WO2005012963A1 - Method for producing polarizing glass - Google Patents

Method for producing polarizing glass Download PDF

Info

Publication number
WO2005012963A1
WO2005012963A1 PCT/JP2004/009910 JP2004009910W WO2005012963A1 WO 2005012963 A1 WO2005012963 A1 WO 2005012963A1 JP 2004009910 W JP2004009910 W JP 2004009910W WO 2005012963 A1 WO2005012963 A1 WO 2005012963A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
producing
polarizing
preform
temperature
Prior art date
Application number
PCT/JP2004/009910
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Aoki
Original Assignee
Arisawa Mfg. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arisawa Mfg. Co., Ltd. filed Critical Arisawa Mfg. Co., Ltd.
Publication of WO2005012963A1 publication Critical patent/WO2005012963A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/037Re-forming glass sheets by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/0006Re-forming shaped glass by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/04Particles; Flakes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/08Metals

Definitions

  • the present invention relates to a method for producing a polarizing glass.
  • Polarized glass is used in the near infrared region for optical communication applications, especially for polarization-dependent optical isolators.
  • the heat resistance, environmental resistance and optical properties required for the polarizing glass used in this field are at a high level.
  • the insertion loss is required to be less than 0.1 dB and the extinction ratio is required to be more than 40 dB.
  • Polarized glass has such excellent performance, and with the practical use of blue semiconductor lasers, it has been applied to areas where polarizing films and wirerids were conventionally used, such as high-density optical recording devices and LCD projectors. Is expected.
  • polarizing glass includes a step of dissolving a base material glass containing a halide, a heat treatment step of precipitating metal halide particles in the base material glass, an elongating step of stretching the metal halide particles, and a step of elongating the metal halide particles. It is manufactured by a reduction process and a finish polishing process. The following method is disclosed as a method for extending the glass preform while preventing breakage or rupture of the glass preform in the stretching step.
  • Tokudokidaira 2-4 0 6 1 9 (USP 4 4 7 9 8 9 and US 4 4 8 6 2 13) has a laminated structure in which a core glass is covered with a thin surface glass.
  • a method is disclosed in which a glass preform is stretched to prevent breakage of glass generated during the stretching process.
  • Patent No. 3320004 at least a rectangular plate-shaped preform is drawn in order to prevent cracks from being generated at the end of the rectangular plate-shaped preform.
  • a method of drawing a preform in which two surfaces parallel to a direction are etched is disclosed.
  • Each of the above (1) to (3) is a method for preventing breakage or destruction of the glass preform in the stretching step, but has the following problems.
  • the method (1) can certainly prevent glass breakage, the production of a laminate preform in which the core glass is covered with a thin surface glass depends on the viscosity and heat of the core glass and the surface glass. It is troublesome because it is necessary to consider the expansion rate. In addition, since it is necessary to adjust the shape of the core glass and the surface glass in separate processes, it is inevitable that the cost will increase accordingly.
  • the method of (2) is cut at this transgression performing stretching while preventing damage to the glass, to stretch in the range of viscosity 2 x 1 0 5 Boyes ⁇ 7 X 1 0 7 Boys It is difficult to obtain excellent optical characteristics. That is, because called halogen stretching of emission of metal particles about 1 X 1 may ⁇ performed in viscosity of 8 Boyes and this performing stretching while applying sufficient stress to the halogen of the metal particles, the optical properties Although good ones is obtained, if it is 2 XI 0 5 Boi's ⁇ 7 X 1 0 7 Boi's above the inferior optical characteristics in the method (2) 0.3 ⁇ 111 Ya 0. Polishing must be performed precisely using extremely fine abrasive grains of 0.5 zm, which inevitably results in high costs.
  • breakage can be prevented by simply smoothing the end of the preform where stress tends to be concentrated by etching.
  • etching is effective for removing impurities adhering to the glass surface, the amount of etching is relatively large, from 100 m to 100 m, so that fine scratches remaining on the surface are small.
  • the surface may eventually be roughened (roughened) by the effects of foreign matter. In particular, the scratches become deeper due to the etching, and the breakage proceeds more easily.
  • the acid solution used for etching is a strong acid or a mixed solution of strong acid and hydrofluoric acid
  • care must be taken not only in handling, but also sufficient safety measures for processing equipment and waste liquid treatment. Must be taken As a matter of course, the cost is naturally higher.
  • the glass serving as the base material is heat-treated to precipitate metal halide particles.
  • the stretching process was performed after the laminate processing ((1)), the polishing process ((2)), or the etching process ((3)), etc. But none of them were cheap.
  • the present invention solves the above-mentioned problems, and when the metal halide particles are deposited, the removal of the scratches from the glass and the deposition of the metal halide particles are simultaneously performed by a simple method, so that the stretching is performed.
  • the present invention can provide a polarizing glass that can prevent breakage and destruction that occurs during processing at low cost.
  • the gist of the present invention will be described.
  • a glass preform in which metal halide particles having a predetermined particle size are dispersed is heated and drawn to a predetermined temperature to form a glass sheet having drawn metal halide particles, and thereafter, the metal halide particles are reduced.
  • a method for producing a polarizing glass having predetermined polarization characteristics by converting the glass preform into a metal by heating the glass preform at a predetermined temperature before heating and stretching the glass preform.
  • the present invention relates to a method for producing a polarizing glass, wherein the surface of the glass preform is smoothed by heat deformation and the corners are rounded.
  • the present invention relates to a method for producing a polarizing glass, which comprises preheating the glass preform before heat-treating the reform at a predetermined temperature.
  • the present invention relates to a method for producing a polarizing glass, wherein a temperature of the heat treatment is higher than a softening point temperature of the glass.
  • the present invention relates to a method for manufacturing a polarizing glass, wherein a temperature of the heat treatment is higher than a softening point temperature of the glass.
  • the glass preform is placed on a metal having a melting point lower than the temperature of the heat treatment and a specific gravity heavier than the glass during the heat treatment.
  • the present invention relates to a method for producing a polarizing glass.
  • the glass preform is placed on a metal having a melting point lower than the temperature of the heat treatment and a specific gravity heavier than the glass during the heat treatment.
  • the present invention relates to a method for producing a polarizing glass. Further, in the method for producing a polarizing glass according to claim 7, at least one of typical metal elements included in Groups 12 to 16 of the periodic table is employed as the metal. The present invention relates to a method for producing a polarizing glass.
  • the method for producing a polarizing glass according to claim 8 at least one of the typical metal elements included in Groups 12 to 16 of the periodic table is employed as the metal.
  • the present invention relates to a method for producing a polarizing glass.
  • the present invention relates to a method for producing a polarizing glass.
  • an aspect ratio of the metal particles after heating and stretching is 2: 1 or more
  • the present invention relates to a method for producing a polarizing glass, wherein the metal halide particles are oriented in a stretching direction. Further, in the method for producing a polarizing glass according to claim 11, the aspect ratio of the metal halide particles after heating and stretching is 2: 1 or more, and the metal halide particles are oriented in the stretching direction.
  • the present invention relates to a method for producing a polarizing glass, characterized in that:
  • the ratio of the width of the glass preform before and after the heat stretching is 5: 1 to 2: 1.
  • the present invention relates to a method for producing a polarizing glass, which is a feature.
  • the method for producing a polarizing glass according to claim 11, wherein The present invention relates to a method for producing a polarizing glass, characterized in that the ratio of the glass preform width before stretching and after heating and stretching is 5: 1 to 2: 1. 13.
  • the present invention relates to a method for manufacturing a polarizing glass.
  • Scratches that occur in the glass preform can be removed by simply heating the glass preform at a predetermined temperature at which the surface of the glass can be smoothed and the corners can be turned into an arc, regardless of the processing of the laminate, polishing, or etching. Removal of scratches and the like can be performed, and the processing becomes extremely simple. Since the heating at the predetermined temperature is not particularly performed separately, but is also performed as the heating for the essential metal particle deposition processing, the heating is performed simultaneously with the smoothing of the surface and the arcing of the angle. Investigations are also carried out, which is very efficient in this regard.
  • the surface of the glass preform can be smoothed and the corners can be made arcuate without adding new processing equipment and processing steps, and breakage and destruction when the glass preform is stretched by heating can be prevented at extremely low cost. .
  • the present invention can provide a polarizing glass in which breakage or destruction that occurs when a glass preform is heated and stretched is prevented at low cost.
  • the polarizing glass of this embodiment can be manufactured by using a known manufacturing method of a polarizing glass (hereinafter, referred to as a conventional method).
  • the steps of the conventional method can be carried out without change except for the step of producing a glass preform.
  • a glass material and a metal halide material are melted and mixed, and then solidified to form a base material glass.
  • the base material glass is heat-treated to disperse metal halide particles having a predetermined particle size.
  • the glass preform is heated and stretched to a predetermined temperature to form a glass sheet having stretched metal halide particles, and thereafter, the metal halide particles are reduced to form a metal sheet.
  • a method of producing a polarizing glass having predetermined polarization characteristics by heating the glass preform at a predetermined temperature to precipitate metal halide particles before heating and stretching the glass preform. Smoothing the surface of an ohm by thermal deformation and turning the corner into an arc It is.
  • Metal halide glass is used as the base glass. This base glass is melted (transition temperature of glass is about 520 ° C, softening point is about 690 ° C The glass preform cut out of the base glass into a plate or block was heated to precipitate metal halide particles.
  • metal halide particles The state of existence of metal halide particles has not been elucidated yet, but metal ions and halogen ions are separately present in the glass preform. It is thought to be particles.
  • This heating temperature is preferably set to a temperature higher than the softening point temperature of the glass, that is, about 700 ° C. or more in the present embodiment.
  • the glass preform surface by heating the glass preform surface at a temperature higher than the softening point temperature of the glass, even if there is a flaw on the glass preform surface, the glass preform is softened and the surface is reformed. This smoothing and arcing of the corners are performed, so that this flaw can be removed.
  • crystal nuclei are formed in the metal halide particles before the heat treatment temperature is reached, and at the heat treatment temperature, the growth of the metal halide particles is promoted. Particles can be precipitated simultaneously. Furthermore, because the glass preform is free from scratches, the glass preform does not break or break even when stretched at a viscosity of about 1 ⁇ 1 ⁇ 8 vise, so that a polarizing glass with excellent optical properties can be obtained. .
  • a preheating treatment at a predetermined temperature for generating the crystal nuclei of the metal halide grains and growing the crystal nuclei may be performed before the glass preform is subjected to the heat treatment.
  • the glass preform when the glass preform is in the form of a thin plate as in this embodiment, the surface can be smoothed, the corners can be made arcuate, and the metal halide particles can be deposited by directly performing the heat treatment.
  • the metal halide particles inside the glass preform which is difficult to conduct heat, are favorably deposited, so that the glass preform is temporarily transformed before the heat treatment.
  • Preheating treatment is performed between the point temperature and the softening point temperature.
  • crystal nucleation and grain growth of metal halide particles for example, when metallic silver precipitates, red foreign matter or red coloring can be seen on the glass, making it possible to judge the quality of the glass. If the judgment is good, the glass is changed from a block shape to a plate shape, and heat treatment is performed to smooth the surface, make the corners arc, and precipitate the metal halide particles. It can be a form.
  • the glass is set in a container having a heat-resistant temperature of about 800 ° C. or more, and the heat treatment is performed. That is, in this embodiment, since the glass preform is formed by the heat treatment including the smoothing of the surface of the glass preform and the arcing of the corners, the container in which the glass preform is placed (placed) is important. Since the heat treatment is performed at a temperature higher than the softening point of the glass, As the heat resistance temperature, a temperature higher than the softening point temperature of this glass is required. This temperature cannot be unambiguously determined because it depends on the desired particle size of the metal halide particles, the shape of the glass preform, the heat treatment time, etc., but is usually 800 ° C or less. A container formed of a material having a heat resistance temperature of 800 ° C. or more may be used.
  • the surface of the container in contact with the glass preform is flat and the corner is arc-shaped.
  • accuracy of several hundred meters is not required.
  • the heat-treated glass preform is stretched to a width of 5: 1 to 2: 1 by a stretching process, then polished to a desired thickness, and cut to a desired size. Therefore, the shape precision of the glass preform itself is not required.
  • the heat treatment may be performed by placing the glass on a metal whose melting point is lower than the heat treatment temperature and whose specific gravity is heavier than glass. The metal used must have a lower melting point than the heat treatment temperature and a higher specific gravity than glass.
  • a typical metal element included in Groups 12 to 16 of the periodic table is excellent.
  • the glass transition point temperature is about 520 ° C and the specific gravity is about 2.4
  • a metal having a melting point of 40 CTC or less and a specific gravity of 4.0 or more is preferable.
  • typical metal elements are easily oxidized, the surface of the glass preform in contact with the liquid surface where these metals are melted is reduced. For example, when a glass preform containing silver halide particles is placed in a container whose molten metal is tin, silver is reduced and the glass preform turns yellow.
  • the aspect ratio that affects the properties of the polarizing glass is the ratio of the major axis to the minor axis of the metal halide particles stretched in the stretching step or the stretched metal particles after the reduction treatment. Therefore, in order to stabilize the characteristics of the polarizing glass, it is preferable that the particle diameters of the precipitated metal halide particles are uniform, and therefore, the temperature of the base glass during the heat treatment is important. However, it is controlled so that the temperature of the surface of the base glass and the inside become uniform, and the precipitate is uniformly formed with the target particle size.
  • Control methods include installing a fan inside the electric furnace to stir, optimizing the heating, treatment and cooling times of the electric furnace, and devising a method for installing the base material glass. Can be raised. As a result, the standard deviation of the particle size distribution of the precipitated metal halide particles can be set to 10 nm or less.
  • the metal halide particles after heating and stretching of the glass preform have an aspect ratio of 2: 1 or more, and the metal halide particles are oriented in the stretching direction. Is set as follows.
  • the glass preform Stretching, feeding a glass preform metal halide particles are precipitated in the electric furnace at a constant speed, the glass preform is predetermined viscosity, in concrete terms, it becomes 1 XI 0 7 Boyes ⁇ 1 XI 0 9 Boys heated to a temperature, conducted at been tensioning device installed in an electric furnace downwardly by adding 1 0 0 K g / cm 2 ⁇ 6 0 0 K g / cm 2 tensile stress.
  • the applied stress can be controlled not only by the viscosity of the glass but also by the feeding speed and the pulling speed of the glass preform.
  • the applied stress is set to a value that gives the target aspect ratio within a range where the glass preform does not break.
  • Metal halide particles with a small particle size of about 20 nm are difficult to stretch unless the stress is increased. Also, metal halide particles having a large particle size of about 100 nm are easily stretched even with a small stress. Therefore, when a glass preform in which metal halide particles having different particle diameters are distributed is stretched with uniform stress, a glass preform containing various metal halide particles having various aspect ratios depending on the size of the particle size is obtained. Can be produced.
  • This reduction is usually performed by heat treating the glass in a hydrogen atmosphere.
  • the reduction reaction depends on the ambient temperature and the reduction time. In particular, the ambient temperature is important. If the ambient temperature is high, the reduction treatment time is shortened, but the stretched metal halide particles are re-spheroidized, causing a reduction in the aspect ratio and a deterioration in the extinction ratio. If the ambient temperature is low, spheroidization does not occur, but the reduction process takes a long time, resulting in cost reduction. In addition, depending on the ambient temperature, the spread of the aspect ratio distribution is reduced due to the decrease in the aspect ratio of some of the elongated metal halide particles, and as a result, the band is also narrowed. From these facts, it is preferable that the reduction is carried out at an atmosphere temperature of 400 ° C. or more, preferably in a temperature range of 410 ° C. to 470 ° C. for 1 hour to 12 hours.
  • the reduction furnace used for the reduction operates at the atmospheric pressure of the hydrogen flow.
  • the hydrogen used in the reduction treatment is burned using a torch after exiting the sample chamber of the reduction furnace, so there is no danger of explosion and high safety. According to the present embodiment described above, it is possible to provide a polarizing glass capable of preventing breakage and destruction occurring when a glass preform is heated and stretched at low cost.
  • an experimental example in which the effect of the present embodiment has been confirmed will be described.
  • S i 0 2 as the base material glass 5 6. 3 wt%, B 2 0 3: 1 8. 1 wt%, A 1 a 03: 6. 2 wt% 3 K 20: 5. 7 wt%, L i 2 0:. 1 8 wt% , N aa 0: 5. 2 wt%, Z r 0 2: 5. 0 wt%, T i 0 a: 2. 0 wt%, C u 0: 0. 0 1 wt %, Ag: 0.24 wt%, C1: 0.14 wt%, Br: 0.14 wt%.
  • the glass transition point temperature was about 520 ° C and the softening point temperature was about 690 ° C.
  • a flat glass of 70 ⁇ 500 ⁇ 6 mm (width ⁇ length ⁇ thickness) was cut out from the glass.
  • a quartz glass plate having a size of 100 ⁇ 600 ⁇ 10 mm (width ⁇ length ⁇ thickness) was prepared.
  • a pot bottom shape of approximately 75 x 5 x 10 x 4 mm was formed on this quartz glass plate, and the concave portion was fire-polished using an oxyhydrogen burner to make the surface in contact with the glass flat and angular. was made into an arc shape to obtain a quartz glass container.
  • This container was sufficiently washed with an organic solvent to remove foreign substances such as dust attached to the concave portion. And in the container 7 0 X 5 0 0 X
  • the temperature was raised to 74 ° C. and kept at 74 ° C. for a certain time. Thereafter, the temperature was slowly lowered to room temperature including slow cooling.
  • the glass was removed from the container.
  • the glass was generally rounded, approximately 69 x 49 x 5.5 mm. Also, the glass surface has no scratches or patterns that can be seen due to undulations , She was shiny. In addition, the glass was uniformly fairly turbid, and silver halide grains had clearly precipitated.
  • the obtained glass was drawn as a glass preform.
  • the temperature of the pressurized hot furnace (drawing furnace) to a temperature at which the viscosity of the glass is approximately 1 X 1 0 8 Boise, 2 5 0 K g / cm 2 ⁇ 3 5 0 K a g / cm 2 stress pressurized forte stretching was. No breakage or breakage of the glass preform occurred during the stretching, and a glass sheet having a width of about 14 mm and a thickness of about 1.3 mm was obtained. Then, when this glass sheet was subjected to a reduction treatment using hydrogen gas, the extinction ratio was 50 dB or more, and it was confirmed that the precipitation amount of silver halide particles was sufficient.
  • Transparent flat glass was placed in a container and placed in a heat treatment furnace together with the container.
  • the temperature was raised from room temperature to 600 ° C at a heating rate of 200 ° C Zh, maintained at 600 ° C for a certain period of time, and the crystal nuclei of silver halide grains were generated and grown. .
  • the temperature was increased to 720 ° C. at a heating rate of 200 ° C./h, and the temperature was maintained at 74 ° C. for a certain time. After that, the temperature was slowly lowered to room temperature including slow cooling.
  • the glass removed from the container was generally rounded and glossy, and there were no corners or scratches on the glass surface or any pattern or swelling that could be attributed to the container.
  • the size was about 69 x 49 x 5.5 mm. Further, the glass was evenly clouded uniformly on the glass surface, and silver halide particles were clearly precipitated.
  • the obtained glass as a glass preform, the temperature of the heating furnace (drawing furnace) to a temperature at which the viscosity of the glass is approximately 1 X 1 0 8 Boise, 2 5 0 K g / cm 2 ⁇ 3 5 OK g / It was stretched by applying a stress of cm 2 .
  • a 70 ⁇ 500 ⁇ 5 O mm (width ⁇ length ⁇ thickness) glass block was cut out of the glass produced in Experimental Example 1.
  • the glass block was placed in a 75 ⁇ 530 ⁇ 5 Omm (width ⁇ length ⁇ thickness) stainless steel container and placed in a heat treatment furnace. Then, heat treatment was performed at 6 ° C. for a certain time. Although the glass block after the heat treatment was slightly cloudy, no red foreign matter or red coloring was observed, and no metallic silver was precipitated, so it was judged to be a good product.
  • the obtained glass as a Garasupuri form, the temperature of the heating furnace (drawing furnace) to a temperature at which the viscosity of the glass is about 1 XI 0 8 Boise, 2 5 0 K g / cm 2 ⁇ 3 5 OK gZ It was stretched by applying a stress of cm 2 . No breakage or breakage of the glass preform occurred during stretching, and a glass sheet about 13 mm in width and about 1.3 mm in thickness was obtained. When this glass sheet was subjected to a reduction treatment using hydrogen gas, an extinction ratio of 50 dB or more was exhibited.
  • a glass plug of 70 x 500 x 5 mm (width x length x thickness) was cut out from the glass.
  • This glass block was placed in the stainless steel container of Experimental Example 4 and placed in a heat treatment furnace. And 600. C was heat treated for a certain period of time.
  • the glass block after the heat treatment was colored red. This coloring was the result of the reduction of silver to metal and the precipitation of silver colloid, so it was judged to be defective, and the reduction in yield due to turning the glass in the subsequent process could be prevented.
  • the removed glass was round at the top and flat at the bottom. And the upper and lower boundaries were rounded.
  • the surface that was in contact with tin was yellow, but there were no scratches or any undulations.
  • the other surfaces were glossy and beautiful.
  • the size was about 7250 ⁇ 2 mm. Further, the glass was uniformly cloudy, and silver halide grains were clearly precipitated.
  • the thickness of the portion where silver was reduced was examined separately, it was less than 1 mm.
  • the obtained glass as Garasupuri foam the temperature of the heating furnace (drawing furnace) to a temperature at which the viscosity of the glass is approximately 1 X 1 0 8 Boise, 2 5 0 K g / cm 2 ⁇ 3 5 OK g / cm It was stretched by applying a stress of 2 . There was no breakage or breakage of the glass preform during stretching, and a glass sheet approximately 15 mm wide and 0.9 mm thick was obtained.
  • the glass preform was damaged during the stretching process. It is possible to provide a glass preform free from scratches and roughening of the glass surface, which can cause cracks and breakage, and that metal halide particles can be simultaneously precipitated on the glass preform. Was also good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Polarising Elements (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A method for producing a polarizing glass wherein a glass preform containing metal halide particles having a prescribed particle diameter dispersed therein is heated to a prescribed temperature and is subjected to drawing, to form a glass sheet containing drawn metal halide particles, and then said metal halide particles are reduced to metal, to produce a polarizing glass having prescribed polarizing characteristics, characterized in that prior to the heating and drawing of the glass preform, said glass preform is subjected to a heat treatment at a prescribed temperature, to thereby precipitate metal halide particles and simultaneously make its surface to be flatter and its corner portion to have a circular arc form through thermal deformation. The method provides the production of a polarizing glass which can prevent the fracture or breakage during the above drawing process at a reduced cost.

Description

明 細 書  Specification
偏光ガラスの製造方法 Manufacturing method of polarizing glass
技術分野 Technical field
本発明は、 偏光ガラスの製造方法に関するものである。  The present invention relates to a method for producing a polarizing glass.
背景技術 Background art
偏光ガラスは、 近赤外領域において光通信用途、 特に偏波依存型 の光アイソレー夕一に使用されている。  Polarized glass is used in the near infrared region for optical communication applications, especially for polarization-dependent optical isolators.
ところで光通信分野は、 信頼性が特に重要視され、 よってこの分 野に使用される偏光ガラスに要求される耐熱性, 耐環境性及び光学 特性は高いレベルであり、 特に光学特性としては、 少なく とも挿入 損失は 0 . l d B以下、 消光比は 4 0 d B以上が要求される。 偏光ガラスはこのように優れた性能を持つことから、 青色半導体 レーザーの実用化に伴い、 高密度光記録装置や、 L C Dプロジェク ターなど、 従来、 偏光フイルムや w i r e r i dが使用されて いた領域にも応用が期待されている。  By the way, in the optical communication field, reliability is particularly important, and the heat resistance, environmental resistance and optical properties required for the polarizing glass used in this field are at a high level. In both cases, the insertion loss is required to be less than 0.1 dB and the extinction ratio is required to be more than 40 dB. Polarized glass has such excellent performance, and with the practical use of blue semiconductor lasers, it has been applied to areas where polarizing films and wirerids were conventionally used, such as high-density optical recording devices and LCD projectors. Is expected.
しかし、 この領域は民生用であるため、 価格も重要な要素であり 、 そのため、 偏光ガラスには性能を向上する技術と同様に、 歩留を 高く して、 コス ト安に製造する技術も要求されている。  However, since this area is for consumer use, price is also an important factor. Therefore, as well as technology for improving the performance of polarizing glass, technology for increasing yield and manufacturing at low cost is also required. Have been.
偏光ガラスは、 一般に、 ハロゲン化物を含む母材ガラスを溶解す る工程、 母材ガラス中にハロゲン化金属粒子を析出させる熱処理ェ 程、 ハロゲン化金属粒子を引き伸ばす延伸工程、 ハロゲン化金属粒 子を還元処理する還元工程、 仕上げ研磨工程によって製造される。 延伸工程においてガラスプリ フォームの破損や破壌を防ぎつつ延 伸する方法と しては、 以下のような方法が開示されている。 In general, polarizing glass includes a step of dissolving a base material glass containing a halide, a heat treatment step of precipitating metal halide particles in the base material glass, an elongating step of stretching the metal halide particles, and a step of elongating the metal halide particles. It is manufactured by a reduction process and a finish polishing process. The following method is disclosed as a method for extending the glass preform while preventing breakage or rupture of the glass preform in the stretching step.
( 1 ) 「特鬨平 2— 4 0 6 1 9号」 (U S P 4 4 7 9 8 1 9及 び U S P 4 4 8 6 2 1 3 ) には、 コア一ガラスを薄い表面ガラスで 覆った積層体プリ フォームを延伸するこ とによって、 延伸工程中に 発生するガラスの破損を防ぐ方法が開示されている。  (1) Tokudokidaira 2-4 0 6 1 9 (USP 4 4 7 9 8 9 and US 4 4 8 6 2 13) has a laminated structure in which a core glass is covered with a thin surface glass. A method is disclosed in which a glass preform is stretched to prevent breakage of glass generated during the stretching process.
( 2 ) 「特許第 3 1 0 5 4 9 1号」 には、 少な く とも対向する 2面を研磨したガラスプリ フォームを、 粘度 2 X I 05ボイズ〜 7 X I 07ボイズの範囲で延伸すれば、 ガラスの破壊を防止しつつ延 伸を行えるこ とが開示されている。 (2) to the "No. 3 1 0 5 4 9 1 No." is the Garasupuri foam polishing the opposing two sides even rather small, if stretched in a range of viscosities 2 XI 0 5 Boyes ~ 7 XI 0 7 Boys It is disclosed that elongation can be performed while preventing breakage of glass.
( 3 ) 「特許第 3 3 2 0 0 4 4号」 には、 四角平板状のプリ フ オーム端部から発生する亀裂を防止するために、 四角平板状プリ フ オームの少な く とも線引きされる方向に平行な 2面をエッチングし たプリ フォームを線引きする方法が開示されている。  (3) According to Patent No. 3320004, at least a rectangular plate-shaped preform is drawn in order to prevent cracks from being generated at the end of the rectangular plate-shaped preform. A method of drawing a preform in which two surfaces parallel to a direction are etched is disclosed.
上記 ( 1 ) 〜 ( 3 ) 、 いずれも延伸工程におけるガラスプリ フォ —ムの破損や破壊を防ぐための方法であるが、 それそれ以下のよう な問題がある。  Each of the above (1) to (3) is a method for preventing breakage or destruction of the glass preform in the stretching step, but has the following problems.
( 1 ) の方法は、 確かにガラスの破損を防ぐこ とができるが、 コ ァーガラスを薄い表面ガラスで覆った積層体プリ フォームを作製す るのは、 コア一ガラスと表面ガラスの粘性や熱膨張率を考慮する必 要があるため厄介である。 また、 コア一ガラスと表面ガラスを、 そ れそれ別工程で形状を整える加工が必要であるこ とから、 それだけ コス ト高となるのは避けられない。  Although the method (1) can certainly prevent glass breakage, the production of a laminate preform in which the core glass is covered with a thin surface glass depends on the viscosity and heat of the core glass and the surface glass. It is troublesome because it is necessary to consider the expansion rate. In addition, since it is necessary to adjust the shape of the core glass and the surface glass in separate processes, it is inevitable that the cost will increase accordingly.
( 2 ) の方法は、 ガラスの破損を防止しつつ延伸を行う こ とがで きるが、 粘度 2 x 1 05ボイズ〜 7 X 1 07ボイズの範囲で延伸す ることは、 光学的特性に秀れたものが得られに くい。 即ち、 ハロゲ ン化金属粒子の延伸は約 1 X 1 ◦ 8ボイズの粘度で行う と該ハロゲ ン化金属粒子に十分な応力を加えながら延伸を行う こ とができる と いう理由から、 光学特性に優れたものが得られるが、 上述の 2 X I 0 5ボイ ズ〜 7 X 1 0 7ボイ ズである と光学特性に劣るものとなる また、 ( 2 ) の方法は 0 . 3 〃111ゃ 0 . 0 5 z mという非常に粒 度の細かい砥粒を用いて精密に研磨を行なわなければならず、 コス ト高となるのは避けられない。 The method of (2) is cut at this transgression performing stretching while preventing damage to the glass, to stretch in the range of viscosity 2 x 1 0 5 Boyes ~ 7 X 1 0 7 Boys It is difficult to obtain excellent optical characteristics. That is, because called halogen stretching of emission of metal particles about 1 X 1 may ◦ performed in viscosity of 8 Boyes and this performing stretching while applying sufficient stress to the halogen of the metal particles, the optical properties Although good ones is obtained, if it is 2 XI 0 5 Boi's ~ 7 X 1 0 7 Boi's above the inferior optical characteristics in the method (2) 0.3 〃111 Ya 0. Polishing must be performed precisely using extremely fine abrasive grains of 0.5 zm, which inevitably results in high costs.
更に、 研磨は基本的にガラス表面にキズを形成するものであるた め、 微小なキズがガラス表面に残って しまう という問題がある。 特 に、 ガラスは塑性変形しないため、 表面にキズが残った状態で 2 0 0 K g / c m 2以上の力で延伸する と、 このキズへの応力集中によ り容易に破断が進行して しまう。 Furthermore, since polishing basically forms scratches on the glass surface, there is a problem that minute scratches remain on the glass surface. In particular, since glass is not plastically deformed, if it is stretched with a force of 200 kg / cm2 or more with the surface remaining flawed, the fracture will easily progress due to the concentration of stress on the flaw. I will.
( 3 ) の方法は、 応力が集中 し易いプリ フォーム端部をェヅチン グによって簡易的に平滑化することによって、 破損を防止すること ができる。 しかし、 エッチングはガラス表面に付着している不純物 を除去するためには有効であるが、 ェヅチング量が 1 0 m以上 1 0 0 m以下と比較的多いため、 表面に残っている微小なキズゃ異 物の影響で表面を結果的に荒らす (粗す) こともある。 特にキズは 、 エッチングによってその深さがよ り深く なつて しまい、 一層容易 に破断が進行して しまう。  In the method (3), breakage can be prevented by simply smoothing the end of the preform where stress tends to be concentrated by etching. However, although etching is effective for removing impurities adhering to the glass surface, the amount of etching is relatively large, from 100 m to 100 m, so that fine scratches remaining on the surface are small. The surface may eventually be roughened (roughened) by the effects of foreign matter. In particular, the scratches become deeper due to the etching, and the breakage proceeds more easily.
また、 エッチングに用いる酸溶液が強酸若し く は強酸とフ ッ化水 素酸の混合水溶液であるため、 取り扱いに注意が必要であるだけで なく、 処理設備や廃液処理にも十分な安全対策が取られなければな らなず、 当然その分コス ト高となる。 以上、 ( 1 ) 〜 ( 3 ) の従来方法においては、 まず母材となるガ ラスを熱処理してハロゲン化金属粒子を析出せしめ、 次に、 このハ 口ゲン化金属粒子が析出したガラスに、 延伸工程における破損や破 壊を防ぐために、 積層体加工 (前記 ( 1 ) ) , 研磨加工 (前記 ( 2 ) ) 若しくはエッチング処理 (前記 ( 3 ) ) などを行った後、 延伸 工程を行っていたが、 いずれもコス ト安な方法ではなかった。 In addition, since the acid solution used for etching is a strong acid or a mixed solution of strong acid and hydrofluoric acid, care must be taken not only in handling, but also sufficient safety measures for processing equipment and waste liquid treatment. Must be taken As a matter of course, the cost is naturally higher. As described above, in the conventional methods (1) to (3), first, the glass serving as the base material is heat-treated to precipitate metal halide particles. In order to prevent breakage or breakage in the stretching process, the stretching process was performed after the laminate processing ((1)), the polishing process ((2)), or the etching process ((3)), etc. But none of them were cheap.
発明の開示 Disclosure of the invention
本発明は、 上述の問題点を解決したもので、 ハロゲン化金属粒 子を析出する際に、 ガラスからのキズの除去とハロゲン化金属粒子 の析出とを簡易な方法により同時に行うことで、 延伸加工時に生じ る破損や破壊をコス ト安に防止し得る偏光ガラスを提供し得るもの である。  The present invention solves the above-mentioned problems, and when the metal halide particles are deposited, the removal of the scratches from the glass and the deposition of the metal halide particles are simultaneously performed by a simple method, so that the stretching is performed. The present invention can provide a polarizing glass that can prevent breakage and destruction that occurs during processing at low cost.
本発明の要旨を説明する。  The gist of the present invention will be described.
所定粒径のハ口ゲン化金属粒子が分散せしめられたガラスプリフ オームを所定温度に加熱延伸して延伸されたハロゲン化金属粒子を 有するガラスシートを形成し、 その後、 該ハロゲン化金属粒子を還 元して金属とすることにより所定の偏光特性を有する偏光ガラスの 製造方法であって、 ガラスプリ フォームの加熱延伸前に、 該ガラス プリフオームを所定温度で加熱処理してハ口ゲン化金属粒子を析出 させると共に、 該ガラスプリフォームを熱変形によって表面の平滑 化及び角部の円弧化を行うことを特徴とする偏光ガラスの製造方法 に係るものである。  A glass preform in which metal halide particles having a predetermined particle size are dispersed is heated and drawn to a predetermined temperature to form a glass sheet having drawn metal halide particles, and thereafter, the metal halide particles are reduced. A method for producing a polarizing glass having predetermined polarization characteristics by converting the glass preform into a metal by heating the glass preform at a predetermined temperature before heating and stretching the glass preform. In addition, the present invention relates to a method for producing a polarizing glass, wherein the surface of the glass preform is smoothed by heat deformation and the corners are rounded.
また、 請求項 1記載の偏光ガラスの製造方法において、 ガラスプ リ フォームを所定温度で加熱処理する前に、 予め該ガラスプリ フォ ームを予備加熱するこ とを特徴とする偏光ガラスの製造方法に係る ものである。 Further, in the method for producing a polarizing glass according to claim 1, The present invention relates to a method for producing a polarizing glass, which comprises preheating the glass preform before heat-treating the reform at a predetermined temperature.
また、 請求項 1記載の偏光ガラスの製造方法において、 加熱処理 の温度が、 ガラスの軟化点温度よ り高い温度であるこ とを特徴と する偏光ガラスの製造方法に係るものである。  Further, in the method for producing a polarizing glass according to claim 1, the present invention relates to a method for producing a polarizing glass, wherein a temperature of the heat treatment is higher than a softening point temperature of the glass.
また、 請求項 2記載の偏光ガラスの製造方法において、 加熱処理 の温度が、 ガラスの軟化点温度よ り高い温度であるこ とを特徴とす る偏光ガラスの製造方法に係るものである。  Further, in the method for manufacturing a polarizing glass according to claim 2, the present invention relates to a method for manufacturing a polarizing glass, wherein a temperature of the heat treatment is higher than a softening point temperature of the glass.
また、 請求項 3記載の偏光ガラスの製造方法において、 加熱処理 の際、 約 8 0 0 °C以上の耐熱温度を有する容器にガラスプリ フォー ムを載置することを特徴とする偏光ガラスの製造方法に係るもので ある。  4. The method for producing a polarizing glass according to claim 3, wherein the glass preform is placed on a container having a heat-resistant temperature of about 800 ° C. or more during the heat treatment. It is related to.
また、 請求項 4記載の偏光ガラスの製造方法において、 加熱処理 の際、 約 8 0 0 °C以上の耐熱温度を有する容器にガラスプリ フォー ムを載置することを特徴とする偏光ガラスの製造方法に係.るもので ある。  5. The method for producing a polarizing glass according to claim 4, wherein the glass preform is placed on a container having a heat-resistant temperature of about 800 ° C. or more during the heat treatment. It is related to
また、 請求項 3記載の偏光ガラスの製造方法において、 加熱処理 の際、 融点が加熱処理の温度よ り低く且つ比重がガラスよ り重い金 属上にガラスプリ フォームを載置するこ とを特徴とする偏光ガラス の製造方法に係るものである。  Further, in the method for producing a polarizing glass according to claim 3, the glass preform is placed on a metal having a melting point lower than the temperature of the heat treatment and a specific gravity heavier than the glass during the heat treatment. The present invention relates to a method for producing a polarizing glass.
また、 請求項 4記載の偏光ガラスの製造方法において、 加熱処理 の際、 融点が加熱処理の温度よ り低く且つ比重がガラスよ り重い金 属上にガラスプリ フォームを載置するこ とを特徴とする偏光ガラス の製造方法に係るものである。 また、 請求項 7記載の偏光ガラスの製造方法において、 金属とし て、 周期律表 1 2族〜 1 6族に含まれる典型金属元素の中の少なく とも一種が採用されていることを特徴とする偏光ガラスの製造方法 に係るものである。 In the method for manufacturing a polarizing glass according to claim 4, the glass preform is placed on a metal having a melting point lower than the temperature of the heat treatment and a specific gravity heavier than the glass during the heat treatment. The present invention relates to a method for producing a polarizing glass. Further, in the method for producing a polarizing glass according to claim 7, at least one of typical metal elements included in Groups 12 to 16 of the periodic table is employed as the metal. The present invention relates to a method for producing a polarizing glass.
また、 請求項 8記載の偏光ガラスの製造方法において、 金属とし て、 周期律表 1 2族〜 1 6族に含まれる典型金属元素の中の少なく とも一種が採用されていることを特徴とする偏光ガラスの製造方法 に係るものである。  Further, in the method for producing a polarizing glass according to claim 8, at least one of the typical metal elements included in Groups 12 to 16 of the periodic table is employed as the metal. The present invention relates to a method for producing a polarizing glass.
また、 請求項 1〜 1 0いずれか 1項に記載の偏光ガラスの製造方 法において、 加熱延伸時のガラスプリフォームの粘度が 1 X I 0 7 ボイズ〜 1 X I 0 9ボイズであることを特徴とする偏光ガラスの製 造方法に係るものである。 In the production how the polarizing glass according to any one of claims 1-1 0, and wherein the viscosity of the glass preform at the time of heat stretching is 1 XI 0 7 Boyes ~ 1 XI 0 9 Boys The present invention relates to a method for producing a polarizing glass.
また、 請求項 1〜 1 0いずれか 1項に記載の偏光ガラスの製造方 法において、 加熱延伸後のハ口ゲン化金属粒子のァスぺク ト比が 2 : 1以上であり、 且つ、 該ハロゲン化金属粒子が延伸方向に配向し ていることを特徴とする偏光ガラスの製造方法に係るものである。 また、 請求項 1 1記載の偏光ガラスの製造方法において、 加熱延 伸後のハロゲン化金属粒子のアスペク ト比が 2 : 1以上であり、 且 つ、 該ハロゲン化金属粒子が延伸方向に配向していることを特徴と する偏光ガラスの製造方法に係るものである。  Further, in the method for producing a polarizing glass according to any one of claims 1 to 10, an aspect ratio of the metal particles after heating and stretching is 2: 1 or more, and The present invention relates to a method for producing a polarizing glass, wherein the metal halide particles are oriented in a stretching direction. Further, in the method for producing a polarizing glass according to claim 11, the aspect ratio of the metal halide particles after heating and stretching is 2: 1 or more, and the metal halide particles are oriented in the stretching direction. The present invention relates to a method for producing a polarizing glass, characterized in that:
また、 請求項 1〜 1 0いずれか 1項に記載の偏光ガラスの製造方 法において、 加熱延伸前と加熱延伸後のガラスプリフォーム幅の比 が、 5 : 1〜 2 : 1であることを特徴とする偏光ガラスの製造方法 に係るものである。  Further, in the method for producing a polarizing glass according to any one of claims 1 to 10, the ratio of the width of the glass preform before and after the heat stretching is 5: 1 to 2: 1. The present invention relates to a method for producing a polarizing glass, which is a feature.
また、 請求項 1 1記載の偏光ガラスの製造方法において、 加熱延 伸前と加熱延伸後のガラスプリ フォーム幅の比が、 5 : 1〜 2 : 1 であることを特徴とする偏光ガラスの製造方法に係るものである。 また、 請求項 1 2記載の偏光ガラスの製造方法において、 加熱延 伸前と加熱延伸後のガラスプリフォーム幅の比が、 5 : 1〜 2 : 1 であることを特徴とする偏光ガラスの製造方法に係るものである また、 請求項 1 3記載の偏光ガラスの製造方法において、 加熱延 伸前と加熱延伸後のガラスプリ フォーム幅の比が、 5 : 1〜 2 : 1 であることを特徴とする偏光ガラスの製造方法に係るものである。 ガラスプリ フォームに生じるキズを、 積層体加工, 研磨加工若 しくはエッチング処理によらず、 単にガラスの表面が平滑化し、 且 つ、 角部が円弧化し得る所定温度で加熱するだけで該ガラスプリフ オームのキズの除去等を行うことができ、 極めて簡易な処理となる 。 そして、 この所定温度での加熱は、 特に別途行う処理ではなく、 必須となる金属粒子折出処理の為の加熱も兼ねた処理である為、 こ の表面の平滑化及び角度の円弧化と同時に折出も行われ、 よってこ の点についても非常に効率的である。 The method for producing a polarizing glass according to claim 11, wherein The present invention relates to a method for producing a polarizing glass, characterized in that the ratio of the glass preform width before stretching and after heating and stretching is 5: 1 to 2: 1. 13. The method for producing a polarizing glass according to claim 12, wherein the ratio of the width of the glass preform before and after the heat stretching is 5: 1 to 2: 1. 14. The method for producing a polarizing glass according to claim 13, wherein the ratio of the glass preform width before and after the heat stretching is 5: 1 to 2: 1. The present invention relates to a method for manufacturing a polarizing glass. Scratches that occur in the glass preform can be removed by simply heating the glass preform at a predetermined temperature at which the surface of the glass can be smoothed and the corners can be turned into an arc, regardless of the processing of the laminate, polishing, or etching. Removal of scratches and the like can be performed, and the processing becomes extremely simple. Since the heating at the predetermined temperature is not particularly performed separately, but is also performed as the heating for the essential metal particle deposition processing, the heating is performed simultaneously with the smoothing of the surface and the arcing of the angle. Investigations are also carried out, which is very efficient in this regard.
以上、 新たな加工機器や加工工程を加える必要なくガラスプリフ オームの表面の平滑化及び角部の円弧化を実現でき、 ガラスプリフ オームを加熱延伸する際の破損や破壊を極めてコス ト安に防止でき る。  As described above, the surface of the glass preform can be smoothed and the corners can be made arcuate without adding new processing equipment and processing steps, and breakage and destruction when the glass preform is stretched by heating can be prevented at extremely low cost. .
従って、 本発明は、 ガラスプリフォームを加熱延伸する際に生じ る破損や破壊をコス ト安に防止した偏光ガラスを提供し得ることと なる。 発明を実施する ための最良の形態 Therefore, the present invention can provide a polarizing glass in which breakage or destruction that occurs when a glass preform is heated and stretched is prevented at low cost. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の一実施例を以下に説明する。  One embodiment of the present invention will be described below.
本実施例の偏光ガラスは公知の偏光ガラスの製造方法 (以下、 従 来法という。 ) を利用して製造できる。  The polarizing glass of this embodiment can be manufactured by using a known manufacturing method of a polarizing glass (hereinafter, referred to as a conventional method).
従来法では、 銀, 銅, または銅—カ ドミウムなど'のハロゲン化金 属原料を S i 0 2, B 2 0 a , A 1 2 0 3などから成るガラス原料と 共に溶解し、 母材ガラスを作製する。 次に、 母材ガラスを熱処理す ることによって、 所定の大きさのハロゲン化金属粒子を析出させた ガラスプリフォームを作製する。 そして、 ガラスプリフォームを加 熱し且つ応力を加えてハロゲン化金属粒子を延伸し、 水素雰囲気で 加熱還元処理することによって、 延伸ハロゲン化金属粒子を使用波 長に適したァスぺク ト比を持つ延伸金属粒子にしている。 In the conventional method, silver, copper or copper, - the gold halide genus material of cadmium such as' dissolved S i 0 2, B 2 0 a, together with the glass raw material consisting of a A 1 2 0 3, the base glass Is prepared. Next, a heat treatment is performed on the base glass to produce a glass preform in which metal halide particles of a predetermined size are precipitated. Then, the metal halide particles are stretched by heating and applying stress to the glass preform, and subjected to a heat reduction treatment in a hydrogen atmosphere, so that the elongated metal halide particles have an aspect ratio suitable for the wavelength used. To have elongated metal particles.
本実施例では、 従来法の工程をガラスプリ フォームを作製するェ 程を除いて変更なしに実施することができる。  In this embodiment, the steps of the conventional method can be carried out without change except for the step of producing a glass preform.
以下、 更に詳述する。  Hereinafter, this will be described in more detail.
本実施例は、 ガラス原料とハロゲン化金属原料とを溶解混合せし めた後に固化させて母材ガラスを形成し、 この母材ガラスを熱処理 して所定粒径のハロゲン化金属粒子が分散せしめられたガラスプリ フオームを形成し、 該ガラスプリフオームを所定温度に加熱延伸し て延伸されたハ口ゲン化金属粒子を有するガラスシートを形成し、 その後、 該ハロゲン化金属粒子を還元して金属とすることにより所 定の偏光特性を有する偏光ガラスの製造方法であって、 ガラスプリ フオームの加熱延伸前に、 該ガラスプリフオームを所定温度で加熱 処理してハロゲン化金属粒子を析出させると共に、 該ガラスプリフ オームを熱変形によって表面の平滑化及び角部の円弧化を行うもの である。 In this embodiment, a glass material and a metal halide material are melted and mixed, and then solidified to form a base material glass. The base material glass is heat-treated to disperse metal halide particles having a predetermined particle size. The glass preform is heated and stretched to a predetermined temperature to form a glass sheet having stretched metal halide particles, and thereafter, the metal halide particles are reduced to form a metal sheet. A method of producing a polarizing glass having predetermined polarization characteristics by heating the glass preform at a predetermined temperature to precipitate metal halide particles before heating and stretching the glass preform. Smoothing the surface of an ohm by thermal deformation and turning the corner into an arc It is.
母材ガラスと しては、 ハロゲン化金属含有ガラスを採用 している この母材ガラスを溶解し (ガラスの転移点温度は約 5 2 0 °C、 軟 化点温度は約 6 9 0 °Cであった。 ) 、 該母材ガラスから板状若し く はブロ ック状に切り 出したガラスプリ フォームを加熱してハロゲン 化金属粒子を析出せしめる。  Metal halide glass is used as the base glass. This base glass is melted (transition temperature of glass is about 520 ° C, softening point is about 690 ° C The glass preform cut out of the base glass into a plate or block was heated to precipitate metal halide particles.
ハロゲン化金属粒子の存在状態については、 まだ解明されていな いが、 ガラスプリ フォーム中に金属イオンとハロゲンイオンとが別 々に存在してお り、 そこに光や熱エネルギーを与えるとハロゲン化 金属粒子になる と考えられている。  The state of existence of metal halide particles has not been elucidated yet, but metal ions and halogen ions are separately present in the glass preform. It is thought to be particles.
具体的には、 ガラスプリ フォームを加熱することで、 該ガラスプ リ フォームの表面を平滑化せしめ、 角部を円弧化せしめる と共にハ ロゲン化金属粒子を析出せしめる。 この加熱温度は、 ガラスの軟化 点温度よ り高い温度、 即ち、 本実施例においては 7 0 0 °C程度以上 に設定するのが好ま しい。  Specifically, by heating the glass preform, the surface of the glass preform is smoothed, the corners are made arcuate, and the halogenated metal particles are precipitated. This heating temperature is preferably set to a temperature higher than the softening point temperature of the glass, that is, about 700 ° C. or more in the present embodiment.
即ち、 ガラスの軟化点温度よ り高い温度でガラスプリ フォーム表 面を加熱処理するこ とによ り、 仮に前記ガラスプリ フォーム表面に キズがあっても該ガラスプリ フォームが軟化するこ とによって表面 が再形成され平滑化及び角部の円弧化が行われるので、 このキズを 除去できる。  That is, by heating the glass preform surface at a temperature higher than the softening point temperature of the glass, even if there is a flaw on the glass preform surface, the glass preform is softened and the surface is reformed. This smoothing and arcing of the corners are performed, so that this flaw can be removed.
また、 加熱処理温度に達するまでの間にハロゲン化金属粒子は結 晶核が生成し、 加熱処理温度ではハロゲン化金属粒子の粒成長が促 進されるため、 ガラスプリ フォームの表面処理とハロゲン化金属粒 子の析出を同時に行う ことができる。 更に、 ガラスプリ フォームにキズがないために、 約 1 X 1 ◦ 8ボ ィズの粘度で延伸してもガラスプリフォームは破損や破壊しないた め、 光学特性が優れた偏光ガラスを得ることができる。 In addition, crystal nuclei are formed in the metal halide particles before the heat treatment temperature is reached, and at the heat treatment temperature, the growth of the metal halide particles is promoted. Particles can be precipitated simultaneously. Furthermore, because the glass preform is free from scratches, the glass preform does not break or break even when stretched at a viscosity of about 1 × 1 ◦ 8 vise, so that a polarizing glass with excellent optical properties can be obtained. .
また、 ガラスプリフォームに加熱処理を施す前に、 ハロゲン化金 属粒子結晶核を生成せしめると共に、 結晶核を粒成長させる所定温 度の予備加熱処理を施しても良い。  In addition, before the glass preform is subjected to the heat treatment, a preheating treatment at a predetermined temperature for generating the crystal nuclei of the metal halide grains and growing the crystal nuclei may be performed.
即ち、 本実施例のように、 ガラスプリ フォームが薄い板状の場合 は、 そのまま加熱処理することによって、 表面の平滑化及び角部の 円弧化とハロゲン化金属粒子の析出とを行うことができるが、 ガラ スプリ フォームを厚いブロック状とした場合には、 熱が伝導しにく いプロヅク状のガラスプリフオーム内部のハロゲン化金属粒子を良 好に析出させるため、 前記加熱処理の前に、 一旦転移点温度と軟化 点温度の間で予備加熱処理を施す。 ハ口ゲン化金属粒子の結晶核生 成と粒成長を行うことによって、 例えば金属銀が析出した場合は、 ガラスに赤い異物や赤い着色が見られるため、 ガラスの良不良の判 定が可能となり、 判定が良であった場合は、 ガラスをブロック状か ら板状にして、 加熱処理することによって、 表面の平滑化及び角部 の円弧化とハロゲン化金属粒子の析出とを行い、 ガラスプリフォー ムとすることができる。  That is, when the glass preform is in the form of a thin plate as in this embodiment, the surface can be smoothed, the corners can be made arcuate, and the metal halide particles can be deposited by directly performing the heat treatment. However, when the glass preform is formed into a thick block, the metal halide particles inside the glass preform, which is difficult to conduct heat, are favorably deposited, so that the glass preform is temporarily transformed before the heat treatment. Preheating treatment is performed between the point temperature and the softening point temperature. By performing crystal nucleation and grain growth of metal halide particles, for example, when metallic silver precipitates, red foreign matter or red coloring can be seen on the glass, making it possible to judge the quality of the glass. If the judgment is good, the glass is changed from a block shape to a plate shape, and heat treatment is performed to smooth the surface, make the corners arc, and precipitate the metal halide particles. It can be a form.
また、 本実施例においては、 約 8 0 0 °C以上の耐熱温度を有する 容器に前記ガラスを載置して加熱処理を行うように設定している。 即ち、 本実施例においては、 加熱処理においてガラスプリフォー ムの表面の平滑化と角部の円弧化を含めて形成することから、 ガラ スプリ フォームを置く (入れる) 容器は重要であり、 特に、 加熱処 理はガラスの軟化点温度より高い温度で行われることから、 容器の 耐熱温度と してはこのガラスの軟化点温度よ り高い温度を要求され る。 この温度はハロゲン化金属粒子の所望の粒径や、 ガラスプリ フ オームの形状や、 加熱処理時間などによつて異なるため一義的に決 められないが、 通常 8 0 0 °C以下であるため、 8 0 0 °C以上の耐熱 温度を持つ材料で形成された容器を採用すれば良い。 In this embodiment, the glass is set in a container having a heat-resistant temperature of about 800 ° C. or more, and the heat treatment is performed. That is, in this embodiment, since the glass preform is formed by the heat treatment including the smoothing of the surface of the glass preform and the arcing of the corners, the container in which the glass preform is placed (placed) is important. Since the heat treatment is performed at a temperature higher than the softening point of the glass, As the heat resistance temperature, a temperature higher than the softening point temperature of this glass is required. This temperature cannot be unambiguously determined because it depends on the desired particle size of the metal halide particles, the shape of the glass preform, the heat treatment time, etc., but is usually 800 ° C or less. A container formed of a material having a heat resistance temperature of 800 ° C. or more may be used.
また、 表面の平滑化及び角部の円弧化を含めて熱形成する という 観点から、 容器のガラスプリ フォームと接する面は平坦かつ角部が 円弧状の形状であるこ とが必要である。 しかし、 数百 mの精度は 必要と しない。 なぜなら、 加熱処理したガラスプリ フォームは、 延 伸工程によってその幅を 5 : 1 〜 2 : 1 に引き伸ばされ、 さ らにそ の後、 所望の厚さに研磨加工され、 所望の大きさに切断されるので 、 ガラスプリ フォーム自体の形状精度は要求されないからである。 更に、 加熱処理を、 融点が加熱処理温度よ り低く且つ比重がガラ スよ り重い金属上に前記ガラスを載置して行っても良い。 用いる金 属は加熱処理温度よ り融点が低く、 かつガラスよ り比重が重いこと が必要である。 このような金属と しては、 周期律表 1 2族〜 1 6族 に含まれる典型金属元素が優れている。 この中でも特に、 ガラスの 転移点温度は約 5 2 0 °Cであ り、 比重は約 2 . 4であることから、 融点は 4 0 CTC以下、 比重は 4 . 0以上である金属が好ま しい。 典型金属元素は酸化され易いので、 これら金属が溶融した液面と 接しているガラスプリ フォーム表面は還元される。 例えば、 溶融金 属がスズである容器にハロゲン化銀粒子を含むガラスプリ フオーム を入れる と、 銀が還元されガラスプリ フォームは黄色く なる。 しか し、 還元される銀の層よ り ガラスの厚みが十分に厚ければ容易に除 去できるため問題にならない。 偏光ガラスの特性に影響を与えるァスぺク ト比は、 延伸工程にお いて引き伸ばされたハロゲン化金属粒子若しくは還元処理後の延伸 金属粒子の長径と短径の比である。 従って、 偏光ガラスの特性を安 定化させるためには、 析出したハロゲン化金属粒子群の粒径は揃つ ていることが好ましいとされ、 そのため、 熱処理時の母材ガラス温 度は重要であり、 母材ガラス表面と内部の温度が均一となり 目標と する粒径で均一に析出するように制御されている。 Further, from the viewpoint of heat formation including smoothing of the surface and arcing of the corner, it is necessary that the surface of the container in contact with the glass preform is flat and the corner is arc-shaped. However, accuracy of several hundred meters is not required. This is because the heat-treated glass preform is stretched to a width of 5: 1 to 2: 1 by a stretching process, then polished to a desired thickness, and cut to a desired size. Therefore, the shape precision of the glass preform itself is not required. Further, the heat treatment may be performed by placing the glass on a metal whose melting point is lower than the heat treatment temperature and whose specific gravity is heavier than glass. The metal used must have a lower melting point than the heat treatment temperature and a higher specific gravity than glass. As such a metal, a typical metal element included in Groups 12 to 16 of the periodic table is excellent. Among them, particularly, since the glass transition point temperature is about 520 ° C and the specific gravity is about 2.4, a metal having a melting point of 40 CTC or less and a specific gravity of 4.0 or more is preferable. . Since typical metal elements are easily oxidized, the surface of the glass preform in contact with the liquid surface where these metals are melted is reduced. For example, when a glass preform containing silver halide particles is placed in a container whose molten metal is tin, silver is reduced and the glass preform turns yellow. However, if the thickness of the glass is sufficiently thicker than that of the silver layer to be reduced, it can be easily removed, so this is not a problem. The aspect ratio that affects the properties of the polarizing glass is the ratio of the major axis to the minor axis of the metal halide particles stretched in the stretching step or the stretched metal particles after the reduction treatment. Therefore, in order to stabilize the characteristics of the polarizing glass, it is preferable that the particle diameters of the precipitated metal halide particles are uniform, and therefore, the temperature of the base glass during the heat treatment is important. However, it is controlled so that the temperature of the surface of the base glass and the inside become uniform, and the precipitate is uniformly formed with the target particle size.
制御の方法としては、 電気炉内にファンを設置して撹拌を行うこ と、 電気炉の昇温, 処理及び降温時間を最適化すること、 母材ガラ スの設置方法を工夫することなどが上げられる。 これによつて析出 したハロゲン化金属粒子群の粒径分布の標準偏差は 1 0 n m以下で める。  Control methods include installing a fan inside the electric furnace to stir, optimizing the heating, treatment and cooling times of the electric furnace, and devising a method for installing the base material glass. Can be raised. As a result, the standard deviation of the particle size distribution of the precipitated metal halide particles can be set to 10 nm or less.
本実施例においては、 このガラスプリフォームの加熱延伸後のハ 口ゲン化金属粒子のァスぺク ト比が 2 : 1以上であり、 且つ、 該ハ ロゲン化金属粒子が延伸方向に配向するように設定している。  In this embodiment, the metal halide particles after heating and stretching of the glass preform have an aspect ratio of 2: 1 or more, and the metal halide particles are oriented in the stretching direction. Is set as follows.
延伸は、 ハロゲン化金属粒子が析出したガラスプリフォームを電 気炉内に一定速度で送り込み、 ガラスプリフォームが所定粘度、 具 体的には、 1 X I 0 7ボイズ〜 1 X I 0 9ボイズになる温度に加熱 して、 電気炉下方に設置された引っ張り装置で 1 0 0 K g / c m 2 〜 6 0 0 K g / c m 2の引っ張り応力を加えて行う。 加える応力は ガラスの粘度以外に、 ガラスプリ フォームの送り速度及び引っ張り 速度によつて制御できる。 Stretching, feeding a glass preform metal halide particles are precipitated in the electric furnace at a constant speed, the glass preform is predetermined viscosity, in concrete terms, it becomes 1 XI 0 7 Boyes ~ 1 XI 0 9 Boys heated to a temperature, conducted at been tensioning device installed in an electric furnace downwardly by adding 1 0 0 K g / cm 2 ~ 6 0 0 K g / cm 2 tensile stress. The applied stress can be controlled not only by the viscosity of the glass but also by the feeding speed and the pulling speed of the glass preform.
加える応力はガラスプリフォームが破断しない範囲で、 目標のァ スぺク ト比が与えられる値に設定される。 2 0 n m程度の粒径の小 さいハロゲン化金属粒子は、 応力を高く しなければ延伸されにく く 、 また、 1 0 0 n m程度の粒径の大きいハロゲン化金属粒子は小さ い応力でも延伸されやすい。 従って、 粒径の異なるハロゲン化金属 粒子が分布しているガラスプリ フォームを均一な応力で延伸すると 、 粒径の大きさによって種々のァスぺク ト比を有する延伸ハロゲン 化金属粒子群を含むものを作製することができる。 The applied stress is set to a value that gives the target aspect ratio within a range where the glass preform does not break. Metal halide particles with a small particle size of about 20 nm are difficult to stretch unless the stress is increased. Also, metal halide particles having a large particle size of about 100 nm are easily stretched even with a small stress. Therefore, when a glass preform in which metal halide particles having different particle diameters are distributed is stretched with uniform stress, a glass preform containing various metal halide particles having various aspect ratios depending on the size of the particle size is obtained. Can be produced.
延伸したガラスプリフオームに偏光特性を与えるためには、 ガラ ス中の延伸ハロゲン化金属粒子の少なく とも一部を還元処理して延 伸金属粒子にする必要がある。  In order to impart polarizing characteristics to the stretched glass preform, it is necessary to reduce at least a part of the stretched metal halide particles in the glass to form the expanded metal particles.
この還元は通常、 水素雰囲気でガラスを熱処理することによって 行われる。 還元反応は雰囲気温度と還元時間に依存する。 特に雰囲 気温度は重要である。 雰囲気温度が高いと還元処理時間は短縮され るが、 延伸されたハロゲン化金属粒子に再球状化が起こ り、 ァスぺ ク ト比の低下を引き起こし消光比が悪化する。 雰囲気温度が低いと 再球状化は起きないが、 還元処理に時間がかかり、 コス トァヅプに なる。 また、 雰囲気温度によっては、 一部の延伸ハロゲン化金属粒 子のァスぺク ト比が低下することによって、 ァスぺク ト比分布の広 がりが狭くなり、 結果として帯域も狭くなる。 これらのことから、 雰囲気温度としては 4 0 0 °C以上、 好ましくは 4 1 0 °C〜 4 7 0 °C の温度範囲で 1時間〜 1 2時間還元することが好ましい。  This reduction is usually performed by heat treating the glass in a hydrogen atmosphere. The reduction reaction depends on the ambient temperature and the reduction time. In particular, the ambient temperature is important. If the ambient temperature is high, the reduction treatment time is shortened, but the stretched metal halide particles are re-spheroidized, causing a reduction in the aspect ratio and a deterioration in the extinction ratio. If the ambient temperature is low, spheroidization does not occur, but the reduction process takes a long time, resulting in cost reduction. In addition, depending on the ambient temperature, the spread of the aspect ratio distribution is reduced due to the decrease in the aspect ratio of some of the elongated metal halide particles, and as a result, the band is also narrowed. From these facts, it is preferable that the reduction is carried out at an atmosphere temperature of 400 ° C. or more, preferably in a temperature range of 410 ° C. to 470 ° C. for 1 hour to 12 hours.
還元に用いる還元炉は水素フローの大気圧で稼働している。 また 還元処理に使用した水素は、 還元炉の試料チャンバ一を出た後、 ト ーチを用いて燃焼するので、 爆発などの危険はなく安全性が高い。 以上の本実施例によれば、 ガラスプリ フォームを加熱延伸する際 に生じる破損や破壊をコス ト安に防止し得る偏光ガラスを提供し得 ることとなる。 以下、 本実施例の効果を確認した実験例について説明する。 The reduction furnace used for the reduction operates at the atmospheric pressure of the hydrogen flow. The hydrogen used in the reduction treatment is burned using a torch after exiting the sample chamber of the reduction furnace, so there is no danger of explosion and high safety. According to the present embodiment described above, it is possible to provide a polarizing glass capable of preventing breakage and destruction occurring when a glass preform is heated and stretched at low cost. Hereinafter, an experimental example in which the effect of the present embodiment has been confirmed will be described.
実験例 1  Experimental example 1
母材ガラスとして S i 02 : 5 6. 3 wt %, B 203 : 1 8. 1 w t % , A 1 a 03 : 6. 2 w t % 3 K 20 : 5. 7 w t % , L i 2 0 : 1 . 8 w t % , N a a 0 : 5. 2 w t % , Z r 02 : 5. 0 w t % , T i 0 a : 2. 0 w t % , C u 0 : 0. 0 1 w t % , A g : 0. 2 4 w t % , C 1 : 0. 1 4 w t % , B r : 0. 1 4 w t %を 組成とするガラスを溶解した。 ガラスの転移点温度は約 5 2 0 °C、 軟化点温度は約 6 9 0 °Cであった。 そのガラスから 7 0 X 5 0 0 X 6 mm (幅 x長さ x厚さ) の平板状のガラスを切出した。 S i 0 2 as the base material glass: 5 6. 3 wt%, B 2 0 3: 1 8. 1 wt%, A 1 a 03: 6. 2 wt% 3 K 20: 5. 7 wt%, L i 2 0:. 1 8 wt% , N aa 0: 5. 2 wt%, Z r 0 2: 5. 0 wt%, T i 0 a: 2. 0 wt%, C u 0: 0. 0 1 wt %, Ag: 0.24 wt%, C1: 0.14 wt%, Br: 0.14 wt%. The glass transition point temperature was about 520 ° C and the softening point temperature was about 690 ° C. A flat glass of 70 × 500 × 6 mm (width × length × thickness) was cut out from the glass.
このガラスを載置する容器の材料として、 1 0 0 x 6 0 0 x 1 0 mm (幅 X長さ X厚さ) の石英ガラス板を用意した。 この石英ガラ ス板に約 7 5 x 5 1 0 x 4mmの鍋底状の凹形状を作り、 酸水素バ ナ一を用いて凹形状部分をファイアポリ ッシュしてガラスと接する 面を平坦かつ角部を円弧状にして石英ガラス容器とした。  As a material for the container on which the glass was placed, a quartz glass plate having a size of 100 × 600 × 10 mm (width × length × thickness) was prepared. A pot bottom shape of approximately 75 x 5 x 10 x 4 mm was formed on this quartz glass plate, and the concave portion was fire-polished using an oxyhydrogen burner to make the surface in contact with the glass flat and angular. Was made into an arc shape to obtain a quartz glass container.
この容器を、 有機溶剤を用いて十分洗浄して、 凹形状部分に付着 しているゴミなどの異物を落とした。 そして容器に 7 0 X 5 0 0 X This container was sufficiently washed with an organic solvent to remove foreign substances such as dust attached to the concave portion. And in the container 7 0 X 5 0 0 X
6 mmの平板状ガラスを入れた。 この時、 平板状ガラスは透明であ り、 ノヽロゲン化銀粒子は析出していなかった。 6 mm flat glass was placed. At this time, the tabular glass was transparent, and silver nodogen particles were not precipitated.
容器を加熱処理炉に入れて、 室温から 1 0 0 °C/hの昇温速度で Put the container in a heat treatment furnace and raise the temperature from room temperature to 100 ° C / h.
7 4 0 °Cまで温度を上げて、 7 4 0 °Cで一定時間保持した。 その後 、 室温まで徐冷を含めてゆっ く り降温した。 容器の温度が室温まで 下がったところで、 容器からガラスを取り出した。 ガラスは全体的 に丸みを帯びており、 約 6 9 x 4 9 9 X 5 . 5 mmであった。 また 、 ガラス表面にはキズゃ容器が原因と見られる模様やうねりはなく 、 光沢を放っていた。 さらにガラスは均一にかなり 白濁しており、 明らかにハロゲン化銀粒子が析出していた。 The temperature was raised to 74 ° C. and kept at 74 ° C. for a certain time. Thereafter, the temperature was slowly lowered to room temperature including slow cooling. When the temperature of the container dropped to room temperature, the glass was removed from the container. The glass was generally rounded, approximately 69 x 49 x 5.5 mm. Also, the glass surface has no scratches or patterns that can be seen due to undulations , She was shiny. In addition, the glass was uniformly fairly turbid, and silver halide grains had clearly precipitated.
得られたガラスをガラスプリフォームとして、 延伸加工した。 加 熱炉 (延伸炉) の温度をガラスの粘度が約 1 X 1 08ボイズになる 温度にして、 2 5 0 K g/c m2〜3 5 0 K g/ c m2の応力を加 えて引き伸ばした。 延伸中にガラスプリ フォームの破損や破壊は全 く発生せず、 幅約 1 4mm、 厚さ約 1 . 3 mmのガラスシートを得 た。 そして、 このガラスシートを、 水素ガスを用いて還元処理した ところ、 5 0 d B以上の消光比であり、 ハロゲン化銀粒子の析出量 が十分であったことが確認できた。 The obtained glass was drawn as a glass preform. The temperature of the pressurized hot furnace (drawing furnace) to a temperature at which the viscosity of the glass is approximately 1 X 1 0 8 Boise, 2 5 0 K g / cm 2 ~3 5 0 K a g / cm 2 stress pressurized forte stretching Was. No breakage or breakage of the glass preform occurred during the stretching, and a glass sheet having a width of about 14 mm and a thickness of about 1.3 mm was obtained. Then, when this glass sheet was subjected to a reduction treatment using hydrogen gas, the extinction ratio was 50 dB or more, and it was confirmed that the precipitation amount of silver halide particles was sufficient.
実験例 2  Experiment 2
実験例 1で作製したガラスから、 実験例 1 と同じ大きさの平板状 ガラスを切出した。 容器も実験例 1で用いた石英ガラス容器を使用 した。  From the glass produced in Experimental Example 1, a flat glass having the same size as that of Experimental Example 1 was cut out. The quartz glass container used in Experimental Example 1 was used as the container.
容器に透明な平板状ガラスを入れて、 加熱処理炉に容器と一緒に 入れた。 室温から 2 0 0 °CZhの昇温速度で 6 0 0 ^まで温度を上 げて、 6 0 0 °Cで一定時間保持し、 ハロゲン化銀粒子の結晶核を生 成と粒成長を行った。 次に、 2 0 0 °C/hの昇温速度で 7 4 0 °Cま で温度を上げて、 7 4 0 °Cで一定時間保持した。 その後、 室温まで 徐冷を含めてゆっ く り降温した。  Transparent flat glass was placed in a container and placed in a heat treatment furnace together with the container. The temperature was raised from room temperature to 600 ° C at a heating rate of 200 ° C Zh, maintained at 600 ° C for a certain period of time, and the crystal nuclei of silver halide grains were generated and grown. . Next, the temperature was increased to 720 ° C. at a heating rate of 200 ° C./h, and the temperature was maintained at 74 ° C. for a certain time. After that, the temperature was slowly lowered to room temperature including slow cooling.
容器から取り出したガラスは全体的に丸みを帯びて光沢を持って おり、 ガラス表面には角部やキズゃ容器が原因と見られる模様やう ねりはなかった。 大きさは、 約 6 9 x 4 9 9 x 5. 5 mmであった 。 また、 ガラス表面にはさらにガラスは均一にかなり白濁しており 、 明らかにハロゲン化銀粒子が析出していた。 得られたガラスをガラスプリフォームとして、 加熱炉 (延伸炉) の温度をガラスの粘度が約 1 X 1 0 8ボイズになる温度にして、 2 5 0 K g/ c m 2〜 3 5 O K g/ c m 2の応力を加えて引き伸ばし た。 延伸中にガラスプリフォームの破損や破壊は全く発生せず、 幅 約 1 4 mm、 厚さ約 1 . 3 mmのガラスシートを得た。 そして、 こ のガラスシートを、 水素ガスを用いて還元処理したところ、 5 0 d B以上の消光比を得ることができた。 The glass removed from the container was generally rounded and glossy, and there were no corners or scratches on the glass surface or any pattern or swelling that could be attributed to the container. The size was about 69 x 49 x 5.5 mm. Further, the glass was evenly clouded uniformly on the glass surface, and silver halide particles were clearly precipitated. The obtained glass as a glass preform, the temperature of the heating furnace (drawing furnace) to a temperature at which the viscosity of the glass is approximately 1 X 1 0 8 Boise, 2 5 0 K g / cm 2 ~ 3 5 OK g / It was stretched by applying a stress of cm 2 . No breakage or breakage of the glass preform occurred during stretching, and a glass sheet having a width of about 14 mm and a thickness of about 1.3 mm was obtained. When this glass sheet was subjected to a reduction treatment using hydrogen gas, an extinction ratio of 50 dB or more could be obtained.
実験例 3  Experiment 3
実験例 1で作製したガラスから、 7 0 X 5 0 0 x 5 O mm (幅 x 長さ X厚さ) のガラスブロックを切出した'。 このガラスブロックを 、 7 5 x 5 3 0 x 5 O mm (幅 X長さ X厚さ) のステンレス製容器 に入れて、 熱処理炉に入れた。 そして、 6 ◦ 0 °Cで一定時間熱処理 した。 熱処理後のガラスブロックはやや白濁していたが、 赤い異物 や赤い着色は見られず、 金属銀は析出していなかつたので、 良品と 判断できた。  A 70 × 500 × 5 O mm (width × length × thickness) glass block was cut out of the glass produced in Experimental Example 1. The glass block was placed in a 75 × 530 × 5 Omm (width × length × thickness) stainless steel container and placed in a heat treatment furnace. Then, heat treatment was performed at 6 ° C. for a certain time. Although the glass block after the heat treatment was slightly cloudy, no red foreign matter or red coloring was observed, and no metallic silver was precipitated, so it was judged to be a good product.
次に、 熱処理後のガラスブロックから、 6 5 x 4 8 0 x 6 mm ( 幅 X長さ X厚さ) の平板状のガラスを切出した。 この平板状ガラス は均一に薄く 白濁していた。 そして、 実験例 1で用いた容器に入れ て、 加熱処理炉に入れた。 2 0 0 °C/hの昇温速度で 7 4 0 °Cまで 温度を上げて、 7 4 0 °Cで一定時間保持した。 徐冷後、 容器から取 り出したガラスは均一にかなり 白濁しており、 ハロゲン化銀粒子が 粒成長していた。 また、 ガラスは全体的に丸みを帯びて光沢を持つ ており、 実験例 1や 2 と同様に角部やキズゃ容器が原因と見られる 模様やうねりはなかった。 大きさは、 約 6 4 x 4 7 8 x 5 . 5 mm であった。 得られたガラスをガラスプリ フォームと して、 加熱炉 (延伸炉) の温度をガラスの粘度が約 1 X I 08ボイズになる温度に して、 2 5 0 K g/c m2〜 3 5 O K gZ c m2の応力を加えて引き伸ばし た。 延伸中にガラスプリ フォームの破損や破壊は全く発生せず、 幅 約 1 3 mm、 厚さ約 1 . 3 mmのガラスシー ト を得た。 そして、 こ のガラスシー ト を、 水素ガスを用いて還元処理したところ、 5 0 d B以上の消光比を示した。 Next, a flat glass of 65 × 480 × 6 mm (width × length × thickness) was cut out from the heat-treated glass block. This flat glass was uniformly thin and cloudy. Then, they were placed in the container used in Experimental Example 1 and placed in a heat treatment furnace. The temperature was increased to 720 ° C. at a heating rate of 200 ° C./h and kept at 740 ° C. for a certain time. After slow cooling, the glass taken out of the container was uniformly cloudy, and silver halide grains had grown. The glass was rounded and glossy as a whole, and there were no patterns or undulations attributable to corners or scratched containers as in Experimental Examples 1 and 2. The size was about 64 x 478 x 5.5 mm. The obtained glass as a Garasupuri form, the temperature of the heating furnace (drawing furnace) to a temperature at which the viscosity of the glass is about 1 XI 0 8 Boise, 2 5 0 K g / cm 2 ~ 3 5 OK gZ It was stretched by applying a stress of cm 2 . No breakage or breakage of the glass preform occurred during stretching, and a glass sheet about 13 mm in width and about 1.3 mm in thickness was obtained. When this glass sheet was subjected to a reduction treatment using hydrogen gas, an extinction ratio of 50 dB or more was exhibited.
実験例 4  Experimental example 4
母材ガラスと して S i 02 : 5 6. 6 wt , B 203 : 1 8. 1 w t % , A 1203 : 6. l w t %, K 20 : 5. 6 w t % , L i 2 0 : 1 . 8 w t %, N a 20 : 4. l w t %, Z r 02 : 5. 0 w t % , T i 02 : 1 . 8 w t % , C u 0 : 0. 0 0 6 w t % , A g : 0. 2 2 w t % , C 1 : 0. 2 4wt %, B r : 0. 2 0 w t % を組成とするガラスを溶解した。 ガラスの転移点温度は約 5 0 0 °C 、 軟化点温度は約 6 7 0 °Cであった。 Mother glass and to S i 0 2: 5 6. 6 wt, B 2 0 3: 1 8. 1 wt%, A 1203: 6. lwt%, K 20: 5. 6 wt%, L i 2 0 :. 1 8 wt%, N a 2 0: 4. lwt%, Z r 0 2: 5. 0 wt%, T i 02:. 1 8 wt%, C u 0: 0. 0 0 6 wt%, Glass having a composition of Ag: 0.22 wt%, C 1: 0.24 wt%, and Br: 0.220 wt% was melted. The glass had a transition point temperature of about 500 ° C and a softening point temperature of about 670 ° C.
このガラスから 7 0 x 5 0 0 x 5 O mm (幅 x長さ x厚さ) のガ ラスプ口 ヅクを切出した。 このガラスブロ ックを、 実験例 4のステ ンレス製容器に入れて、 熱処理炉に入れた。 そ して、 6 0 0。Cで一 定時間熱処理した。 熱処理後のガラスプロ ックは赤く着色していた 。 この着色は銀が金属に還元され、 銀コロイ ドが析出した結果生じ たものであることから不良品と判断し、 後工程にガラスを回すこと による歩留低下を防ぐ ことができた。  A glass plug of 70 x 500 x 5 mm (width x length x thickness) was cut out from the glass. This glass block was placed in the stainless steel container of Experimental Example 4 and placed in a heat treatment furnace. And 600. C was heat treated for a certain period of time. The glass block after the heat treatment was colored red. This coloring was the result of the reduction of silver to metal and the precipitation of silver colloid, so it was judged to be defective, and the reduction in yield due to turning the glass in the subsequent process could be prevented.
実験例 5  Experimental example 5
実験例 1で作製したガラスから、 実験例 1 と同じ大きさの平板状 ガラスを切出した。 実験例 3で示したステンレス容器にスズを入れ て、 電気炉を用いて.約 4 0 0 °Cで加熱して溶融した後、 再び固化さ せた。 その時スズの厚さ (高さ) は約 3 5 mmであ り、 表面は平滑 であった。 なお、 スズの融点は約 2 3 2 °Cで、 比重は約 7. 3であ る。 From the glass produced in Experimental Example 1, a flat glass having the same size as that of Experimental Example 1 was cut out. Put tin in the stainless steel container shown in Experimental Example 3. Then, the mixture was heated and melted at about 400 ° C. using an electric furnace, and then solidified again. At that time, the thickness (height) of the tin was about 35 mm, and the surface was smooth. The melting point of tin is about 23 ° C and the specific gravity is about 7.3.
固化したスズの上に平板状ガラスを置いて加熱処理炉に入れ、 室 温から 1 0 0 °C/hの昇温速度で 7 4 0 °Cまで温度を上げて、 7 4 0 °Cで一定時間保持した。 その後、 室温まで徐冷した。  Place the flat glass on the solidified tin, place it in a heat treatment furnace, raise the temperature from room temperature to 700 ° C at a heating rate of 100 ° C / h, Hold for a certain period of time. Then, it was gradually cooled to room temperature.
取り出したガラスは上部が丸く、 下部が平坦であった。 そして、 上部と下部の境は丸くなっていた。 また、 スズに触れていた面は黄 色であつたが、 キズゃある種の模様やうねりは見られなかった。 そ れ以外の面は光沢があり きれいであった。 大きさは約 7 2 5 0 2 X 5 m mであった。 さらにガラスは均一にかなり 白濁しており、 明 らかにハロゲン化銀粒子が析出していた。  The removed glass was round at the top and flat at the bottom. And the upper and lower boundaries were rounded. The surface that was in contact with tin was yellow, but there were no scratches or any undulations. The other surfaces were glossy and beautiful. The size was about 7250 × 2 mm. Further, the glass was uniformly cloudy, and silver halide grains were clearly precipitated.
ここで、 別途、 銀が還元された部分の厚さを調べたところ、 それ は 1 mm以下であった。  Here, when the thickness of the portion where silver was reduced was examined separately, it was less than 1 mm.
得られたガラスをガラスプリ フォームとして、 加熱炉 (延伸炉) の温度をガラスの粘度が約 1 X 1 08ボイズになる温度にして、 2 5 0 K g/ c m2〜 3 5 O K g/ c m2の応力を加えて引き伸ばし た。 延伸中にガラスプリ フオームの破損や破壊は全く発生せず、 幅 約 1 5 mm、 厚さ約 0. 9 m mのガラスシー トを得た。 The obtained glass as Garasupuri foam, the temperature of the heating furnace (drawing furnace) to a temperature at which the viscosity of the glass is approximately 1 X 1 0 8 Boise, 2 5 0 K g / cm 2 ~ 3 5 OK g / cm It was stretched by applying a stress of 2 . There was no breakage or breakage of the glass preform during stretching, and a glass sheet approximately 15 mm wide and 0.9 mm thick was obtained.
そして、 このガラスシートを、 水素ガスを用いて還元処理したと ころ、 5 O d B以上の消光比を示した (また、 厚さ 0. 9 mmのガ ラスシートの両面を研磨して、 厚さ 0. 2 mmにしたところ黄色く 着色した部分は完全に除去できていた。 ) 。  When this glass sheet was subjected to a reduction treatment using hydrogen gas, it showed an extinction ratio of 5 OdB or more. (In addition, both sides of a 0.9 mm thick glass sheet were polished, When the thickness was reduced to 0.2 mm, the yellow colored portion was completely removed.)
以上の実験例から、 延伸工程においてガラスプリフォームの破損 や破壊を引き起こす原因となるガラス表面のキズゃ荒れを含まない ガラスプリ フォームを提供する と共に、 該ガラスプリ フォームにハ 口ゲン化金属粒子の析出も同時に行う こ とができることが確認でき 、 更に、 光学特性も良好であることも確認できた。 From the above experimental examples, it was found that the glass preform was damaged during the stretching process. It is possible to provide a glass preform free from scratches and roughening of the glass surface, which can cause cracks and breakage, and that metal halide particles can be simultaneously precipitated on the glass preform. Was also good.

Claims

請 求 の 範 囲 The scope of the claims
1 . 所定粒径のハロゲン化金属粒子が分散せしめられたガラスプ リフオームを所定温度に加熱延伸して延伸されたハロゲン化金属粒 子を有するガラスシートを形成し、 その後、 該ハロゲン化金属粒子 を還元して金属とすることによ り所定の偏光特性を有する偏光ガラ スの製造方法であって、 ガラスプリフォームの加熱延伸前に、 該ガ ラスプリフオームを所定温度で加熱処理してハロゲン化金属粒子を 析出させると共に、 該ガラスプリフォームを熱変形によって表面の 平滑化及び角部の円弧化を行うことを特徴とする偏光ガラスの製造 方法。 1. A glass preform having metal halide particles having a predetermined particle size dispersed therein is heated and drawn to a predetermined temperature to form a glass sheet having drawn metal halide particles, and then the metal halide particles are reduced. A polarizing glass having predetermined polarization characteristics by converting the glass preform into a metal by heating the glass preform at a predetermined temperature before heating and stretching the glass preform. And producing the glass preform by thermal deformation to smooth the surface and to make the corners arc-shaped.
2 . 請求項 1記載の偏光ガラスの製造方法において、 ガラスプリフ オームを所定温度で加熱処理する前に、 予め該ガラスプリフォーム を予備加熱することを特徴とする偏光ガラスの製造方法。  2. The method for producing a polarizing glass according to claim 1, wherein the glass preform is preheated before the glass preform is heated at a predetermined temperature.
3 . 請求項 1記載の偏光ガラスの製造方法において、 加熱処理の温 度が、 ガラスの軟化点温度よ り高い温度であることを特徴とする偏 光ガラスの製造方法。  3. The method for producing polarizing glass according to claim 1, wherein the temperature of the heat treatment is higher than the softening point temperature of the glass.
4 . 請求項 2記載の偏光ガラスの製造方法において、 加熱処理の温 度が、 ガラスの軟化点温度より高い温度であることを特徴とする偏 光ガラスの製造方法。  4. The method for producing polarizing glass according to claim 2, wherein the temperature of the heat treatment is higher than the softening point of the glass.
5 . 請求項 3記載の偏光ガラスの製造方法において、 加熱処理の際 、 約 8 0 0 °C以上の耐熱温度を有する容器にガラスプリフォームを 載置することを特徴とする偏光ガラスの製造方法。  5. The method for producing a polarizing glass according to claim 3, wherein the glass preform is placed in a container having a heat resistance temperature of about 800 ° C. or more during the heat treatment. .
6 . 請求項 4記載の偏光ガラスの製造方法において、 加熱処理の際 、 約 8 0 0 °C以上の耐熱温度を有する容器にガラスプリフォームを 載置することを特徴とする偏光ガラスの製造方法。 6. The method for producing a polarizing glass according to claim 4, wherein, during the heat treatment, the glass preform is placed in a container having a heat resistance temperature of about 800 ° C or more. A method for producing a polarizing glass, comprising mounting the polarizing glass.
7 . 請求項 3記載の偏光ガラスの製造方法において、 加熱処理の際 、 融点が加熱処理の温度より低く且つ比重がガラスより重い金属上 にガラスプリ フォームを載置することを特徴とする偏光ガラスの製 造方法。  7. The method for producing a polarizing glass according to claim 3, wherein, during the heat treatment, the glass preform is placed on a metal whose melting point is lower than the temperature of the heat treatment and whose specific gravity is heavier than the glass. Production method.
8 . 請求項 4記載の偏光ガラスの製造方法において、 加熱処理の際 、 融点が加熱処理の温度より低く且つ比重がガラスより重い金属上 にガラスプリフォームを載置することを特徴とする偏光ガラスの製 造方法。  8. The method for producing a polarizing glass according to claim 4, wherein the glass preform is placed on a metal having a melting point lower than the temperature of the heat treatment and a specific gravity heavier than the glass during the heat treatment. Manufacturing method.
9 . 請求項 7記載の偏光ガラスの製造方法において、 金属として、 周期律表 1 2族〜 1 6族に含まれる典型金属元素の中の少なく とも 一種が採用されていることを特徴とする偏光ガラスの製造方法。 9. The method for producing a polarizing glass according to claim 7, wherein at least one of the typical metal elements included in Groups 12 to 16 of the periodic table is employed as the metal. Glass manufacturing method.
1 0 . 請求項 8記載の偏光ガラスの製造方法において、 金属として 、 周期律表 1 2族〜 1 6族に含まれる典型金属元素の中の少なく と も一種が採用されていることを特徴とする偏光ガラスの製造方法。10. The method for producing a polarizing glass according to claim 8, wherein at least one of the typical metal elements included in Groups 12 to 16 of the periodic table is employed as the metal. Method for producing polarizing glass.
1 1 . 請求項 1 〜 1 0いずれか 1項に記載の偏光ガラスの製造方法 において、 加熱延伸時のガラスプリフォームの粘度が 1 X 1 0 7ポ ィズ〜 1 X 1 0 9ボイズであることを特徴とする偏光ガラスの製造 方法。 1 1. The method of manufacturing a polarizing glass according to any one of claims 1 to 1 0, the viscosity of the glass preform at the time of heat stretching is a 1 X 1 0 7 Po I's ~ 1 X 1 0 9 Boys A method for producing a polarizing glass, comprising:
1 2 . 請求項 1 〜 1 0いずれか 1項に記載の偏光ガラスの製造方法 において、 加熱延伸後のハロゲン化金属粒子のアスペク ト比が 2 : 1以上であり、 且つ、 該ハロゲン化金属粒子が延伸方向に配向して いることを特徴とする偏光ガラスの製造方法。  12. The method for producing a polarizing glass according to any one of claims 1 to 10, wherein an aspect ratio of the metal halide particles after the heat stretching is 2: 1 or more, and the metal halide particles. Are oriented in the stretching direction.
1 3 . 請求項 1 1記載の偏光ガラスの製造方法において、 加熱延伸 後のハロゲン化金属粒子のアスペク ト比が 2 : 1以上であり、 且つ 、 該ハロゲン化金属粒子が延伸方向に配向していることを特徴とす る偏光ガラスの製造方法。 13. The method for producing a polarizing glass according to claim 11, wherein the aspect ratio of the metal halide particles after the heat stretching is 2: 1 or more, and A method for producing a polarizing glass, wherein the metal halide particles are oriented in a stretching direction.
1 4 . 請求項 1 〜 1 0いずれか 1項に記載の偏光ガラスの製造方法 において、 加熱延伸前と加熱延伸後のガラスプリフオーム幅の比が 、 5 : 1 〜 2 : 1であることを特徴とする偏光ガラスの製造方法。 14. The method for producing a polarizing glass according to any one of claims 1 to 10, wherein a ratio of a glass preform width before and after the heat stretching is 5: 1 to 2: 1. Characteristic method for producing polarizing glass.
1 5 . 請求項 1 1記載の偏光ガラスの製造方法において、 加熱延伸 前と加熱延伸後のガラスプリフォーム幅の比が、 5 : 1 〜 2 : 1で あることを特徴とする偏光ガラスの製造方法。 15. The method for producing a polarizing glass according to claim 11, wherein the ratio of the glass preform width before and after the heat stretching is 5: 1 to 2: 1. Method.
1 6 . 請求項 1 2記載の偏光ガラスの製造方法において、 加熱延伸 前と加熱延伸後のガラスプリフォーム幅の比が、 5 : 1 〜 2 : 1で あることを特徴とする偏光ガラスの製造方法。  16. The method for producing a polarizing glass according to claim 12, wherein the ratio of the glass preform width before and after the heat stretching is 5: 1 to 2: 1. Method.
1 7 . 請求項 1 3記載の偏光ガラスの製造方法において、 加熱延伸 前と加熱延伸後のガラスプリフォーム幅の比が、 5 : 1 〜 2 : 1で あることを特徴とする偏光ガラスの製造方法。  17. The method for producing a polarizing glass according to claim 13, wherein the ratio of the width of the glass preform before and after the heat stretching is 5: 1 to 2: 1. Method.
PCT/JP2004/009910 2003-07-31 2004-07-06 Method for producing polarizing glass WO2005012963A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003204767A JP2005049529A (en) 2003-07-31 2003-07-31 Method for manufacturing polarizing glass
JP2003-204767 2003-07-31

Publications (1)

Publication Number Publication Date
WO2005012963A1 true WO2005012963A1 (en) 2005-02-10

Family

ID=34113656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009910 WO2005012963A1 (en) 2003-07-31 2004-07-06 Method for producing polarizing glass

Country Status (2)

Country Link
JP (1) JP2005049529A (en)
WO (1) WO2005012963A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119794A1 (en) * 2006-04-14 2007-10-25 Hoya Candeo Optronics Corporation Cupriferous polarizing glass and optical isolator
JP4685901B2 (en) * 2007-05-29 2011-05-18 Hoya Candeo Optronics株式会社 Manufacturing method of polarizing glass
JP5371217B2 (en) * 2007-08-28 2013-12-18 日立コンシューマエレクトロニクス株式会社 Projection-type image display device
JP4659849B2 (en) * 2008-03-27 2011-03-30 株式会社有沢製作所 Polarizing glass and manufacturing method of polarizing glass
JP2021172574A (en) * 2020-04-30 2021-11-01 日本電気硝子株式会社 Method for pretreating glass plate and method for producing glass article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479819A (en) * 1982-09-29 1984-10-30 Corning Glass Works Infrared polarizing glasses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4479819A (en) * 1982-09-29 1984-10-30 Corning Glass Works Infrared polarizing glasses

Also Published As

Publication number Publication date
JP2005049529A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
TWI317027B (en) Ultra low noble metal doped polarizing glass and process
JP5209870B2 (en) Visible light polarizer made of stretched H2 treated glass and method for producing the same
JP4653121B2 (en) Broadband contrast polarizing glass
JP2006301595A (en) Manufacturing method of polarizing glass, and polarizing glass article
JP2003238174A (en) Method for manufacturing float glass
JP2000178036A (en) Crystallization of photosensitive glass
JP2006221166A (en) Polarizing glass and method for manufacturing polarizing glass
US20060107696A1 (en) Method for producing polarizing glass
WO2005012963A1 (en) Method for producing polarizing glass
JP4272174B2 (en) Manufacturing method of polarizing glass
JP2008162810A (en) Polarizing glass and method for manufacturing the same
US6536236B2 (en) Method of making a polarizing glass
JP2004086100A (en) Polarizing glass and its manufacture method
JP3705505B2 (en) Polarizing glass and manufacturing method thereof
JP2007156401A (en) Polarizing glass and manufacturing method of polarizing glass
JPH04158514A (en) Impurity diffusion to semiconductor substrate
CN116282903A (en) Anti-dazzle glass, preparation method thereof and display device
JP2731911B2 (en) Heat treatment method for flat photochromic glass sheet
JP2004161538A (en) Apparatus for manufacturing chemically strengthened glass
US20060196228A1 (en) Method for producing polarizing glass
JP3320044B2 (en) Manufacturing method of polarizing glass
JPS6272537A (en) Production of high-purity quartz glass
JPH08231241A (en) Production of polarizing glass
JP2671062B2 (en) Method for manufacturing quartz glass crucible
JP2007308349A (en) METHOD FOR HEAT-TREATING BaLiF3 CRYSTAL

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase