JP4751558B2 - Japanese encephalitis inactivated vaccine and production method thereof - Google Patents

Japanese encephalitis inactivated vaccine and production method thereof Download PDF

Info

Publication number
JP4751558B2
JP4751558B2 JP2001574140A JP2001574140A JP4751558B2 JP 4751558 B2 JP4751558 B2 JP 4751558B2 JP 2001574140 A JP2001574140 A JP 2001574140A JP 2001574140 A JP2001574140 A JP 2001574140A JP 4751558 B2 JP4751558 B2 JP 4751558B2
Authority
JP
Japan
Prior art keywords
virus
vaccine
japanese encephalitis
jev
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001574140A
Other languages
Japanese (ja)
Inventor
憲悟 園田
祥二 葛原
元治 阿部
清人 西山
義兼 堀川
洋一郎 城野
敬信 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP2001574140A priority Critical patent/JP4751558B2/en
Application granted granted Critical
Publication of JP4751558B2 publication Critical patent/JP4751558B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/525Virus
    • A61K2039/5252Virus inactivated (killed)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24134Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24111Flavivirus, e.g. yellow fever virus, dengue, JEV
    • C12N2770/24151Methods of production or purification of viral material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Description

技術分野
本発明は、日本脳炎ウイルス(以下、「JEV」と称することもある)ワクチンに関する。更に詳細には、JEVをアフリカミドリザル腎臓由来の株化細胞(例えば、Vero細胞)に感染させ、該株化細胞を培養し、培養物からJEV又はJEV抗原成分を高度に精製する方法、及びこれらを主成分とする日本脳炎ワクチンに関する。
背景技術
日本脳炎は、フラビウイルス科に属する直径50nmの一本鎖RNAウイルスによって引き起こされるウイルス性疾患で、発熱、髄膜刺激症状、脳炎を主症状とする重篤な疾患である。一般に予後は悪く、致死率は平均35%程度で高齢者ほど高い。
日本脳炎に対する予防法としてはワクチン接種以外にはなく、大谷らの報告(Acta.Paediatr.Jpn.,30:175−184,1988)によれば、ウイルス感染を防御するための最小有効量として、1:10倍の中和抗体価があれば日本脳炎の発症を予防できるとしている。1954年に日本で最初の日本脳炎ウイルスワクチンが製造され、ワクチン材料として日本脳炎ウイルス中山株を感染させた5%マウス脳乳剤が使用された。1989年には、このワクチン材料は、免疫原性が高く、抗原性が野生株により近いと考えられる北京−1株を感染させたマウス脳乳剤に変更された。
現行ワクチンは以下の方法に従い製造される。まず、生後3〜5週のマウス脳内にウイルスを接種し、脳炎症状を示した死亡直前の脳を採取する。これを緩衝生理食塩水で20%脳乳剤として、その上清を限外ろ過濃縮、硫酸プロタミン処理及びショ糖密度勾配遠心法等の併用でウイルスを精製し、これにホルマリンを加えて不活化して原液とする。この原液を希釈して得られる最終バルクに、ポリソルベート80、チメロサールを加え、不活化ワクチン液とする。現在、日本脳炎ワクチンの蛋白質含量は、生物学的製剤基準の一般試験法を準用して試験するとき、1mL中に80μg以下でなければならないとされており、この基準に従うワクチン液0.5mLが1接種量となる。
現在、日本で使用されている日本脳炎ウイルスワクチンは、上記の製法によりウイルス粒子を高度に精製したもので、有効かつ安全であることが認められているが、一方では下記の問題も存在する。すなわち、現行ワクチンは、日本脳炎ウイルスが感染したマウス脳乳剤を出発材料としているためにマウス脳由来の汚染物質によるアレルギー性中枢神経障害や病原微生物の混入の恐れがあること、現行ワクチンの製造に際して大量にマウスを供給することが困難になりつつあり、その製造コストも高いこと、加えて動物愛護の点から動物を使用することは望ましくないこと等が指摘されている。
更に、近年保存剤として添加されてきたチメロサールの人体に及ぼす影響が懸念され、その使用量や使用方法は制限される方向にある。これに代わる保存剤として、2−フェノキシエタノールの使用が報告されている(Cameronら、Develop.biol.Standard.24,155−165,1974)。当該物質は、ワクチンの保存剤としての実績がある一方で、蛋白質抗原に対する変性作用を有することが知られている。すなわち、ワクチンの長期保存試験において、ジフテリア及び百日咳ワクチンでは24〜59%の抗原性が低下するのに対し、破傷風ワクチンでは1.5〜2倍の抗原性が増加する。したがって、2−フェノキシエタノールが抗原性を消失することなく保存剤として使用できるか否かは、使用するワクチン抗原に依存しており、全種類のワクチンに使用できるわけではない。
上記の諸問題を解決するために、米国では黄熱病ウイルスを用いたワクチンの開発が進められている。黄熱病ウイルスワクチン株である17D株に日本脳炎ウイルスの主要な感染防御抗原である外被膜糖蛋白(E蛋白)の遺伝子とその上流のPreM遺伝子を組み込んだキメラウイルスワクチンが作製された。このワクチンは接種後10年以上という長期にわたり有効性を発揮する。しかし、突然変異による病原性の復帰が懸念されており、問題点を残している。
また、米国や日本では、組換えワクシニアウイルスを用いたワクチンの開発が進められている。メイソン及びコイシ等は、組換えワクシニアウイルスをアフリカミドリザル腎臓由来の株化細胞(Vero細胞)や鶏胚線維芽細胞(CE細胞)に感染させると上清中にこれらのタンパク質を含む粒子様構造物が分泌されることを報告した(Mason P.W.ら、Virology 180:294−305,1991;Koishi E.ら、Virology 185:401−410,1991)。この粒子はマウスに対して高い免疫原性を示すものの、ワクチンとして実用化されるまでには、まだ多くの安全性及び有効性試験が必要であろう。
また、中国では、弱毒化した日本脳炎ウイルス(SA14−14−2株)を初代イヌ腎細胞(PCK細胞)に感染させ、該感染細胞を培養し、培養物から弱毒生ワクチンを製造する試みがなされており、既に、この弱毒生ワクチンを用いた多くの臨床試験が行われている(Kenneth H.Eckels、Vaccine Vol.6,p513,1988)。しかしながら、このワクチン株については、弱毒性、免疫原性に問題があるとの指摘もある。以上のような背景から、経済的に安価で、有効、安全かつ一定品質を保証できる日本脳炎ウイルスワクチンの開発が強く望まれている。
これらの問題を解決する点で現在最も優れているワクチンは株化細胞をウイルス培養基材として用いて調製するワクチンである。この場合、ウイルス培養方法の検討による高生産性とさらなる安全性のための高度な精製方法の確立が必要になる。石川らは、ショ糖密度勾配遠心を2回繰り返すことで培養時に添加した牛血清抗原含量を13ng/mLにまで減らすことができると報告している(臨床とウイルスVol.26,No.5,1998)。ファンジェ、ベルナールらは、イオン交換クロマトグラフィー、核酸吸着クロマトグラフィー、ゲルパーミエーションをすべてあるいはうち一つのゲルを用いて精製することにより、1接種量あたり細胞DNA含有率が100pgであるワクチンを提供できることを報告している(特表平11−510151)。日本脳炎ウイルスを精製する方法としては坂本らがセルロース硫酸ゲルを用いたウイルス吸着クロマトグラフィーが利用できることを報告している(特公昭62−33879)。
発明の開示
(発明が解決しようとする技術的課題)
本発明の目的は、JEVをアフリカミドリザル腎臓由来のVero細胞に感染させ、該ウイルス感染細胞を培養し、培養物から高度にJEV又はJEV抗原を精製する方法を提供することにある。
また、本発明の他の目的は、上記の方法により得られるJEV又はJEV抗原を主成分とする日本脳炎ワクチンを提供することにある。
(その解決方法)
本発明者らは、上記の目的を達成するために鋭意研究を重ねた結果、低ウイルス感染価(M.O.I.)のJEVを感染させたVero細胞を無血清培地中で培養すると多量のJEVが生産されること、セルロース硫酸エステルゲル吸着クロマトグラフィーをJEVの製造工程に導入すると高度に精製されたJEVが得られること、日本脳炎ワクチン抗原に対する2−フェノキシエタノールの影響が小さく、保存剤として実用に耐えうること、及び該2−フェノキシエタノールを含む該JEVワクチンでマウスを免疫すると該マウスの血清中にJEVに対する高力価の中和抗体が誘導されることを見出し、本発明を完成するに至った。
本発明の方法は、JEVワクチンの製造過程において、JEVの精製に使用されるセルロース硫酸エステルゲル吸着クロマトグラフィーによって特徴付けられる。日本脳炎ワクチンの製造には、以下の工程が実施される。
(1)不活化JEV含有溶液の調製
JEVの増殖に用いる宿主細胞としては、JEVの増殖性が良く、且つ免疫原性の高い抗原を産生する細胞ならば特に制限されず、動物又は昆虫細胞由来の株化細胞を使用することができる。具体的には、ハムスター肺由来のHmLu−1細胞(Hideo Okumura,Cancer Cells in Culture,292−298,1968)、ハムスター腎臓由来のBHK−21細胞(IAN Macpherson及びMichael Stoker,Virology 16:147−151,1962)、アフリカミドリザル腎臓由来のVero細胞又はGL37細胞、イヌの腎臓由来のMDCK細胞、蚊由来のC6/36細胞等が挙げられるが、好ましくは、Vero細胞が使用される。なお、GL37細胞は、平成10年6月19日付で工業技術院生命工学工業技術研究所に受託番号FERMP−16857として、出願人により寄託されている。
ワクチンの製造に使用されるJEV株は、感染防御抗原を維持しているウイルスならば特に制限されない。例えば、北京−1株、中山株が使用される。
細胞の拡張に用いる培地(以下、「増殖培地」と称することもある)としては、M199−earle base、イーグルminimum essential medium(E−MEM)、ダルベッコminimum essential medium(D−MEM)、SC−UCM102(日水)、VP−SFM(GIBCO BRL)、EX−CELL302(ニチレイ)、EX−CELL293−S(ニチレイ)、TFBM−01(ニチレイ)、ASF104等、一般に組織培養に使用されているものを適宜選択し、これにアミノ酸、塩類、抗カビ・抗菌剤及び動物血清等を添加したものが使用される。好ましくは、D−MEM培地とこれにアミノ酸、塩類、抗カビ・抗菌剤及び動物血清等を添加したものが使用される。
ウイルス接種後、ウイルスの増殖に用いる培地(以下、「維持培地」と称することもある)としては、無血清又は低蛋白濃度の培地が使用される。動物血清を含まない上記の培地を使用することができるが、好ましくは、VP−SFMに1−グルタミン酸を添加した培地が使用される。無血清培地の使用により、除去すべき不純物質が少なくなるために精製が容易となり、また、血清由来の未知の病原体が混入する可能性を排除できる。
細胞を増殖させる方法として、静置培養法、ローラボトル培養法及び浮遊培養法などが知られている。これらの内、浮遊培養法の一つであるマイクロキャリアを使用したタンク培養は、細胞の高密度培養が可能でワクチン材料を大量に取得する方法として好適と考えられる。この目的に使用されるマイクロキャリアは、数多く市販されており、Vero細胞を増殖させるのに好ましいものとしてサイトデックス(Cytodex I、アマシャムファルマシアバイオテク社)が挙げられる。斯かるサイトデックスは、1〜5g/Lの濃度で使用するのが好ましい。
細胞へのウイルス接種は、M.O.I.=0.1〜0.0001の範囲で可能であるが、好ましいM.O.I.濃度は、使用する培地によって異なる。例えば、VP−SFMを用いる場合は、M.O.I.=0.0001〜0.01の範囲で接種するのが好ましく、また、E−MEMを用いる場合には、M.O.I.=0.01〜0.1の範囲で接種するのが効果的である。
細胞及びウイルスを増殖させる際の培養温度及び培養期間は、細胞の種類、ウイルス接種量及び培養スケール・方法等の組み合わせにより調節される。例えば、静置培養又はローラボトル培養法により、Vero細胞でJEVを増殖させる場合には以下の方法がとられる。
先ず、Vero細胞を、非必須アミノ酸及び牛血清を添加したD−MEM培地からなる増殖培地中で、培養温度32℃〜38℃、好ましくは37℃で、培養期間2〜7日間、好ましくは5〜7日間培養する。次いで、Vero細胞の増殖が安定期に達した時に、培地を吸引除去し、リン酸緩衝食塩水等で数回洗浄した後、JEVをM.O.I.=0.01〜0.0001、好ましくは、M.O.I.=0.001で接種し、維持培地としてVP−SFMを添加した後、培養温度32℃〜38℃で、3〜8日間、好ましくは37℃で5〜7日間培養する。こうして得られる培養物、すなわち、細胞の破砕液又は培養上清には多量のJEVが存在する。
ウイルスの不活化は、該培養物の不溶物を粗遠心又は膜ろ過により除去した後、その上清を、更に排除限界分子量10〜50万の限外ろ過膜(排除限界分子量30〜50万が使用される)で濃縮し、この濃縮液に0.08%ホルマリンを添加し、4℃前後で1ヶ月以上静置することにより達成される。JEVの不活化処理は、精製後のウイルス抗原液について行われる場合もある。
(2)JEVの精製
先ず、不活性化されたJEV濃縮液をショ糖密度勾配遠心にかけ、抗原陽性画分を分画・プールし、JEVを粗精製する。ショ糖密度勾配遠心は特公昭62−33879に記載されているようなウイルス粒子の精製に一般的に使用される条件下、すなわち、60〜20%ショ糖濃度、20,000〜30,000rpm、1〜4時間、4〜15℃で行われる。次に、該粗精製物を適当な緩衝液で透析した後、予め同じ緩衝液で平衡化したセルロース硫酸エステルゲルに接触させることにより、JEVを吸着させ、洗浄後、溶出・回収する。JEVは、pH7〜10でセルロース硫酸エステルゲルに吸着するが、JEVのセルロース硫酸エステルゲルへの吸着は、pH8〜10で行うのが好ましい。更に好ましくは、pH9で吸着させる。斯かるpHを維持するのに適した緩衝液として炭酸−重炭酸緩衝液(炭酸緩衝液と称することもある)、トリス−塩酸緩衝液、グリシン−水酸化ナトリウム緩衝液などが挙げられる。また、上記の緩衝液の濃度は、通常、イオン交換クロマトグラフィー等に使用される濃度、例えば、10〜100mMである。好ましくは、10〜50mMが使用される。ゲルの洗浄には、吸着に使用した同緩衝液又はpHを維持した類似の緩衝液が使用される。JEVは,同緩衝液の塩濃度を高めることによってゲルから溶出される。塩濃度を高めるために、イオン交換や吸着クロマトグラフィーなどに使用される一般的な塩類、例えば、0.2〜1M塩化ナトリウムが使用される。このようにして得られるJEV又はJEV抗原液は、実質的に細胞由来の核酸及び蛋白を含有しない高度に精製されたものである。
(3)ワクチンの製剤化
日本脳炎ワクチンは、上記のJEV又はJEV抗原液を限外ろ過法もしくは透析法等により脱糖又は適当な緩衝液で希釈した後、メンブランフィルターで無菌ろ過し、必要に応じて水酸化アルミニウム、リン酸アルミニウム、リン酸カリウム、ミネラルオイル又はノンミネラルオイル等の免疫不活剤、ポリソルベート80、ポリソルベート20等のウイルス分散剤及びアミノ酸や糖等の安定剤を添加することにより調製される。保存剤として、0.375〜0.5%の2−フェノキシエタノール又は0.01〜0.001%のチメロサールが添加される。
(従来技術より有効な効果)
本発明によると、JEV感染症を予防するための高純度のJEV不活化ワクチンが提供される。また、本発明の方法により、日本脳炎ウイルスを高純度に精製することができ、そして株化細胞を使用することにより、従来のマウス脳組織を使用する方法に比べ、一定品質のワクチンを低コストで安定的に供給することが可能となる。
この様にして調製される本発明のワクチンは、JEVに対する中和活性を有する抗体を誘導し得るものであり、他のウイルス(例えば、A型肝炎ウイルス、狂犬病ウイルス)及び細菌(例えば、百日咳・ジフテリア・破傷風菌)に対するワクチンよりなる群から選択される少なくとも1種類のワクチンと組み合わせることにより混合ワクチンとして使用することができる。
以下、実施例に従い、本発明を更に詳細に説明するが、下記の実施例に何ら限定されるものではない。
実施例1:Vero細胞の拡張とビーズ培養
用いられるVero細胞はATCCより入手されたCCL−81であり、適切な培地と培養方法で増殖させ、細胞バンクを作製した。この細胞バンクは、特性検討と適格性検討用の多くの試験が実施されたものである。この細胞バンクの細胞を、牛血清を含むD−MEM培地で培養する。最初は150cmフラスコで培養を行い、その後ローラーボトルへ拡張する。最終的に50L容の発酵タンクを、1〜5g/lの濃度でサイトデックスを含むVero細胞用培地で満たす。培地にVero細胞を播種する。細胞を付着させ、6日間増殖させた。
実施例2:VP−SFM使用時の低接種M.O.I.の有効性
培地を除去し、リン酸緩衝生理食塩水で細胞が付着したビーズを洗浄して細胞培養時に用いた培地の成分、牛血清などを除去した後、無血清培地としてVP−SFMまたはE−MEMを添加した。それぞれに対して感染効率が0.1〜0.0001になるように計算した量のウィルスを添加した。温度37℃で5日後にウィルス増殖培地を回収してウイルス懸濁液を得た。培地中のウイルス含有量をプラークアッセイ法により測定した。表1に培地とウイルス接種M.O.I.の関係を示す。数値はウイルス産生量(nLog10)を示す。E−MEMよりVP−SFMの方が高いウイルス産生がみられ、また、VP−SFM使用時には感染効率を下げた方が多くウイルス量が産生されることが示された(表1)。また、VP−SFM使用時のウイルス培養日数は5日間が最も良いことが示された(表2)。

Figure 0004751558
Figure 0004751558
実施例3:ウイルス浮遊液の不活化およびショ糖密度勾配遠心
ハーベストされたウイルス液を限外ろ過濃縮(排除限界分子量30万)で約5Lまで濃縮した。濃縮液をホルマリンで4℃に1ヶ月以上おいて不活化し、ショ糖密度勾配遠心(30,000rpm、1時間)で精製した。遠心終了後、抗原陽性画分をプールし、リン酸緩衝液100Lに4℃、4日間透析後、無菌ろ過を行い、精製不活化抗原を得た。
実施例4:pHが日本脳炎ウイルス抗原活性に与える変化
透析チューブに実施例3で得られた不活化日本脳炎ウイルス液を入れ、透析を行った。透析時に、pH7および8にはリン酸緩衝液、9および10には炭酸緩衝液を用いた。一晩透析後、抗原の残存活性をELISAにて測定したところ、高pHほど残存活性が高い事が判明した(表3)。
Figure 0004751558
実施例5:セルロース硫酸エステルゲルクロマトグラフィーによる精製
セルロース硫酸エステルゲルは、たとえば硫酸化−セルロファイン(チッソ)として入手できる。これを適切なカラムに充填後、pH9に調製した10mM炭酸緩衝液で繰り返し洗浄した。洗浄後、同緩衝液に置換した不活化日本脳炎ウイルス液を通して抗原を吸着させた。溶出は1M塩化ナトリウム溶液を徐々に添加して行った。抗原活性の高い画分を集めてワクチン製造用原液とした。pH8では抗原の吸着回収率が60%以下であったのに対してpH9ではほぼ100%の回収が見られた。また実施例7および実施例8に示す方法により細胞由来の核酸および蛋白量を測定したところ、pH8に比べてpH9の方が、それらがさらに除去されており、すなわち不純物が少なく、高純度であることが示された(表4)。
Figure 0004751558
実施例6:2−フェノキシエタノールの抗原活性に与える影響
細胞培養由来不活化JEV抗原に2−フェノキシエタノール(終濃度;0.5%)、ポリソルベート80(終濃度;0.01%)を加え、ワクチンを調製した。抗原安定性を確認するために4℃に数ヶ月放置し、経時的に残存抗原活性を測定した。その結果、6ヶ月後でも大きな変化はなかった。他のワクチン抗原では2−フェノキシエタノールの添加に伴い、抗原性の低下が認められるのに対して、日本脳炎ウイルス抗原ではその影響が小さく、保存剤として2−フェノキシエタノールが使用可能であることが示された(表5)。
Figure 0004751558
実施例7:ワクチン原液中の宿主由来核酸の定量
検体からの核酸抽出にはDNAエクストラクターキット(和光)を用いた。得られた核酸をバイオドットSF(バイオラッド社)を用いてナイロンメンブレンにブロットした。同メンブレン上には、標準検体として既知量のVero細胞由来核酸もブロットしておく。このメンブレンに対し、Gene Image Labeling System(アマシャムファルマシアバイオテク社)でラベリングしたVero細胞由来DNAを用いてハイブリダイゼーションを行った。検出はGene Image Detection Kit(アマシャムファルマシアバイオテク社)を用いた。化学発光によるシグナルを数値化し、標準検体をスタンダードとして検体の核酸量を求めた。その結果、ワクチン1mLあたり100pg以下であることが示された(表6)。
Figure 0004751558
実施例8:ワクチン原液中の宿主由来蛋白の定量
Vero細胞培養上清から得られた蛋白をウサギおよびモルモットに免疫して抗Vero蛋白抗体を作製した。96ウエルプレート(Nunc社)に抗Vero蛋白モルモット抗体を、1ウエルあたり500ngにて添加して吸着させた。ここにワクチンを適宜希釈して添加後、37℃で2時間インキュベートした。次に抗Vero蛋白ウサギ抗体を、1ウエルあたり100ngにて添加した。37℃で2時間インキュベートした後、ペルオキシダーゼ標識抗ウサギIgG(ZYMED社)を添加した。発色基質(オルトフェニレンジアミン;OPD)を添加し、その発色を既知量のVero蛋白の発色と比較して蛋白量を求めた。本定量系の定量限界は3.2ng/mLであるが、試料を濃縮することにより感度を上昇させることもできる。試作ロットワクチンのVero蛋白量を測定したところ、ワクチン1mLあたり100ng以下であることが示された(表7)。
Figure 0004751558
実施例9:ワクチンの力価試験
ワクチン液を32倍希釈し、ddYマウス(雌、4週齢)の腹腔内に0.5mLづつ10匹に接種し、1週後に同量を追加免疫した後、採血・血清分離した。なお、参考品として国家検定に適合したマウス脳由来の化血研現行ワクチン(ロット番号35B)を32倍希釈して免疫した。各10匹のプール血清について、Vero細胞を用いたプラークリダクション法により中和抗体価を測定した。また、血球凝集(HI)抗体価も測定した。その結果、Vero細胞培養由来不活化JEV抗原は、現行ワクチン及び参照品に比べ同等以上の免疫原性を有することが示された。その結果を表8に示す。
Figure 0004751558
実施例10:Vero細胞由来蛋白に対する抗体測定
Vero細胞を無血清培地VP−SFM(LIFE TECHNOLOGEIS社製)で培養し、その培養上清に含まれるVero細胞由来蛋白の抗体産生能をBALB/cマウス(メス)を用いて調べた。該培養上清をリン酸緩衝生理食塩水(以下、「PBS」と称する)で希釈して表9に示される濃度の溶液を調製し、その0.5mlを、4、5および7週齢時に3回、腹腔内に投与した。8週齢時に採血し、血清を分離した。培養上清中の総蛋白量は、ローリーの方法に従って測定した。
抗Vero細胞由来蛋白抗体の検出は、ウエスタンブロット法により行った。Vero細胞蛋白4μgをSDS−PAGEにかけた後、ナイロンメンブレン(ミリポア社Immobilon P)に転写させた。5%スキムミルクを含むPBSを用いてブロッキングした後、同PBSで100倍希釈した上記マウス血清を加え、室温で2時間反応させた。陽性コントロールに抗Vero細胞蛋白抗体を使用した。0.05%のポリオキシエチレンモノラウレート(ナカライ、356−24)を含むPBSで洗浄後、同PBSで300倍希釈したペルオキシダーゼ標識抗マウスIgG(BIO−RAD社;172−1011)を加え、室温で2時間反応させた。その後、ECL plus(AP biotech社RPN2132)を添加し、ルミノイメージアナライザーLAS−1000plus(富士写真フィルム社製)で特異バンドを検出した。陽性・陰性の判定は、バンドの検出を以って行った。その結果を表9に示す。
Figure 0004751558
本実施例では、培養上清中の総蛋白量が100ng/mL以下のときに抗Vero細胞蛋白抗体の産生は認められなかった。不純物による抗体産生は、アナフィラキシーなどの副反応を誘導する可能性がある。したがって、本発明の日本脳炎ワクチンの主たる不純物であるVero細胞由来蛋白は、100ng/mL以下に制御されることが望ましい。 TECHNICAL FIELD The present invention relates to a Japanese encephalitis virus (hereinafter sometimes referred to as “JEV”) vaccine. More specifically, a method of infecting JEV with a cell line derived from African green monkey kidney (for example, Vero cell), culturing the cell line, and highly purifying JEV or JEV antigen component from the culture, and these The present invention relates to a Japanese encephalitis vaccine mainly composed of
Background art Japanese encephalitis is a viral disease caused by a single-stranded RNA virus with a diameter of 50 nm belonging to the Flaviviridae family, and is a serious disease mainly caused by fever, meningeal irritation and encephalitis. . In general, the prognosis is poor, and the mortality rate is about 35% on average and the higher the elderly.
As a preventive method against Japanese encephalitis, there is no other than vaccination, and according to a report by Otani et al. (Acta. Paediatr. Jpn., 30: 175-184, 1988), as a minimum effective amount for protecting against viral infection, A 1: 10-fold neutralizing antibody titer can prevent the development of Japanese encephalitis. In 1954, the first Japanese encephalitis virus vaccine was produced in Japan, and 5% mouse brain emulsion infected with the Japanese encephalitis virus Nakayama strain was used as the vaccine material. In 1989, this vaccine material was changed to a mouse brain emulsion infected with Beijing-1 strain, which is highly immunogenic and is more likely to be antigenic than a wild strain.
The current vaccine is manufactured according to the following method. First, a virus is inoculated into a 3 to 5 week-old mouse brain, and the brain immediately before death showing brain inflammation is collected. This is made into a 20% brain emulsion with buffered saline, and the supernatant is purified by a combination of ultrafiltration concentration, protamine sulfate treatment and sucrose density gradient centrifugation, etc., and inactivated by adding formalin to it. To make a stock solution. Polysorbate 80 and thimerosal are added to the final bulk obtained by diluting this stock solution to obtain an inactivated vaccine solution. At present, the protein content of Japanese encephalitis vaccine is supposed to be 80 μg or less in 1 mL when tested using the general test method of the biologics standard. 1 inoculation amount.
The Japanese encephalitis virus vaccine currently used in Japan is a highly purified virus particle obtained by the above-mentioned production method, and it is recognized that it is effective and safe. However, the following problems also exist. In other words, because the current vaccine is based on mouse brain emulsion infected with Japanese encephalitis virus, there is a risk of contamination of allergic central nervous system and pathogenic microorganisms caused by contaminants derived from mouse brain. It has been pointed out that it is difficult to supply a large amount of mice, the production cost is high, and that it is not desirable to use animals from the viewpoint of animal welfare.
Furthermore, there is concern about the effect of thimerosal, which has been added as a preservative in recent years, on the human body, and the amount and method of use thereof are in the direction of being restricted. As an alternative preservative, the use of 2-phenoxyethanol has been reported (Cameron et al., Develop. Biol. Standard. 24, 155-165, 1974). While this substance has a track record as a vaccine preservative, it is known to have a denaturing action on protein antigens. That is, in the vaccine long-term storage test, the antigenicity of the diphtheria and pertussis vaccines decreases by 24 to 59%, whereas the antigenicity of the tetanus vaccine increases by 1.5 to 2 times. Therefore, whether 2-phenoxyethanol can be used as a preservative without losing antigenicity depends on the vaccine antigen to be used, and cannot be used for all types of vaccines.
In order to solve the above problems, a vaccine using yellow fever virus is being developed in the United States. A chimeric virus vaccine was prepared by incorporating the outer coat glycoprotein (E protein) gene, which is a major infection protective antigen of Japanese encephalitis virus, and the upstream PreM gene into the 17D strain, a yellow fever virus vaccine strain. This vaccine is effective over a long period of more than 10 years after vaccination. However, there are concerns about the return of pathogenicity due to mutations, leaving problems.
In the United States and Japan, vaccines using recombinant vaccinia virus are being developed. Mason, Koishi et al., A particle-like structure containing these proteins in the supernatant when a recombinant vaccinia virus is infected with a cell line derived from African green monkey kidney (Vero cell) or chicken embryo fibroblast (CE cell). (Mason PW et al., Virology 180: 294-305, 1991; Koishi E. et al., Virology 185: 401-410, 1991). Although this particle is highly immunogenic to mice, many safety and efficacy studies will still be required before it can be put into practical use as a vaccine.
In China, attempts have been made to infect primary canine kidney cells (PCK cells) with attenuated Japanese encephalitis virus (SA14-14-2 strain), culture the infected cells, and produce a live attenuated vaccine from the culture. Many clinical trials using this live attenuated vaccine have already been carried out (Kenneth H. Eckels, Vaccine Vol. 6, p513, 1988). However, some point out that this vaccine strain has problems with weak toxicity and immunogenicity. In view of the above background, there is a strong demand for the development of a Japanese encephalitis virus vaccine that is economically inexpensive, effective, safe and guarantees certain quality.
Currently, the best vaccine for solving these problems is a vaccine prepared using a cell line as a virus culture substrate. In this case, it is necessary to establish an advanced purification method for high productivity and further safety by examining virus culture methods. Ishikawa et al. Reported that the bovine serum antigen content added during culture can be reduced to 13 ng / mL by repeating sucrose density gradient centrifugation twice (clinical and viral Vol. 26, No. 5, 1998). By purifying ion exchange chromatography, nucleic acid adsorption chromatography, and gel permeation using all or one of the gels, Hwange, Bernard et al. Can provide a vaccine with a cellular DNA content of 100 pg per inoculum. Has been reported (Tokuheihei 11-510151). As a method for purifying Japanese encephalitis virus, Sakamoto et al. Reported that virus adsorption chromatography using cellulose sulfate gel can be used (Japanese Patent Publication No. 62-33879).
Disclosure of the Invention (Technical Problem to be Solved by the Invention)
An object of the present invention is to provide a method for infecting JEV with Vero cells derived from African green monkey kidney, culturing the virus-infected cells, and highly purifying JEV or JEV antigen from the culture.
Another object of the present invention is to provide a Japanese encephalitis vaccine mainly comprising JEV or JEV antigen obtained by the above method.
(Solution)
As a result of intensive studies to achieve the above object, the present inventors have found that when Vero cells infected with JEV having a low viral infectivity (MOI) are cultured in a serum-free medium, a large amount is obtained. JEV is produced, cellulose sulfate gel adsorption chromatography is introduced into the production process of JEV, highly purified JEV is obtained, and the effect of 2-phenoxyethanol on Japanese encephalitis vaccine antigen is small, and as a preservative In order to complete the present invention, it was found that it can be practically used, and that immunization of a mouse with the JEV vaccine containing 2-phenoxyethanol induces a high titer neutralizing antibody against JEV in the serum of the mouse. It came.
The method of the present invention is characterized by cellulose sulfate gel adsorption chromatography used in the JEV vaccine production process for JEV purification. The following steps are carried out for the production of Japanese encephalitis vaccine.
(1) Preparation of inactivated JEV-containing solution The host cell used for JEV growth is not particularly limited as long as it is a cell that produces an antigen that is highly proliferative and highly immunogenic, and is derived from animal or insect cells. Cell lines can be used. Specifically, hamster lung-derived HmLu-1 cells (Hideo Okumura, Cancer Cells in Culture, 292-298, 1968), hamster kidney-derived BHK-21 cells (IAN Mackerson and Michael Stocker, Virology 16: 147-151). 1962), Vero cells or GL37 cells derived from African green monkey kidney, MDCK cells derived from canine kidney, C6 / 36 cells derived from mosquito, etc., preferably Vero cells are used. In addition, GL37 cell was deposited by the applicant under the accession number FERMP-16857 on June 19, 1998 at the Biotechnology Institute of Industrial Science and Technology.
The JEV strain used for the production of the vaccine is not particularly limited as long as it is a virus that maintains a protective antigen. For example, Beijing-1 stock and Zhongshan stock are used.
As a medium used for cell expansion (hereinafter also referred to as “growth medium”), M199-earle base, Eagle minimum essential medium (E-MEM), Dulbecco minimum essential medium (D-MEM), SC-UCM102 (Nissui), VP-SFM (GIBCO BRL), EX-CELL302 (Nichirei), EX-CELL293-S (Nichirei), TFBM-01 (Nichirei), ASF104, etc. Those selected and added with amino acids, salts, anti-fungal / antibacterial agents and animal serum are used. Preferably, a D-MEM medium and an amino acid, salt, antifungal / antibacterial agent, animal serum and the like added thereto are used.
After the virus inoculation, a serum-free or low protein concentration medium is used as a medium (hereinafter also referred to as “maintenance medium”) used for virus propagation. Although the above medium containing no animal serum can be used, a medium obtained by adding 1-glutamic acid to VP-SFM is preferably used. The use of a serum-free medium facilitates purification because fewer impurities need to be removed, and can eliminate the possibility of contamination with unknown pathogens derived from serum.
Known methods for growing cells include stationary culture, roller bottle culture, and suspension culture. Among these, tank culture using microcarriers, which is one of the suspension culture methods, is considered suitable as a method for obtaining a large amount of vaccine material because cells can be cultured at high density. Many microcarriers used for this purpose are commercially available, and Cytodex I (Amersham Pharmacia Biotech) is a preferred example for growing Vero cells. Such cytodex is preferably used at a concentration of 1 to 5 g / L.
Viral inoculation of cells is described in M.C. O. I. = 0.1 to 0.0001, but preferable M.I. O. I. The concentration depends on the medium used. For example, when VP-SFM is used, M.I. O. I. = 0.0001 to 0.01 is preferable, and when E-MEM is used, M. O. I. It is effective to inoculate in the range of 0.01 to 0.1.
The culture temperature and culture period for growing cells and viruses are controlled by a combination of cell type, virus inoculation amount, culture scale and method. For example, when JEV is grown on Vero cells by static culture or roller bottle culture, the following method is used.
First, Vero cells are cultured in a growth medium consisting of a D-MEM medium supplemented with non-essential amino acids and bovine serum at a culture temperature of 32 ° C. to 38 ° C., preferably 37 ° C., and a culture period of 2 to 7 days, preferably 5 Incubate for ~ 7 days. Next, when the growth of Vero cells reached a stable period, the medium was removed by suction and washed several times with phosphate buffered saline, etc. O. I. = 0.01 to 0.0001, preferably M.I. O. I. = 0.001 and inoculating VP-SFM as a maintenance medium, followed by culturing at a culture temperature of 32 ° C to 38 ° C for 3 to 8 days, preferably at 37 ° C for 5 to 7 days. A large amount of JEV is present in the culture thus obtained, that is, the cell lysate or culture supernatant.
Inactivation of the virus is carried out by removing the insoluble matter of the culture by rough centrifugation or membrane filtration, and then removing the supernatant from an ultrafiltration membrane (exclusion limit molecular weight of 300 to 500,000 having an exclusion limit molecular weight of 100 to 500,000). It is achieved by adding 0.08% formalin to this concentrate and allowing it to stand at about 4 ° C. for 1 month or longer. The JEV inactivation treatment may be performed on the purified virus antigen solution.
(2) Purification of JEV First, the inactivated JEV concentrate is subjected to sucrose density gradient centrifugation, and antigen-positive fractions are fractionated and pooled, and JEV is roughly purified. Sucrose density gradient centrifugation is performed under the conditions commonly used for purification of virus particles as described in JP-B-62-33879, ie, 60-20% sucrose concentration, 20,000-30,000 rpm, Performed at 4-15 ° C. for 1-4 hours. Next, the crude product is dialyzed with an appropriate buffer, and then contacted with a cellulose sulfate gel previously equilibrated with the same buffer to adsorb JEV, and after washing, elution and recovery. JEV is adsorbed to cellulose sulfate gel at pH 7-10, but it is preferable to adsorb JEV to cellulose sulfate gel at pH 8-10. More preferably, the adsorption is performed at pH 9. Examples of the buffer suitable for maintaining such pH include carbonate-bicarbonate buffer (sometimes referred to as carbonate buffer), Tris-hydrochloric acid buffer, glycine-sodium hydroxide buffer, and the like. Further, the concentration of the buffer solution is usually a concentration used for ion exchange chromatography or the like, for example, 10 to 100 mM. Preferably, 10-50 mM is used. For washing the gel, the same buffer used for adsorption or a similar buffer maintaining the pH is used. JEV is eluted from the gel by increasing the salt concentration of the same buffer. In order to increase the salt concentration, general salts used for ion exchange and adsorption chromatography, for example, 0.2 to 1 M sodium chloride are used. The JEV or JEV antigen solution thus obtained is highly purified substantially free of cell-derived nucleic acids and proteins.
(3) Formulation of vaccine The Japanese encephalitis vaccine requires the above-mentioned JEV or JEV antigen solution to be deglycosylated by ultrafiltration or dialysis or diluted with an appropriate buffer, and then sterile filtered with a membrane filter. By adding immunoinactivating agents such as aluminum hydroxide, aluminum phosphate, potassium phosphate, mineral oil or non-mineral oil, virus dispersing agents such as polysorbate 80 and polysorbate 20, and stabilizers such as amino acids and sugars. Prepared. As a preservative, 0.375-0.5% 2-phenoxyethanol or 0.01-0.001% thimerosal is added.
(Effective effect than conventional technology)
According to the present invention, a high-purity JEV inactivated vaccine for preventing JEV infection is provided. In addition, the method of the present invention makes it possible to purify Japanese encephalitis virus with high purity, and by using a cell line, a vaccine of a constant quality can be produced at a lower cost than the method using conventional mouse brain tissue. Can be supplied stably.
The vaccine of the present invention thus prepared is capable of inducing antibodies having neutralizing activity against JEV, and other viruses (for example, hepatitis A virus, rabies virus) and bacteria (for example, pertussis It can be used as a combined vaccine by combining with at least one vaccine selected from the group consisting of vaccines against diphtheria and tetanus.
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
Example 1 : Expansion of Vero cells and bead culture Vero cells used were CCL-81 obtained from ATCC, and were proliferated with an appropriate medium and culture method to prepare a cell bank. This cell bank has been subjected to a number of characterization and eligibility studies. The cells in this cell bank are cultured in D-MEM medium containing bovine serum. The culture is first performed in a 150 cm 2 flask and then expanded to a roller bottle. Finally, a 50 L fermentation tank is filled with Vero cell medium containing cytodex at a concentration of 1-5 g / l. Seed Vero cells in the medium. Cells were allowed to attach and grow for 6 days.
Example 2 : Low inoculation with VP-SFM O. I. After removing beads of the cells attached with phosphate buffered saline to remove the components of the medium used during cell culture, bovine serum, etc., VP-SFM or E was used as a serum-free medium. -MEM was added. The amount of virus calculated so that the infection efficiency was 0.1 to 0.0001 was added to each. After 5 days at a temperature of 37 ° C., the virus growth medium was recovered to obtain a virus suspension. Virus content in the medium was measured by plaque assay. Table 1 shows the culture medium and virus inoculation. O. I. The relationship is shown. A numerical value shows a virus production amount (nLog10). VP-SFM showed higher virus production than E-MEM, and when VP-SFM was used, it was shown that more virus was produced when the infection efficiency was lowered (Table 1). Moreover, it was shown that the best days of virus culture when using VP-SFM is 5 days (Table 2).
Figure 0004751558
Figure 0004751558
Example 3 : Inactivation of virus suspension and sucrose density gradient centrifugation The harvested virus solution was concentrated to about 5 L by ultrafiltration concentration (exclusion limit molecular weight of 300,000). The concentrate was inactivated with formalin at 4 ° C. for 1 month or longer and purified by sucrose density gradient centrifugation (30,000 rpm, 1 hour). After completion of the centrifugation, the antigen-positive fractions were pooled, dialyzed against 100 L of phosphate buffer at 4 ° C. for 4 days, and then subjected to aseptic filtration to obtain a purified inactivated antigen.
Example 4 : Change in pH of Japanese encephalitis virus antigenic activity The inactivated Japanese encephalitis virus solution obtained in Example 3 was placed in a dialysis tube and dialyzed. During dialysis, phosphate buffers were used for pH 7 and 8, and carbonate buffer was used for 9 and 10. After overnight dialysis, the residual activity of the antigen was measured by ELISA, and it was found that the higher the pH, the higher the residual activity (Table 3).
Figure 0004751558
Example 5 : Purification by Cellulose Sulfate Gel Chromatography Cellulose sulfate gel is available, for example, as sulfated-cellulofine (Chisso). This was packed in a suitable column and then washed repeatedly with 10 mM carbonate buffer adjusted to pH 9. After washing, the antigen was adsorbed through an inactivated Japanese encephalitis virus solution substituted with the same buffer. Elution was performed by gradually adding a 1M sodium chloride solution. Fractions with high antigen activity were collected and used as vaccine stock solutions. At pH 8, the antigen adsorption / recovery rate was 60% or less, whereas at pH 9, almost 100% recovery was observed. Further, when the amounts of nucleic acids and proteins derived from cells were measured by the methods shown in Example 7 and Example 8, they were further removed at pH 9 compared to pH 8, that is, they had less impurities and high purity. (Table 4).
Figure 0004751558
Example 6 : Effect of 2-phenoxyethanol on antigen activity 2-phenoxyethanol (final concentration; 0.5%) and polysorbate 80 (final concentration; 0.01%) were added to cell culture-derived inactivated JEV antigen, and the vaccine was prepared. Prepared. In order to confirm the antigen stability, it was allowed to stand at 4 ° C. for several months, and the residual antigen activity was measured over time. As a result, there was no significant change even after 6 months. Other vaccine antigens show a decrease in antigenicity with the addition of 2-phenoxyethanol, whereas Japanese encephalitis virus antigens have a small effect, indicating that 2-phenoxyethanol can be used as a preservative. (Table 5).
Figure 0004751558
Example 7 : Quantification of host-derived nucleic acid in vaccine stock solution A DNA extractor kit (Wako) was used for nucleic acid extraction from a specimen. The obtained nucleic acid was blotted onto a nylon membrane using Biodot SF (Bio-Rad). On the membrane, a known amount of Vero cell-derived nucleic acid is also blotted as a standard sample. Hybridization was performed on this membrane using DNA derived from Vero cells labeled with Gene Image Labeling System (Amersham Pharmacia Biotech). Detection was performed using Gene Image Detection Kit (Amersham Pharmacia Biotech). The signal from chemiluminescence was digitized, and the amount of nucleic acid in the sample was determined using the standard sample as the standard. As a result, it was shown that it was 100 pg or less per 1 mL of vaccine (Table 6).
Figure 0004751558
Example 8 : Quantification of host-derived protein in vaccine stock solution Rabbits and guinea pigs were immunized with proteins obtained from Vero cell culture supernatant to produce anti-Vero protein antibodies. Anti-Vero protein guinea pig antibody was added to a 96-well plate (Nunc) at 500 ng per well for adsorption. The vaccine was appropriately diluted and added thereto, and incubated at 37 ° C. for 2 hours. Next, anti-Vero protein rabbit antibody was added at 100 ng per well. After incubation at 37 ° C. for 2 hours, peroxidase-labeled anti-rabbit IgG (ZYMED) was added. A chromogenic substrate (orthophenylenediamine; OPD) was added, and the amount of protein was determined by comparing the color development with that of a known amount of Vero protein. The quantitative limit of this quantitative system is 3.2 ng / mL, but the sensitivity can be increased by concentrating the sample. When the amount of Vero protein of the trial lot vaccine was measured, it was shown to be 100 ng or less per 1 mL of the vaccine (Table 7).
Figure 0004751558
Example 9 : Vaccine titer test The vaccine solution was diluted 32 times and inoculated into 10 ddY mice (female, 4 weeks old) per 0.5 mL, and boosted with the same amount one week later. Blood was collected and serum was separated. As a reference product, immunization was performed by diluting 32-fold a current vaccine (lot number 35B) derived from a mouse brain that conforms to a national test. The neutralizing antibody titer of each 10 pooled sera was measured by the plaque reduction method using Vero cells. Hemagglutination (HI) antibody titers were also measured. As a result, it was shown that the inactivated JEV antigen derived from Vero cell culture has an immunogenicity equal to or higher than that of current vaccines and reference products. The results are shown in Table 8.
Figure 0004751558
Example 10 : Measurement of antibody against Vero cell-derived protein Vero cells were cultured in serum-free medium VP-SFM (manufactured by LIFE TECHNOLOGEIS), and the antibody-producing ability of Vero cell-derived protein contained in the culture supernatant was determined to be BALB / c mice. (Female) was used for examination. The culture supernatant was diluted with phosphate buffered saline (hereinafter referred to as “PBS”) to prepare a solution having the concentration shown in Table 9, and 0.5 ml was prepared at 4, 5 and 7 weeks of age. Three times intraperitoneally. Blood was collected at the age of 8 weeks and serum was separated. The total protein amount in the culture supernatant was measured according to the Raleigh method.
Anti-Vero cell-derived protein antibody was detected by Western blotting. After 4 μg of Vero cell protein was subjected to SDS-PAGE, it was transferred to a nylon membrane (Millipore Immobilon P). After blocking with PBS containing 5% skim milk, the mouse serum diluted 100-fold with the same PBS was added and reacted at room temperature for 2 hours. Anti-Vero cell protein antibody was used as a positive control. After washing with PBS containing 0.05% polyoxyethylene monolaurate (Nacalai, 356-24), peroxidase-labeled anti-mouse IgG (BIO-RAD; 172-1011) diluted 300-fold with the same PBS was added, The reaction was allowed to proceed for 2 hours at room temperature. Thereafter, ECL plus (AP biotech RPN2132) was added, and a specific band was detected with a lumino image analyzer LAS-1000 plus (Fuji Photo Film). The positive / negative judgment was made by detecting the band. The results are shown in Table 9.
Figure 0004751558
In this example, production of anti-Vero cell protein antibody was not observed when the total amount of protein in the culture supernatant was 100 ng / mL or less. Antibody production by impurities can induce side reactions such as anaphylaxis. Therefore, the Vero cell-derived protein, which is the main impurity of the Japanese encephalitis vaccine of the present invention, is desirably controlled to 100 ng / mL or less.

Claims (1)

細胞由来不純蛋白が100ng/mL以下の精製不活化日本脳炎ウイルス溶液の製造方法であって、Vero細胞に感染させた日本脳炎ウイルス培養液を限外濾過膜で濃縮した後、ホルマリン処理により不活化し、これをショ糖密度勾配遠心にかけ、不活化日本脳炎ウイルス含有画分を回収し、該ウイルス含有画分をセルロース硫酸エステルゲルにpHで接触させることにより該ウイルスを吸着させた後、不純物質を洗浄・除去し、該ウイルスを塩化ナトリウム溶液で溶出・回収する工程を含むことを特徴とする前記方法。 A method for producing a purified inactivated Japanese encephalitis virus solution having a cell-derived impure protein of 100 ng / mL or less, wherein a Japanese encephalitis virus culture solution infected with Vero cells is concentrated with an ultrafiltration membrane and then inactivated by formalin treatment. This was subjected to sucrose density gradient centrifugation to collect an inactivated Japanese encephalitis virus-containing fraction, and the virus-containing fraction was contacted with cellulose sulfate gel at pH 9 to adsorb the virus. the method of quality was washed away, characterized in that it comprises a step of eluting and recovering the virus with sodium chloride solution.
JP2001574140A 2000-04-07 2001-04-05 Japanese encephalitis inactivated vaccine and production method thereof Expired - Lifetime JP4751558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001574140A JP4751558B2 (en) 2000-04-07 2001-04-05 Japanese encephalitis inactivated vaccine and production method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000105943 2000-04-07
JP2000105943 2000-04-07
JP2001574140A JP4751558B2 (en) 2000-04-07 2001-04-05 Japanese encephalitis inactivated vaccine and production method thereof
PCT/JP2001/002939 WO2001076624A1 (en) 2000-04-07 2001-04-05 Inactivated japanese b encephalitis vaccine and process for producing the same

Publications (1)

Publication Number Publication Date
JP4751558B2 true JP4751558B2 (en) 2011-08-17

Family

ID=18619192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001574140A Expired - Lifetime JP4751558B2 (en) 2000-04-07 2001-04-05 Japanese encephalitis inactivated vaccine and production method thereof

Country Status (3)

Country Link
JP (1) JP4751558B2 (en)
AU (1) AU4472801A (en)
WO (1) WO2001076624A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337248A (en) * 2011-10-09 2012-02-01 中国农业科学院哈尔滨兽医研究所 Recombinant baby hamster kidney (BHK) cell line capable of expressing encephalitis B virus PrM/M-E protein and application thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1322120C (en) * 2003-03-20 2007-06-20 上海天甲生物医药有限公司 Bivalent hepatitis B-encephalitis B vaccine
CN1305526C (en) * 2003-12-29 2007-03-21 薛平 Split encephalitis B virus vaccine and method for preparing the same
EP1913141A2 (en) * 2005-06-03 2008-04-23 The CBR Institute for Biomedical Research, Inc. Sirna microbicides for preventing and treating viral diseases
WO2009030676A2 (en) * 2007-09-03 2009-03-12 Intercell Ag Pharmaceutical composition comprising a japanese encephalitis virus for vaccination of patients of at least 40 years of age
WO2009082002A1 (en) * 2007-12-26 2009-07-02 The Kitasato Institute Method of producing japanese encephalitis vaccine stably storable over long time and use of the vaccine
CN102112151A (en) * 2008-07-30 2011-06-29 久光制药株式会社 Microneedle device and method for increasing the response of japanese encephalitis virus antigen with the microneedle device
JP6941566B2 (en) * 2016-01-15 2021-09-29 Kmバイオロジクス株式会社 Vaccine containing immobilized virus particles
CN114272366B (en) * 2021-12-04 2024-04-05 辽宁成大生物股份有限公司 Method for preparing human encephalitis B inactivated vaccine and vaccine
WO2024029469A1 (en) * 2022-08-03 2024-02-08 Kmバイオロジクス株式会社 Method for manufacturing inactivated sars-cov-2 vaccine, inactivated sars-cov-2 vaccine, method for purifying sars-cov-2 or inactivated sars-cov-2, and sars-cov-2 antigen composition or inactivated sars-cov-2 antigen composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147185A (en) * 1984-08-09 1986-03-07 Chemo Sero Therapeut Res Inst Method of purifying japanese b encephalitis virus
JPS6154450A (en) * 1984-08-24 1986-03-18 Chemo Sero Therapeut Res Inst Gel for affinity chromatography having group specificity and its production
WO1999011762A1 (en) * 1997-08-28 1999-03-11 Cheil Jedang Corporation An attenuated japanese encephalitis virus adapted to vero cell and a japanese encephalitis vaccine
JPH11510151A (en) * 1995-08-01 1999-09-07 パストゥール メリユ セリュム エ ヴァサン ソシエテ アノニム Industrial manufacturing method of Japanese encephalitis vaccine and vaccine obtained thereby
JP2000083657A (en) * 1998-07-13 2000-03-28 Chemo Sero Therapeut Res Inst Japanese encephalitis virus vaccine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147185A (en) * 1984-08-09 1986-03-07 Chemo Sero Therapeut Res Inst Method of purifying japanese b encephalitis virus
JPS6154450A (en) * 1984-08-24 1986-03-18 Chemo Sero Therapeut Res Inst Gel for affinity chromatography having group specificity and its production
JPH11510151A (en) * 1995-08-01 1999-09-07 パストゥール メリユ セリュム エ ヴァサン ソシエテ アノニム Industrial manufacturing method of Japanese encephalitis vaccine and vaccine obtained thereby
WO1999011762A1 (en) * 1997-08-28 1999-03-11 Cheil Jedang Corporation An attenuated japanese encephalitis virus adapted to vero cell and a japanese encephalitis vaccine
JP2000083657A (en) * 1998-07-13 2000-03-28 Chemo Sero Therapeut Res Inst Japanese encephalitis virus vaccine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337248A (en) * 2011-10-09 2012-02-01 中国农业科学院哈尔滨兽医研究所 Recombinant baby hamster kidney (BHK) cell line capable of expressing encephalitis B virus PrM/M-E protein and application thereof
CN102337248B (en) * 2011-10-09 2013-04-17 中国农业科学院哈尔滨兽医研究所 Recombinant baby hamster kidney (BHK) cell line capable of expressing encephalitis B virus PrM/M-E protein and application thereof

Also Published As

Publication number Publication date
WO2001076624A1 (en) 2001-10-18
AU4472801A (en) 2001-10-23

Similar Documents

Publication Publication Date Title
KR100968141B1 (en) Multiplication of viruses in a cell culture
JP5322636B2 (en) How to spread influenza virus
JP4161017B2 (en) Attenuated Japanese encephalitis virus and Japanese encephalitis vaccine adapted to Vero cells
JP5095685B2 (en) Enhanced immunogen for inactivated vaccine against Japanese encephalitis virus group infection and method for producing the same
KR20050027165A (en) Methods for producing an active constituent of a pharmaceutical or a diagnostic agent in an mdck cell suspension culture
JP2000507825A (en) Method of influenza virus replication in cell culture, and influenza virus obtainable by the method
JP4751558B2 (en) Japanese encephalitis inactivated vaccine and production method thereof
EP0480949B2 (en) Production of viral vaccine
RU2447898C2 (en) Ipv-dpt vaccine
US20080193478A1 (en) Inactivated Poliomyelitis Vaccine Derived From Sabin Strain Of Polio Virus
JP2007068401A (en) West nile virus vaccine
EA024262B1 (en) METHOD FOR PRODUCTION OF pH STABLE HIGHLY INFECTIOUS INFLUENZA VIRUS
JP2000083657A (en) Japanese encephalitis virus vaccine
JP5946453B2 (en) Mutant rabies virus and vaccine
JP2681063B2 (en) Method for producing renal symptomatic hemorrhagic fever virus antigen, vaccine containing the antigen, and diagnostic agent for renal symptomatic hemorrhagic fever
Webster et al. Efficacy of equine influenza vaccines for protection against A/Equine/Jilin/89 (H3N8)—a new equine influenza virus
AU2005253864B9 (en) Q fever vaccine preparation and method of producing the vaccine
WO2024029469A1 (en) Method for manufacturing inactivated sars-cov-2 vaccine, inactivated sars-cov-2 vaccine, method for purifying sars-cov-2 or inactivated sars-cov-2, and sars-cov-2 antigen composition or inactivated sars-cov-2 antigen composition
EA040093B1 (en) TECHNOLOGY FOR OBTAINING VACCINE AGAINST HEMORRHAGIC FEVER WITH RENAL SYNDROME

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110113

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Ref document number: 4751558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term