WO2005014744A1 - Coating composition and low dielectric porous siliceous material produced by using same - Google Patents

Coating composition and low dielectric porous siliceous material produced by using same Download PDF

Info

Publication number
WO2005014744A1
WO2005014744A1 PCT/JP2004/011136 JP2004011136W WO2005014744A1 WO 2005014744 A1 WO2005014744 A1 WO 2005014744A1 JP 2004011136 W JP2004011136 W JP 2004011136W WO 2005014744 A1 WO2005014744 A1 WO 2005014744A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating composition
film
siliceous
group
siliceous material
Prior art date
Application number
PCT/JP2004/011136
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoko Aoki
Hiroyuki Aoki
Original Assignee
Az Electronic Materials (Japan) K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Az Electronic Materials (Japan) K.K. filed Critical Az Electronic Materials (Japan) K.K.
Publication of WO2005014744A1 publication Critical patent/WO2005014744A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/16Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane

Definitions

  • the present invention relates to a coating composition. Further, the present invention relates to a method for producing a low dielectric siliceous material using the same, and a low dielectric siliceous film produced using the same. Further, the present invention relates to a semiconductor device comprising the low dielectric siliceous material thus manufactured. Background art
  • a method of making an organic siliceous film obtained by firing polyorganosilazane porous can be considered. Since the organic siliceous film thus obtained has a structure in which an organic group is bonded to the silicon atom of silica, the water repellency of the film itself is high and the relative permittivity due to moisture absorption over time is high. In addition to suppressing the rise, it is possible to obtain a porous film having heat resistance and environmental resistance required as an interlayer insulating film for semiconductors.
  • Patent Document 1 JP 2002-75982A
  • a high-strength porous siliceous film can be obtained by firing a film of a composition containing a polyalkylsilazane and a polyacrylate or a polymethacrylate.
  • Patent Document 1 The porous siliceous film described in Patent Document 1 has an effect that a rise in relative dielectric constant over time due to moisture absorption can be suppressed.
  • the porous silica film generally has an elastic modulus of 3 GPa or less when the relative dielectric constant is about 2.2, and the film strength is high. It turns out that there is room for improvement in terms of
  • the holes formed in the porous film may have smaller diameters, and may have uniform diameters. is important. If the porous insulating film is exposed to an etching gas, a stripping solution, or the like used when forming a multilayer wiring structure, the gas or the stripping solution may enter the large holes and erode. In addition, the stress and heat applied when forming metal wiring and other thin films on the porous film triggers the hole to expand, and furthermore, the local force of the hole becomes S leak purse, and the porous film becomes an insulating film.
  • the pore diameter of the pores of the porous membrane is desirably 2 nm or less.
  • the conventional method usually produces only a porous film having fine pores having a pore size of 5 to 8 nm, and it is difficult to form a porous film having pores having a uniform pore size of 5 nm or less.
  • the present invention provides a polyalkylsilazane conjugate, a siloxy group-containing polymer, and an organic solvent. And a coating composition comprising:
  • the siliceous material of the present invention is characterized in that the coating composition is formed by applying the coating composition on a substrate or filling a groove, followed by firing.
  • a semiconductor device is characterized in that the above-mentioned siliceous material is included as an interlayer insulating film.
  • the above-mentioned coating composition is preliminarily calcined in a steam-containing atmosphere at a temperature of 50 to 300 ° C, and further calcined in a dry atmosphere at a temperature of 300 to 500 ° C. It is characterized by doing.
  • the siliceous material according to the present invention is characterized in that it has 0.53 x m micropores inside.
  • the present invention solves a problem in the production of a conventional porous material as described above, and provides an excellent mechanical strength that can withstand the latest high integration processes such as the damascene method. easily produce porous siliceous materials with small pores, exhibiting a very low dielectric constant, especially less than 2.5, exhibiting a stable dielectric constant and having chemical resistance to various chemicals. To provide a coating composition that can be used.
  • the polyalkylsilazane conjugate in the present invention has an alkyl-substituted silazane bond.
  • preferred polyalkylsilazane compounds are preferably those having a repeating unit represented by the following general formula (1) and a unit represented by the general formula (2) or (3). Any of them is included.
  • R 1 to R 11 each represent a hydrogen atom or an alkyl group having 13 to 13 carbon atoms.
  • R 5 and R 6 , and R 9 —R 11 are not all hydrogen.
  • R 1 —R 11 in each formula are as follows.
  • R 1 represents a hydrogen atom or an alkyl group having 13 to 13 carbon atoms, but it is not easy for all R 1 of the entire compound to be hydrogen at the same time.
  • R 2 — R 4 are each independently a hydrogen atom or a C 1-3 alkyl group R 2 —
  • p, q, and r are each 0 or 1, and 0 ⁇ p + q + r ⁇ 3.
  • R 1 is a methyl group and R 2 —R 4 are present, it is preferable that all of them are hydrogen.
  • R 5 and R 7 are each independently a force S representing a hydrogen atom or an alkyl group having 13 carbon atoms, and all R 5 and R 6 of the whole compound are simultaneously hydrogen. None.
  • R 5 and R 6 are a hydrogen atom
  • the rest is a methyl group
  • R 7 is a hydrogen atom
  • R 8 R 11 is a force S independently representing a hydrogen atom or an alkyl group having 13 carbon atoms, and all R 9 R 11 of the whole compound are simultaneously hydrogen. There is no.
  • a R 8 is a hydrogen atom, R 9 - that all of R 11 is a methyl group Is preferred.
  • a polyalkylsilazane compound compound containing a repeating unit represented by the general formula (1) and at least one of the repeating units represented by the general formula (2) or (3) It is particularly useful in that it can prevent gelling during storage of the tinting composition.
  • the number of the repeating units represented by the general formula (1) is 50 mol% or more of the total number of the units represented by the general formulas (1) to (3). More preferably, it is particularly preferably at least 90 mol%.
  • the repeating unit force of the general formula (1) is at least 50 mol% with respect to the total number of the repeating units of the general formula (1)-(3), problems such as uneven repelling and coating unevenness are less likely to occur during film formation. It is.
  • the polysilazane compound according to the present invention preferably has a number average molecular weight of 100 or more in order to improve the coating properties of the coating composition, particularly the coating properties when applying by a spin coating method.
  • the polysilazane conjugate according to the present invention preferably has a number average molecular weight of 50,000 or less in order to suppress the gelation of the composition by appropriately setting the number of crosslinking groups.
  • a particularly preferred polyalkylsilazane conjugate comprises a repeating unit of the general formula (1) and at least one unit of the general formula (2) or (3). .
  • the number average molecular weight of the polyalkylsilazane conjugate is preferably from 100 to 50,000, more preferably from 1,000 to 20,000.
  • polyalkylsilazane conjugates can be used in the case of a polyalkylsilazane containing a repeating unit of the general formula (1) in an ammonolysis process for synthesizing a normal polysilazane, which is obvious to those skilled in the art.
  • (R iCl) is represented by the repeating unit of the general formula (2).
  • the coating compositions according to the invention comprises a siloxy group-containing polymer c
  • the union contains a siloxy group (one Si—o —)-containing monomer as a polymerized unit, and has a main chain
  • a side chain, or a terminal unit contains a siloxy group.
  • Examples of the group containing a siloxy group include a trimethylsiloxy group, a dimethylbutylsiloxy group, a methylhydrosiloxy group, a dimethylsiloxy group, a phenylmethylsiloxy group, a diphenylsiloxy group, a methylvinylsiloxy group, and a phenyl group.
  • the siloxy group-containing polymer according to the present invention contains the above-mentioned siloxy group, it may or may not contain a polymer unit containing no siloxy group.
  • a siloxy group-free polymerized unit examples include methyl (meth) acrylic acid, isobutyl (meth) acrylic acid, ⁇ -butyl (meth) acrylic acid, tert-butyl (meth) acrylic acid, polyethylene glycol Forces such as side, polypropylene oxide, polypropylene glycol (meth) acrylic acid and the like are not limited to these.
  • the siloxy group-containing polymer is preferably a polymer containing a polymer unit selected from the group consisting of acrylic acid, methacrylic acid, and a polyethylene oxide compound.
  • R ′ is an arbitrary substituent such as hydrogen, an alkyl group, an alkoxy group and the like, and R ′ in one molecule may be a mixture of a plurality of types.
  • R ′ is a polymerizable group, and can be polymerized with another monomer unit.
  • L is a linking group, for example, a single bond, an alkylene group, or the like.
  • n and n are numbers representing the degree of polymerization.
  • the molecular weight of the siloxy group-containing polymer can be arbitrarily selected as long as the effect of the present invention is not impaired. Or steam It is preferable that the molecular weight of the polymer is not less than a certain value so as to form a porous film by being emitted, but is not more than a certain value from the viewpoint of preventing the generation of voids and a decrease in film strength due to the void. Is preferred. These lower and upper limits are appropriately selected depending on the type of the siloxy group-containing polymer used. When the siloxy group-containing polymer used in the present invention contains a polyethylene oxide compound as a polymerized unit, its molecular weight is preferably 100 5,000, more preferably 500 2,000. .
  • the siloxy group-containing polymer contains acrylic acid or methacrylic acid as a polymerized unit
  • the molecular weight thereof is preferably 1,000, 80,000, and the molecular weight is preferably 10,000, 20,000 to 20,000. Reason better than mosquito.
  • More preferred siloxy group-containing polymers are polymers containing 2- (trimethylsiloxy) ethyl methacrylic acid in the polymerized units and polymers containing hydroxy (polyethyleneoxy) propyl / polydimethylsilicone in the polymerized units. .
  • siloxy group-containing polyethylene oxide compound examples include ⁇ - [3- [1,1,3,3-tetramethyl-11-[(trimethylsilyl) oxy] disiloxanyl] propynole] — ⁇ -hydroxy-poly (oxy) 2,3-ethanexyl), hydroxy (polyethyleneoxy) propyl polydimethyl silicone, and MCR-C13 manufactured by Gelest (Pennsylvania, USA).
  • the structure of the polyethylene oxide is not particularly limited, but from the viewpoint of appropriately maintaining the viscosity, the weight of the ethyleneoxy moiety is 30 to 90% relative to the weight of the molecule.
  • the weight of the siloxy group in the polysiloxy structure is preferably 10 to 40%.
  • the hydroxyl group-terminated polyethylene oxide structure crosslinks with the above-mentioned polyalkylsilazane compound. It is thought to increase the pore size and make the pores more porous. Furthermore, the siloxy group-containing polyethylene oxide has an effect that, when sublimated by heating, a part of the siloxy group remains in the fired film of polyalkylsilazane as a matrix, thereby producing a silica material having higher strength. Play.
  • the siloxy group-containing polymer in the present invention contains a siloxy group.
  • the proportion of the polymerized unit containing a xy group is preferably 1% or more, more preferably 10% or more, more preferably 30%, based on the total number of polymerized units constituting the siloxy group-containing polymer. It is especially preferred that it is more than.
  • the coating composition according to the present invention is obtained by dissolving or dispersing the above-mentioned polyalkylsilazane conjugate and acetylethoxysilane conjugate, and, if necessary, other additives described later in an organic solvent. At this time, it is preferable to use an inert organic solvent having no active hydrogen as the organic solvent.
  • Such organic solvents include aromatic hydrocarbon solvents such as benzene, tolylene, xylene, ethylbenzene, getylbenzene, trimethylbenzene, and triethylbenzene; cyclohexane, cyclohexene, decahydronaphthalene, ethylcyclohexane, and methylcyclohexane.
  • Aromacyclic hydrocarbon solvents such as hexane, p-menthine, dipentene (limonene); ether solvents such as dipropyl ether and dibutyl ether; ketone solvents such as methyl isobutyl ketone; propylene glycol monomethyl ether acetate And the like.
  • the coating composition according to the present invention can also contain other additive components as required.
  • examples of such a component include a siloxy group-free polymer.
  • the siloxy group-free polymer that can be used in the coating composition according to the present invention includes a homopolymer and a copolymer of a (meth) acrylic acid ester that can use any polymer. Those selected from the group and containing a carboxyl group or a hydroxyl group in a part of the side groups are preferable. Such a polymer has the effect of making the pores of the formed siliceous material small and uniform.
  • Examples of such a polymer include a homopolymer of an acrylate ester such as polymethyl acrylate and polyethyl acrylate; and a homopolymer of a methacrylate ester such as polymethyl methacrylate and polyethyl methacrylate; Ester copolymers, such as poly (methyl acrylate-co-ethyl acrylate); methacrylate copolymers, such as poly (methyl methacrylate-co-ethyl methacrylate); acrylate esters and methacrylate esters And copolymers such as poly (methyl acrylate) -Ethyl methacrylate).
  • the polymer is a copolymer, a random copolymer, a block copolymer or any other sequence having no restriction on the monomer sequence can be used.
  • the monomers constituting the homopolymer and copolymer of the (meth) acrylate include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, Forces include, but are not limited to, methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, and the like.
  • methyl methacrylate and n-butyl methacrylate and n-butyl acrylate and i-butyl acrylate are more preferred from the viewpoint of compatibility with polyalkylsilazane.
  • the carboxyl group and the hydroxyl group contained in such a (meth) acrylic acid ester polymer form a cross-link with the polyalkylsilazane conjugate. Since the cross-linking reaction affects the final strength and structure of the siliceous material, the amount of carboxyl groups and hydroxyl groups is important. In order to obtain a sufficient crosslinked structure, the amount of the carboxyl group and the hydroxyl group is preferably at least 0.01 mol%, more preferably at least 0.1 mol%, based on the total number of monomers constituting the polymer component. Is more preferred. Further, in order to prevent gelling by excessive crosslinking, the content is preferably 50 mol% or less, more preferably 30 mol% or less.
  • the polymer When a polymer containing no siloxy group is used, the polymer has a molecular weight of 1,000 or more so that the polymer sublimates, decomposes, or evaporates at an appropriate temperature to form a porous film. More preferably, it is more preferably 10,000 or more. On the other hand, the molecular weight of the polymer is preferably 800,000 or less, more preferably 200,000 or less, from the viewpoint of preventing voids and the resulting decrease in film strength.
  • the coating composition according to the present invention can also contain other additive components as necessary.
  • a component include a viscosity modifier, a crosslinking accelerator, and the like.
  • a phosphorus compound for example, tris (trimethylsilyl) phosphate can be contained for the purpose of gettering effect of sodium when used in a semiconductor device.
  • a reaction accelerator for example, an acetooxysilane compound, may be added. Acetoxysilane compound
  • the material sometimes exerts an action to make the fine pores formed in the calcined siliceous material small and uniform.
  • the polymerizable composition according to the present invention is obtained by dissolving or dispersing the polyalkylsilazane compound, the siloxy group-containing polymer, and other additives as necessary in the organic solvent, and reacting the components.
  • the order of dissolving each component in the organic solvent is not particularly limited, and two or more solutions, for example, a solution of the polyalkylsilazane conjugate and a solution of the siloxy group-containing polymer are mixed. You can.
  • the mixture is physically stirred while heating, whereby a homogeneous coating composition having a cross-linked bond can be obtained.
  • heating it is generally heated at 3080 ° C, but this temperature varies depending on the type of components used. Care must be taken especially when the temperature is excessively high because the composition may gel.
  • the stirring time depends on the type and temperature of the components to be reacted, but is generally about 124 hours. Further, it is preferable to perform ultrasonic dispersion treatment in a hot water bath at 30-80 ° C for about 5 to 90 minutes, because it accelerates the reaction.
  • the solvent can be replaced after the components are reacted.
  • the amount of the siloxy group-containing polymer according to the present invention when used, is preferably based on the weight of the polyalkylsilazane compound in order to effectively realize a porous silica material. Is used in an amount of 5% by weight or more, more preferably 10% by weight or more, particularly preferably 20% by weight or more. On the other hand, in order to prevent a decrease in film strength due to generation of voids or cracks, it is preferable to use the polyalkylsilazane conjugate in an amount of preferably not more than 50% by weight.
  • the content of each of the above components varies depending on the intended use of the coating composition.
  • the solid content is not less than 5% by weight in order to form a siliceous material having a sufficient thickness.
  • it is preferably 50% by weight or less. That is, it is generally preferable that the solid content is 5 to 50% by weight based on the whole coating composition. Is more preferable.
  • a generally preferable film thickness for example, 2000 to 8000 A, can be obtained.
  • the coating composition according to the present invention is applied onto a substrate or filled in a mold or groove, and then dried as necessary to remove excess organic solvent, and then calcined to obtain a siliceous material. be able to.
  • the siliceous material according to the present invention is applied to an electronic component such as a semiconductor device, usually, the coating composition applied on the substrate is baked into a siliceous material, so that the silica material is directly formed on the semiconductor device. It is common to form porous materials
  • Examples of a method of applying the coating composition to the substrate surface include a conventionally known method, for example, a spin coating method, a dip method, a spray method, a transfer method, and the like.
  • the coating film formed on the substrate surface is preliminarily fired in a steam atmosphere after removing (drying) an excess organic solvent as necessary.
  • steam atmosphere refers to an atmosphere in which the relative humidity at 23 ° C is 40% or more.
  • gases other than water vapor forming the atmosphere are air, nitrogen, helium, argon, and the like.
  • Precalcination is performed at a temperature of 50-350 ° C, preferably 100-300 ° C. This preliminary firing can be performed stepwise or continuously while increasing the temperature.
  • the dry atmosphere is an atmosphere containing almost no water vapor such as dry air, dry nitrogen, and dry helium, and an atmosphere having a relative humidity at 25 ° C of 10% or less.
  • the calcination temperature is 300 to 500 ° C, preferably 350 to 450 ° C, and the calcination and firing time varies depending on the calcination temperature and the components, but is generally 1 minute to 1 hour.
  • the firing temperature is preferably 300 ° C or higher to complete the firing step in as short a time as possible, but 500 ° C or lower to maintain the quality of the formed siliceous material. It is preferable that
  • SiH, SiR (R: hydrocarbon group) and Of the SiN bonds only the SiN bonds are oxidized and converted into SiO bonds, forming a siliceous material having unoxidized SiH and SiR bonds.
  • the SiO bond formed by selectively oxidizing the SiN bond and the unoxidized SiH and SiR bonds can be present.
  • the siliceous material according to the present invention containing SiH or SiR bonds, since these bonds have water repellency, it is possible to prevent the adsorption of water at a low density even at a low density. Therefore, the siliceous material according to the present invention has a great advantage that the dielectric constant of the siliceous material hardly increases even when it is exposed to an atmosphere containing water vapor. Further, since the siliceous material according to the present invention has a low density, there is an advantage that the internal stress of the film is small and cracks are hardly generated.
  • fine pores having a pore diameter of 0.5 to 3 nm are mainly formed inside the siliceous material.
  • this siliceous material has substantially no micropores with a pore diameter exceeding 5 nm.
  • the diameter of these micropores can be measured by the X-ray diffuse scattering method.
  • ATX-G type multifunctional X-ray diffractometer manufactured by Rigaku Denki Co., Ltd. S is used. It is considered that these fine pores are formed by the decomposition of the acetoxysilane bonded product and the decomposition product being evaporated or sublimated. Due to the presence of the micropores, the density of the siliceous material further decreases, and as a result, the relative dielectric constant of the siliceous material further decreases.
  • the porous siliceous material according to the present invention has excellent mechanical strength because extremely fine pores can be formed. Specifically, the porous siliceous material according to the present invention exhibits remarkably high mechanical strength as a porous material having an elastic modulus of 3 GPa or more, and in some cases, 5 GPa or more by a nanoindentation method described later. .
  • the siliceous material in order to have both mechanical strength and various chemical resistances that can withstand the wiring material removal process by the CMP method, it is used as an interlayer insulating film compatible with the latest high integration processes such as the damascene method. It is possible. Further, since the water-repellent groups derived from the polyalkylsilazane compound which is a matrix component of the siliceous material according to the present invention sufficiently remain after calcination, the siliceous material can be left in an atmosphere containing water vapor even if it is left in an atmosphere containing water vapor. The rate hardly rises.
  • the lowering of the density of the siliceous material (SiH, SiR) due to the binding components (SiH, SiR) and the lowering of the density of the entire film due to the micropores are combined with less than 2.5, A porous siliceous material that can stably maintain an extremely low relative dielectric constant of 2.0 or less, or about 1.6 in some cases, can be obtained.
  • the porous siliceous material according to the present invention, its density is 0.5 to 1.6 g / cm 3 , preferably 0.8 to 1.4 gZcm 3 , and its crack limit film thickness is 1. Ozm or more, preferably 5 xm or more, and its internal stress is 80 MPa or less, preferably 50 MPa or less.
  • the Si-containing group present as SiH or SiR (R: hydrocarbon group) bond contained in the siliceous material is 10 to 100 atomic%, preferably 10 to 100 atomic%, based on the number of S ⁇ g elements contained in the material. Is 25 75 atomic%. The content of Si present as SiN bonds is 5 atomic% or less.
  • the thickness of the porous siliceous material obtained after the calcination varies depending on the use of the surface of the substrate, and is usually 0.01-1 ⁇ ⁇ , preferably 0.1-2 ⁇ . In particular, when it is used as an interlayer insulating film of a semiconductor device, the thickness is preferably 0.1-2 / m.
  • the porous siliceous material according to the present invention has a low density as described above, and has a crack limit film thickness, that is, a maximum film thickness that can be formed without causing film cracking. It also has the advantage of showing a high value of ⁇ or more. In the case of a conventional siliceous material, its crack limit film thickness is about 0.5-1.5 / im.
  • the siliceous material according to the present invention has a low dielectric constant, a low density, a high water repellency, a high chemical resistance, and a high mechanical strength as compared with the conventional siliceous material.
  • it can maintain a low dielectric constant stably, and is particularly preferable when applied to an interlayer insulating film in a semiconductor device.
  • a stainless steel tank with a capacity of 5 liters is equipped with a stainless steel tank for supplying raw materials. I wore it. After the inside of the reactor was replaced with dry nitrogen, 780 g of methyltrichlorosilane was put into the stainless steel for raw material supply, and this was pressure-fed into the reaction tank with nitrogen and introduced. Next, a raw material supply tank containing pyridine was connected to the reactor, and 4 kg of pyridine was similarly pumped and introduced with nitrogen. The pressure of the reactor was adjusted to 1.0 kg / cm 2 , and the temperature of the mixture in the reactor was adjusted to 14 ° C. Ammonia was blown into the reactor with stirring, and when the pressure in the reactor reached 2.0 kg / cm 2 , the supply of ammonia was stopped.
  • the reactor pressure was lowered by opening an exhaust line, and then dry nitrogen was blown into the liquid phase for 1 hour to remove excess ammonia.
  • the obtained product was subjected to pressure filtration under a dry nitrogen atmosphere using a pressure filter to obtain 3200 ml of a filtrate.
  • pyridine was distilled off using an evaporator, about 340 g of polymethylsilazane was obtained.
  • the number average molecular weight of the obtained polymethylsilazane was measured by gas chromatography using a chloroform-form developing solution, and was 1800 in terms of polystyrene.
  • Infrared absorption scan vectors (hereinafter, referred to as IR spectrum) was measured, 3350Cm- 1 and 1200cm- 1 NH bonded to based absorption around, 2900Cm- 1 and 1250Cm- 1 of Si- C bond to based absorbent, and 1020 Absorption due to Si—N-Si bond of —820 cm— 1 was observed.
  • Synthesis was performed in the same manner as in Reference Example 1 except that a mixture of 720 g of methyltrichlorosilane and 656 of dimethyldichlorosilane was used instead of 780 g of methyltrichlorosilane as a raw material.
  • the number average molecular weight of the obtained polymethylsilazane was measured by gas chromatography using a chloroform solution as a developing solution, and was found to be 1400 in terms of polystyrene. Infrared absorption spectra were measured to show absorption at 3350 cm- 1 and 1200 cm- 1 due to N--H bonds, absorption at 2900 cm- 1 and 1250 cm- 1 due to SC bonds, and 1020 820 cm- 1 — Absorption due to N—Si bond was observed.
  • the filtrate was applied on a silicon wafer having a diameter of 10.2 cm (4 inches) and a thickness of 0.5 mm using a spin coater at 3000 rpm for 20 seconds, and further dried at room temperature for 5 minutes.
  • the silicon wafer was heated at 150 ° C for 3 minutes in an air atmosphere (relative humidity 40% at 23 ° C), and then for 3 minutes on a 250 ° C hot plate.
  • This film was allowed to stand in an air atmosphere (23 ° C, 40% relative humidity) for 24 hours, and then calcined in a dry nitrogen atmosphere at 400 ° C for 30 minutes to obtain a siliceous film.
  • the IR spectrum of the obtained siliceous film is And Si_ ⁇ based on the binding absorption ASOcnT 1, 1270cm- 1 and 780Cm- 1 of Si_C based binding absorption, absorption was observed based on the C-H bond 2970cm- 1, 3350cm- 1 and 1200Cm- 1 of N
  • the absorption based on the —H bond and the absorption based on the copolymer of isobutyl methacrylate and 30- (trimethylsiloxy) ethyl methacrylate were lost.
  • the relative dielectric constant was 2.20
  • the density was 1. lg / cm 3
  • the internal stress was 36 MPa
  • the crack limit film thickness was 5 / m or more.
  • the modulus of elasticity of this film by a nanoindentation method was 4.5 GPa.
  • the average pore size was 2 nm.
  • Example 2 [0070] to 20% PGMEA solution 160g of polymethyl silazane synthesized in Reference Example 2, a copolymer of Echirenki side 50 mole 0/0 and dimethylsiloxane 50 mole 0/0 (molecular weight: about 1,000) and 8g The solution dissolved in 32 g of PGMEA was mixed and thoroughly stirred. Subsequently, the solution was filtered through a PTFE syringe filter (manufactured by Advantech) having a filtration accuracy of 0.2 micron.
  • a PTFE syringe filter manufactured by Advantech
  • the filtrate was applied on a silicon wafer having a diameter of 20.3 cm (8 inches) and a thickness of lmm using a spin coater at 3500 rpm / 20 seconds, and further dried at room temperature for 5 minutes.
  • the silicon wafer was heated at 150 ° C for 3 minutes in an air atmosphere (relative humidity 40% at 23 ° C), and then for 3 minutes on a 250 ° C hot plate.
  • This film was left in a humidifier at 70 ° C and a relative humidity of 85% for 3 minutes, and calcined in a dry nitrogen atmosphere at 400 ° C for 10 minutes to obtain a siliceous film.
  • the relative dielectric constant was 2.24
  • the density was 1.2 g / cm 3
  • the internal stress was 35 MPa
  • the critical crack thickness was 5 / m or more.
  • the modulus of elasticity of this film by the nanoindentation method was 5. OGPa.
  • a resistance test of a siliceous film was performed using an etching residue stripping solution ACT-970 (manufactured by Ashland Chemical), ST-210 and ST250 (manufactured by ATMI), EKC265 and EKC640 (manufactured by EKC). And the etching rate was 0.8 A / min or less, respectively, and the increase in the dielectric constant by the test was 1.1% or less.
  • the silicon wafer was heated in an air atmosphere (relative humidity at 23 ° C: 40%) at 150 ° C for 3 minutes, and then on a hot plate at 250 ° C for 3 minutes.
  • This film was allowed to stand in an air atmosphere (23 ° C., 40% relative humidity) for 24 hours, and then calcined in a dry nitrogen atmosphere at 400 ° C. for 30 minutes to obtain a siliceous film.
  • the IR spectrum of the obtained siliceous film is And ASOcnT 1 absorption based on Si_ ⁇ bond, 1270 cm— 1 and 780 cm— 1 absorption based on Si_C bond, 2970 cm 1 absorption based on C—H bond, 3350 cm— 1 and 1200 cm— 1 N— Absorption based on H-bonds and absorption based on poly n-butyl methacrylate were burned out.
  • the relative dielectric constant was 2.31
  • the density was 1. lg / cm 3
  • the internal stress was 35 MPa.
  • the elastic modulus of this film by the nanoindentation method was 2.6 GPa, which was lower than that of the siliceous film according to the present invention.
  • the average pore size was 7 nm, which was larger than the siliceous film according to the present invention.
  • the capacitance is measured at 100 kHz using a 4192ALF impedance analyzer (Yokogawa 'Hyu I Packard).
  • the film thickness is measured using an M-44 spectroscopic ellipsometer (A. Woolam, Iowa, USA).
  • the relative permittivity is the average of the values calculated by the following formula for all 18 patterns.
  • a silicon wafer with a diameter of 10.16 cm (4 inches) and a thickness of 0.5 mm is weighed with an electronic balance.
  • the sample composition solution is applied by spin coating to form a film, converted into a siliceous film according to the method of each example, and the weight of the silicon wafer with the film is measured again with an electronic balance.
  • the film weight is the difference between the weight of the wafer before and after the film formation.
  • the film thickness is measured with an M-44 spectroscopic ellipsometer (JA Woolam).
  • the sled of a silicon wafer of 20 ⁇ 32 cm (8 inches) in diameter and lmm thickness is input to a FLX-2320 laser-internal stress measuring instrument (KLA—Tencor, California, USA). Further, a sample composition solution is applied to this silicon wafer by spin coating to form a film, converted into a siliceous film according to the method of each example, and returned to room temperature (23 ° C.). Measure the internal stress with an internal stress meter. The film thickness is measured with an M-44 type spectroscopic ellipsometer (manufactured by J.A. Woolam).
  • a sample composition solution is applied to a silicon wafer having a diameter of 10.16 cm (4 inches) and a thickness of 0.5 mm by a spin coating method to form a film, which is converted into a siliceous film according to the method of each example. Adjust the solid concentration of the sample composition solution or the number of revolutions of the spin coater at the time of coating to prepare a sample whose film thickness is changed in the range of about 0.5 zm to about 5 zm. The surface of the film after calcination is observed under a microscope (120x), and the presence or absence of cracks in each sample is examined. The maximum film thickness without cracks is defined as the crack limit film thickness.
  • Modulus of elasticity (nanoindentation method) A sample composition solution is applied to a silicon wafer having a diameter of 20.32 cm (8 inches) and a thickness of lmm by spin coating to form a film, which is converted into a siliceous film according to the method of each example. Using the resulting siliceous film, the elastic modulus is measured using a mechanical property evaluation system for thin films (Nano Indenter DCM manufactured by MTS Systems, USA).
  • a sample composition solution is applied to a silicon wafer having a diameter of 20.32 cm (8 inches) and a thickness of lmm by spin coating to form a film, which is converted into a siliceous film according to the method of each example.
  • the pore size of the obtained siliceous film is measured by an X-ray diffuse scattering method using a multifunctional X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.) for evaluating the surface structure of ATX-G.
  • the present invention is to provide a porous siliceous film having a well-balanced combination of stable low dielectric constant, mechanical strength capable of withstanding the latest fine wiring process, and various chemical resistances.
  • the porous siliceous film according to the present invention as an interlayer insulating film of a semiconductor device, it is possible to further increase the degree of integration and multilayering of an integrated circuit.
  • the present invention is applied to a force that is most preferably applied to form an interlayer insulating film in an electronic material such as a semiconductor, and to other electronic material elements, for example, an insulating film under a metal film. Can be done.
  • the use of the coating composition of the present invention can also form a siliceous film on the solid surface of various materials such as metals, ceramics, and wood.
  • a metal substrate (silicon, sus, tungsten, iron, copper, zinc, brass, aluminum, etc.) having a siliceous film formed on its surface, or a ceramic substrate having a siliceous film formed on its surface (In addition to metal oxides such as silica, alumina, magnesium oxide, titanium oxide, zinc oxide, and tantalum oxide, metal nitrides such as silicon nitride, boron nitride, and titanium nitride, and silicon carbide).
  • metal oxides such as silica, alumina, magnesium oxide, titanium oxide, zinc oxide, and tantalum oxide
  • metal nitrides such as silicon nitride, boron nitride, and titanium nitride, and silicon carbide

Abstract

Disclosed is a coating composition which enables to produce a porous siliceous film which exhibits excellent mechanical strength, stably very low dielectric constant, and chemical resistance to various chemicals at the same time. Also disclosed is a method for producing a siliceous material using such a coating composition. The coating composition contains a polyalkyl silazane compound, a siloxy group-containing polymer and an organic solvent. Also disclosed are a siliceous material obtained by firing such a coating composition and a method for producing such a siliceous material.

Description

明 細 書  Specification
コーティング組成物、およびそれを用いて製造した低誘電多孔質シリカ質 材料  Coating composition and low dielectric porous siliceous material produced using the same
技術分野  Technical field
[0001] 本発明は、コーティング組成物に関するものである。さらに、本発明はそれを用いた 低誘電シリカ質材料の製造法、およびそれを用いて製造された低誘電シリカ質膜に 関するものである。さらに、本発明は、そのようにして製造された低誘電シリカ質材料 を具備してなる半導体装置にも関するものである。 背景技術  [0001] The present invention relates to a coating composition. Further, the present invention relates to a method for producing a low dielectric siliceous material using the same, and a low dielectric siliceous film produced using the same. Further, the present invention relates to a semiconductor device comprising the low dielectric siliceous material thus manufactured. Background art
[0002] 半導体用層間絶縁膜 (IMD)のような電子材料は、集積回路の高速化、高集積化 に伴い一層の低誘電率化が要請されており、シリカ質膜の比誘電率を低下させるた めに膜を多孔質化させることは知られている。シリカ質膜は一般に吸湿性を有してい るため、周囲の環境によっては時間とともに比誘電率が上昇してしまう傾向がある。  [0002] Electronic materials such as interlayer insulating films for semiconductors (IMD) are required to have lower dielectric constants as integrated circuits become faster and more integrated, and the relative dielectric constant of siliceous films is reduced. It is known to make the membrane porous in order to achieve this. Since the siliceous film generally has a hygroscopic property, the relative dielectric constant tends to increase with time depending on the surrounding environment.
[0003] このような比誘電率の経時上昇を防止する方法として、ポリ有機シラザンの焼成に より得られる有機シリカ質膜を多孔質化させる方法が考えられる。このようにして得ら れた有機シリカ質膜は、シリカのケィ素原子に有機基が結合している構造を有してい るため、膜自体の撥水性が高ぐ吸湿による比誘電率の経時上昇が抑えられていると ともに、半導体用層間絶縁膜として要求される耐熱性、耐環境性を具備した多孔質 膜を得ること力 Sできる。  [0003] As a method of preventing such a rise in relative dielectric constant with time, a method of making an organic siliceous film obtained by firing polyorganosilazane porous can be considered. Since the organic siliceous film thus obtained has a structure in which an organic group is bonded to the silicon atom of silica, the water repellency of the film itself is high and the relative permittivity due to moisture absorption over time is high. In addition to suppressing the rise, it is possible to obtain a porous film having heat resistance and environmental resistance required as an interlayer insulating film for semiconductors.
[0004] また、集積回路のさらなる高集積化は、半導体装置における内部配線の微細化お よび多層化をより効率的に実現するための多層配線工程技術の開発をも促している 。このような技術は、例えばスパッタリフロー法または CVD法により溝内部に Cu等の 配線材料を埋め込み、さらに CMP (Chmeical Mechanical Polishing)法等によ り溝外に堆積した配線材料を除去することにより溝配線を形成するものがあげられる 。このような溝配線技術の進歩により、半導体装置は、内部配線の微細化が可能に なると共に、 CMP法による表面平坦化と相まってさらなる多層化が可能となる。  [0004] Further, higher integration of integrated circuits has also promoted the development of multilayer wiring process technology for more efficiently realizing miniaturization and multilayering of internal wiring in semiconductor devices. Such a technique involves, for example, embedding a wiring material such as Cu in the groove by a sputter reflow method or a CVD method, and removing the wiring material deposited outside the groove by a CMP (chemical mechanical polishing) method or the like. One that forms a wiring is given. With the progress of such trench wiring technology, the semiconductor device can be miniaturized in internal wiring, and can be further multilayered in combination with the surface flattening by the CMP method.
[0005] このような集積回路の高集積化は、配線間に存在する層間絶縁膜に対して、一層 の低誘電率化に加え、 CMP法による配線材料の除去工程に耐えうる機械的強度を 要求し、さらに CMP法に用いられる薬剤のほカ ウエットストリツビングによるフオトレ ジスト除去をする場合においてはその薬剤、アツシングによるフォトレジスト除去をす る場合においてはアツシング後の残渣を除去するための薬剤等、各種薬品に対する 耐薬品性をも要求する。 [0005] The high integration of such an integrated circuit requires an interlayer insulating film existing between wirings. In addition to lowering the dielectric constant of the material, it requires mechanical strength that can withstand the process of removing the wiring material by the CMP method.Furthermore, when removing the photoresist used in the wet stripping of the chemicals used in the CMP method, the When removing photoresist by chemicals and assing, it is also required to have chemical resistance to various chemicals such as chemicals for removing residues after assing.
特許文献 1 :特開 2002 - 75982号公報  Patent Document 1: JP 2002-75982A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 上記したようなシリカ質材料に対する要求に応えるベぐレ、くつかの方法が検討され ている。例えば、本発明者らは、ポリアルキルシラザンとポリアクリル酸エステルまたは ポリメタクリル酸エステルとを含んでなる組成物の膜を焼成することにより、高強度の 多孔質シリカ質膜が得られること見出した (特許文献 1)。この特許文献 1に記載され た多孔質シリカ質膜は、吸湿による比誘電率の経時上昇が抑えられるという効果を奏 するものである。し力 ながら、本発明者らのさらなる検討の結果、その多孔質シリカ 質膜は、比誘電率が 2. 2程度の場合には弾性率が 3GPa以下に留まるのが一般的 であり、膜強度の点で改良の余地があることがわかった。 [0006] Begurays and several methods have been studied to meet the above demands for siliceous materials. For example, the present inventors have found that a high-strength porous siliceous film can be obtained by firing a film of a composition containing a polyalkylsilazane and a polyacrylate or a polymethacrylate. (Patent Document 1). The porous siliceous film described in Patent Document 1 has an effect that a rise in relative dielectric constant over time due to moisture absorption can be suppressed. However, as a result of further studies by the present inventors, the porous silica film generally has an elastic modulus of 3 GPa or less when the relative dielectric constant is about 2.2, and the film strength is high. It turns out that there is room for improvement in terms of
[0007] 一方、多孔質膜を層間絶縁膜に用いて多層配線構造を形成させるとき、多孔質膜 に形成される孔の孔径がより小さレ、こと、および孔径が揃ってレ、ることが重要である。 多層配線構造を形成させる際に使用されるエッチングガスや剥離液等に多孔質絶縁 膜が曝されると、大きな孔にガスや剥離液が入り込み、侵食することがある。また、多 孔質膜上に金属配線やその他の薄膜形成を行う際にかかる応力や熱が引き金とな つて、孔が拡大され、さらにはその部位力 Sリークパースとなり、多孔質膜が絶縁膜とし て機能しない場合がある。このような観点から、多孔質膜の孔の孔径は 2nm以下で あることが望ましいことがわかっている。しかし、従来の方法では、通常、孔径が 5— 8 nmの微細孔を有する多孔質膜しか得られず、 5nm以下の、孔径が揃った孔を有す る多孔質膜を形成させることは困難であった。  [0007] On the other hand, when a multilayer wiring structure is formed using a porous film as an interlayer insulating film, the holes formed in the porous film may have smaller diameters, and may have uniform diameters. is important. If the porous insulating film is exposed to an etching gas, a stripping solution, or the like used when forming a multilayer wiring structure, the gas or the stripping solution may enter the large holes and erode. In addition, the stress and heat applied when forming metal wiring and other thin films on the porous film triggers the hole to expand, and furthermore, the local force of the hole becomes S leak purse, and the porous film becomes an insulating film. May not function as From such a viewpoint, it is known that the pore diameter of the pores of the porous membrane is desirably 2 nm or less. However, the conventional method usually produces only a porous film having fine pores having a pore size of 5 to 8 nm, and it is difficult to form a porous film having pores having a uniform pore size of 5 nm or less. Met.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、ポリアルキルシラザンィ匕合物、シロキシ基含有重合体、および有機溶媒 を含んでなること、を特徴とするコーティング組成物に関するものである。 [0008] The present invention provides a polyalkylsilazane conjugate, a siloxy group-containing polymer, and an organic solvent. And a coating composition comprising:
[0009] また、本発明のシリカ質材料は、前記コーティング組成物を、基板上に塗布し、また は溝に充填し、さらに焼成することにより形成されたこと、を特徴とするものである。  [0009] Further, the siliceous material of the present invention is characterized in that the coating composition is formed by applying the coating composition on a substrate or filling a groove, followed by firing.
[0010] また、本発明による半導体装置は、前記のシリカ質材料を層間絶縁膜として含むこ とを特徴とするものである。 [0010] Further, a semiconductor device according to the present invention is characterized in that the above-mentioned siliceous material is included as an interlayer insulating film.
[0011] さらに本発明によるシリカ質材料の製造法は、前記のコーティング組成物を水蒸気 含有雰囲気中 50— 300°Cの温度で予備焼成し、さらに乾燥雰囲気中 300— 500°C の温度で焼成することを特徴とするものである。  [0011] Further, in the method for producing a siliceous material according to the present invention, the above-mentioned coating composition is preliminarily calcined in a steam-containing atmosphere at a temperature of 50 to 300 ° C, and further calcined in a dry atmosphere at a temperature of 300 to 500 ° C. It is characterized by doing.
[0012] さらに、本発明によるシリカ質材料は、内部に 0. 5 3 x mの微細孔を有することを 特徴とするものである。 [0012] Further, the siliceous material according to the present invention is characterized in that it has 0.53 x m micropores inside.
発明の効果  The invention's effect
[0013] 本発明は、上記したような従来の多孔質材料の製造において問題であった点を解 決し、ダマシン法をはじめとする最新の高集積化プロセスに耐えうる優れた機械的強 度を備え、かつ非常に低い、特に 2. 5未満の、誘電率を安定的に示し、各種の薬剤 に対する耐薬品性を兼ね備えた、孔径の小さい微細孔を有する多孔質シリカ質材料 を簡便に製造することができるコーティング組成物を提供するものである。  [0013] The present invention solves a problem in the production of a conventional porous material as described above, and provides an excellent mechanical strength that can withstand the latest high integration processes such as the damascene method. Easily produce porous siliceous materials with small pores, exhibiting a very low dielectric constant, especially less than 2.5, exhibiting a stable dielectric constant and having chemical resistance to various chemicals. To provide a coating composition that can be used.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] ポリアルキルシラザン化合物 [0014] Polyalkylsilazane compound
本発明におけるポリアルキルシラザンィ匕合物は、アルキル置換されたシラザン結合 を有するものである。その構造は限定されるものではないが、好ましいポリアルキルシ ラザン化合物は、好ましくは下記一般式(1)で表される繰り返し単位と、一般式(2)ま たは(3)で表される単位のいずれかとを含むものである。  The polyalkylsilazane conjugate in the present invention has an alkyl-substituted silazane bond. Although the structure is not limited, preferred polyalkylsilazane compounds are preferably those having a repeating unit represented by the following general formula (1) and a unit represented by the general formula (2) or (3). Any of them is included.
[化 1]
Figure imgf000005_0001
[Chemical 1]
Figure imgf000005_0001
[0015] 上記式(1)一(3)において、 R1— R11は、それぞれ水素原子または炭素数 1一 3の アルキル基を表すが、化合物中
Figure imgf000005_0002
R5および R6、ならびに R9— R11のすべてが水 素ではない。より好ましい態様においては、各式中の R1— R11は以下の通りである。
In the above formulas (1) and (3), R 1 to R 11 each represent a hydrogen atom or an alkyl group having 13 to 13 carbon atoms.
Figure imgf000005_0002
R 5 and R 6 , and R 9 —R 11 are not all hydrogen. In a more preferred embodiment, R 1 —R 11 in each formula are as follows.
[0016] 上記式(1)中、 R1は、水素原子または炭素数 1一 3のアルキル基を表すが、化合物 全体のすべての R1が同時に水素であることはなぐ In the above formula (1), R 1 represents a hydrogen atom or an alkyl group having 13 to 13 carbon atoms, but it is not easy for all R 1 of the entire compound to be hydrogen at the same time.
R2— R4は、各々独立に水素原子または炭素数 1一 3のアルキル基を表す力 R2R 2 — R 4 are each independently a hydrogen atom or a C 1-3 alkyl group R 2
R4のすべてが同時に水素であることはなぐ It is difficult for all of R 4 to be hydrogen at the same time
p、 q、および rは、それぞれ 0または 1であり、 0≤p + q + r≤3である。  p, q, and r are each 0 or 1, and 0≤p + q + r≤3.
[0017] ここで、一般式(1)において R1がメチル基であり、 R2— R4が存在する場合には、そ れらがすべて水素であることが好ましレ、。 Here, in the general formula (1), when R 1 is a methyl group and R 2 —R 4 are present, it is preferable that all of them are hydrogen.
[0018] 上記式(2)中、 R5 R7は、各々独立に水素原子または炭素数 1一 3のアルキル基 を表す力 S、化合物全体のすべての R5と R6が同時に水素であることはない。 In the above formula (2), R 5 and R 7 are each independently a force S representing a hydrogen atom or an alkyl group having 13 carbon atoms, and all R 5 and R 6 of the whole compound are simultaneously hydrogen. Never.
[0019] ここで、一般式(2)において、 R5および R6のいずれかが水素原子であり、残りがメチ ル基であり、 R7が水素原子であることが好ましい。 Here, in the general formula (2), it is preferable that one of R 5 and R 6 is a hydrogen atom, the rest is a methyl group, and R 7 is a hydrogen atom.
[0020] 上記式(3)中、 R8 R11は、各々独立に水素原子または炭素数 1一 3のアルキル基 を表す力 S、化合物全体のすべての R9 R11が同時に水素であることはない。 In the above formula (3), R 8 R 11 is a force S independently representing a hydrogen atom or an alkyl group having 13 carbon atoms, and all R 9 R 11 of the whole compound are simultaneously hydrogen. There is no.
[0021] 一般式(3)において、 R8が水素原子であり、 R9— R11のすべてがメチル基であること が好ましい。 [0021] In the general formula (3), a R 8 is a hydrogen atom, R 9 - that all of R 11 is a methyl group Is preferred.
[0022] 本発明においては、一般式(1)で表される繰り返し単位と、一般式(2)または(3)で 表される繰り返し単位の少なくとも一種とを含むポリアルキルシラザンィヒ合物力 コー ティング組成物の保存時のゲル化を防止することができる点で特に有用である。その 場合、一般式(1)で表される繰返し単位の数が一般式(1)から (3)で表される単位の 総数の 50モル%以上であることが好ましぐ 80モル%以上であることがより好ましぐ 90モル%以上であることが特に好ましい。一般式(1)の繰り返し単位力 一般式(1) 一 (3)の繰り返し単位の総数に対して 50モル%以上であると、成膜時にハジキゃ塗 布ムラなどの問題が生じにくくなるためである。  In the present invention, a polyalkylsilazane compound compound containing a repeating unit represented by the general formula (1) and at least one of the repeating units represented by the general formula (2) or (3) It is particularly useful in that it can prevent gelling during storage of the tinting composition. In this case, it is preferable that the number of the repeating units represented by the general formula (1) is 50 mol% or more of the total number of the units represented by the general formulas (1) to (3). More preferably, it is particularly preferably at least 90 mol%. When the repeating unit force of the general formula (1) is at least 50 mol% with respect to the total number of the repeating units of the general formula (1)-(3), problems such as uneven repelling and coating unevenness are less likely to occur during film formation. It is.
[0023] 本発明によるポリシラザン化合物は、コーティング組成物の塗布性、特にスピンコー ティング法により塗布をする際の塗布性、をよくするために、数平均分子量が 100以 上であることが好ましい。また、本発明によるポリシラザンィ匕合物は、架橋基の数を適 当にして、組成物のゲル化を抑制するために数平均分子量が 50, 000以下で合うこ とが好ましい。本発明において、特に好ましいポリアルキルシラザンィ匕合物は、上記 一般式(1)の繰り返し単位、および上記一般式(2)または(3)のうちの少なくとも 1種 の単位を含んでなるである。また、本発明においてポリアルキルシラザンィ匕合物の数 平均分子量は 100— 50, 000であること力 S好ましく、 1, 000— 20, 000であること力 S より好ましい。  [0023] The polysilazane compound according to the present invention preferably has a number average molecular weight of 100 or more in order to improve the coating properties of the coating composition, particularly the coating properties when applying by a spin coating method. In addition, the polysilazane conjugate according to the present invention preferably has a number average molecular weight of 50,000 or less in order to suppress the gelation of the composition by appropriately setting the number of crosslinking groups. In the present invention, a particularly preferred polyalkylsilazane conjugate comprises a repeating unit of the general formula (1) and at least one unit of the general formula (2) or (3). . In the present invention, the number average molecular weight of the polyalkylsilazane conjugate is preferably from 100 to 50,000, more preferably from 1,000 to 20,000.
[0024] これらのポリアルキルシラザンィ匕合物は、当業者に自明の通常のポリシラザンを合 成する際のアンモノリシスにおいて、一般式(1)の繰返し単位を含むポリアルキルシ ラザンの場合にはアルキルトリクロロシラン (R iCl )を、一般式(2)の繰返し単位を  [0024] These polyalkylsilazane conjugates can be used in the case of a polyalkylsilazane containing a repeating unit of the general formula (1) in an ammonolysis process for synthesizing a normal polysilazane, which is obvious to those skilled in the art. (R iCl) is represented by the repeating unit of the general formula (2).
3  Three
含むポリアルキルシラザンの場合にはジアルキルジクロロシラン (R5R6SiCl )を、一 Polyalkylsilazane containing dialkyldichlorosilane (R 5 R 6 SiCl)
2 般式(3)の単位を含むポリアルキルシラザンの場合にはトリアルキルクロロシラン (R9 R10R SiCl)を、そしてこれら両方の繰返し単位を含むポリアルキルシラザンの場合 にはこれらの混合物を出発原料とすることにより得られる。それらのクロロシラン類の 混合比が各単位の存在比を決める。 2 Starting with trialkylchlorosilane (R 9 R 10 R SiCl) for polyalkylsilazane containing units of general formula (3) and starting from a mixture of these for polyalkylsilazane containing both of these repeating units It is obtained by using it as a raw material. The mixing ratio of these chlorosilanes determines the abundance ratio of each unit.
[0025] シロキシ某含有重合体 [0025] Siloxy-containing polymer
本発明によるコーティング組成物は、シロキシ基含有重合体を含んでなる c 合体は、重合単位としてシロキシ基 (一 Si— o—)含有モノマーを含むものであり、主鎖The coating compositions according to the invention comprises a siloxy group-containing polymer c The union contains a siloxy group (one Si—o —)-containing monomer as a polymerized unit, and has a main chain
、側鎖、または末端単位にシロキシ基を含む。 , A side chain, or a terminal unit contains a siloxy group.
[0026] シロキシ基を含有する基としては、具体的にはトリメチルシロキシ基、ジメチルブチ ルシロキシ基、メチルヒドロシロキシ基、ジメチルシロキシ基、フエニルメチルシロキシ 基、ジフエニルシロキシ基、メチルビニルシロキシ基、フエ二ルビニルシロキシ基、 2— ( トリメトキシシリル)ェチル (メタ)アクリル基、 γ—(トリメトキシシリル)プロピル (メタ)ァク リル基、 2—(トリメチルシロキシ)ェチル (メタ)アクリル基、 γ—(トリメチルシロキシ)プロ ピル (メタ)アクリル基、トリメチルシロキシメタクリル基、トリメチルシリルォキシシロキサ ニル基等が挙げられる。ここで、(メタ)アクリル基とは、アクリル基またはメタクリル基の いずれかを示すものである。  Examples of the group containing a siloxy group include a trimethylsiloxy group, a dimethylbutylsiloxy group, a methylhydrosiloxy group, a dimethylsiloxy group, a phenylmethylsiloxy group, a diphenylsiloxy group, a methylvinylsiloxy group, and a phenyl group. 2-vinylsiloxy, 2- (trimethoxysilyl) ethyl (meth) acryl, γ- (trimethoxysilyl) propyl (meth) acryl, 2- (trimethylsiloxy) ethyl (meth) acryl, γ — (Trimethylsiloxy) propyl (meth) acrylic group, trimethylsiloxymethacrylic group, trimethylsilyloxysiloxanyl group and the like. Here, the (meth) acryl group refers to either an acryl group or a methacryl group.
[0027] 本発明によるシロキシ基含有重合体は、前記のシロキシ基を含んでいれば、シロキ シ基非含有の重合単位を含んでレ、てもよレ、。そのようなシロキシ基非含有重合単位と しては、例えば、メチル (メタ)アクリル酸、イソブチル (メタ)アクリル酸、 η-ブチル (メタ )アクリル酸、 tert—ブチル (メタ)アクリル酸、ポリエチレンキサイド、ポリプロピレンォキ サイド、ポリプロピレングリコール (メタ)アクリル酸等が挙げられる力 これらに限定さ れるものではない。本発明におけるシロキシ基含有重合体は、これらのうち、アクリル 酸、メタクリル酸、およびポリエチレンオキサイド化合物からなる群から選ばれる重合 単位を含む重合体であることが好ましレ、。  If the siloxy group-containing polymer according to the present invention contains the above-mentioned siloxy group, it may or may not contain a polymer unit containing no siloxy group. Examples of such a siloxy group-free polymerized unit include methyl (meth) acrylic acid, isobutyl (meth) acrylic acid, η-butyl (meth) acrylic acid, tert-butyl (meth) acrylic acid, polyethylene glycol Forces such as side, polypropylene oxide, polypropylene glycol (meth) acrylic acid and the like are not limited to these. Of these, the siloxy group-containing polymer is preferably a polymer containing a polymer unit selected from the group consisting of acrylic acid, methacrylic acid, and a polyethylene oxide compound.
[0028] このポリエチレンオキサイド化合物の一例を一般式として示すと以下の通りである。  [0028] An example of this polyethylene oxide compound is shown below as a general formula.
HO- (CH CH O) -L- (SiR' 一〇) _SiR' (A) HO- (CH CH O) -L- (SiR '100%) _SiR' (A)
2 2 m 2 n 3  2 2 m 2 n 3
ここで、 R'は水素、アルキル基、アルコキシ基等の任意の置換基であり、一分子中 の R'は複数種が混合していてもよレ、。また、 R'が重合可能な基であり、ほかのモノマ 一単位と重合することもできる。  Here, R ′ is an arbitrary substituent such as hydrogen, an alkyl group, an alkoxy group and the like, and R ′ in one molecule may be a mixture of a plurality of types. R ′ is a polymerizable group, and can be polymerized with another monomer unit.
Lは連結基であり、例えば単結合、アルキレン基等である。  L is a linking group, for example, a single bond, an alkylene group, or the like.
mおよび nは重合度を表す数である。  m and n are numbers representing the degree of polymerization.
[0029] シロキシ基含有重合体の分子量は、本発明の効果を損なわない範囲で、任意に選 択すること力 Sできる、し力、しながら、その重合体が適当な温度で昇華、分解、または蒸 発して多孔質膜を形成するように、重合体の分子量は一定値以上であることが好まし ぐ一方、ボイドの発生、およびそれによる膜強度の低下を防ぐという観点から、一定 値以下であることが好ましい。これらの下限値および上限値は、用いるシロキシ基含 有重合体の種類によって適切に選択される。本発明に用いられるシロキシ基含有重 合体が、ポリエチレンオキサイド化合物を重合単位として含むものである場合、その 分子量は 100 5, 000であること力 S好ましく、 500 2, 000であること力 Sより好ましレヽ 。さらに、シロキシ基含有重合体が、アクリル酸またはメタクリル酸を重合単位として含 むものである場合、その分子量は、 1 , 000 80, 000であること力 S好ましく、 10, 00 0— 20, 000であることカより好ましレヽ。 [0029] The molecular weight of the siloxy group-containing polymer can be arbitrarily selected as long as the effect of the present invention is not impaired. Or steam It is preferable that the molecular weight of the polymer is not less than a certain value so as to form a porous film by being emitted, but is not more than a certain value from the viewpoint of preventing the generation of voids and a decrease in film strength due to the void. Is preferred. These lower and upper limits are appropriately selected depending on the type of the siloxy group-containing polymer used. When the siloxy group-containing polymer used in the present invention contains a polyethylene oxide compound as a polymerized unit, its molecular weight is preferably 100 5,000, more preferably 500 2,000. . Further, when the siloxy group-containing polymer contains acrylic acid or methacrylic acid as a polymerized unit, the molecular weight thereof is preferably 1,000, 80,000, and the molecular weight is preferably 10,000, 20,000 to 20,000. Reason better than mosquito.
[0030] より好ましいシロキシ基含有重合体は、 2— (トリメチルシロキシ)ェチルメタクリル酸を 重合単位に含む重合体およびヒドロキシ(ポリエチレンォキシ)プロピル/ポリジメチ ルシリコーンを重合単位に含む重合体である。このうちシロキシ基含有ポリエチレン オキサイド化合物として、好ましい具体例は、 α -[3— [1, 1, 3, 3-テトラメチルー 1一 [ (トリメチルシリル)ォキシ]ジシロキサニル]プロピノレ]— ω—ヒドロキシーポリ(ォキシー 2 , 3—エタネジル)、ヒドロキシ(ポリエチレンォキシ)プロピルポリジメチルシリコーン、 G elest社(米国ペンシルバニア州 )製 MCR— C 13等が挙げられる。 [0030] More preferred siloxy group-containing polymers are polymers containing 2- (trimethylsiloxy) ethyl methacrylic acid in the polymerized units and polymers containing hydroxy (polyethyleneoxy) propyl / polydimethylsilicone in the polymerized units. . Among these, preferred specific examples of the siloxy group-containing polyethylene oxide compound include α- [3- [1,1,3,3-tetramethyl-11-[(trimethylsilyl) oxy] disiloxanyl] propynole] —ω-hydroxy-poly (oxy) 2,3-ethanexyl), hydroxy (polyethyleneoxy) propyl polydimethyl silicone, and MCR-C13 manufactured by Gelest (Pennsylvania, USA).
[0031] このようなシロキシ基含有ポリエチレンオキサイド化合物において、ポリエチレンォ キサイドの構造は特に限定されないが、粘度を適切に保つというの観点から、分子の 重量に対するエチレンォキシ部分の重量が 30— 90%であることが好ましぐまたポリ シロキシ構造におけるシロキシ基部分の重量が 10— 40%であることが好ましい。  [0031] In such a siloxy group-containing polyethylene oxide compound, the structure of the polyethylene oxide is not particularly limited, but from the viewpoint of appropriately maintaining the viscosity, the weight of the ethyleneoxy moiety is 30 to 90% relative to the weight of the molecule. The weight of the siloxy group in the polysiloxy structure is preferably 10 to 40%.
[0032] このシロキシ基含有ポリエチレンオキサイド化合物、またはそれをモノマー単位とし て含む共重合体は、水酸基を末端とするポリエチレンオキサイド構造が、前記のポリ アルキルシラザン化合物と架橋するため、シリカ質材料の強度を増大させ、さらに多 孔質化させるものと考えられる。さらには、シロキシ基含有ポリエチレンオキサイドは、 加熱によって昇華する際に、その一部であるシロキシ基がマトリックスであるポリアル キルシラザンの焼成膜中に残存し、より強度の高いシリカ質材料を生成させる効果を 奏する。  [0032] In the siloxy group-containing polyethylene oxide compound or a copolymer containing the same as a monomer unit, the hydroxyl group-terminated polyethylene oxide structure crosslinks with the above-mentioned polyalkylsilazane compound. It is thought to increase the pore size and make the pores more porous. Furthermore, the siloxy group-containing polyethylene oxide has an effect that, when sublimated by heating, a part of the siloxy group remains in the fired film of polyalkylsilazane as a matrix, thereby producing a silica material having higher strength. Play.
[0033] 本発明におけるシロキシ基含有重合体は、シロキシ基を含むことを必須とする。シロ キシ基を含有する重合単位の割合は、シロキシ基含有重合体を構成する重合単位 の総数に対して、 1 %以上であることが好ましぐ 10%以上であることがより好ましぐ 30%以上であることが特に好ましレ、。 [0033] It is essential that the siloxy group-containing polymer in the present invention contains a siloxy group. White The proportion of the polymerized unit containing a xy group is preferably 1% or more, more preferably 10% or more, more preferably 30%, based on the total number of polymerized units constituting the siloxy group-containing polymer. It is especially preferred that it is more than.
[0034] ^mm  [0034] ^ mm
本発明によるコーティング組成物は、前記のポリアルキルシラザンィ匕合物およびァ セトキシシランィ匕合物、さらに必要に応じて後述するその他の添加物、を有機溶媒中 に溶解または分散させたものである。このとき、有機溶媒としては、活性水素を有しな い不活性有機溶媒を用いることが好ましい。このような有機溶媒として、ベンセン、ト ノレェン、キシレン、ェチルベンゼン、ジェチルベンゼン、トリメチルベンゼン、トリェチ ルベンゼン等の芳香族炭化水素系溶媒;シクロへキサン、シクロへキセン、デカヒドロ ナフタレン、ェチルシクロへキサン、メチルシクロへキサン、 p—メンチン、ジペンテン( リモネン)等の脂環族炭化水素系溶媒;ジプロピルエーテル、ジブチェルエーテル等 のエーテル系系溶媒;メチルイソプチルケトン等のケトン系溶媒;プロピレングリコール モノメチルエーテルアセテート等のエステル系溶媒等が挙げられる。  The coating composition according to the present invention is obtained by dissolving or dispersing the above-mentioned polyalkylsilazane conjugate and acetylethoxysilane conjugate, and, if necessary, other additives described later in an organic solvent. At this time, it is preferable to use an inert organic solvent having no active hydrogen as the organic solvent. Such organic solvents include aromatic hydrocarbon solvents such as benzene, tolylene, xylene, ethylbenzene, getylbenzene, trimethylbenzene, and triethylbenzene; cyclohexane, cyclohexene, decahydronaphthalene, ethylcyclohexane, and methylcyclohexane. Alicyclic hydrocarbon solvents such as hexane, p-menthine, dipentene (limonene); ether solvents such as dipropyl ether and dibutyl ether; ketone solvents such as methyl isobutyl ketone; propylene glycol monomethyl ether acetate And the like.
[0035] その他の添加物 [0035] Other additives
本発明によるコーティング組成物は、必要に応じてその他の添加剤成分を含有す ることもできる。そのような成分として、例えば、シロキシ基非含有重合体が挙げられる  The coating composition according to the present invention can also contain other additive components as required. Examples of such a component include a siloxy group-free polymer.
[0036] 本発明によるコーティング組成物に用いることができるシロキシ基非含有重合体とし ては、任意の重合体を用いることができる力 (メタ)アクリル酸エステルの単独重合体 および共重合体からなる群より選ばれ、その側基の一部にカルボキシル基または水 酸基を含むものが好ましい。このような重合体は、形成されるシリカ質材料の微細孔 を小さく、均一にする作用がある。このような重合体としては、アクリル酸エステルの単 独重合体、例えば、ポリアクリノレ酸メチル、ポリアクリル酸ェチル;メタクリル酸エステル の単独重合体、例えば、ポリメタクリル酸メチル、ポリメタクリル酸ェチル;アクリル酸ェ ステルの共重合体、例えば、ポリ(アクリル酸メチルーコ—アクリル酸ェチル);メタクリノレ 酸エステルの共重合体、例えば、ポリ(メタクリル酸メチルーコーメタクリル酸ェチル);ァ クリル酸エステルとメタクリル酸エステルとの共重合体、例えば、ポリ(アクリル酸メチル -コーメタクリル酸ェチル)、等が挙げられる。この重合体が共重合体である場合、その モノマー配列に制限はなぐランダムコポリマー、ブロックコポリマーその他の任意の 配列を使用することができる。 The siloxy group-free polymer that can be used in the coating composition according to the present invention includes a homopolymer and a copolymer of a (meth) acrylic acid ester that can use any polymer. Those selected from the group and containing a carboxyl group or a hydroxyl group in a part of the side groups are preferable. Such a polymer has the effect of making the pores of the formed siliceous material small and uniform. Examples of such a polymer include a homopolymer of an acrylate ester such as polymethyl acrylate and polyethyl acrylate; and a homopolymer of a methacrylate ester such as polymethyl methacrylate and polyethyl methacrylate; Ester copolymers, such as poly (methyl acrylate-co-ethyl acrylate); methacrylate copolymers, such as poly (methyl methacrylate-co-ethyl methacrylate); acrylate esters and methacrylate esters And copolymers such as poly (methyl acrylate) -Ethyl methacrylate). When the polymer is a copolymer, a random copolymer, a block copolymer or any other sequence having no restriction on the monomer sequence can be used.
[0037] (メタ)アクリル酸エステルの単独重合体および共重合体を構成するモノマーとして は、メタクリル酸メチル、メタクリル酸ェチル、メタクリル酸 n—ブチル、メタクリル酸 iーブ チル、メタクリル酸 tーブチル、アクリル酸メチル、アクリル酸ェチル、アクリル酸 n—ブチ ノレ、アクリル酸 iーブチル、アクリル酸 t一ブチル等が挙げられる力 これらに限定はされ なレ、。特に、メタクリル酸メチルとメタクリル酸 n—ブチルおよびアクリル酸 n—ブチルと アクリル酸 i一ブチルは、ポリアルキルシラザンとの相溶性の観点からより好ましレ、。  [0037] The monomers constituting the homopolymer and copolymer of the (meth) acrylate include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, Forces include, but are not limited to, methyl acrylate, ethyl acrylate, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, and the like. In particular, methyl methacrylate and n-butyl methacrylate and n-butyl acrylate and i-butyl acrylate are more preferred from the viewpoint of compatibility with polyalkylsilazane.
[0038] このような(メタ)アクリル酸エステル重合体に含まれるカルボキシル基および水酸基 は、前記のポリアルキルシラザンィ匕合物と架橋結合を形成する。この架橋反応は、最 終的なシリカ質材料の強度や構造に影響するので、カルボキシル基および水酸基の 量は重要である。カルボキシル基および水酸基の量は、十分な架橋構造を得るため に、重合体成分を構成する全モノマー数に対して 0. 01モル%以上であることが好ま しく 0. 1モル%以上であることがより好ましい。また、過度の架橋によるゲルィ匕を防止 するために 50モル%以下であることが好ましぐ 30モル%以下であることがより好まし レ、。  [0038] The carboxyl group and the hydroxyl group contained in such a (meth) acrylic acid ester polymer form a cross-link with the polyalkylsilazane conjugate. Since the cross-linking reaction affects the final strength and structure of the siliceous material, the amount of carboxyl groups and hydroxyl groups is important. In order to obtain a sufficient crosslinked structure, the amount of the carboxyl group and the hydroxyl group is preferably at least 0.01 mol%, more preferably at least 0.1 mol%, based on the total number of monomers constituting the polymer component. Is more preferred. Further, in order to prevent gelling by excessive crosslinking, the content is preferably 50 mol% or less, more preferably 30 mol% or less.
[0039] また、シロキシ基非含有重合体を用いる場合、その重合体が適当な温度で昇華、 分解、または蒸発して多孔質膜を形成するように、重合体の分子量が 1 , 000以上で あることが好ましぐ 10, 000以上であることがより好ましい。一方、ボイドの発生、およ びそれによる膜強度の低下を防ぐという観点から、重合体の分子量は 800, 000以 下であることが好ましぐ 200, 000以下であることがより好ましい。  When a polymer containing no siloxy group is used, the polymer has a molecular weight of 1,000 or more so that the polymer sublimates, decomposes, or evaporates at an appropriate temperature to form a porous film. More preferably, it is more preferably 10,000 or more. On the other hand, the molecular weight of the polymer is preferably 800,000 or less, more preferably 200,000 or less, from the viewpoint of preventing voids and the resulting decrease in film strength.
[0040] 本発明によるコーティング組成物は、必要に応じてその他の添加剤成分を含有す ることもできる。そのような成分として、例えば粘度調整剤、架橋促進剤等が挙げられ る。また、半導体装置に用いられたときにナトリウムのゲッタリング効果などを目的に、 リン化合物、例えばトリス(トリメチルシリル)フォスフェート等、を含有することもできる。 さらには、コーティング組成物中の重合体成分の反応を促進させるために、反応促 進剤、例えばァセトキシシラン化合物、を配合することもできる。ァセトキシシラン化合 物は、焼成後のシリカ質材料に形成される微細孔を小さぐ均一にする作用を発揮す ることちある。 [0040] The coating composition according to the present invention can also contain other additive components as necessary. Examples of such a component include a viscosity modifier, a crosslinking accelerator, and the like. In addition, a phosphorus compound, for example, tris (trimethylsilyl) phosphate can be contained for the purpose of gettering effect of sodium when used in a semiconductor device. Furthermore, in order to promote the reaction of the polymer component in the coating composition, a reaction accelerator, for example, an acetooxysilane compound, may be added. Acetoxysilane compound The material sometimes exerts an action to make the fine pores formed in the calcined siliceous material small and uniform.
[0041] コーティング組成物  [0041] Coating composition
本発明による重合性組成物は、前記のポリアルキルシラザン化合物、シロキシ基含 有重合体、および必要に応じて前記したその他の添加物を前記の有機溶媒に溶解 または分散させ、配合成分を反応させてコーティング組成物とする。ここで、有機溶 媒に対して各成分を溶解させる順番は特に限定されず、 2種以上の溶液、例えばポ リアルキルシラザンィ匕合物の溶液とシロキシ基含有重合体の溶液と、を混合してもよ レ、。  The polymerizable composition according to the present invention is obtained by dissolving or dispersing the polyalkylsilazane compound, the siloxy group-containing polymer, and other additives as necessary in the organic solvent, and reacting the components. To form a coating composition. Here, the order of dissolving each component in the organic solvent is not particularly limited, and two or more solutions, for example, a solution of the polyalkylsilazane conjugate and a solution of the siloxy group-containing polymer are mixed. You can.
[0042] 各成分を混合した後、必要に応じて加熱しながら、物理的に撹拌することによって 架橋結合が形成された均質なコーティング組成物を得ることができる。加熱する場合 には、一般に 30 80°Cで加熱するが、この温度は用いる成分の種類によって変化 する。特に過度に高温にすると組成物がゲル化することがあるので注意が必要であ る。撹拌時間は反応する成分の種類や温度にもよるが、一般に 1一 24時間程度であ る。さらに 30— 80°Cの湯浴上で 5— 90分間程度の超音波分散処理を行うことは、反 応を促進させるのでより好ましレ、。  [0042] After mixing the components, if necessary, the mixture is physically stirred while heating, whereby a homogeneous coating composition having a cross-linked bond can be obtained. When heating, it is generally heated at 3080 ° C, but this temperature varies depending on the type of components used. Care must be taken especially when the temperature is excessively high because the composition may gel. The stirring time depends on the type and temperature of the components to be reacted, but is generally about 124 hours. Further, it is preferable to perform ultrasonic dispersion treatment in a hot water bath at 30-80 ° C for about 5 to 90 minutes, because it accelerates the reaction.
[0043] また、配合成分を反応をさせた上で、溶媒を置換することもできる。  [0043] Further, the solvent can be replaced after the components are reacted.
[0044] 本発明によるシロキシ基含有重合体の添加量は、使用する場合には、シリカ質材 料の多孔質化を効果的に実現するために、ポリアルキルシラザン化合物の重量に対 して好ましくは 5重量%以上、より好ましくは 10重量%以上、特に好ましくは 20重量 %以上の添カ卩量で用いる。一方、ボイドまたはクラックの発生による膜強度の低下を 防ぐために、ポリアルキルシラザンィ匕合物の重量に対して好ましくは 50重量%以下 で用いることが好ましい。  [0044] The amount of the siloxy group-containing polymer according to the present invention, when used, is preferably based on the weight of the polyalkylsilazane compound in order to effectively realize a porous silica material. Is used in an amount of 5% by weight or more, more preferably 10% by weight or more, particularly preferably 20% by weight or more. On the other hand, in order to prevent a decrease in film strength due to generation of voids or cracks, it is preferable to use the polyalkylsilazane conjugate in an amount of preferably not more than 50% by weight.
[0045] また、前記の各成分の含有量は、 目的とするコーティング組成物の用途によって変 化するが、十分な膜厚のシリカ質材料を形成させるために固形分重量が 5重量%以 上であることが好ましぐコーティング組成物の保存安定性を確保し、粘度を適切に 保っために 50重量%以下であることが好ましい。すなわち、一般にコーティング組成 物全体に対して、固形分重量が 5— 50重量%にすることが好ましぐ 10— 30重量% にすることがより好ましい。通常、固形分重量を 10— 30重量%とすることで、一般的 に好ましい膜厚、例えば 2000— 8000 A、を得ることができる。 The content of each of the above components varies depending on the intended use of the coating composition. However, the solid content is not less than 5% by weight in order to form a siliceous material having a sufficient thickness. In order to secure the storage stability of the coating composition and to maintain the viscosity appropriately, it is preferably 50% by weight or less. That is, it is generally preferable that the solid content is 5 to 50% by weight based on the whole coating composition. Is more preferable. Usually, by setting the solid content to 10 to 30% by weight, a generally preferable film thickness, for example, 2000 to 8000 A, can be obtained.
[0046] シリカ晳材料の製造法 [0046] Method for producing silica material
本発明によるコーティング組成物を、基板上に塗布し、または型枠や溝に充填した 上で、必要に応じて乾燥させて過剰の有機溶媒を除去し、焼成することでシリカ質材 料を得ることができる。本発明によるシリカ質材料を半導体装置などの電子部品に適 用する場合には、通常、基板上に塗布したコーティング組成物を焼成してシリカ質材 料とすることで、半導体装置上に直接シリカ質材料を形成させることが一般的である  The coating composition according to the present invention is applied onto a substrate or filled in a mold or groove, and then dried as necessary to remove excess organic solvent, and then calcined to obtain a siliceous material. be able to. When the siliceous material according to the present invention is applied to an electronic component such as a semiconductor device, usually, the coating composition applied on the substrate is baked into a siliceous material, so that the silica material is directly formed on the semiconductor device. It is common to form porous materials
[0047] 基板表面に対するコーティング組成物の塗布方法としては、従来公知の方法、例 えば、スピンコート法、ディップ法、スプレー法、転写法等が挙げられる。 [0047] Examples of a method of applying the coating composition to the substrate surface include a conventionally known method, for example, a spin coating method, a dip method, a spray method, a transfer method, and the like.
[0048] 基板表面に形成された塗布膜は、必要に応じて過剰の有機溶媒を除去 (乾燥)し たあと、水蒸気雰囲気中で予備焼成をする。ここで、水蒸気雰囲気とは 23°Cにおけ る相対湿度が 40%以上である雰囲気をレ、う。このとき雰囲気を形成する水蒸気以外 のガスは、空気、窒素、ヘリウム、アルゴン等である。予備焼成は、 50— 350°C、好ま しくは 100— 300°C、の温度で行う。この予備焼成は、段階的に、あるいは連続的に 温度を上昇させながら行うこともできる。  [0048] The coating film formed on the substrate surface is preliminarily fired in a steam atmosphere after removing (drying) an excess organic solvent as necessary. Here, the term “steam atmosphere” refers to an atmosphere in which the relative humidity at 23 ° C is 40% or more. At this time, gases other than water vapor forming the atmosphere are air, nitrogen, helium, argon, and the like. Precalcination is performed at a temperature of 50-350 ° C, preferably 100-300 ° C. This preliminary firing can be performed stepwise or continuously while increasing the temperature.
[0049] この予備焼成のあと、必要に応じて加湿雰囲気下で短時間(例えば 3— 30分)、ま たは大気雰囲気中で長時間(例えば、 24時間)放置した後、乾燥雰囲気中で加熱焼 成する。この焼成工程は、乾燥雰囲気中で実施される。ここで乾燥雰囲気とは、乾燥 空気、乾燥窒素、乾燥ヘリウム等の水蒸気を殆ど含まない雰囲気であり、 25°Cにお ける相対湿度が 10%以下である雰囲気をいう。  [0049] After this pre-baking, if necessary, after leaving for a short time (for example, 3 to 30 minutes) in a humidified atmosphere, or for a long time (for example, 24 hours) in an air atmosphere, Heat and bake. This firing step is performed in a dry atmosphere. Here, the dry atmosphere is an atmosphere containing almost no water vapor such as dry air, dry nitrogen, and dry helium, and an atmosphere having a relative humidity at 25 ° C of 10% or less.
[0050] 焼成温度は 300 500°C、好ましくは 350 450°Cで行われ、焼成焼成時間は焼 成温度や配合成分によって変化するが、一般に 1分一 1時間である。焼成温度は、 生産性の観点から、できるだけ短時間で焼成工程を終了するために 300°C以上であ ることが好ましいが、形成されるシリカ質材料の品質を維持するために 500°C以下で あることが好ましい。  [0050] The calcination temperature is 300 to 500 ° C, preferably 350 to 450 ° C, and the calcination and firing time varies depending on the calcination temperature and the components, but is generally 1 minute to 1 hour. From the viewpoint of productivity, the firing temperature is preferably 300 ° C or higher to complete the firing step in as short a time as possible, but 500 ° C or lower to maintain the quality of the formed siliceous material. It is preferable that
[0051] 上記焼成工程により、ポリアルキルシラザン中の SiH、 SiR (R :炭化水素基)および SiNの各結合のうち SiN結合のみが酸化されて SiO結合に転換され、未酸化の SiH および SiR結合を有するシリカ質材料が形成される。このように、形成されるシリカ質 材料中には、 SiN結合が選択的に酸化されてできた SiO結合と、未酸化の SiHおよ び SiR結合を存在させることができ、これにより、低密度のシリカ質材料を得ることが できる。一般的に、シリカ質材料の誘電率は、そのシリカ質材料の密度の低下に応じ て低下するが、一方、シリカ質材料の密度が低下すると、高誘電質物質である水の 吸着が起るため、シリカ質材料を大気中に放置すると膜の誘電率が上昇するとレ、う問 題を生じることがある。一方、 SiHや SiR結合を含む本発明によるシリカ質材料の場 合には、それらの結合が撥水性を有することから、低密度でありながら水の吸着を防 止すること力 Sできる。従って、本発明によるシリカ質材料は水蒸気を含む大気中に放 置しても、そのシリカ質材料の誘電率は殆んど上昇しないという大きな利点を有する 。さらに、本発明によるシリカ質材料は、低密度であることから、膜の内部応力が小さ ぐクラックを生じにくいという利点もある。 [0051] By the above calcination step, SiH, SiR (R: hydrocarbon group) and Of the SiN bonds, only the SiN bonds are oxidized and converted into SiO bonds, forming a siliceous material having unoxidized SiH and SiR bonds. As described above, in the formed siliceous material, the SiO bond formed by selectively oxidizing the SiN bond and the unoxidized SiH and SiR bonds can be present. Thus, a siliceous material of In general, the dielectric constant of a siliceous material decreases as the density of the siliceous material decreases, while the decrease in the density of the siliceous material causes the adsorption of water, which is a high dielectric substance. Therefore, if the siliceous material is left in the air, the dielectric constant of the film may increase, which may cause a problem. On the other hand, in the case of the siliceous material according to the present invention containing SiH or SiR bonds, since these bonds have water repellency, it is possible to prevent the adsorption of water at a low density even at a low density. Therefore, the siliceous material according to the present invention has a great advantage that the dielectric constant of the siliceous material hardly increases even when it is exposed to an atmosphere containing water vapor. Further, since the siliceous material according to the present invention has a low density, there is an advantage that the internal stress of the film is small and cracks are hardly generated.
[0052] 本発明によるコーティング組成物の焼成においては、シリカ質材料の内部に主に孔 径 0. 5— 3nmの微細孔が形成される。そして、このシリカ質材料は孔径が 5nmを越 える微細孔を実質的に有さない。この微細孔の孔径は X線散漫散乱法により測定を すること力 Sできる。この測定に用いることのできる装置として、 ATX— G型表面構造評 価用多機能 X線回折装置 (理学電気株式会社製)力 S挙げられる。この微細孔は、ァ セトキシシランィ匕合物が分解し、その分解物が蒸発または昇華することにより形成さ れるものと考えられる。この微細孔の存在によりシリカ質材料の密度が一段と低下し、 その結果シリカ質材料の比誘電率がさらに低下することとなる。  [0052] In the firing of the coating composition according to the present invention, fine pores having a pore diameter of 0.5 to 3 nm are mainly formed inside the siliceous material. And this siliceous material has substantially no micropores with a pore diameter exceeding 5 nm. The diameter of these micropores can be measured by the X-ray diffuse scattering method. As an apparatus that can be used for this measurement, ATX-G type multifunctional X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.) S is used. It is considered that these fine pores are formed by the decomposition of the acetoxysilane bonded product and the decomposition product being evaporated or sublimated. Due to the presence of the micropores, the density of the siliceous material further decreases, and as a result, the relative dielectric constant of the siliceous material further decreases.
[0053] 本発明による多孔質シリカ質材料は、極めて微細な孔が形成できるため、優れた機 械強度を有するものである。具体的には、本発明による多孔質シリカ質材料は、後述 するナノインデンテーション法による弾性率として 3GPa以上、場合によっては 5GPa 以上という多孔質材料としては顕著に高い機械的強度を示すものである。  [0053] The porous siliceous material according to the present invention has excellent mechanical strength because extremely fine pores can be formed. Specifically, the porous siliceous material according to the present invention exhibits remarkably high mechanical strength as a porous material having an elastic modulus of 3 GPa or more, and in some cases, 5 GPa or more by a nanoindentation method described later. .
[0054] 従って、 CMP法による配線材料の除去工程に耐えうる機械的強度と各種耐薬品性 を兼ね備えるため、ダマシン法をはじめとする最新の高集積化プロセスに適合する層 間絶縁膜として使用することが可能である。 [0055] さらに、本発明によるシリカ質材料は、そのマトリックス成分であるポリアルキルシラ ザン化合物に由来する撥水基が焼成後に十分残存するため、水蒸気を含む大気中 に放置しても、比誘電率は殆ど上昇しない。このように、本発明によると、シリカ質材 料の結合成分(SiH、 SiR)による低密度化'撥水性化と、微細孔による膜全体の低 密度化とが相まって 2. 5未満、好ましくは 2. 0以下、場合によっては 1. 6程度という 極めて低い比誘電率を安定的に保持できる多孔質シリカ質材料が得られる。 [0054] Accordingly, in order to have both mechanical strength and various chemical resistances that can withstand the wiring material removal process by the CMP method, it is used as an interlayer insulating film compatible with the latest high integration processes such as the damascene method. It is possible. Further, since the water-repellent groups derived from the polyalkylsilazane compound which is a matrix component of the siliceous material according to the present invention sufficiently remain after calcination, the siliceous material can be left in an atmosphere containing water vapor even if it is left in an atmosphere containing water vapor. The rate hardly rises. As described above, according to the present invention, the lowering of the density of the siliceous material (SiH, SiR) due to the binding components (SiH, SiR) and the lowering of the density of the entire film due to the micropores are combined with less than 2.5, A porous siliceous material that can stably maintain an extremely low relative dielectric constant of 2.0 or less, or about 1.6 in some cases, can be obtained.
[0056] 本発明による多孔質シリカ質材料の他の性状を示すと、その密度は 0. 5-1. 6g/ cm3、好ましくは 0. 8- 1. 4gZcm3、そのクラック限界膜厚は 1. O z m以上、好まし くは 5 x m以上、及びその内部応力は 80MPa以下、好ましくは 50MPa以下、である 。また、このシリカ質材料中に含まれる SiHまたは SiR (R:炭化水素基)結合として存 在する Si含有基は、材料中に含まれる S^g子数に対して 10— 100原子%、好ましく は 25 75原子%、である。また、 SiN結合として存在する Si含有量は 5原子%以下 である。焼成後得られる多孔質シリカ質材料の厚さは、その基体表面の用途によって も異なる力 通常、 0· 01— 5 μ ΐη、好ましくは 0· 1— 2 μ ΐη、である。特に、半導体装 置の層間絶縁膜として用いる場合には 0. 1— 2 / mとすることが好ましい。 According to another property of the porous siliceous material according to the present invention, its density is 0.5 to 1.6 g / cm 3 , preferably 0.8 to 1.4 gZcm 3 , and its crack limit film thickness is 1. Ozm or more, preferably 5 xm or more, and its internal stress is 80 MPa or less, preferably 50 MPa or less. Further, the Si-containing group present as SiH or SiR (R: hydrocarbon group) bond contained in the siliceous material is 10 to 100 atomic%, preferably 10 to 100 atomic%, based on the number of S ^ g elements contained in the material. Is 25 75 atomic%. The content of Si present as SiN bonds is 5 atomic% or less. The thickness of the porous siliceous material obtained after the calcination varies depending on the use of the surface of the substrate, and is usually 0.01-1 μ μη, preferably 0.1-2 μΐη. In particular, when it is used as an interlayer insulating film of a semiconductor device, the thickness is preferably 0.1-2 / m.
[0057] 本発明による多孔質シリカ質材料は、前記したように低密度のものであり、そのクラ ック限界膜厚、即ち、膜割れを起さないで製膜可能な最大膜厚が 5 μ ΐη以上という高 い数値を示すという利点をも有する。従来のシリカ質材料の場合、そのクラック限界 膜厚は 0. 5- 1. 5 /i m程度である。  [0057] The porous siliceous material according to the present invention has a low density as described above, and has a crack limit film thickness, that is, a maximum film thickness that can be formed without causing film cracking. It also has the advantage of showing a high value of μΐη or more. In the case of a conventional siliceous material, its crack limit film thickness is about 0.5-1.5 / im.
[0058] このように、本発明によるシリカ質材料は従来のシリカ質材料に比べて、誘電率が 低ぐ密度が低ぐ撥水性が高ぐ耐薬品性に優れ、機械的強度が高いものであり、さ らに低誘電率を安定に保つことができるものであり、特に半導体装置における層間絶 縁膜に適用するのに好ましいものである。  As described above, the siliceous material according to the present invention has a low dielectric constant, a low density, a high water repellency, a high chemical resistance, and a high mechanical strength as compared with the conventional siliceous material. In addition, it can maintain a low dielectric constant stably, and is particularly preferable when applied to an interlayer insulating film in a semiconductor device.
[0059] 本発明を例を用いて説明すると以下の通りである。なお、シリカ質材料に関する諸 物性の評価は最後にまとめて記載する。  [0059] The present invention is described below using examples. The evaluation of the physical properties of the siliceous material is summarized at the end.
参考例 1  Reference example 1
[0060] (ポリメチルシラザンの合成(1) )  (Synthesis of Polymethylsilazane (1))
内容積 5リットルのステンレス製タンク反応器に原料供給用のステンレスタンクを装 着した。反応器内部を乾燥窒素で置換した後、原料供給用ステンレスにメチルトリク ロロシラン 780gを入れ、これを窒素によって反応タンクに圧送して導入した。次に、ピ リジン入りの原料供給タンクを反応器に接続し、ピリジン 4kgを窒素で同様に圧送し 導入した。反応器の圧力を 1. Okg/cm2に調整し、反応機内の混合液温が一 4°Cに なるように温度調節を行った。そこに、撹拌しながらアンモニアを吹き込み、反応器の 圧力が 2. Okg/cm2になった時点でアンモニア供給を停止した。排気ラインをあけて 反応器圧力を下げ、引き続き乾燥窒素を液相に 1時間吹き込み、余剰のアンモニア を除去した。得られた生成物を加圧濾過器を用いて乾燥窒素雰囲気下で加圧濾過 し、濾液 3200mlを得た。エバポレーターを用いてピリジンを留去したところ、約 340g のポリメチルシラザンを得た。 A stainless steel tank with a capacity of 5 liters is equipped with a stainless steel tank for supplying raw materials. I wore it. After the inside of the reactor was replaced with dry nitrogen, 780 g of methyltrichlorosilane was put into the stainless steel for raw material supply, and this was pressure-fed into the reaction tank with nitrogen and introduced. Next, a raw material supply tank containing pyridine was connected to the reactor, and 4 kg of pyridine was similarly pumped and introduced with nitrogen. The pressure of the reactor was adjusted to 1.0 kg / cm 2 , and the temperature of the mixture in the reactor was adjusted to 14 ° C. Ammonia was blown into the reactor with stirring, and when the pressure in the reactor reached 2.0 kg / cm 2 , the supply of ammonia was stopped. The reactor pressure was lowered by opening an exhaust line, and then dry nitrogen was blown into the liquid phase for 1 hour to remove excess ammonia. The obtained product was subjected to pressure filtration under a dry nitrogen atmosphere using a pressure filter to obtain 3200 ml of a filtrate. When pyridine was distilled off using an evaporator, about 340 g of polymethylsilazane was obtained.
[0061] 得られたポリメチルシラザンの数平均分子量をクロ口ホルムを展開液としたガスクロ マトグラフィ一により測定したところ、ポリスチレン換算で 1800であった。赤外吸収ス ベクトル(以下、 IRスペクトルという)を測定したところ、 3350cm— 1および 1200cm— 1 付近の N-H結合に基づく吸収、 2900cm— 1および 1250cm— 1の Si— C結合に基づく 吸収、および 1020— 820cm— 1の Si— N-Si結合に基づく吸収が認められた。 [0061] The number average molecular weight of the obtained polymethylsilazane was measured by gas chromatography using a chloroform-form developing solution, and was 1800 in terms of polystyrene. Infrared absorption scan vectors (hereinafter, referred to as IR spectrum) was measured, 3350Cm- 1 and 1200cm- 1 NH bonded to based absorption around, 2900Cm- 1 and 1250Cm- 1 of Si- C bond to based absorbent, and 1020 Absorption due to Si—N-Si bond of —820 cm— 1 was observed.
参考例 2  Reference example 2
[0062] (ポリメチルシラザンの合成(2) ) (Synthesis of Polymethylsilazane (2))
原料としてメチルトリクロロシラン 780gの代わりに、メチルトリクロロシラン 720gとジメ チルジクロロシラン 656の混合物を用いたほかは、参考例 1と同様に合成を行い、 37 Synthesis was performed in the same manner as in Reference Example 1 except that a mixture of 720 g of methyltrichlorosilane and 656 of dimethyldichlorosilane was used instead of 780 g of methyltrichlorosilane as a raw material.
Ogのポリメチルシラザンを得た。 Og of polymethylsilazane was obtained.
[0063] 得られたポリメチルシラザンの数平均分子量をクロ口ホルムを展開液としたガスクロ マトグラフィ一により測定したところ、ポリスチレン換算で 1400であった。赤外吸収ス ぺクトルを測定したところ、 3350cm— 1および 1200cm— 1付近の N—H結合に基づく吸 収、 2900cm— 1および 1250cm— 1の S C結合に基づく吸収、および 1020 820cm 一1の Si— N— Si結合に基づく吸収が認められた。 [0063] The number average molecular weight of the obtained polymethylsilazane was measured by gas chromatography using a chloroform solution as a developing solution, and was found to be 1400 in terms of polystyrene. Infrared absorption spectra were measured to show absorption at 3350 cm- 1 and 1200 cm- 1 due to N--H bonds, absorption at 2900 cm- 1 and 1250 cm- 1 due to SC bonds, and 1020 820 cm- 1 — Absorption due to N—Si bond was observed.
実施例 1  Example 1
[0064] 参考例 1で合成したポリメチルシラザンの 15%プロピレングリコールモノメチルエー テルアセテート(以下、 PGMEAとレ、う)溶液 80gに、メタクリル酸イソブチル 70モル0 /0 と 2—(トリメチルシロキシ)ェチルメタクリル酸 30モル%との共重合体(分子量:約 100 , 000) 3gを PGMEA17gに溶解させた溶液を混合し、十分に撹拌した。続いてその 溶液を濾過精度 0. 2ミクロンの PTFEシリンジフィルター(アドバンテック社製)で濾過 した。その濾液を直径 10. 2cm (4インチ)、厚さ 0. 5mmのシリコンウェハー上にスピ ンコーターを用いて、 3000rpm/20秒の条件で塗布し、さらに室温で 5分間乾燥さ せた。そのシリコンウェハーを大気雰囲気中(23°Cにおける相対湿度 40%) 150°C で 3分間、ついで 250°Cのホットプレート上で 3分間加熱した。この膜を大気雰囲気 中(23°C相対湿度 40%)で 24時間放置した後、乾燥窒素雰囲気中 400°CZ30分 間焼成し、シリカ質膜を得た。 [0064] 15% propylene glycol monomethyl ether acetate polymethyl silazane synthesized in Reference Example 1 (hereinafter, PGMEA and Re, U) to the solution 80 g, isobutyl methacrylate 70 mole 0/0 A solution obtained by dissolving 3 g of a copolymer (molecular weight: about 100,000) of 2- (trimethylsiloxy) ethyl methacrylic acid in 30 mol% in 17 g of PGMEA was mixed and thoroughly stirred. Subsequently, the solution was filtered with a PTFE syringe filter (manufactured by Advantech) having a filtration accuracy of 0.2 micron. The filtrate was applied on a silicon wafer having a diameter of 10.2 cm (4 inches) and a thickness of 0.5 mm using a spin coater at 3000 rpm for 20 seconds, and further dried at room temperature for 5 minutes. The silicon wafer was heated at 150 ° C for 3 minutes in an air atmosphere (relative humidity 40% at 23 ° C), and then for 3 minutes on a 250 ° C hot plate. This film was allowed to stand in an air atmosphere (23 ° C, 40% relative humidity) for 24 hours, and then calcined in a dry nitrogen atmosphere at 400 ° C for 30 minutes to obtain a siliceous film.
[0065] 得られたシリカ質膜の IRスペクトルは、
Figure imgf000016_0001
および ASOcnT1の Si_〇結合 に基づく吸収、 1270cm— 1および 780cm— 1の Si_C結合に基づく吸収、 2970cm— 1の C—H結合に基づく吸収が認められ、 3350cm— 1および 1200cm— 1の N—H結合に基 づく吸収、およびメタクリル酸イソブチルと 2—(トリメチルシロキシ)ェチルメタクリル酸 3 0との共重合体に基づく吸収は焼失していた。
[0065] The IR spectrum of the obtained siliceous film is
Figure imgf000016_0001
And Si_〇 based on the binding absorption ASOcnT 1, 1270cm- 1 and 780Cm- 1 of Si_C based binding absorption, absorption was observed based on the C-H bond 2970cm- 1, 3350cm- 1 and 1200Cm- 1 of N The absorption based on the —H bond and the absorption based on the copolymer of isobutyl methacrylate and 30- (trimethylsiloxy) ethyl methacrylate were lost.
[0066] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 20、密度 1. lg/cm3、 内部応力は 36MPa、クラック限界膜厚は 5 / m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ全く変化がなかった。 When the obtained siliceous film was evaluated, the relative dielectric constant was 2.20, the density was 1. lg / cm 3 , the internal stress was 36 MPa, and the crack limit film thickness was 5 / m or more. After leaving the obtained film in the air at a temperature of 23 ° C and a relative humidity of 50% for one week, the relative dielectric constant was measured again, and there was no change at all.
[0067] この膜のナノインデンテーション法による弾性率は 4. 5GPaであった。  [0067] The modulus of elasticity of this film by a nanoindentation method was 4.5 GPa.
[0068] エッチング残渣剥離液として広く用いられてレ、る ACT— 970 (Ashland Chemical 社(米国オハイオ州)製)、 ST-210および ST250 (ATMI社(米国コネチカット州) 製)、 EKC265および EKC640 (EKCテクノロジ一社(米国カリフォルニア州)製)を 用いてシリカ質膜の耐性 (コンパティピリティー)試験を行ったところ、エッチングレート はそれぞれ 0. 5A/分以下であり、当該試験による誘電率の上昇も 1. 0%以下であ つた。  ACT-970 (manufactured by Ashland Chemical Company, Ohio, USA), ST-210 and ST250 (manufactured by ATMI, Inc., Connecticut, USA), EKC265 and EKC640 (manufactured by Ashland Chemical Company, Ohio) Using EKC Technology, Inc. (California, USA), the resistance (compatibility) test of the siliceous film was performed, and the etching rate was 0.5 A / min or less, respectively. Was also less than 1.0%.
[0069] さらにシリカ質膜の孔径を X線散漫散乱法により測定したところ、平均孔径は 2nm であった。  Further, when the pore size of the siliceous film was measured by the X-ray diffuse scattering method, the average pore size was 2 nm.
実施例 2 [0070] 参考例 2で合成したポリメチルシラザンの 20%PGMEA溶液 160gに、エチレンキ サイド 50モル0 /0とジメチルシロキサン 50モル0 /0との共重合体 (分子量:約 1 , 000) 8g を PGMEA32gに溶解させた溶液を混合し、十分に撹拌した。続いてその溶液を濾 過精度 0. 2ミクロンの PTFEシリンジフィルター(アドバンテック社製)で濾過した。そ の濾液を直径 20. 3cm (8インチ)、厚さ lmmのシリコンウェハー上にスピンコーター を用いて、 3500rpm/20秒の条件で塗布し、さらに室温で 5分間乾燥させた。その シリコンウェハーを大気雰囲気中(23°Cにおける相対湿度 40%) 150°Cで 3分間、つ いで 250°Cのホットプレート上で 3分間加熱した。この膜を 70°C相対湿度 85%の加 湿器中に 3分間放置し、乾燥窒素雰囲気中 400°CZ10分間焼成し、シリカ質膜を得 た。 Example 2 [0070] to 20% PGMEA solution 160g of polymethyl silazane synthesized in Reference Example 2, a copolymer of Echirenki side 50 mole 0/0 and dimethylsiloxane 50 mole 0/0 (molecular weight: about 1,000) and 8g The solution dissolved in 32 g of PGMEA was mixed and thoroughly stirred. Subsequently, the solution was filtered through a PTFE syringe filter (manufactured by Advantech) having a filtration accuracy of 0.2 micron. The filtrate was applied on a silicon wafer having a diameter of 20.3 cm (8 inches) and a thickness of lmm using a spin coater at 3500 rpm / 20 seconds, and further dried at room temperature for 5 minutes. The silicon wafer was heated at 150 ° C for 3 minutes in an air atmosphere (relative humidity 40% at 23 ° C), and then for 3 minutes on a 250 ° C hot plate. This film was left in a humidifier at 70 ° C and a relative humidity of 85% for 3 minutes, and calcined in a dry nitrogen atmosphere at 400 ° C for 10 minutes to obtain a siliceous film.
[0071] 得られたシリカ質膜の IRスペクトルは、 1020cm— および 440cm— 1の Si_〇結合 に基づく吸収、 1290cm— 1および 770cm— 1の Si_C結合に基づく吸収、 2980cm— 1の C-H結合に基づく吸収が認められ、 3350cm— 1および 1200cm— 1の N-H結合に基 づく吸収、およびエチレンキサイドとジメチルシロキサンとの共重合体に基づく吸収は 焼失していた。 [0071] The obtained IR spectrum of the silica membrane, 1020Cm- and 440Cm- 1 of Si_〇 based binding absorption, 1290cm- 1 and 770Cm- 1 of Si_C based binding absorption, 2980cm- 1 of the CH bond absorption was observed based, absorption that is based on 3350Cm- 1 and 1200Cm- 1 of NH bonds, and absorption based on a copolymer of ethylene key side and dimethylsiloxane disappeared.
[0072] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 24、密度 1. 2g/cm3、 内部応力は 35MPa、クラック限界膜厚は 5 / m以上であった。また、得られた膜を温 度 23°C相対湿度 50 %の大気中に 1週間放置した後、再度比誘電率を測定したとこ ろ全く変化がなかった。 When the obtained siliceous film was evaluated, the relative dielectric constant was 2.24, the density was 1.2 g / cm 3 , the internal stress was 35 MPa, and the critical crack thickness was 5 / m or more. After leaving the obtained film in the air at a temperature of 23 ° C and a relative humidity of 50% for one week, the relative dielectric constant was measured again, and there was no change at all.
[0073] この膜のナノインデンテーション法による弾性率は 5. OGPaであった。  [0073] The modulus of elasticity of this film by the nanoindentation method was 5. OGPa.
[0074] エッチング残渣剥離液 ACT—970 (Ashland Chemical社製)、 ST—210および S T250 (ATMI社製)、 EKC265および EKC640 (EKC社製)を用いてシリカ質膜の 耐性試験を行ったところ、エッチングレートはそれぞれ 0. 8A/分以下であり、当該 試験による誘電率の上昇も 1. 1 %以下であった。  [0074] A resistance test of a siliceous film was performed using an etching residue stripping solution ACT-970 (manufactured by Ashland Chemical), ST-210 and ST250 (manufactured by ATMI), EKC265 and EKC640 (manufactured by EKC). And the etching rate was 0.8 A / min or less, respectively, and the increase in the dielectric constant by the test was 1.1% or less.
[0075] さらにシリカ質膜の孔径を X線散漫散乱法により測定したところ、平均孔径は 1. 7n mあった 0 [0075] where further a pore size siliceous film was measured by X-ray diffuse scattering method, the average pore diameter was 1. 7n m 0
比較例 1  Comparative Example 1
[0076] 参考例 1で合成したポリメチルシラザンの 15%ジブチルエーテル溶液 80gに、ポリ n —ブチルメタタリレート(分子量:約 160, 000) 3gをジブチルエーテル 17gに溶解させ た溶液を混合し、十分に撹拌した。続いてその溶液を濾過精度 0. 2ミクロンの PTFE シリンジフィルター(アドバンテック社製)で濾過した。その濾液を直径 10· 2cm (4ィ ンチ)、厚さ 0. 5mmのシリコンウェハー上にスピンコーターを用いて、 2000rpm/2 0秒の条件で塗布し、さらに室温で 5分間乾燥させた。そのシリコンウェハーを大気雰 囲気中(23°Cにおける相対湿度 40%) 150°Cで 3分間、ついで 250°Cのホットプレー ト上で 3分間加熱した。この膜を大気雰囲気中(23°C相対湿度 40%)で 24時間放置 した後、乾燥窒素雰囲気中 400°CZ30分間焼成し、シリカ質膜を得た。 [0076] Poly n was added to 80 g of a 15% solution of polymethylsilazane in dibutyl ether synthesized in Reference Example 1. —A solution of 3 g of butyl methacrylate (molecular weight: about 160,000) dissolved in 17 g of dibutyl ether was mixed and thoroughly stirred. Subsequently, the solution was filtered with a PTFE syringe filter (manufactured by Advantech) having a filtration accuracy of 0.2 micron. The filtrate was applied to a silicon wafer having a diameter of 10.2 cm (4 inches) and a thickness of 0.5 mm using a spin coater under the conditions of 2000 rpm / 20 seconds, and further dried at room temperature for 5 minutes. The silicon wafer was heated in an air atmosphere (relative humidity at 23 ° C: 40%) at 150 ° C for 3 minutes, and then on a hot plate at 250 ° C for 3 minutes. This film was allowed to stand in an air atmosphere (23 ° C., 40% relative humidity) for 24 hours, and then calcined in a dry nitrogen atmosphere at 400 ° C. for 30 minutes to obtain a siliceous film.
[0077] 得られたシリカ質膜の IRスペクトルは、
Figure imgf000018_0001
および ASOcnT1の Si_〇結合 に基づく吸収、 1270cm— 1および 780cm— 1の Si_C結合に基づく吸収、 2970cm 1の C—H結合に基づく吸収が認められ、 3350cm— 1および 1200cm— 1の N—H結合に基 づく吸収、およびポリ n—ブチルメタタリレートに基づく吸収は焼失していた。
[0077] The IR spectrum of the obtained siliceous film is
Figure imgf000018_0001
And ASOcnT 1 absorption based on Si_〇 bond, 1270 cm— 1 and 780 cm— 1 absorption based on Si_C bond, 2970 cm 1 absorption based on C—H bond, 3350 cm— 1 and 1200 cm— 1 N— Absorption based on H-bonds and absorption based on poly n-butyl methacrylate were burned out.
[0078] 得られたシリカ質膜の評価を行ったところ、比誘電率は 2. 31、密度 1. lg/cm3、 内部応力は 35MPaであった。 When the obtained siliceous film was evaluated, the relative dielectric constant was 2.31, the density was 1. lg / cm 3 , and the internal stress was 35 MPa.
[0079] この膜のナノインデンテーション法による弾性率は 2. 6GPaと本発明によるシリカ質 膜に比べて低かった。  [0079] The elastic modulus of this film by the nanoindentation method was 2.6 GPa, which was lower than that of the siliceous film according to the present invention.
[0080] さらにシリカ質膜の孔径を X線散漫散乱法により測定したところ、平均孔径は 7nm であり、本発明によるシリカ質膜に比べて大きかった。  Further, when the pore size of the siliceous film was measured by the X-ray diffuse scattering method, the average pore size was 7 nm, which was larger than the siliceous film according to the present invention.
[0081] [シリカ質膜物性の評価方法] パイレックス (登録商標:ダウ ·コ一ユング社 (米国ミシガン州)製)ガラス板 (厚さ lm m、大きさ 50mm X 50mm)を中性洗剤、希 Na〇H水溶液、希 H HO水溶液の順 [Evaluation Method of Physical Properties of Siliceous Film] Pyrex (registered trademark: manufactured by Dow K. Jung Co., Michigan, USA) glass plate (thickness: lmm, size: 50 mm × 50 mm) was diluted with a neutral detergent and diluted. Na〇H aqueous solution, diluted HHO aqueous solution
2 4  twenty four
番でよく洗浄し、乾燥させる。このガラス板の全面に真空蒸着法でアルミニウム膜を 形成させる(厚さ: 0. 2 z m) 0このガラス板に試料組成物溶液をスピンコート法で塗 布して成膜した後、電極を信号取り出すためにガラス板の四隅を綿棒でこすって膜を 除去する(3mm X 3mm)。続いて、各例の方法に従ってシリカ質膜に転化させる。得 られるシリカ質膜にステンレス製のマスクを被せて真空蒸着法でアルミニウム膜を形 成させる。パターンは、 2mm X 2mmの正方形で厚さを 2 z mとしたものを 18個とする 。キャパシタンス測定は、 4192ALFインピーダンスアナライザー(横河 'ヒユー I パッカード社製)を用いて、 100kHzで測定する。また、膜厚の測定には M-44型分 光エリプソメーターひ. A. Woolam社 (米国ネブラスカ州)製)を用いる。比誘電率は 18個のパターンすべてについて、下式により計算した値を平均したものを採用する。 Thoroughly wash and dry. An aluminum film is formed on the entire surface of this glass plate by a vacuum evaporation method (thickness: 0.2 zm). 0 A sample composition solution is applied on this glass plate by a spin coating method to form a film. To remove, rub the four corners of the glass plate with a cotton swab to remove the film (3 mm x 3 mm). Subsequently, it is converted into a siliceous film according to the method of each example. The obtained siliceous film is covered with a stainless steel mask, and an aluminum film is formed by vacuum evaporation. 18 patterns of 2mm x 2mm square and 2zm thick . The capacitance is measured at 100 kHz using a 4192ALF impedance analyzer (Yokogawa 'Hyu I Packard). The film thickness is measured using an M-44 spectroscopic ellipsometer (A. Woolam, Nebraska, USA). The relative permittivity is the average of the values calculated by the following formula for all 18 patterns.
(比誘電率) = (キャパシタンス [pF] ) X (膜厚 [ z m] ) Z35. 4 (Relative permittivity) = (Capacitance [pF]) X (Film thickness [z m]) Z35.4
[0082] 随度 [0082] Any degree
直径 10. 16cm (4インチ)、厚さ 0. 5mmのシリコンウェハーの重量を電子天秤で測 定する。これに試料組成物溶液をスピンコート法で塗布して成膜し、各例の方法に従 つてシリカ質膜に転化させ、再び膜付きのシリコンゥヱハーの重量を電子天秤で測定 する。膜重量は、成膜前後のウェハーの重量差とする。膜厚は、 M - 44型分光エリプ ソメーター (J. A. Woolam社製)で測定する。膜密度は下式に従って計算する。 (膜密度 [g/cm3] ) = (膜重量 [g] ) / (膜厚 [ /i m] ) /0. 008 A silicon wafer with a diameter of 10.16 cm (4 inches) and a thickness of 0.5 mm is weighed with an electronic balance. The sample composition solution is applied by spin coating to form a film, converted into a siliceous film according to the method of each example, and the weight of the silicon wafer with the film is measured again with an electronic balance. The film weight is the difference between the weight of the wafer before and after the film formation. The film thickness is measured with an M-44 spectroscopic ellipsometer (JA Woolam). The film density is calculated according to the following equation. (Film density [g / cm 3 ]) = (Film weight [g]) / (Film thickness [/ im]) /0.008
[0083] 内部応力 [0083] Internal stress
直径 20· 32cm (8インチ)、厚さ lmmのシリコンウェハーのそりを FLX— 2320型レ 一ザ一内部応力測定器 (KLA— Tencor社 (米国カリフォルニア州)製)に入力する。 さらに、このシリコンウェハーに試料組成物溶液をスピンコート法で塗布して成膜し、 各例の方法に従ってシリカ質膜に転化させ、室温(23°C)に戻した後、再び前記レー ザ一内部応力測定器で内部応力を測定する。なお、膜厚は、 M— 44型分光エリプソ メーター (J. A. Woolam社製)で測定する。  The sled of a silicon wafer of 20 · 32 cm (8 inches) in diameter and lmm thickness is input to a FLX-2320 laser-internal stress measuring instrument (KLA—Tencor, California, USA). Further, a sample composition solution is applied to this silicon wafer by spin coating to form a film, converted into a siliceous film according to the method of each example, and returned to room temperature (23 ° C.). Measure the internal stress with an internal stress meter. The film thickness is measured with an M-44 type spectroscopic ellipsometer (manufactured by J.A. Woolam).
[0084] クラック ^艮界奠厚 [0084] crack ^
直径 10. 16cm (4インチ)、厚さ 0. 5mmのシリコンウェハーに試料組成物溶液をス ピンコート法で塗布して成膜し、各例の方法に従ってシリカ質膜に転化させる。塗布 の際に試料組成物溶液の固形分濃度またはスピンコーターの回転数を調整して、膜 厚を約 0. 5 z mから約 5 z mの範囲で変化させた試料を作製する。焼成後の膜表面 を顕微鏡観察(120倍)し、各試料のクラックの有無を調べ、クラック発生のない最大 膜厚をクラック限界膜厚とする。  A sample composition solution is applied to a silicon wafer having a diameter of 10.16 cm (4 inches) and a thickness of 0.5 mm by a spin coating method to form a film, which is converted into a siliceous film according to the method of each example. Adjust the solid concentration of the sample composition solution or the number of revolutions of the spin coater at the time of coating to prepare a sample whose film thickness is changed in the range of about 0.5 zm to about 5 zm. The surface of the film after calcination is observed under a microscope (120x), and the presence or absence of cracks in each sample is examined. The maximum film thickness without cracks is defined as the crack limit film thickness.
[0085] 弾性率(ナノインデンテーション法) 直径 20. 32cm (8インチ)、厚さ lmmのシリコンウェハーに試料組成物溶液をスピ ンコート法で塗布して成膜し、各例の方法に従ってシリカ質膜に転化させる。得られ るシリカ質膜にっレ、て、薄膜用機械的特性評価システム (米国 MTSシステムズ社製 Nano Indenter DCM)により弾性率を測定する。 [0085] Modulus of elasticity (nanoindentation method) A sample composition solution is applied to a silicon wafer having a diameter of 20.32 cm (8 inches) and a thickness of lmm by spin coating to form a film, which is converted into a siliceous film according to the method of each example. Using the resulting siliceous film, the elastic modulus is measured using a mechanical property evaluation system for thin films (Nano Indenter DCM manufactured by MTS Systems, USA).
[0086] エッチングレート [0086] Etching rate
各例に記載されたエッチング残渣剥離液を用いてシリカ質膜を処理し、その処理の 前後での膜厚変化量を処理時間で除することにより算出する。膜厚の測定は M— 44 型分光エリプソメーター (J. A. Woolam社製)で測定する。  It is calculated by treating the siliceous film using the etching residue stripping solution described in each example, and dividing the amount of change in film thickness before and after the treatment by the treatment time. The film thickness is measured using a M-44 type spectroscopic ellipsometer (manufactured by J.A. Woolam).
[0087] 孔择測定 [0087] Pore measurement
直径 20. 32cm (8インチ)、厚さ lmmのシリコンウェハーに試料組成物溶液をスピ ンコート法で塗布して成膜し、各例の方法に従ってシリカ質膜に転化させる。得られ るシリカ質膜について、 ATX - G型表面構造評価用多機能 X線回折装置 (理学電気 株式会社製)を用いて、 X線散漫散乱法によって孔径を測定する。  A sample composition solution is applied to a silicon wafer having a diameter of 20.32 cm (8 inches) and a thickness of lmm by spin coating to form a film, which is converted into a siliceous film according to the method of each example. The pore size of the obtained siliceous film is measured by an X-ray diffuse scattering method using a multifunctional X-ray diffractometer (manufactured by Rigaku Denki Co., Ltd.) for evaluating the surface structure of ATX-G.
産業上の利用可能性  Industrial applicability
[0088] 本発明は、安定した低誘電率と、最新の微細配線プロセスに耐えうる機械的強度 及び各種の耐薬品性とをバランスよく兼ね備えた多孔質シリカ質膜を提供するもので ある。本発明による多孔質シリカ質膜を半導体装置の層間絶縁膜として使用すること により、集積回路のさらなる高集積化、多層化が可能となる。 The present invention is to provide a porous siliceous film having a well-balanced combination of stable low dielectric constant, mechanical strength capable of withstanding the latest fine wiring process, and various chemical resistances. By using the porous siliceous film according to the present invention as an interlayer insulating film of a semiconductor device, it is possible to further increase the degree of integration and multilayering of an integrated circuit.
[0089] このように本発明は、半導体等の電子材料における層間絶縁膜を形成させるため に適用することが最も好ましいものである力 そのほかの電子材料素子、例えば金属 膜下絶縁膜、にも応用ができるものである。 As described above, the present invention is applied to a force that is most preferably applied to form an interlayer insulating film in an electronic material such as a semiconductor, and to other electronic material elements, for example, an insulating film under a metal film. Can be done.
[0090] また、電子材料の他、本発明のコーティング組成物を用いることにより、金属やセラ ミックス、木材等の各種の材料の固体表面に対してシリカ質膜を形成することもできる[0090] In addition to electronic materials, the use of the coating composition of the present invention can also form a siliceous film on the solid surface of various materials such as metals, ceramics, and wood.
。本発明によれば、シリカ質膜を表面に形成した金属基板(シリコン、 sus、タンダス テン、鉄、銅、亜鉛、真ちゆう、アルミニウム等)や、シリカ質膜を表面に形成したセラミ ックス基板(シリカ、アルミナ、酸化マグネシウム、酸化チタン、酸化亜鉛、酸化タンタ ル等の金属酸化物の他、窒化珪素、窒化ホウ素、窒化チタン等の金属窒化物、炭化 珪素等)が提供される。 . According to the present invention, a metal substrate (silicon, sus, tungsten, iron, copper, zinc, brass, aluminum, etc.) having a siliceous film formed on its surface, or a ceramic substrate having a siliceous film formed on its surface (In addition to metal oxides such as silica, alumina, magnesium oxide, titanium oxide, zinc oxide, and tantalum oxide, metal nitrides such as silicon nitride, boron nitride, and titanium nitride, and silicon carbide).

Claims

請求の範囲 The scope of the claims
[1] ポリアルキルシラザン化合物、シロキシ基含有重合体、および有機溶媒を含んでな ることを特徴とする、コーティング組成物。  [1] A coating composition comprising a polyalkylsilazane compound, a siloxy group-containing polymer, and an organic solvent.
[2] 前記シロキシ基含有重合体が、アクリル酸、メタクリル酸、およびポリエチレンォキサ イド化合物からなる群から選ばれる重合単位を含むものである、請求項 1に記載のコ 一ティング組成物。  [2] The coating composition according to claim 1, wherein the siloxy group-containing polymer contains a polymer unit selected from the group consisting of acrylic acid, methacrylic acid, and a polyethylene oxide compound.
[3] 前記ポリアルキルシラザン化合物が、下記一般式(1)で表される繰り返し単位と、一 般式(2)または(3)で表される単位の少なくとも一種とを含んでなる、請求項 1一 3の いずれか 1項に記載のコーティング組成物。  [3] The polyalkylsilazane compound comprises a repeating unit represented by the following general formula (1) and at least one unit represented by the general formula (2) or (3). 13. The coating composition according to any one of items 1-3.
[化 1]  [Chemical 1]
Figure imgf000021_0001
Figure imgf000021_0001
(上記式中、 R1は、水素原子または炭素数 1一 3のアルキル基を表すが、化合物全 体のすべての R1が同時に水素であることはなぐ (In the above formula, R 1 represents a hydrogen atom or an alkyl group having 13 to 13 carbon atoms, but it is not always possible for all R 1 of the whole compound to be hydrogen at the same time.
R2 R4は、各々独立に水素原子または炭素数 1一 3のアルキル基を表す力 R2— R4のすべてが同時に水素であることはなぐ R 2 R 4 is a force independently representing a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. R 2 — R 4 cannot be all hydrogen at the same time.
p、 q、および rは、それぞれ 0または 1であり、 0≤p + q + r≤3であり、  p, q, and r are each 0 or 1, 0≤p + q + r≤3,
R5— R7は、各々独立に水素原子または炭素数 1一 3のアルキル基を表す力 化合 物全体のすべての R5と R6が同時に水素であることはなぐ R8— R11は、各々独立に水素原子または炭素数 1一 3のアルキル基を表すが、化合 物全体のすべての R9— R11が同時に水素であることはない。 ) R 5 — R 7 are each independently a hydrogen atom or a C 13 alkyl group. Not all R 5 and R 6 in the entire compound can be hydrogen at the same time. R 8 to R 11 each independently represent a hydrogen atom or an alkyl group having 13 to 13 carbon atoms, but not all R 9 to R 11 in the whole compound are hydrogen at the same time. )
[4] 請求項 1一 3のいずれ力 1項に記載のコーティング組成物を、基板上に塗布し、ある いは型枠または溝に充填し、さらに焼成することにより形成されたことを特徴とする、 シリカ質材料。 [4] The coating composition according to any one of [1] to [3], wherein the coating composition is formed by applying the composition on a substrate, or filling a mold or a groove, and further firing. A siliceous material.
[5] 請求項 4に記載のシリカ質材料を層間絶縁膜として含むことを特徴とする、半導体  [5] A semiconductor comprising the siliceous material according to claim 4 as an interlayer insulating film.
[6] 請求項 1一 3のいずれか 1項に記載のコーティング組成物を水蒸気含有雰囲気中 5 0— 300°Cの温度で予備焼成し、さらに乾燥雰囲気中 300— 500°Cの温度で焼成す ることを特徴とする、シリカ質材料の製造法。 [6] The coating composition according to any one of claims 13 to 13 is pre-baked in a steam-containing atmosphere at a temperature of 50 to 300 ° C, and further calcined in a dry atmosphere at a temperature of 300 to 500 ° C. A method for producing a siliceous material.
PCT/JP2004/011136 2003-08-12 2004-08-04 Coating composition and low dielectric porous siliceous material produced by using same WO2005014744A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-292534 2003-08-12
JP2003292534A JP2006188547A (en) 2003-08-12 2003-08-12 Coating composition and low dielectric porous siliceous material produced by using the same

Publications (1)

Publication Number Publication Date
WO2005014744A1 true WO2005014744A1 (en) 2005-02-17

Family

ID=34131729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/011136 WO2005014744A1 (en) 2003-08-12 2004-08-04 Coating composition and low dielectric porous siliceous material produced by using same

Country Status (3)

Country Link
JP (1) JP2006188547A (en)
TW (1) TW200507110A (en)
WO (1) WO2005014744A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969172B2 (en) 2010-11-05 2015-03-03 Az Electronic Materials Usa Corp. Method for forming isolation structure
JP6475388B1 (en) * 2018-07-18 2019-02-27 信越化学工業株式会社 Polysilazane-containing composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5481610B2 (en) * 2007-10-18 2014-04-23 株式会社豊田自動織機 Coating composition, method for producing transparent protective film using coating composition, and organic glass having transparent protective film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673340A (en) * 1992-08-26 1994-03-15 Catalysts & Chem Ind Co Ltd Coating fluid for forming silica coating film and substrate coated with film thereof
JPH07292321A (en) * 1994-04-28 1995-11-07 Tonen Corp Composition for coating
JPH11236533A (en) * 1998-02-24 1999-08-31 Hitachi Chem Co Ltd Coating fluid for forming siliceous coating film and siliceous coating film obtained therefrom
JP2002075982A (en) * 2000-08-29 2002-03-15 Clariant (Japan) Kk Low dielectric constant porous silica film, semiconductor device and coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673340A (en) * 1992-08-26 1994-03-15 Catalysts & Chem Ind Co Ltd Coating fluid for forming silica coating film and substrate coated with film thereof
JPH07292321A (en) * 1994-04-28 1995-11-07 Tonen Corp Composition for coating
JPH11236533A (en) * 1998-02-24 1999-08-31 Hitachi Chem Co Ltd Coating fluid for forming siliceous coating film and siliceous coating film obtained therefrom
JP2002075982A (en) * 2000-08-29 2002-03-15 Clariant (Japan) Kk Low dielectric constant porous silica film, semiconductor device and coating composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8969172B2 (en) 2010-11-05 2015-03-03 Az Electronic Materials Usa Corp. Method for forming isolation structure
JP6475388B1 (en) * 2018-07-18 2019-02-27 信越化学工業株式会社 Polysilazane-containing composition
JP2020012059A (en) * 2018-07-18 2020-01-23 信越化学工業株式会社 Polisilazane-containing composition

Also Published As

Publication number Publication date
JP2006188547A (en) 2006-07-20
TW200507110A (en) 2005-02-16

Similar Documents

Publication Publication Date Title
JP4722269B2 (en) Low dielectric constant porous siliceous film, semiconductor device and coating composition, and method for producing low dielectric constant porous siliceous film
JP6104785B2 (en) Perhydropolysilazane, composition containing the same, and method for forming siliceous film using the same
JP4588304B2 (en) Coating composition and low dielectric siliceous material produced using the same
JP4408994B2 (en) Low dielectric constant porous siliceous film, semiconductor device and coating composition
JP2003526197A (en) Silane-based nanoporous silica thin films
JP2004165613A (en) Manufacture of electronic device
JP2004513503A (en) Use of polyfunctional Si-based oligomers and polymers for surface modification of nanoporous silica films
EP1787319A1 (en) Novel polyorganosiloxane dielectric materials
CN1328346C (en) Coating composition, porous siliceous film, method for preparing porous siliceous film, and semiconductor device
JP2001287910A (en) Method for producing porous silicon oxide coating film
WO2005014744A1 (en) Coating composition and low dielectric porous siliceous material produced by using same
JP4920252B2 (en) Phosphorus-containing silazane composition, phosphorus-containing siliceous film, phosphorus-containing siliceous filler, method for producing phosphorus-containing siliceous film, and semiconductor device
JP2006503165A (en) Organosiloxane
JP2007012639A (en) Composition for forming etching stopper layer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP