating WNV into Vero cells attached to a microcarrier and culturing it at a high density, (2) a step of inactivating WNV with formalin, and (3) a sucrose gradient. The present invention relates to a method for producing purified inactivated WNV, which further comprises a step of optionally purifying WNV by column chromatography, and a purified inactivated WNV obtained by the production method.
[0018] 本願発明に使用する WNVとして、臨床分離株を使用できるが、株の種類について は特に制限されない。本願発明の好ましい態様では、長崎大学熱帯医学研究所の 森田公一氏から分与された EglOl (以下、「EG株」と称することもある)及び森田公 一氏を通じてアメリカ CDC (Centers for Disease Control and Prevention)の Gubler氏 により分与された NY99-35262-l l (以下、「NY株」と称することもある)を用いる。  [0018] As the WNV used in the present invention, a clinical isolate can be used, but the type of the strain is not particularly limited. In a preferred embodiment of the present invention, the CDC (Centers for Disease Control) in the United States is provided through EglOl (hereinafter, also referred to as “EG strain”) and Koichi Morita donated by Mr. Koichi Morita of the Institute of Tropical Medicine, Nagasaki University. and Prevention), NY99-35262-ll (hereinafter sometimes referred to as “NY stock”) distributed by Gubler.
[0019] WNVの増殖に用いる宿主細胞としては、 WNVが増殖する動物細胞であるならば 如何なるものも使用可能であるが、本願発明では、高濃度のウィルス液を得る為の高 密度培養が可能な株化細胞を使用するのが好ましい。このような株化細胞として、 V ero細胞、 CHO細胞、 MDCK細胞等が挙げられる力 好ましくは、 Vero細胞である [0019] As the host cell used for WNV growth, any animal cell can be used as long as it is an animal cell in which WNV is grown. However, in the present invention, a host cell for obtaining a high-concentration virus solution is used. It is preferable to use a cell line that allows density culture. Such cell lines include Vero cells, CHO cells, MDCK cells and the like. Preferably, Vero cells are used.
[0020] Vero細胞の増殖に用いる培地は、 Ml 99培地、イーグル MEM培地など、一般的 に組織培養に使用される市販の培地を、添付の使用方法に従って調製すれば良い 。好ましくは、ダルベッコ MEM培地にアミノ酸、塩類、抗カビ '抗菌剤及び動物血清 等を添加したものが使用される。 WNVを感染させた感染細胞を培養する際には、動 物血清を含まない無血清、低濃度蛋白質培地を使用するのが好ましい。このような 培地として、 VP— SFM (GIBC〇社)、 EX— CELLシリーズ(二チレイ)、 SFM— 101 ( ニッスィ)などが市販されている力 好ましくは、 VP—SFMが使用される。培地の pH は、動物細胞の増殖に適した 7 8、好ましくは、 7.4に調整される。 [0020] As a medium used for growing Vero cells, a commercially available medium generally used for tissue culture, such as an Ml99 medium or an Eagle MEM medium, may be prepared according to the attached use method. Preferably, Dulbecco's MEM medium supplemented with amino acids, salts, antifungal agents, animal serum and the like is used. When culturing infected cells infected with WNV, it is preferable to use a serum-free, low-concentration protein medium that does not contain animal serum. As such a medium, VP-SFM (GIBC II), EX-CELL series (Nichirei), SFM-101 (Nissi), etc. are commercially available. Preferably, VP-SFM is used. The pH of the medium is adjusted to 78, preferably 7.4, suitable for growing animal cells.
[0021] Vero細胞を付着させる為のマイクロキャリアとしては、サイズ、形状、密度、表面荷 電及び表面コート材質などタイプの異なる種々のマイクロビーズが市販されているの で、この中から適宜選択して用いれば良い。例えば、サイトデッタス(Cytodex I、アマ シャムバイオサイエンス社)、バイオシロン(ナルジェヌンクインターナショナル)、 CELLYARD (ペンタックス社)などのマイクロビーズが挙げられる力 \好ましくは、サイト デッタス(サイトデッタス I)である。当該サイトデッタスの使用量は、培養液 1Lあたり、 1 一 10g、好ましくは、 3— 5gである。  [0021] As microcarriers for attaching Vero cells, various types of microbeads having different types such as size, shape, density, surface charge, and surface coat material are commercially available. And use it. For example, microbeads such as Cytodex I (Cytodex I, Amersham Bioscience), Biosilon (Nargennuk International), and CELLYARD (Pentax) are preferred. The amount of the cytodettas used is 1 to 10 g, preferably 3 to 5 g, per liter of the culture solution.
[0022] 高密度培養は、マイクロキャリアに付着させた細胞をフェドーバッチ法によりファーメ ンターで培養することにより達成される。 Vero細胞のサイトデッタスへの付着は、 3g /Lとなるようにサイトデッタス及び前記の培養液をフアーメンターに入れ、これに 1一 5 X 108の細胞をカ卩え、 20 40rpmの速度で培養液を回転攪拌しながら培養し、糸田 胞をサイトデッタスに付着させ、増殖させる。培養温度及び培養期間は、付着させると きの細胞数、培養スケール等の組み合わせにより調節される力 培養温度 32— 38 °C、培養期間 2— 7日間である。 [0022] High-density culturing is achieved by culturing cells adhered to the microcarrier in a fermenter by the Fedo batch method. To attach Vero cells to cytodettas, put the cytodettas and the above-mentioned culture solution into a fermenter so that the concentration becomes 3 g / L, add 15 × 10 8 cells to this, and add the culture solution at a speed of 20 40 rpm. Is cultured while rotating and agitating, and the Itoda cells are allowed to adhere to cytodettas and proliferate. The cultivation temperature and cultivation period are controlled by a combination of the number of cells to be attached, the culture scale, etc. The cultivation temperature is 32 to 38 ° C, and the cultivation period is 2 to 7 days.
[0023] WNVの接種は、 Vero細胞の増殖が安定期に達した後に行われる。培地を吸引除 去し、血清を添加していない培地又はリン酸緩衝食塩水で数回洗浄した細胞に、感 染効率(M.O.I.) 0.01 0.0001のウィルス量が接種される。ウィルス感染細胞の培 養は、 VP—SFM培地に L一グルタミン酸を添加した培地を用いて、 32— 38°Cで 1一 5日間行われる。好ましくは、 37°Cで 2— 3日間培養する。培養期間中に生ずる pHの 低下及び栄養分の不足に対し、フエド-バッチ法による 2— 10%、好ましくは、 6%グ ルコースを含む、 10 20%、好ましくは、 15%炭酸ナトリウム液が随時添加され、 p Hの維持及び栄養分の補給が行われる。培養終了後の培養液は、不溶物を除去す るために粗遠心又は膜濾過に供される。こうして得られるウィルス含有液(以下、「ウイ ノレス原液」と称することもある)には、極めて高濃度のウィルス量が含まれる。 [0023] WNV inoculation is performed after the growth of Vero cells reaches a stable period. The medium is aspirated off, and cells without serum or cells washed several times with phosphate buffered saline are inoculated with a viral load of 0.01 0.0001 (MOI). Culture of virus-infected cells Cultivation is performed at 32-38 ° C for 115 days using a VP-SFM medium supplemented with L-glutamic acid. Preferably, the cells are cultured at 37 ° C for 2-3 days. For the pH drop and nutrient deficiency that occur during the culture period, add 2 to 10%, preferably 6% glucose, 10 to 20%, preferably 15% sodium carbonate solution as needed by the Fued-batch method. PH is maintained and nutrients are replenished. After completion of the culture, the culture solution is subjected to rough centrifugation or membrane filtration to remove insolubles. The virus-containing solution obtained in this manner (hereinafter sometimes referred to as "no-nores") contains an extremely high concentration of virus.
[0024] ウィルスの不活化処理は、前記のウィルス原液を排除限界分子量 10— 50万、好ま しくは、排除限界分子量 30 50万の限外濾過膜で濃縮後、これに終濃度が 0.02 0.1 %となるようにホルマリンを添カ卩し、 4°C前後で 1一 3ヶ月間静置することにより行 われる。当該不活化は、精製途中又は精製後のウィルス液に対して行っても良い。 不活化の完了は、不活化処理されたウィルス原液の一部を、 Vero細胞に接種し、こ れを培養してウィルスの増殖の有無を見ることにより確認される。  [0024] In the virus inactivation treatment, the above-mentioned virus stock solution is concentrated with an ultrafiltration membrane having an exclusion limit molecular weight of 100,000 to 500,000, preferably 30.500,000, and a final concentration of 0.02 0.1% This is done by adding formalin to the soy sauce and leaving it at about 4 ° C for 11 months. The inactivation may be performed on the virus solution during or after purification. Completion of the inactivation is confirmed by inoculating a part of the inactivated virus stock solution into Vero cells, culturing the cells, and observing the presence or absence of virus growth.
[0025] 不活化処理後のウィルス原液は、 20,000— 50,000rpm、 2— 24時間のショ糖密 度勾配遠心により精製される。好ましくは、 30,000rpm, 16時間のショ糖密度勾配 遠心が行われる。こうして得られるウィルス含有画分は、高度に精製されたもので、限 外濾過法もしくは透析法等により脱糖するか又は適当な緩衝液で希釈した後、メンブ ランフィルターで無菌濾過し、ワクチン原料として使用される。このワクチン原料に、水 酸化アルミニウム、リン酸アルミニウム、ミネラルオイル及びノンミネラルオイル等の免 疫賦活剤、ポリソルベート 80、アミノ酸及びラタトースゃスクロース等の糖等の安定剤 及びホルマリン、チメロサール、 2—フエノキシエタノール、ベンジルアルコール、塩化 ベンゼトニゥム及び塩ィヒベンザルコニゥム等の保存剤を適宜選択して添加することに より製剤化が行われる。また、賦形剤としての効果を有するラタトース、スクロース等の 糖を添加した場合、凍結乾燥製剤として製剤化することも可能である。  [0025] The virus stock solution after the inactivation treatment is purified by sucrose density gradient centrifugation at 20,000-50,000 rpm for 2-24 hours. Preferably, sucrose density gradient centrifugation at 30,000 rpm for 16 hours is performed. The virus-containing fraction thus obtained is highly purified, and is desalted by ultrafiltration or dialysis, or diluted with an appropriate buffer, and then sterile-filtered with a membrane filter to obtain the vaccine starting material. Used as The vaccine raw materials include immunostimulants such as aluminum hydroxide, aluminum phosphate, mineral oil and non-mineral oil, stabilizers such as polysorbate 80, sugars such as amino acids and ratatose sucrose, and formalin, thimerosal, and 2-phenoki. Formulation is carried out by appropriately selecting and adding a preservative such as ciethanol, benzyl alcohol, benzethonium chloride, and salt of benzenikonium. When a sugar such as ratatose or sucrose having an effect as an excipient is added, it can be formulated as a lyophilized preparation.
[0026] 上記のショ糖密度勾配遠心後のウィルス含有画分は、使用目的によっては、カラム クロマトグラフィーにより更に精製される。斯カ、るカラムクロマトグラフィーとして、一般 的に蛋白やポリペプチドの精製に常用される、陽イオンクロマトグラフィー、陰イオン クロマトグラフィー及び吸着クロマトグラフィーなどが挙げられる。好ましくは、 WNV粒 子を高純度に精製することができるセルロース硫酸エステルゲルが使用される。 [0026] The virus-containing fraction after the above sucrose density gradient centrifugation is further purified by column chromatography depending on the purpose of use. Examples of such column chromatography include cation chromatography, anion chromatography, and adsorption chromatography, which are generally used for purification of proteins and polypeptides. Preferably, WNV granules Cellulose sulfate gel which can purify the particles with high purity is used.
[0027] ワクチンとしての効力は、動物にワクチンを接種し、攻撃試験を行うか、ワクチン接 種した動物の血清のウィルス中和能を測定することにより調べることができる。より具 体的には、適当に希釈した WNVワクチン液をマウスに免疫し、 WNVに対する抗体 を作製する。この抗体について 50%プラーク減少法による中和活性を測定すること によりワクチンとしての有効性を調べることができる。マウスの免疫方法は、通常行わ れる免疫方法に従えば良い。例えば、免疫血清は、 WNVワクチンの初回接種後、 1 一 3週後に追加接種し、その追加接種の 1週後に採血し、血清分離することにより得 られる。  [0027] Efficacy as a vaccine can be determined by inoculating an animal with the vaccine and conducting an challenge test or by measuring the virus neutralizing ability of the serum of the vaccinated animal. More specifically, mice are immunized with a suitably diluted WNV vaccine solution to produce antibodies against WNV. The effectiveness of the antibody as a vaccine can be examined by measuring the neutralizing activity of this antibody by the 50% plaque reduction method. The method of immunization of a mouse may be a commonly used immunization method. For example, an immune serum is obtained by booster injection 13 to 13 weeks after the first vaccination with WNV vaccine, blood sampling 1 week after the booster vaccination, and serum separation.
[0028] 本願発明により得られるワクチンは、後述の実施例 6の結果から明らかなように、 W NVに対する中和抗体を誘導するだけでなぐ 日本脳炎ウィルスに対する中和抗体 を誘導することができる特異なワクチンである。 Ben-Nathan Dらの報告(J. Infect. Dis., 2003 Jul. 1; 188(1), 5_12)によると WNV感染症の治療及び予防には抗体が重 要な役割を担うことが明らかにされており、本願発明の WNVワクチンは WNV感染症 の予防に極めて有効であることが示唆される。また、本願発明のワクチンは、他の W NV株由来のワクチン、例えば、 EG株と混合することにより、より効果的なワクチンと すること力 S期待される。更には、他のウィルス(例えば、 日本脳炎ウィルス、 A型肝炎 ウィルス、狂犬病ウィルス)及び細菌(例えば、百日咳 ·ジフテリア '破傷風菌)に対す るワクチンからなる群より選択される少なくとも 1種類のワクチンと組み合わせることに より混合ワクチンとして使用することができる。  [0028] As is clear from the results of Example 6 described below, the vaccine obtained according to the present invention not only induces a neutralizing antibody against W NV but also can induce a neutralizing antibody against Japanese encephalitis virus. Vaccine. According to a report by Ben-Nathan D et al. (J. Infect. Dis., 2003 Jul. 1; 188 (1), 5_12), it is clear that antibodies play an important role in the treatment and prevention of WNV infection. It has been suggested that the WNV vaccine of the present invention is extremely effective in preventing WNV infection. In addition, the vaccine of the present invention is expected to be a more effective vaccine when mixed with a vaccine derived from another W NV strain, for example, an EG strain. In addition, at least one vaccine selected from the group consisting of vaccines against other viruses (eg, Japanese encephalitis virus, hepatitis A virus, rabies virus) and bacteria (eg, pertussis and diphtheria 'tetanus bacteria). By combining them, they can be used as a combination vaccine.
以下、実施例に従い、本願発明を更に詳細に説明するが、本願発明は下記の実 施例に何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
実施例 1  Example 1
[0029] (Vero細胞の培養) [0029] (Culture of Vero cells)
ウィルスを増殖させる株化細胞として、 ATCCより購入した Vero細胞(CCL—81株 )を用いた。これを 10%ゥシ血清含有 M199培地に懸濁し、 37°C、 5%炭酸ガス培養 器中で 5— 7日間培養した。得られた細胞を細胞バンクとして保管した。タンク培養に 至るまでの細胞の増殖は、 5%ゥシ血清含有ダルベッコ MEM培地を用い、前記と同 じ条件で行った。タンク培養には 5リットル容の発酵タンクを用レ、、 5%ゥシ血清含有 ダルベッコ MEM培地 5Lに、 5 X 108の Vero細胞と 15gのサイトデッタスを加え、 37 °C、 40rpmで 3— 7日間培養した。この培養により、 lmLあたり 1 X 106個以上の細胞 が得られる。 Vero cells (CCL-81 strain) purchased from ATCC were used as cell lines for virus propagation. This was suspended in M199 medium containing 10% serum and cultured in a 5% CO 2 incubator at 37 ° C. for 5-7 days. The obtained cells were stored as a cell bank. Cells were grown up to the tank culture using Dulbecco's MEM medium containing 5% Under the same conditions. For tank cultivation, use a 5 liter fermentation tank. Add 5 x 10 8 Vero cells and 15 g of cytodetase to 5 L of Dulbecco's MEM medium containing 5% serum, and add 3 to 7 at 37 ° C and 40 rpm. Cultured for days. This culture yields 1 × 10 6 or more cells per mL.
実施例 2  Example 2
[0030] (VP—SFMを用いたウィルスの培養)  [0030] (Virus culture using VP-SFM)
サイトデッタスに付着した細胞を、細胞培養時に発生した細胞代謝物ゃゥシ血清な どを除去するために、血清を含まないダルベッコ MEMで洗浄した後、これに VP—S FM培地で感染効率が 0.01となるように調整した WNV液 1Lを添加し、培養を続け た。初期培養として、 37°C、回転数 20rpmで 90分間培養した。その後、 VP— SFM4 Lを追加後、回転数を 40rpmに上げ、溶存酸素量 2ppmを維持しながら培養を続け た。培養中の pHは、 6%グノレコース (Glu)を含む 15%炭酸ナトリウム液を随時添カロ することにより 7.4に維持した。 3日後に培養液を回収し、ウィルス含有量をプラークァ ッセィ法により測定した。表 1に、上記の pH維持及びグルコース添加の有無と培地中 のウィルス含有量の関係を示す。数値はウィルス産生量 (nLoglO)を示す。  The cells attached to the cytodettas were washed with serum-free Dulbecco's MEM to remove serum and other cell metabolites generated during cell culture, and then infected with VP-S FM medium to an infection efficiency of 0.01%. One liter of a WNV solution adjusted to be 1 was added, and the culture was continued. As an initial culture, the cells were cultured at 37 ° C. and a rotation speed of 20 rpm for 90 minutes. Then, after adding 4 L of VP-SFM, the rotation speed was increased to 40 rpm, and the culture was continued while maintaining the dissolved oxygen content of 2 ppm. The pH during the culture was maintained at 7.4 by adding a 15% sodium carbonate solution containing 6% gnorecose (Glu) as needed. Three days later, the culture solution was collected, and the virus content was measured by the plaque assay. Table 1 shows the relationship between the above pH maintenance and the presence or absence of glucose addition and the virus content in the medium. Numerical values indicate virus production (nLoglO).
[0031] [表 1]  [0031] [Table 1]
Figure imgf000010_0001
実施例 3
Figure imgf000010_0001
Example 3
[0032] (ウィルス浮遊液の不活化及びショ糖密度勾配遠心)  [0032] (Inactivation of virus suspension and sucrose density gradient centrifugation)
ハーべストしたウィルス液を 3000rpm、 5分の粗遠心分離にかけ、サイトデッタス及 び細胞を除去した後、限外濾過膜 (排除限界分子量 30万)で 10倍一 30倍に濃縮し た。限外濾過濃縮には SARTOCON SLICE DISPORSABLE (富士フィルター)を用い た。濃縮液にホルマリンを 0.08%になるように添カ卩し、 4°C、 70— 120日間放置して ウィルスの不活化を行った。ウィルス量測定や細胞接種試験にぉレ、て生残ウィルス が確認できなくなった後、ショ糖密度勾配遠心によりウィルス粒子を精製した。ロータ 一 PR42 (日立)を用レ、、遠心チューブに 50%ショ糖溶液 10— 30mL、 30%ショ糖溶 液 10— 30mL及びウィルス不活化試料液 10— 30mLを順次重層し、 30,000rpm, 4°C、 16時間、遠心分離を行った。遠心終了後、 OD280の吸光が認められるショ糖 濃度 40。/o以上の画分 lOOmLをプールした。次いで、リン酸緩衝液 10L中で 4°C、 1 日間透析した後、無菌濾過し、精製不活化抗原とした。これをリン酸緩衝生理食塩水 で lmLあたり、蛋白量 30 z gを含有するように希釈し、これにポリソノレべート 80を 0.0 1 %になるように加えたものを試作ワクチンとした。 The harvested virus solution was subjected to coarse centrifugation at 3,000 rpm for 5 minutes to remove cytodotes and cells, and then concentrated to 10 to 30 times using an ultrafiltration membrane (exclusion limit molecular weight: 300,000). SARTOCON SLICE DISPORSABLE (Fuji filter) was used for ultrafiltration and concentration. Formalin was added to the concentrated solution to a concentration of 0.08% and left at 4 ° C for 70-120 days to inactivate the virus. For surviving viruses in viral load measurement and cell inoculation tests After no longer being able to be confirmed, virus particles were purified by sucrose density gradient centrifugation. Rotor PR42 (Hitachi) was used, and 10-30 mL of 50% sucrose solution, 10-30 mL of 30% sucrose solution, and 10-30 mL of virus-inactivated sample solution were sequentially layered on a centrifuge tube, and then 30,000 rpm, 4 Centrifugation was performed at ° C for 16 hours. After centrifugation, sucrose concentration 40 at which OD280 absorbance is observed. Fractions lOOmL above / o were pooled. Then, after dialysis in 10 L of phosphate buffer at 4 ° C. for 1 day, the solution was sterile filtered to obtain a purified inactivated antigen. This was diluted with phosphate buffered saline so as to contain a protein amount of 30 zg / mL, and polysonolate 80 was added to this at a concentration of 0.01% to prepare a prototype vaccine.
[0033] また、上記ショ糖密度勾配超遠心により得られた精製不活化抗原の一部を下記表 2に示す pHの緩衝液に透析した。硫酸化セル口ファインを充填したカラムに同緩衝 液を用いてアプライした。同緩衝液で洗浄した後、 0— 3Mの塩ィ匕ナトリウムを含有す る同緩衝液で溶出した。溶出画分の吸光度と液量から回収率を算出した。  [0033] A part of the purified inactivated antigen obtained by the sucrose density gradient ultracentrifugation was dialyzed against a buffer having a pH shown in Table 2 below. The same buffer was applied to a column filled with sulfated cell mouth fines. After washing with the same buffer, elution was carried out with the same buffer containing 0-3 M sodium chloride. The recovery was calculated from the absorbance of the eluted fraction and the liquid volume.
[0034] [表 2]
Figure imgf000011_0001
[0034] [Table 2]
Figure imgf000011_0001
[0035] 表 2に示すように、 pH6.7においては検体に白色の沈殿が発生し、クロマトグラフィ 一精製は不可能であった。 pH7.0— 9.0において回収が認められ、特に pH7.5にお いては 61 %、 pH7.0においては 93%の回収が認められた。 pH7.0の回収画分を分 析したところ、下記表 3及び表 4の通り、不純物である宿主由来蛋白、宿主由来 DNA の減少が認められ、追加精製法として有効であることが示された。 [0035] As shown in Table 2, at pH 6.7, a white precipitate was generated in the sample, and purification by chromatography was not possible. Recovery was observed between pH 7.0 and 9.0, with 61% at pH 7.5 and 93% at pH 7.0. Analysis of the collected fraction at pH 7.0 showed a decrease in host-derived proteins and host-derived DNA as impurities, as shown in Tables 3 and 4 below, indicating that it was effective as an additional purification method. .
[0036] 上記でカラムクロマトグラフィーにより追加精製して得た精製不活化抗原をリン酸緩 衝生理食塩水で lmLあたり、蛋白量 30 z gを含有するように希釈し、これにポリソル ベート 80を 0. 01%になるように加えたものを試作ワクチンとした。  [0036] The purified inactivated antigen obtained by additional purification by column chromatography as described above was diluted with phosphate-buffered saline to contain a protein amount of 30 zg / mL, and polysorbate 80 was added thereto. The prototype vaccine was added to make it 01%.
実施例 4  Example 4
[0037] (実施例 3で得た試作ワクチンの宿主由来核酸の定量)  (Quantification of Nucleic Acid Derived from Host of Prototype Vaccine Obtained in Example 3)
核酸の定量は、全てキットに添付された方法に従って行った。検体からの核酸抽出 には、 DNAェクストラクターキット(和光)を用いた。得られた核酸をバイオドット SF ( バイオラッド社)を用いてナイロンメンブレンにブロットし、次いで、 Gene Image Labeling System (アマシャムフアルマシアバイオテク社)でラベリングした Vero細胞 由来 DNAを用いてハイブリダィゼーシヨンし、 Gene Image Detection Kit (アマシャム フアルマシアバイオテク社)を用いて検出した。化学発光によるシグナルを数値化し、 標準検体をスタンダードとして検体の核酸量を求めた。標準検体として既知量の Ver o細胞由来核酸を用いた。検出限界は 6.72pg/mLであり、相対再現精度は 37.04 %であった。その結果、表 3に示すように、宿主由来の DNA含量は、クロマトグラフィ 一精製前では 1接種量 (蛋白量 15 μ g)あたり lng以下であり、クロマトグラフィー精製 後では lOOpg以下であった。これらは、 WHOが推奨する、 1接種量あたり 10ngを下 回るィ直である。 All nucleic acid quantifications were performed according to the method attached to the kit. DNA extractor kit (Wako) was used for nucleic acid extraction from the specimen. The obtained nucleic acid is converted to Biodot SF ( Bio-Rad), followed by hybridization with Vero cell-derived DNA labeled with the Gene Image Labeling System (Amersham Pharmacia Biotech), followed by Gene Image Detection Kit (Amersham). (Pharmacia Biotech). The signal from chemiluminescence was quantified, and the amount of nucleic acid in the sample was determined using the standard sample as a standard. A known amount of Vero cell-derived nucleic acid was used as a standard sample. The detection limit was 6.72 pg / mL, and the relative reproducibility was 37.04%. As a result, as shown in Table 3, the content of DNA derived from the host was less than lng per inoculum (15 μg of protein) before purification by chromatography, and less than lOOpg after purification by chromatography. These are the direct recommendations of the WHO, below 10 ng per dose.
[0038] [表 3] [Table 3]
Figure imgf000012_0001
実施例 5
Figure imgf000012_0001
Example 5
[0039] (実施例 3で得た試作ワクチン中の宿主由来蛋白の定量)  (Quantification of Host-Derived Protein in Prototype Vaccine Obtained in Example 3)
Vero細胞培養上清から得られた蛋白をゥサギ及びモルモットに免疫して抗 Vero蛋 白抗体を作製した。抗 Vero蛋白モルモット抗体を、 1ウエノレあたり 500ngとなるように 96ゥエルプレート(Nunc社)に吸着させ、これに適当に希釈した試作ワクチン液を添 加後、 37°Cで 2時間インキュベートした。次に抗 Vero蛋白ゥサギ抗体を、 1ゥエルあ たり lOOng添加し、 37°Cで 2時間インキュベートした後、ペルォキシダーゼ標識抗ゥ サギ IgG (ZYMED社)及び発色基質(オルトフヱ二レンジァミン; OPD)を添カロし、発 色させた。既知量の Vero蛋白を用いて作成された検量線から蛋白量を求めた。定 量限界は 2.284ng/mLであり、相対再現精度は 8.84%であった。その結果、表 4に 示すように、 1接種量 (蛋白量 15 z g)あたり、 l OOng以下であることが示された。  The protein obtained from the culture supernatant of Vero cells was immunized to rabbits and guinea pigs to prepare anti-Vero protein antibodies. The anti-Vero protein guinea pig antibody was adsorbed to a 96-well plate (Nunc) at 500 ng / well, and an appropriately diluted prototype vaccine solution was added thereto, followed by incubation at 37 ° C for 2 hours. Next, add anti-Vero protein / sagi antibody in 100 ng / well and incubate at 37 ° C for 2 hours. And developed the color. The protein amount was determined from a calibration curve created using known amounts of Vero protein. The quantitation limit was 2.284 ng / mL, and the relative reproducibility was 8.84%. As a result, as shown in Table 4, it was shown that the amount was less than 100 ng per inoculation amount (protein amount: 15 zg).
[0040] [表 4] 1接種量あたりの宿主由 fe蛋白量 (測定値、 9 5 %信頼区間) [0040] [Table 4] Amount of fe protein from host per inoculation (measured value, 95% confidence interval)
N Y株ワクチン E G株ワクチン  NY strain vaccine EG strain vaccine
ク ロマ トグラフィ一精製 宿主由来蛋白量 21 前 後  Chromatography-Purification Host-derived protein amount 21 Before and after
( 1接種量あたり n g ) ( 17. 3-24. 7 ) 71 27  (Ng per inoculation) (17.3-24.7) 71 27
( 58. 4-83. 6 ) (22. 2- 31. 8) 実施例 6  (58.4-83.6) (22.2-31.8) Example 6
[0041] (実施例 3で得た試作ワクチンの免疫効果)  (Immunological Effect of Prototype Vaccine Obtained in Example 3)
試作ワクチン液をそのまま、あるいはリン酸緩衝生理食塩水で 4倍希釈し、 ddYマウ ス (雌、 4週齢)の腹腔内に 0.5mLずつ 20匹に接種し、 1週間後に同量を追加免疫し た後、さらに 1週間後、採血 ·血清分離した。得られた血清について、 Vero細胞を用 いた 50%プラーク減少法による中和抗体価を測定した。対照として日本脳炎ヮクチ ン免疫血清を用いた。その結果を表 5に示す。  The test vaccine solution is used as it is or diluted 4-fold with phosphate-buffered saline, and inoculated in the abdominal cavity of ddY mouse (female, 4-week-old) in 0.5 mL aliquots into 20 mice, and boosted with the same volume one week later After one week, blood was collected and serum separated. The neutralized antibody titer of the obtained serum was measured by a 50% plaque reduction method using Vero cells. As a control, Japanese encephalitis vaccine immune serum was used. Table 5 shows the results.
[0042] [表 5]  [Table 5]
Figure imgf000013_0001
実施例 7
Figure imgf000013_0001
Example 7
[0043] (実施例 3で得た試作ワクチンの発症防御効果)  (Effect of Protecting Onset of Prototype Vaccine Obtained in Example 3)
ddYマウス(SPF、 3wメス)を日本 SLCより購入して使用した。約 1週間の馴化の後 、下記表 6に示すワクチンを PBSで 4倍希釈後、 0.5mLを腹腔内に 1週間隔で 2回投 与した。投与の 1週間後に WNV— NY99株あるレ、は JEV 北京株を攻撃ウィルスとし て下記表 6に示す投与量を腹腔内に投与した後、 2週間の観察を実施した。  ddY mice (SPF, 3w female) were purchased from SLC Japan and used. After acclimation for about one week, the vaccines shown in Table 6 below were diluted 4-fold with PBS, and 0.5 mL was intraperitoneally administered twice a week at an interval of one week. One week after the administration, the WNV-NY99 strain was intraperitoneally administered with the dose shown in Table 6 below using the JEV Beijing strain as an aggressive virus, followed by observation for two weeks.
[0044] 表 6に 2週間後の結果を示す。数字は生残マウス数/供試マウス数である。 WNV を攻撃ウィルスとしたとき、非免疫マウス群のほとんどが発症して死亡した。この状況 下において JEVワクチン投与群では部分的に発症死亡が認められ、死亡には至らな レ、ものの元気消失などの個体が認められ、 JEVワクチンの WNV攻撃に対する防御 効果は部分的であることが示された。これに対して WNV— NY株ワクチンはすべての 投与量において完璧な防御を示し、一時的な元気消失個体は認められなかった。 [0045] JEVを攻撃ウィルスとしたとき、非免疫マウス群の半数から一部が発症して死亡した 。この状況下において JEVワクチン投与群ではほぼ完璧な発症防御効果をした。 W NV— NY株ワクチンは完璧な防御を示した。以上のように JEVワクチンは JEVに対し ては有効であるが、 WNVに対する有効性は部分的であり、不十分であった。これに 対して WNVワクチンは WNVに対しても JEVに対しても一過性の元気消失や発症を 認めず、完璧な発症防御効果を示した。 [0044] Table 6 shows the results after two weeks. The number is the number of surviving mice / number of test mice. When WNV was used as the challenge virus, most of the non-immunized mouse groups developed and died. Under these circumstances, the JEV vaccine-administered group partially died of onset, which resulted in death, but there were some individuals who lost their energies, indicating that the protective effect of the JEV vaccine against WNV attack was partial. Indicated. In contrast, the WNV-NY strain vaccine showed perfect protection at all doses, with no transient deprivation. [0045] When JEV was used as the aggressive virus, half of the non-immunized mouse group developed part of the mice and died. Under these circumstances, the JEV vaccine-administered group showed almost perfect protection against onset. W NV—NY strain vaccine showed perfect protection. As described above, the JEV vaccine is effective against JEV, but its efficacy against WNV is partial and insufficient. In contrast, the WNV vaccine did not show any transient desensitization or onset to WNV or JEV, indicating a complete protective effect.
[0046] [表 6]  [Table 6]
Figure imgf000014_0001
Figure imgf000014_0001
産業上の利用可能性  Industrial applicability
[0047] 本願発明の方法により得られる不活化西ナイルウィルス (WNV)は、高度に精製さ れたものであり、且つ WNV及び日本脳炎ウィルスに対して中和活性を有するから、 単独で又は種々の免疫賦活剤、分散剤、安定剤、保存剤等と共に用いることにより、 WNV及び日本脳炎ウィルス感染症に対するワクチンの抗原材料として利用できる。  [0047] The inactivated West Nile virus (WNV) obtained by the method of the present invention is highly purified and has a neutralizing activity against WNV and Japanese encephalitis virus. It can be used as an antigen material for vaccines against WNV and Japanese encephalitis virus infection by using it together with immunostimulants, dispersants, stabilizers, preservatives and the like.
[0048] また、本願発明の WNVは、モノクローナル抗体 ·ポリクローナル抗体を作製する際 の抗原として、あるいは、抗 WNV抗体と WNVとの結合に関する研究材料、例えば、 ELISA、 WBなどの検出系の材料として利用できる。  [0048] Further, the WNV of the present invention is used as an antigen for producing monoclonal antibodies and polyclonal antibodies, or as a research material relating to the binding of an anti-WNV antibody to WNV, for example, a detection system material such as ELISA and WB. Available.

Claims

請求の範囲 [1] 宿主細胞で増殖後に単離精製した不活化西ナイルウィルスであって、全蛋白質量 10 z gあたり、宿主由来核酸量が 8pg 10ng、及び宿主由来蛋白質量が 10— 100 ngまで精製され、且つ西ナイルウィルス及び日本脳炎ウィルスに対する中和抗体を 誘導できる抗原性を有することを特徴とする、精製不活化西ナイルウィルス。 [2] 下記(1)一(4)の工程: (1)マイクロキャリアに付着させた株化細胞に西ナイルウィルスを接種し、無血清培 地中で高密度培養する工程、 (2)限外濾過膜で濾過後に、ホルマリンで西ナイルウィルスを不活化する工程、(3)ショ糖密度勾配遠心により西ナイルウィルスを精製する工程、 (4)任意に、工程(3)で得られた西ナイルウィルス含有画分をカラムクロマトグラフィ 一により更に精製する工程 により得られることを特徴とする請求項 1記載の精製不活化西ナイルウィルス。 [3] 下記(1)一(4)の工程: Claims [1] An inactivated West Nile virus isolated and purified after growth in a host cell, wherein the amount of host-derived nucleic acid is 8 pg 10 ng and the amount of host-derived protein is 10-100 ng per 10 zg of total protein. A purified and inactivated West Nile virus, which is purified and has an antigenicity capable of inducing a neutralizing antibody against West Nile virus and Japanese encephalitis virus. [2] Steps (1) and (4) below: (1) Inoculation of West Nile virus into cell lines adhered to microcarriers and high-density culture in serum-free medium; After filtration through an ultrafiltration membrane, a step of inactivating the West Nile virus with formalin, (3) a step of purifying the West Nile virus by sucrose density gradient centrifugation, (4) optionally, a step of purifying the West Nile virus obtained in the step (3). 2. The purified and inactivated West Nile virus according to claim 1, which is obtained by a step of further purifying the Nile virus-containing fraction by column chromatography. [3] Steps (1)-(4) below:
(1)サイトデッタスに付着させた Vero細胞に西ナイルウィルスを接種し、フエド-バッ チ法により 2— 10%グノレコースを添カ卩しながら VP— SFM中で高密度培養する工程、 (1) Inoculating West Nile virus into Vero cells attached to cytodettas, and performing high-density culturing in VP-SFM while adding 2-10% gnorecose by the Fued-Batch method;
(2)分画分子量 30— 50万の限外濾過膜で濾過した後に、終濃度 0.02 0.1 %ホル マリンで西ナイルウィルスを不活化する工程、 (2) a step of inactivating West Nile virus with a final concentration of 0.02 0.1% formalin after filtration through an ultrafiltration membrane having a molecular weight cutoff of 300,000 to 500,000;
(3) 20,000一 50,000rpm、 2一 24日寺 Γ のショ糖密度勾酉己遠^^こより西ナイノレクイノレ スを精製する工程、  (3) 20,000-50,000 rpm, 224 days Temple of ノ sucrose density
(4)任意に、工程(3)で得られた西ナイルウィルス含有画分を硫酸セル口ファインを 充填したカラムに pH約 7.0 8.0のリン酸緩衝液を用いてアプライし、 0 3Mの塩化 ナトリウムを含有する同緩衝液で溶出する工程  (4) Optionally, apply the West Nile virus-containing fraction obtained in step (3) to a column packed with cell mouth fine sulfate using a phosphate buffer solution with a pH of about 7.0 8.0, and add 0.3 M sodium chloride. Elution with the same buffer containing
により得られることを特徴とする請求項 1記載の精製不活化西ナイルウィルス。  2. The purified and inactivated West Nile virus according to claim 1, which is obtained by:
[4] 主成分としての請求項 1ないし 3の何れかに記載の精製不活化西ナイルウィルス、 及び免疫賦活剤、分散剤、安定剤及び保存剤のうちの少なくとも一つを含有する、 西ナイルウィルス不活化ワクチン。 [4] A West Nile containing the purified inactivated West Nile virus according to any one of claims 1 to 3 as a main component, and at least one of an immunostimulant, a dispersant, a stabilizer and a preservative. Virus inactivated vaccine.
[5] 免疫賦活剤が水酸化アルミニウム、リン酸アルミニウム、ミネラルオイル及びノンミネ ラルオイルよりなる群から選ばれ、安定剤がポリソルベート 80、アミノ酸又は糖から選 ばれ、保存剤がホルマリン、チメロサール、 2—フエノキシエタノール、ベンジルアルコ ール、塩化べンゼトニゥム及び塩化ベンザルコニゥムよりなる群から選ばれることを特 徴とする、請求項 4記載の西ナイルウィルス不活化ワクチン。 [5] The immunostimulants are aluminum hydroxide, aluminum phosphate, mineral oil and non-mine Ral oil, the stabilizer is selected from polysorbate 80, amino acids or sugars, and the preservative is from the group consisting of formalin, thimerosal, 2-phenoxyethanol, benzyl alcohol, benzethonium chloride and benzalkonium chloride. 5. The West Nile virus inactivated vaccine according to claim 4, wherein the vaccine is selected.
[6] 凍結乾燥製剤である請求項 5記載の西ナイルウィルス不活化ワクチン。  [6] The West Nile virus inactivated vaccine according to claim 5, which is a freeze-dried preparation.
[7] 下記(1)一(5)の工程:  [7] Steps (1)-(5) below:
(1)マイクロキャリアに付着させた株化細胞に西ナイルウィルスを接種し、無血清培 地中で高密度培養する工程、  (1) Inoculating the cell line attached to the microcarrier with West Nile virus and culturing it at high density in a serum-free medium;
(2)限外濾過膜で濾過後に、ホルマリンで西ナイルウィルスを不活化する工程、 (2) a step of inactivating West Nile virus with formalin after filtration with an ultrafiltration membrane,
(3)ショ糖密度勾配遠心により西ナイルウィルスを精製する工程、 (3) a step of purifying West Nile virus by sucrose density gradient centrifugation,
(4)任意に、工程(3)で得られた西ナイルウィルス含有画分をカラムクロマトグラフィ 一により更に精製する工程、  (4) optionally further purifying the West Nile virus containing fraction obtained in step (3) by column chromatography,
(5)工程(3)又は (4)で得られた精製不活化西ナイルウィルスに、免疫賦活剤、分散 剤、安定剤及び保存剤のうちの少なくとも一つを添加する工程  (5) A step of adding at least one of an immunostimulant, a dispersant, a stabilizer and a preservative to the purified inactivated West Nile virus obtained in step (3) or (4).
を含むことを特徴とする、西ナイルウィルス不活化ワクチンの製造方法。  A method for producing a West Nile virus inactivated vaccine, comprising:
[8] 下記(1)一(5)の工程: [8] Steps (1)-(5) below:
(1)サイトデッタスに付着させた Vero細胞に西ナイルウィルスを接種し、フエド-バッ チ法により 1一 10%グノレコースを添カ卩しながら VP-SFM中で高密度培養する工程、 (1) Inoculating West Nile virus into Vero cells attached to cytodettas, and performing high-density culturing in VP-SFM while adding 110% gnorecose by the Fued-Batch method.
(2)分画分子量 30— 50万の限外濾過膜で濾過した後に、終濃度 0. 02-0. 1 %ホ ルマリンで西ナイルウィルスを不活化する工程、 (2) a step of inactivating West Nile virus with a final concentration of 0.02-0.1% formalin after filtration through an ultrafiltration membrane having a molecular weight cutoff of 300,000 to 500,000;
(3) 20,000— 50,000rpm、 2— 24時間のショ糖密度勾配遠心により西ナイルウィル スを精製する工程、  (3) Purification of West Nile virus by sucrose density gradient centrifugation at 20,000-50,000 rpm for 2-24 hours,
(4)任意に、工程(3)で得られた西ナイルウィルス含有画分を硫酸セル口ファインを 充填したカラムに pH約 7.0 8.0のリン酸緩衝液を用いてアプライし、 0 3Mの塩化 ナトリウムを含有する同緩衝液で溶出する工程、  (4) Optionally, apply the West Nile virus-containing fraction obtained in step (3) to a column packed with cell mouth fine sulfate using a phosphate buffer solution with a pH of about 7.0 8.0, and add 0.3 M sodium chloride. Eluting with the same buffer containing
(5)工程 (3)又は (4)で得られた精製不活化西ナイルウィルスに、免疫賦活剤、分散 剤、安定剤及び保存剤のうちの少なくとも一つを添加する工程  (5) Step of adding at least one of an immunostimulant, a dispersant, a stabilizer and a preservative to the purified inactivated West Nile virus obtained in step (3) or (4)
を含むことを特徴とする西ナイルウィルス不活化ワクチンの製造方法。  A method for producing a West Nile virus inactivated vaccine, comprising:
PCT/JP2004/011041 2003-08-07 2004-08-02 West nile virus vaccine WO2005014803A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-288820 2003-08-07
JP2003288820A JP2007068401A (en) 2003-08-07 2003-08-07 West nile virus vaccine

Publications (1)

Publication Number Publication Date
WO2005014803A1 true WO2005014803A1 (en) 2005-02-17

Family

ID=34131530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011041 WO2005014803A1 (en) 2003-08-07 2004-08-02 West nile virus vaccine

Country Status (2)

Country Link
JP (1) JP2007068401A (en)
WO (1) WO2005014803A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104450A (en) * 2006-09-29 2008-05-08 Osaka Industrial Promotion Organization Monoclonal antibody to highly pathogenic avian influenza virus
KR101813017B1 (en) 2008-08-29 2017-12-28 베링거잉겔하임베트메디카인코퍼레이티드 West Nile Virus vaccine
CN108434106A (en) * 2017-04-25 2018-08-24 广州瑞贝斯药业有限公司 A kind of lyophilized preparation of rabies vacciness

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008135230A1 (en) * 2007-05-04 2008-11-13 Baxter International Inc. Two-step temperature profile for the propagation of viruses
CA2687119C (en) * 2007-05-04 2021-06-08 Baxter International Inc. Formulation of sugar solutions for continuous ultracentrifugation for virus purification
BR112019009033A2 (en) 2016-11-04 2019-07-09 Baxalta GmbH Adeno-associated virus purification methods
WO2021161390A1 (en) * 2020-02-10 2021-08-19 花王株式会社 Human norovirus inactivation assessment method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048118A (en) * 1973-08-29 1975-04-30
JPH02223531A (en) * 1988-11-10 1990-09-05 Takeda Chem Ind Ltd Vaccine of japanese encephalitis and production thereof
JPH05502581A (en) * 1989-12-22 1993-05-13 イムノ・アクチエンゲゼルシャフト Method for producing matrices with adherently bound cells and viruses/viral antigens
JP2001514844A (en) * 1997-08-28 2001-09-18 シェイル、ジェダン、コーポレーション Attenuated Japanese encephalitis virus and Japanese encephalitis vaccine adapted to Vero cells
JP2003523169A (en) * 1998-12-31 2003-08-05 アバンテイス・フアルマ・エス・アー Virus particle isolation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5048118A (en) * 1973-08-29 1975-04-30
JPH02223531A (en) * 1988-11-10 1990-09-05 Takeda Chem Ind Ltd Vaccine of japanese encephalitis and production thereof
JPH05502581A (en) * 1989-12-22 1993-05-13 イムノ・アクチエンゲゼルシャフト Method for producing matrices with adherently bound cells and viruses/viral antigens
JP2001514844A (en) * 1997-08-28 2001-09-18 シェイル、ジェダン、コーポレーション Attenuated Japanese encephalitis virus and Japanese encephalitis vaccine adapted to Vero cells
JP2003523169A (en) * 1998-12-31 2003-08-05 アバンテイス・フアルマ・エス・アー Virus particle isolation method

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BOROWSKI P. ET AL.: "Purification and characterization of West Nile virus nucleoside triphosphatase (NTPase)/helicase: evidence for dissociation of the NTPase and helicase activities of the enzyme", J. VIROL., vol. 75, no. 7, 2001, pages 3220 - 3229, XP002903498 *
DEBNATH N.C. ET AL.: "In vitro homotypic and heterotypic interference by defective interfering particles of West ile virus", J. GEN. VIROL., vol. 72, no. 11, 1991, pages 2705 - 2711, XP002903497 *
MORITA K.: "Nishi Nile netsu no vaccine", MED. TECHNOL., vol. 32, no. 4, 15 April 2004 (2004-04-15), pages 347 - 348, XP002985309 *
SHLOMO LUSTIG ET AL.: "A live attenuated West Nile virus strain as a potential veterinary vaccine", VIRAL IMMUNOLOGY, vol. 13, no. 4, 2000, pages 401 - 410, XP008018324 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104450A (en) * 2006-09-29 2008-05-08 Osaka Industrial Promotion Organization Monoclonal antibody to highly pathogenic avian influenza virus
JP4625485B2 (en) * 2006-09-29 2011-02-02 財団法人大阪産業振興機構 Monoclonal antibody against highly pathogenic avian influenza virus
KR101813017B1 (en) 2008-08-29 2017-12-28 베링거잉겔하임베트메디카인코퍼레이티드 West Nile Virus vaccine
CN108434106A (en) * 2017-04-25 2018-08-24 广州瑞贝斯药业有限公司 A kind of lyophilized preparation of rabies vacciness

Also Published As

Publication number Publication date
JP2007068401A (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP6896700B2 (en) Vaccine composition
JP6104988B2 (en) Inactivated dengue virus vaccine supplemented with aluminum-free adjuvant
CN105934441A (en) A novel sars immunogenic composition
US20240050557A1 (en) Coronavirus vaccine and method for preparation thereof
ES2524975T3 (en) High-performance yellow fever virus strain with greater spread in cells
CN112912106A (en) Dengue vaccine unit dose and administration thereof
JPWO2019124557A1 (en) Cross-immune antigen vaccine and its preparation method
RU2447898C2 (en) Ipv-dpt vaccine
JP2016523912A (en) Methods and compositions for dengue virus vaccines
JP6985384B2 (en) Vaccine composition containing attenuated mutant Zika virus
WO2005014803A1 (en) West nile virus vaccine
JP4751558B2 (en) Japanese encephalitis inactivated vaccine and production method thereof
WO2009004641A2 (en) Adaptation of pitman moore strain of rabies virus to primary chick embryo fibroblast cell cultures
RU2665849C1 (en) Inactivated emulsion vaccine against foot-and-mouth disease type o
WO2012058492A2 (en) Viral vaccine and process for preparing the same
KR102365464B1 (en) Development of recombinant subunit Zika virus vaccine and preparing method thereof
CN107137703A (en) A kind of rabies immune originality conjugate and vaccine and preparation method thereof
JP5946453B2 (en) Mutant rabies virus and vaccine
RU2682876C1 (en) Inactivated emulsion vaccine for o-type aphthous fever
Webster et al. Efficacy of equine influenza vaccines for protection against A/Equine/Jilin/89 (H3N8)—a new equine influenza virus
CN109602899B (en) Intradermal injection technology for enhancing virus antigen immunogenicity and application thereof in hand-foot-and-mouth disease vaccine research
KR102243295B1 (en) Recombinant vaccine composition comprising envelope protein of Zika virus
KR0123538B1 (en) Vaccine mixture and diagnostic composition using antigens made of hantaan virus, seoul virus, puumala virus, belgrade virus and howang virus
US20150174236A1 (en) Viral vaccine and process for preparing the same
WO2020229581A1 (en) Methods for inducing a safe immune response against polio virus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP