金型とその金型による成形体の成形方法 技術分野 Mold and molding method of molded body by the mold
本発明は、 樹脂は勿論、 燒結用粉末と樹脂パインダの混練物のよう な成形材料の成形 (特に、 厚手の成形品の成形)も可能であり、 加えて非 明 In the present invention, it is possible to form a molding material such as a mixture of a powder for sintering and a resin pinda (in particular, a thick molded article) as well as a resin, and in addition, it is not clear.
常に高い清浄度と精密度とが要求される注射器のシリンダのようなも のの成形に最適な省資源タイプの金型とその金型を用いた成形体の成 形方法に関する。 書 背景技術 The present invention relates to a resource-saving type mold suitable for forming a cylinder such as a syringe cylinder, which always requires a high degree of cleanliness and precision, and a method of forming a molded body using the mold. Background art
従来のシリンダ成形用の金型(101)は、 図 9に示すように雌型(102)の 中心部分に配設されたホッ トランナ(107)から直角にコールドランナ (108)を形成し、 シリンダ(110)の鍔部(110c)から計量樹脂(109)をキヤビ ティ(106)内に高圧充填するようにしていた。 このような方式では、 シ リンダ(110)の鍔部(110c)から計量樹脂(109)がキヤビティ(106)内に高圧 注入された時、 図 1 0に示すように鍔部(110c)のゲート(111)に近い部 分から次第に計量樹脂(109)が充填されて行く。 The mold (101) for forming a conventional cylinder forms a cold runner (108) at a right angle from a hot runner (107) disposed at the center of the female mold (102) as shown in FIG. The measuring resin (109) was high-pressure filled into the cavity (106) from the heel portion (110c) of the (110). In such a method, when the measuring resin (109) is injected at high pressure into the cavity (106) from the ridge (110c) of the cylinder (110), as shown in FIG. 10, the gate of the ridge (110c) is From the part close to (111), the measuring resin (109) is gradually filled.
この時、 図 9力、らわかるように、 シリンダ(110)の鍔部(110c)から計 量樹脂(109)をキヤビティ(106)内に注入する方式では、 コールドランナ (108)の発生が避け得ず、 毎回コールドランナ(108)部分の樹脂(109)が 廃棄されることになり、樹脂(109)の無駄が大きいという問題がある。(こ の点は後述する、 金属粉末の成形でも同じ事である。 ) At this time, as shown in Fig. 9, in the method of injecting the measuring resin (109) into the cavity (106) from the flange (110c) of the cylinder (110), the generation of the cold runner (108) is avoided. In this case, the resin (109) of the cold runner (108) is discarded each time, and there is a problem that the waste of the resin (109) is large. (This point is the same for the molding of metal powder, which will be described later.)
加えて、 成形品であるシリンダ(110)はコールドランナ(108)と共に金 型(101)から取り出され、 後工程でゲート(111)部分からコールドランナ (108)が切除されることになるのであるが、 対象製品がシリンダ(110)の ように異物の混入を特に嫌うような場合、 その切除工程において発生 した成形材料パーティクルがシリンダ(110)内に付着すると不良品とし
て廃棄せざるを得ず、 製品歩留まりも悪いという問題点がある。 In addition, the molded product cylinder (110) is removed from the mold (101) together with the cold runner (108), and the cold runner (108) will be cut off from the gate (111) in a later step. However, if the target product does not particularly like the inclusion of foreign matter like the cylinder (110), the molding material particles generated in the cutting process will be regarded as defective if they adhere to the inside of the cylinder (110). And the product yield is also bad.
成形 がシリンダ(110)という超清浄度が要求される製品の場合、 前 記切除;工程に人手を介在させることができず、 切除工程にも自動機を 投 しなければならずコス ト高をもたらすという問題もある。 以上は、 檄脂を成形材料 (109)とした場合を中心にその問題点を説明したが、 燒 結用粉末と榭脂パインダの混練物のような成形材料(109)を用いる場合 には別の問題点がある。 In the case of products that require supercleanliness, such as a cylinder (110), it is not possible to manually intervene in the process described above; There is also the problem of bringing about. The above explained the problem centering on the case of using the resin as the molding material (109), but the case of using the molding material (109) such as the mixture of the powder for sintering and the resin pineda is different. There is a problem with
すなわち、燒結用粉末と榭脂パインダの混練物のような成形材料 (109) を前述のコードランナ方式で射出充填を行った場合、 充填後、 ゲート (111)を介してキヤビティ(106)内の成形材料(109)に保圧 「キヤビティ (106)内の成形材料(109)は冷却に伴ってその体積を減じる。 グート(111) を介してこの減少した体積分を成形材料供給側から圧力を掛けて供給 し、 これによつてキヤビティ (106)内の成形体のヒケを防止するのが保 圧である。」 をかけておかなければならないが、 細いゲート(111)は冷た い金型(101)内に設けられているため、 射出充填後の成形材料 (109)が移 動しない状態ではこの部分は冷却固化しやすくてそれ以降キヤビティ (106)内の成形材料(109)に対して保圧がかからなくなる。 その結果、 2 m m程度の薄肉の場合は兎も角、 それ以上の厚肉になると成形体にヒ ケを生じることになり、 不良の原因になるという問題があった。 換言 すれば、 燒結用粉末と樹脂バインダの混練物のような成形材料(109)を 使用する場合、 従来のコールドランナ方式では 2 m m程度以上の肉厚 を有するものの成形は不可能であった。 That is, when a molding material (109) such as a mixture of a powder for sintering and a kneaded product of a resinous pinda is injected and filled by the above-described cord runner method, after filling, the inside of the cavity (106) is filled via the gate (111). Holding pressure to molding material (109) “The molding material (109) in the cavity (106) reduces its volume as it cools. This reduced volume is pressured from the molding material supply side via the soot (111). It is necessary to supply it, and this is the pressure to prevent shrinkage of the molding in the cavity (106). ”The thin gate (111) is a cold mold ( Since it is provided in 101), it is easy to cool and solidify this part in a state in which the molding material (109) after injection filling does not move, and thereafter the molding material (109) in the cavity (106) is retained. It won't come under pressure. As a result, in the case of a thin wall of about 2 mm, there is a problem that if the thickness is larger than that, a shrinkage occurs in the molded product, which causes a defect. In other words, in the case of using a molding material (109) such as a mixture of a powder for sintering and a resin binder, it is impossible to mold a material having a thickness of about 2 mm or more by the conventional cold runner method.
そこでホッ トランナ方式の採用が考えられるがホッ トランナ方式の 場合(図示せず)、 成形品のグート部分近傍が 2 m m以下という薄肉の場 合、 保圧工程終了後、 グートカツ ト時にキヤビティ内の半固化状態の 成形体ゲートカツ トビンとの間の余剰成形材料の逃げ場がなくなりゲ ートカツ トができないという問題が発生した(米国特許第 6,2 8 7 6 , 5 4 B 1 )。 Therefore, it is conceivable to use the hot runner method, but in the case of the hot runner method (not shown), if the area near the gout portion of the molded product is 2 mm or less, half of the cavity in the cavity at the gut cut after the holding process is completed. There is a problem that there is no room for excess molding material to escape from the solidified molding gate cut bin and gate cutting can not be performed (US Pat. Nos. 6, 2 8 7 6 and 5 4 B 1).
本発明はこのようなコールドランナを用いる従来の金型の問題点に
鑑みてなされたもので、 まず第 1にコールドランナをなくすことで材 料の節約や工程の簡素化が可能であり、 第 2に成形材料パーティクル のような異物の発生もなく射出成形だけで最終製品の形成が可能であ り、 第 3に成形材料が燒結用粉末と樹脂バインダの混練物のようなも のであっても、 薄肉のものにおけるゲートカツ トは勿論、 2 m m以上 の厚肉の場合でも完全な成形品を得る事ができる金型および該金型を 使用した成形体の成形方法の開発をその解決課題とするものである。 発明の開示 The present invention addresses the problems of conventional molds using such cold runners. In the first place, it is possible to save materials and simplify the process by eliminating cold runners, and secondly, it is possible to finish the injection molding without any foreign matter such as particles of molding material. Even if it is possible to form a product, and thirdly, if the molding material is a mixture of a powder for sintering and a resin binder, it goes without saying that the gate cut in a thin-walled product is 2 mm or more. However, the problem is to develop a mold that can obtain a complete molded product and a molding method of the molded product using the mold. Disclosure of the invention
「請求項 1」 に記載の金型(1)は、 本発明の基本的思想で 「内部に所 定形状のキヤビティ(6)と、 ゲート(8)を介して前記キヤビティ(6)に連通 し、 キヤビティ(6)に流動状の計量された成形材料 (9)を供給する成形材 料注入路 (12)と、 前記成形材料注入路(12)内にてゲート(8)に揷脱可能に 配設されているパルプピン(7)とを備えた金型(1)において、 According to the basic idea of the present invention, the mold (1) according to "Claim 1" has "a cavity (6) having a predetermined shape inside and a cavity (6) communicating with the cavity (6) via a gate (8)". A molding material injection passage (12) for supplying a fluid-form-measured molding material (9) to the cavity (6); and a gate (8) capable of being released into the molding material injection passage (12) In a mold (1) provided with pulp pins (7) arranged,
バルブピン (7)のキヤビティ側端面(11)に開口し、 成形材料注入路(12) とキヤビティ(6)とを連通する連通孔(13)がバルブピン(7)の先端部に穿 設されている」 事を特徴とする。 A communication hole (13), which opens at the cavity side end face (11) of the valve pin (7) and communicates the molding material injection path (12) and the cavity (6), is drilled at the tip of the valve pin (7). "It is characterized by things.
このようにすれば、 保圧後、 バルブピン(7)を作動させてゲートカツ トを行った時、 ゲートカッ トの最終場面において、 ゲート(8)内にパル ブピン(7)の先端部が嵌入し、 前記ゲート(8)部分においてバルブピン (7) のキヤビティ側端面(11)とコア(5)の先端との間に挟まれ逃げ場のなく なった成形材料 (9a)「図 5の場合」、あるいはゲート(8)内にバルブピン(7) の先端部が嵌入した時、 ゲート(8)部分に存在し、 バルブピン(7)によつ てキヤビティ(6)内に過剰に押し込まれる成形材料 (9 a) 「図 7の場合」 が前記連通孔(13)を通って成形材料注入路(12)に逃げることができ、 ゲ 一ト(8)部分における成形体(10)の肉厚が 2 m mというような薄肉部材 でも確実にゲートカッ トができるようになる。 その結果、 ランナを設 けることなく直接成形材料注入路(12)とキヤビティ(6)とを接続する事 が出来るようになる。
前記金型(1)を使用した成形方法についていえば、 In this way, after holding pressure, when the valve pin (7) is operated and gate cutting is performed, the tip of the bulb pin (7) is inserted into the gate (8) in the final scene of the gate cut. The molding material which is pinched between the cavity end face (11) of the valve pin (7) and the tip of the core (5) in the gate (8) part and there is no escape place (9a) "in case of Fig. 5" Molded material (9 a) which exists in the gate (8) when the tip of the valve pin (7) is fitted inside (8), and is pushed excessively into the cavity (6) by the valve pin (7) (9 a) The case of FIG. 7 can escape to the molding material injection path (12) through the communication hole (13), and the thickness of the molding (10) at the gate (8) portion is 2 mm and so on. Even thin-walled members can be gate-cut reliably. As a result, it becomes possible to connect the molding material injection path (12) and the cavity (6) directly without setting a runner. As for the molding method using the mold (1),
(a) ゲート(8)を介して成形材料供給側( 12)から計量された成形材料(9) をキヤビティ(6)に射出充填し、 (a) Injection filling the molding material (9) measured from the molding material supply side (12) through the gate (8) into the cavity (6),
(b)充填後、 所定の圧力をキヤビティ内の充填材料に印加する保圧を行 い、 (b) After filling, hold pressure to apply a predetermined pressure to the filling material in the cavity;
(c)前記保圧工程終了後、 ゲートカッ トした時に、 グート(8)部分に溜ま つた余剰成形材料 (9a)を成形材料供給側(12)に戻し (c) Return the excess molding material (9a) accumulated in the gut (8) portion to the molding material supply side (12) when the gate is cut after completion of the pressure holding step.
(d)続いて冷却してキヤビティ(6)内の成形材料 (9)を固化して成形体( 10) とし、 然る後、 前記成形体 (10)を取り出す事を特徴とする。 (d) Subsequently, the molded material (9) in the cavity (6) is cooled to solidify it into a molded body (10), and then the molded body (10) is taken out.
このように 「保圧後、 前記ゲート(8)をゲートカッ トした時に、 グー ト(8)部分に溜まつた余剰成形材料 (9a)を成形材料供給側(12)に戻す」 の で、 前述のように、 そして特に、 成形材料 (9)が、 燒結用粉末と樹脂バ ィンダの混練物のような特殊なものの場合でもゲートカツ トを確実に 行うことが出来るようになる。 図面の簡単な説明 As described above, “after holding pressure, when the gate (8) is gate-cut, the excess molding material (9a) accumulated in the gout (8) portion is returned to the molding material supply side (12). As described above, and in particular, even when the molding material (9) is a special one such as a mixture of a powder for sintering and a resin binder, gate cutting can be reliably performed. Brief description of the drawings
図 1は、 本発明の第 1実施例の金型の型締状態を示す断面図であり、 図 2は、 図 1において、 パルプピンによるゲートカッ トが行われた状 態の断面図であり、 図 3は本発明の第 1実施例の金型の型開状態を示 す断面図であり、 図 4は本発明の第 1実施例の金型の製品ェジユタ ト 状態を示す断面図であり、 図 5は本発明の第 1実施例の金型のグート 力ッ ト状態の拡大断面図であり、 図 6は本発明の第 1実施例の金型の ゲートオープン状態の拡大断面図であり、 図 7は本発明の第 2実施例 の金型のグートカツ ト状態の拡大断面図であり、 図 8は本発明の第 2 実施例の金型のゲートオープン状態の拡大断面図であり、 図 9は従来 例の断面図であり、 図 1 0は従来例の計量成形材料充填状態の拡大断 面図である。 発明を実施するための最良の形態
以下、 本発明を図示実施例に従って詳述する。 本発明は全てのラン ナレス成形 『コアを使用する場合及びコアを使用しない場合』 に適用 することができるのであるが、 まず第 1 実施例として柱状コア(5)と円 筒状型窩 (4)とを用いて円筒状成形品(10)を製造する場合 『この場合は コアを使用する場合で、 例えば肉厚 2 m m以下の薄肉円筒状の成形体 (10)の代表例(図 1〜 6 )と してシリンダ(10')を採用した。』 を説明し、 第 2実施例として一般的な形状『この場合はコアなし場合で、 グート(8) 近傍の肉厚が 2 m m以下の薄肉リング状成形体(10") 「勿論、 2 m m以 上でもよい」 を採用した。』 場合を説明する。 また、 上 3記説明は通常の 榭脂を成形材料として使用する場合を中心に説明するが、 その他の材 料として燒結用粉末と樹脂バインダの混練物も使用することが出来る ものであり、 このような材料として以下のものが挙げられる。 なお、 第 2実施例(図 7、 8 )の説明に付いて、 説明の煩雑さを回避するため同 じ用途の部材は同じ番号で示し、 原則としてその説明を省略し、 相違 点を中心に説明することにする。 なお、 前記のように成形体 (10)の下位 概念であるシリンダを(10')、 リング状成形体を(10")で表す。 FIG. 1 is a cross-sectional view showing a mold clamping state of a mold according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of a state in which gate cutting with pulp pins is performed in FIG. 3 is a cross-sectional view showing the mold opening state of the mold of the first embodiment of the present invention, and FIG. 4 is a cross-sectional view showing the product adjustment state of the mold of the first embodiment of the present invention. 5 is an enlarged cross-sectional view of a mold state of a mold according to the first embodiment of the present invention, and FIG. 6 is an enlarged cross-sectional view of a gate open state of the mold according to the first embodiment of the present invention. 7 is an enlarged cross-sectional view of the mold of the second embodiment of the present invention, FIG. 8 is an enlarged cross-sectional view of the gate of the second embodiment of the present invention, and FIG. FIG. 10 is a cross-sectional view of the prior art example, and FIG. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail according to the illustrated embodiments. The present invention can be applied to all runnerless moldings “when using a core and when not using a core”. First, as the first embodiment, a columnar core (5) and a cylindrical fossa (4 ) In the case of using a core in this case, for example, a representative example of a thin-walled cylindrical molded body (10) having a wall thickness of 2 mm or less (FIGS. The cylinder (10 ') was adopted as 6). General shape as the second embodiment "Thin ring shaped body (10") with a wall thickness of 2 mm or less in the case of no core in this case, in the case of no core in this case, "2 of course, 2 mm The above is also acceptable. Explain the case. Also, although the above three explanations will be mainly focused on the case where normal resin is used as a molding material, it is also possible to use a mixture of a powder for sintering and a resin binder as another material. Examples of such materials include the following. In the description of the second embodiment (FIGS. 7 and 8), members of the same application are indicated by the same numbers to avoid complicated explanation, and in principle, the explanation thereof is omitted, focusing on the differences. I will explain. As described above, the cylinder which is the lower concept of the compact (10) is represented by (10 '), and the ring-shaped compact is represented by (10 ").
この成形材料 (9)は、 焼結用粉末と、 溶剤可溶性樹脂と溶剤不溶性樹 脂との均一混合物で構成される 2種類の樹脂を主とするバインダ樹脂 とで構成されているものである。 焼結用粉末としては、 焼結される主 材となる金属材料、 酸化物或いは窒化物又は石英、 ガラスと、 これら を結合するパインダとで構成される。 The molding material (9) is composed of a powder for sintering and a binder resin mainly composed of two kinds of resins composed of a uniform mixture of a solvent-soluble resin and a solvent-insoluble resin. The powder for sintering is composed of a metal material as a main material to be sintered, an oxide, a nitride, quartz, a glass, and a pinder for bonding these.
前記焼結が可能な焼結主材としては、 金属材料(ステンレス粉末、 N i、 W、 M o、 F e ), 炭化物(W C、 T i C、 炭化ク口ム)、 窒化物(窒 ィ匕ボロン、 窒化珪素、 窒化アルミナ)、 酸化物 (石英、 アルミナ、 ガラス、 ジルコ二ァ)、 などがその例として挙げられ、 これら焼結主材を結合す るパインダとして C o、 N iが挙げられる。 酸化物(石英、 アルミナ、 ガラス、 ジルコニァ)の場合はパインダなしで焼結してもよい。 これら の焼結物として超硬部材、 サーメッ ト部材、 セラミ ックス部材、 石英 ガラス部材、 タングステン部材、 ステンレス部材、 ニッケル部材、 モ
リブデン部材、 ガラス部材或いはその複合材などが挙げられる。 また、 その用途によって焼結主材の平均粒度は最適のものがあるが、 例えば、 超硬部材の場合は 0 . 2〜 0 . 5 μ m程度の平均粒径を持つものがエッジ (刃)部分の耐久性を確保する上で好ましい。 一般のグレードは 2 μ m程 度の平均粒径である。 As the sintering main material that can be sintered, metal materials (stainless steel powder, Ni, W, Mo, Fe), carbides (WC, TiC, carbon carbide), nitrides (nitrides) For example, boron, silicon nitride, alumina nitride), oxides (quartz, alumina, glass, zirconia), etc. are mentioned as examples, and as the pinders for bonding these sintering main materials, Co, Ni are mentioned. Be In the case of oxide (quartz, alumina, glass, zircon), it may be sintered without a pinder. As these sintered products, cemented carbide members, cermet members, ceramic members, quartz glass members, tungsten members, stainless steel members, nickel members, molybdenum members Ribden members, glass members or composites thereof may be mentioned. Also, the average grain size of the main sintering material may be optimum depending on the application, but for example, in the case of a cemented carbide member, the one having an average grain size of about 0.2 to 0.5 μm is an edge (blade) It is preferable in securing the durability of the part. The general grade is an average particle size of about 2 μm.
これら焼結用粉末を担持するパインダ樹脂は、 1 の溶剤に溶ける溶 剤可溶性樹脂と該溶剤に溶けない溶剤不溶性樹脂を主材とし、 可塑剤 及び離型材など必要添加物とで構成されている。 前記溶剤可溶性樹脂 と溶剤不溶性樹脂とは使用温度では完全に混ざり合って並存している ことがより好ましく、 本実施例では溶融温度(高温)では両者共 1 の溶剤 に溶け、 使用温度では均一に混ざり合った状態で分離しているような 樹脂が使用される。 The pine resin carrying the sintering powder is mainly composed of a solvent-soluble resin which is soluble in the solvent 1 and a solvent-insoluble resin which is not soluble in the solvent, and is composed of necessary additives such as a plasticizer and a mold release material. . It is more preferable that the solvent-soluble resin and the solvent-insoluble resin be completely mixed and coexist at the operating temperature, and in the present embodiment, both melt in the solvent at the melting temperature (high temperature) and be uniform at the operating temperature. Resin is used which separates in a mixed state.
更には、 単に溶剤可溶性樹脂と溶剤不溶性樹脂とが混ざり合ってい るだけの場合より脱脂後の保形性や焼結用粉末の均一分散性を高める ために溶剤不溶性樹脂に繊維状或いは羽毛状となる樹脂を使用する事 が望ましい。 即ち、 溶剤不溶性樹脂が繊維状或いは羽毛状となる樹脂 の場合、 高温 両者の溶融温度)では溶剤可溶性樹脂中に完全に均一に 溶け合つている。 これを冷却すると次第に溶剤不溶性樹脂が繊維状に て析出し、 その繊維間に溶剤可溶性樹脂と焼結用粉末が絡まった状態 で存在するようになり、 極めて微細且つ均一に溶剤可溶性榭脂と焼結 用粉末が繊維状溶剤不溶性樹脂間に分散した状態となる。 Furthermore, when the solvent-soluble resin and the solvent-insoluble resin are merely mixed, the solvent-insoluble resin may be in the form of fibers or feathers in order to enhance the shape retention after degreasing and the uniform dispersion of the sintering powder. It is desirable to use That is, in the case of a resin in which the solvent-insoluble resin is in the form of fibers or feathers, it melts together completely uniformly in the solvent-soluble resin at high temperature (melting temperature of both). When this is cooled, the solvent-insoluble resin is gradually precipitated in the form of fibers, and the solvent-soluble resin and the powder for sintering become present in a entangled state between the fibers, and the solvent-soluble resin and the baking are extremely finely and uniformly. The binder powder is in a state of being dispersed between the fibrous solvent insoluble resins.
このよ うな溶剤可溶性樹脂の例として、 ポリ スチレン、 アク リル樹 脂、 塩化ビニル、 環状ポリオレフイ ン榭脂、 ポリカーボネー ト、 遷移 素プラスチックがある。 また、 溶剤不溶性樹脂の例として、 ポリプロ ピレン、 ポリエチレン、 ポリアセタールなどがあり、 これらを高温で 溶かす (伹し、 室温では溶剤不溶性樹脂は析出する) 溶剤としては例 えば、 キシレン、 トルエン、 ベンゼン等の芳香族溶剤や、 ジクロルメ タンゃジクロルェタンなどの塩素化溶剤などがある。 その他、 可塑 剤としてはジォクチルフタレートゃジブチルフタレートなどが、 離型
材としてはステアリン酸亜鉛ゃステアリン酸ァマイ ドが挙げられる。 これら溶剤不溶性樹脂と溶剤可溶性樹脂の混合比は、 体積比で 1 : 0 . 5〜 4 . 0である。 また、 バインダ樹脂と焼結用粉末の体積比が 4 0 : 6 0〜 6 5 : 3 5である。 これらは通常のペレツ ト状に成形されて従 来の榭脂と同様に使用される。 . Examples of such solvent soluble resins are polystyrene, acrylic resin, vinyl chloride, cyclic polyolefin resin, polycarbonate and transition plastic. Also, examples of solvent insoluble resins include polypropylene, polyethylene, polyacetal, etc., and these are dissolved at high temperature (and solvent insoluble resins are precipitated at room temperature). Examples of solvents include xylene, toluene, benzene, etc. There are aromatic solvents and chlorinated solvents such as dichlormethane and dichlorethane. Other plasticizers such as dibutyl phthalate and dibutyl phthalate Examples of such materials include zinc stearate and stearic acid amide. The mixing ratio of the solvent-insoluble resin to the solvent-soluble resin is 1: 0.5 to 4.0 in volume ratio. In addition, the volume ratio of the binder resin to the powder for sintering is 40:60 to 65:35. These are formed into a conventional pellet shape and used in the same manner as conventional resins. .
まず、 (図 1〜 6 )に付いて説明する。 金型(1)は、 雌型 (2)と、 雄型(3) とで構成され、 雌型(2)及び雄型(3)は固定ダイプレート(15)及び移動ダ ィプレート(16)にそれぞれ取り付けられており、雌型 (2)に対して雄型 (3) が型開 '型締可能となっている。 (勿論、 図示してないがその逆でもよ いことはいうまでもない。 ) First, (Figures 1 to 6) will be described. The mold (1) is composed of a female die (2) and a male die (3), and the female die (2) and the male die (3) are fixed to the fixed die plate (15) and the movable die plate (16). Each is attached and the male die (3) can be clamped to the female die (2). (Of course, although not shown, it is needless to say that the reverse is also possible.)
雌型 (2)は、 パーティング面 (P2)を有する第 1雌型部材 (2a)、 前記第 1雌型部材 (2a)に取り付けられ、 型窩(4)が凹設されているキヤビティ 部材 (30)、 第 1雌型部材 (2a)の背部に設けられた第 2雌型部材 (2b)、 前 記第 2雌型部材 (2b)に取り付けられたホッ トランナブッシュ(20)及びパ ルブピン作動桿 (25a)を介して前記パルプピン(7)を前進 ·後退させる油 圧又は空圧駆動のピン駆動部(25)、 第 2·雌型部材 (2b)の背部に取り付け られたスプル一取付ブロック(27)、 雌型(2)の背部を構成し、 雌型(2)を 固定ダイプレート(15)に取着する第 3雌型部材 (2d)、 第 2雌型部材 (2b) と第 3雌型部材 (2 d)との間に配設されて当該部材 (2b) (2d)間にスプルー 取付ブロック(27)の収納空間(28)を構成するためのスぺーサ部材(2c)、 第 3 雌型部材 (2d)とバルブ作動棹 (25a)との間に配設され、 ゲートカツ ト方向にバルブピン(7)を押圧し、 ピン駆動部(25)のゲートカツ ト動作 を助勢する補助パネ(25d)及びバルブピン(7)とで構成されている。 The female mold (2) is a first female member (2a) having a parting surface (P2), a cavity member attached to the first female member (2a) and having a mold cavity (4) recessed therein. (30), a second female member (2b) provided on the back of the first female member (2a), a hot runner bush (20) attached to the second female member (2b), and A hydraulic or pneumatic pin drive (25) for advancing and retracting the pulp pin (7) through a lube pin operating lever (25a), a sprue attached to the back of the second female member (2b) Mounting block (27), Back side of female die (2), third female member (2d) to attach female die (2) to fixed die plate (15), second female member (2b) A spacer member (28) disposed between the second female member (2d) and the third female member (2d) to form a storage space (28) of the sprue mounting block (27) between the members (2b) and (2d) 2c), the third female member (2d) and the valve operating lever ( 25a), and comprises an auxiliary panel (25d) and a valve pin (7) for pressing the valve pin (7) in the gate cutting direction and assisting the gate cutting operation of the pin drive section (25). There is.
第 1雌型部材 (2a)には、 1乃至複数の凹所(18)がそのパーティング面 (P2)から背面にかけて形成されており、 パーティング面 (P2)側に開口す る型窩 (4)が形成されているキヤビティ部材 (30)が前記凹所 (18)内に収納 されている。 ここでは前記型窩(4)はシリンダ (10') の外径形状に合わ せて凹設されている。 In the first female member (2a), one or more recesses (18) are formed from the parting surface (P2) to the back surface of the first female member (2a) and open on the parting surface (P2) side A cavity member (30) in which 4) is formed is stored in the recess (18). Here, the mold cavity (4) is recessed in conformity with the outer diameter shape of the cylinder (10 ').
前記キヤビティ部材(30)の型窩(4)の詳細を図 5、 6に従って説明す
る。 キヤビティ部材(30)のホッ トランナブッシュ(20)との対向部分にホ ッ トランナブッシュ(20)の成形材料注入路(12)と連通する細いゲート(8) が穿設されており、 このグート(8)に続いてグート(8)より若干径の大き い、 注射針が取り付けられるシリンダ (10') の細径先端部(10a)の外形 部分が形成され、 更にこれに続いてシリンダ本体(10b)の外形部分が形 成され、 そのパーティング面側において最も径の大きい鍔部(10c)の外 形部分が形成されている。 Details of the mold cavity (4) of the cavity member (30) will be described according to FIGS. Ru. A thin gate (8) communicating with the molding material injection path (12) of the horizontal bush (20) is drilled in the portion of the cavity member (30) facing the horizontal bush (20). Following the gut (8), the outer diameter of the small diameter tip (10a) of the cylinder (10 '), which is slightly larger in diameter than the gut (8), is formed, followed by the cylinder body. The outer portion of (10b) is formed, and the outer portion of the largest-diameter flange portion (10c) is formed on the parting surface side.
前記ゲート(8)は図 5のゲート部分拡大図からわかるように、 細径先 端部(10a)から後方 [成形材料供給側(1)]に向かう部分(8a)がストレート な円筒状に形成され、 この円筒部分 (8a)から後方に向かってラッパ状に 開いたラッパ状部分(8b)とで構成されており、 このグート(8)部分に後 述するバルブピン(7)の先端部分が精密に嵌り込むようになっている。 そしてこのゲート(8)には後述するパルプピン(7)の先端部分が揷脱され、 ゲート(8)の開閉がなされるようになつている。 The gate (8) is formed in a straight cylindrical shape with a portion (8a) extending from the small diameter front end (10a) to the rear [the molding material supply side (1)] as can be seen from the gate partial enlarged view of FIG. And a trumpet-shaped portion (8b) opened in a trumpet shape from the cylindrical portion (8a) to the rear, and the tip portion of the valve pin (7) described later is precisely It is supposed to fit into the The tip of the pulp pin (7) described later is removed from the gate (8) to open and close the gate (8).
ホッ トランナブッシュ(20)には、 バルブピン(7)が挿入され且つ成形 材料連通路 (24)に接続される成形材料注入路 (12)が穿設されており、 そ の先端部分は前記ゲート(8)と接続していて、 ゲート(8)のラッパ状部分 (8b)と同じテーパーにて形成されている。 このホッ トランナブッシュ (20)には例えばヒータ(29)が配設されており、ホッ トランナブッシュ (20) の成形材料注入路(12)内の成形材料 (9)をゲート(8)に至るまで加熱して これを溶融状態に保っている。 なお、 (19)はホッ トランナブッシュ(20) の収納孔である。 A molding material injection passage (12) is drilled in the hot runner bush (20), into which the valve pin (7) is inserted and connected to the molding material communication passage (24), and the tip portion thereof is the gate It is connected to (8) and formed with the same taper as the trumpet-like portion (8b) of the gate (8). For example, the heater (29) is disposed on the hot runner bush (20), and the molding material (9) in the molding material injection path (12) of the hot runner bush (20) is transferred to the gate (8). It is heated all the way to keep it molten. Note that (19) is the storage hole for hot runner bush (20).
スプルー取付ブロック(27)には前述のようにスプル一ブッシュ(22)が 取り付けられており、 このスプルーブッシュ(22)に連通し、 且つ、 1乃 至途中で複数に分岐し、 前述の成形材料注入路 (12)に接続される成形材 料連通路(24)がスプループッシュ(22)からスプルー取付プロック(27)に かけて穿設されている。 加えて、 後述するバルブピン(7)をガイ ドする ガイ ド孔 (21)がスプル一取付プロック(27)に穿設されている。 The sprue mounting block (27) is mounted with the sprue bush (22) as described above, and is communicated with the sprue bush (22), and is branched into a plurality of parts along the 1st line, A molding material communication passage (24) connected to the injection passage (12) is drilled from the sprue hook (22) to the sprue mounting block (27). In addition, a guide hole (21) for guiding a valve pin (7) described later is drilled in the sprue mounting block (27).
パルプピン Γ7)は、 先端の一部がテーパー状に形成された棒状のもの
で、 その後端はバルブピン作動桿 (25a)に固定されており、 前記ガイ ド 孔 (21)に摺動可能に揷通され、 スプルー取付プロック(27)から突出して いる部分は、 ホッ トランナブッシュ(20)の成形材料注入路(12)内に挿入 されている。 パルプピン(7)の先端部分は前記グート(8)に精密に嵌り込 むように形成されている。 即ち、 パルプピン(7)の先端部分は図 6の拡 大断面図に示すように、 ゲート(8)の円筒部分 (8a)に合わせてキヤビテ ィ側端面(11)から後方に向けてストレートに伸びた部分(7a)と、 前記ス トレートに伸びた部分 (7a)から後方に次第にその径を後方に向けて拡径 するテーパ部分 (7b)とで構成されている。 前記テーパ部分 (7b)のテーパ 一角度は前記ラツバ状部分(8b)より若干緩角度で小さい。 これによりゲ 一ト(8)にその先端部分を挿入する際、 前記ラッパ状部分 (8b)にて先端 部がガイ ドされ、 先端部のス トレートに伸びた部分(7a)がゲート(8)の 円筒部分 (8a)にぴったり と嵌り込み、 確実なゲートカツ トが行われる。 換言すれば、 ス ト レートに伸びた部分(7a)の直径とグート(8)の円筒部 分 (8a)の内径とが誤差ゼロに近い嵌め合いに成形されている。 Pulp pin Γ7) is a rod-like one whose tip is partially tapered The rear end is fixed to the valve pin actuating rod (25a), and is slidably inserted in the guide hole (21), and the portion projecting from the sprue mounting block (27) is a hot runner bush It is inserted into the molding material injection path (12) of (20). The tip portion of the pulp pin (7) is formed so as to be precisely fitted into the goat (8). That is, as shown in the enlarged cross sectional view of FIG. 6, the tip portion of the pulp pin (7) extends straight from the cavity side end face (11) to the rear along the cylindrical portion (8a) of the gate (8). It comprises an elongated portion (7a) and a tapered portion (7b) whose diameter gradually increases rearward from the elongated portion (7a) to the rear. The taper angle of the tapered portion (7b) is slightly smaller than that of the flange portion (8b). As a result, when the tip portion is inserted into the gate (8), the tip portion is guided by the trumpet shaped portion (8b), and the portion (7a) extended to the straight portion of the tip portion is the gate (8). It fits snugly into the cylindrical part (8a) of the car and a reliable gate cut is made. In other words, the diameter of the elongated portion (7a) and the inner diameter of the cylindrical portion (8a) of the goat (8) are formed so as to be close to zero error.
更に前記キヤビティ側端面(11)は後述するコア(5)の先端の円錐部分 (5e)が精密に嵌り込む円錐凹所 (7c)が形成されている。 キヤビティ側端 面(11)のこの円錐凹所 (7c)の直径 ( と前記コア(5)の先端の円錐部分 (5e) の最大径 (d)とは等しく形成されているが円筒部分 (8a)の内径 (D)より小 さく、 図 5に示すように円筒部分 (8a)と円錐部分 (5e)との間に間隙 (K) が形成される。 バルブピン(7)の先端部分がゲート(8)から離脱している 場合、 図 5に示すように前記間隙 (K)から成形材料 (9)がキヤビティ(6) 内に流入し、 逆にパルプピン(7)の先端部分がゲート(8)には嵌り込んで いる時、 前記間隙 (K)はキヤビティ側端面(11)の先端リング部分(11a)に て閉塞されるようになっている。 勿論、 この時、 前記ゲート(8)の円筒 部分 (8a)にはストレートに伸びた部分(7a)が隙間なく嵌まり込んでいる ので、 成形材料 (9)がこの円筒部分 (8a)内に入り込むことはない。 なお、 前記先端リング部分(11a)はキヤビティ側端面(11)の外周と円錐凹所 (7c) の最大内周との間の平坦リング面をいう。
更に、 バルブピン(7)の先端部分には、 円錐凹所(7c)の天井部分から 軸方向に穿設された先端細孔(13a)とこれに直角で先端細孔(13a)とバル ブピン(7)の外面とを繋ぐ直角細孔(13b)とが形成されており、 この先端 細孔(13a)と直角細孔(13b)とで連通孔(13)が形成される。 Furthermore, the cavity side end face (11) is formed with a conical recess (7c) into which a conical portion (5e) of the tip of the core (5) described later fits precisely. The diameter of this conical recess (7c) of the cavity side end face (11) (and the maximum diameter (d) of the conical portion (5e) at the tip of the core (5) are formed to be equal but the cylindrical portion (8a Smaller than the inner diameter (D) of), and a gap (K) is formed between the cylindrical portion (8a) and the conical portion (5e) as shown in Fig. 5. The tip portion of the valve pin (7) is a gate ( When it is separated from 8), as shown in FIG. 5, the molding material (9) flows from the gap (K) into the cavity (6), and conversely, the tip portion of the pulp pin (7) is the gate (8) The gap (K) is closed by the end ring portion (11a) of the cavity side end face (11) when it is fitted in. Of course, at this time, the cylinder of the gate (8) Since the part (7a) extending straight is fitted into the part (8a) without any gap, the molding material (9) does not enter into the cylindrical part (8a). The end ring portion (11a) refers to a flat ring surface between the outer periphery of the cavity side end face (11) and the largest inner periphery of the conical recess (7c). Furthermore, at the tip portion of the valve pin (7), the tip pore (13a) axially drilled from the ceiling portion of the conical recess (7c) and the tip pore (13a) and the valve pin (at right angles thereto). A right angle pore (13b) connecting the outer surface of 7) is formed, and a communication hole (13) is formed by the tip end pore (13a) and the right angle pore (13b).
ピン駆動部(25)は第 2雌型部材 (2b)に形成されたシリンダ孔 (25b)と ビストン部材 (25c)とで構成されており、 ビス トン部材 (25c)にパルプピ ン作動桿 (25a)が架設され、 ビストン部材 (25c)を作動することによりパ ルブピン作動桿 (25a)を介してバルブピン(7)を摺動させるようにしてい る。 (M)(N)はビス トン部材 (25c)を作動させるための圧油又は圧縮空気 の出入り 口である。 なお、 前記補助パネ(25d)の作用により ピス トン駆 動部(25)の寸法を小さくでき、 これによつて金型(1)全体の形状小さく することができる。 The pin drive portion (25) is composed of a cylinder hole (25b) formed in the second female member (2b) and a biston member (25c), and a pulp pin operating lever (25a) is formed on the biston member (25c). And the valve pin (7) is made to slide through the valve pin operating lever (25a) by operating the biston member (25c). (M) and (N) are inlets and outlets for hydraulic oil or compressed air for operating the piston member (25c). The size of the piston drive portion (25) can be reduced by the action of the auxiliary panel (25d), whereby the overall shape of the mold (1) can be reduced.
雄型 (3)は、 移動ダイプレー ト(16)に取り付けられる雄型本体 (3a)、 雄 型本体(3a)の内側にて型窩(4)に一致して取り付けられている 1乃至複 数個のコア(5)、 雄型本体(3a)の内側に当接 ·離間可能に配設され、 前 記コア(5)が揷脱する中間型 (3b)および型開した後、 中間型 (3b)を離間方 向に押し出して成形されたシリンダ ( 10') を離型させる押出部材(26) とで構成されている。 The male mold (3) has a male body (3a) attached to the movable die plate (16), and one or more attached to the mold cavity (4) on the inner side of the male body (3a). The core (5), which is disposed on the inside of the male main body (3a) so as to be in contact with and separated from the core (5), and the mold (3b) and the mold after And an extrusion member (26) for releasing the molded cylinder (10 ') by extruding 3b) in the separation direction.
コア(5)の埋設端部(5d)は雄型本体(3a)内に埋設されており、 コア(5) は雄型本体(3a)の内側から突出している基部(5c)、 前記基部(5c)より先 端側で型窩 (4)の円筒状部分の内周形状と相似形であり、 シリンダ (10') の鍔部(10c)及びシリンダ部分(10b)の内周形状を構成する円柱状部(5b)、 円柱状部(5b)の先端中央に突設され、 シリンダ (10') の注射針取付部 (10a)の内周面を形成する突起部(5a)とを有する。 突起部(5a)の先端部 分は前述のように円錐形となっており、 前記円錐部分(5e)の直径は(d) である。 The embedded end (5d) of the core (5) is embedded in the male body (3a), and the core (5) is a base (5c) projecting from the inside of the male body (3a); 5c) is more similar to the inner peripheral shape of the cylindrical portion of the mold cavity (4) on the end side, and constitutes the inner peripheral shape of the flange portion (10c) and the cylinder portion (10b) of the cylinder (10 ') A cylindrical portion (5b), and a projection (5a) protruding from the center of the tip of the cylindrical portion (5b) and forming an inner peripheral surface of the injection needle attaching portion (10a) of the cylinder (10 '). The tip of the projection (5a) is conical as described above, and the diameter of the conical portion (5e) is (d).
次に、 本発明にかかる金型(1)の作用について説明する。 まず、 移動 ダイプレート(16)を作動させて雄型(3)を雌型 (2)に押圧 ·型締する。 こ の時、 ゲート(8)がバルブピン(7)の先端部分で閉塞され且つパルプピン
(7)の円錐凹所 (7c)にコア(5)の先端の円錐部分(5e)が密嵌した図 1の状 態となる。 Next, the operation of the mold (1) according to the present invention will be described. First, move the moving die plate (16) to press and clamp the male die (3) to the female die (2). At this time, the gate (8) is closed at the tip of the valve pin (7) and the pulp pin is The conic section (5e) at the tip of the core (5) fits tightly into the conical recess (7c) of (7), as shown in Fig.1.
続いて、 図 2のようにピン駆動部(25)が作動してバルブピン(7)を引 き戻し、ゲート(8)を開く。この状態で射出成形機を作動させ、ノズル (23) から計量された成形材料 (9)を射出する。 射出された計量成形材料 (9)は スプループッシュ(22)、 成形材料通流路 (24)、 成形材料注入路(12)を通 り、 前記ゲート(8)からキヤビティ(6)内に高圧(例えば、 1 , 0 0 0〜 2 , 0 0 0 k g / c m2)で圧入される。 図 5の拡大詳細図にその状態を示す。 図から分かるように、 コア(5)の中心軸(CL)上にゲート(8)が形成され ているので、 グート(8)の円筒部分 (8a)とコア(5)の突起部(5a)とで構成 される間隙 (K)は全周にわたって同幅 [(D— d )Z 2 ]となり、 グート(8) からキヤビティ(6)内に高圧流入する計量成形材料 (9)はキヤビティ(6)内 の全周にわたって均等に流入し、 コア(5)の外周面にかかる力は全周に わたって均等になり、 コア(5)を従来例のように橈ませて一方向に傾斜 させることがない。 それ故、 キヤビティ(6)は射出成形の最初から最後 まで偏肉を発生させることがなく、 成形されたシリンダ ( 10') の肉厚 に偏肉が生じない。 Subsequently, as shown in Fig. 2, the pin drive unit (25) operates to pull back the valve pin (7) and open the gate (8). In this state, the injection molding machine is operated to inject the measured molding material (9) from the nozzle (23). The injected metering molding material (9) passes through the sprue plug (22), the molding material passage (24), the molding material injection passage (12), and the high pressure (into the cavity (6)) from the gate (8). For example, it is pressed by 1, 0 0 0~ 2, 0 0 0 kg / cm 2). The state is shown in the enlarged detail of FIG. As can be seen from the figure, since the gate (8) is formed on the central axis (CL) of the core (5), the cylindrical portion (8a) of the gut (8) and the projection (5a) of the core (5) The gap (K) composed of and has the same width [(D− d) Z 2] over the entire circumference, and the material for molding and molding material (9) flowing from the gut (8) into the cavity (6) has a cavity (6) The force applied to the outer peripheral surface of the core (5) is evenly distributed over the entire circumference, and the core (5) is inclined in one direction by winding the core (5) as in the prior art. There is no Therefore, the cavity (6) does not generate uneven thickness from the beginning to the end of the injection molding, and does not generate uneven thickness in the thickness of the molded cylinder (10 ').
このようにしてキヤビティ(6)に計量成形材料 (9)の充填が完了すると 保圧工程に移り、 射出成形機のノズル (23)からの圧力をキヤビティ(6) 内の充填成形材料 (9)に掛け続ける。 充填成形材料 (9)は冷却と共に次第 に固化して行く と同時に収縮するが、 前記の圧力によりゲート(8)から 成形材料 (9)が補給され、 シリンダ(10')のヒケ発生を防止する。 シリン ダ(10')がある程度冷却し、 殆ど収縮しなくなつた状態で保圧工程が終 了し、 ピン駆動部(25)を逆作動させてパルプピン(7)を前進させ、 図 6 の拡大詳細図に示すようにバルブピン(7)の先端部分にてゲート(8)を閉 塞する。 In this way, when the filling of the measurement molding material (9) to the cavity (6) is completed, the process proceeds to the pressure holding step, and the pressure from the nozzle (23) of the injection molding machine is filled with the molding material in the cavity (6) (9) Keep on The filling and molding material (9) solidifies with cooling and shrinks at the same time, but the above-mentioned pressure replenishes the molding material (9) from the gate (8) and prevents the generation of a sink in the cylinder (10 '). . After the cylinder (10 ') has cooled to some extent and has not shrunk, the pressure holding process is finished, and the pin drive section (25) is reversely operated to advance the pulp pin (7), as shown in FIG. Close the gate (8) at the tip of the valve pin (7) as shown in the detailed drawing.
このときゲート(8)部分において、 パルプピン(7)のキヤビティ側端面 (11)とコア(5)の先端(14)との間に挟まれ、 逃げ場のなくなった余剰成形 材料 (9a)が前記連通孔(13)を通って成形材料注入路(12)に逃げることが
でき、 バルブピン(7)のキヤビティ側端面(11)の円錐凹所 (7c)にパルブピ ン(7)の先端の円錐部分(5e)が密嵌して先端細孔(13a)を閉塞し、 且つゲ 一ト(8)の円筒部分(8a)にパルプピン(7)のス ト レー トに伸びた部分(7a) がほぼゼロ嵌合にて嵌まり込んでグート(8)を閉塞すると同時に前記間 隙 (K)をバルブピン(7)のキヤビティ側端面(11)の外周部分の先端リング 部分(11a)が閉塞しゲートカツ トを小さい力で確実に行う。 これにより キヤビティ(6)は成形材料注入路(12)から確実に遮断されることになる。 続いて、 冷却工程を経てキヤビティ(6)内の充填成形材料 (9)は次第に 冷却固化する。 成形材料(9)が固化したところで、 図 3に示すように移 動ダイプレート(16)を作動させ雄型 (3)を雌型 (2)から離間させ型開を行 う。 成形品(10)はコア(5)に装着され、 雌型 (2)の型窩 (4)から引き抜かれ る。 At this time, in the gate (8) part, the excess molding material (9a) which is sandwiched between the cavity side end face (11) of the pulp pin (7) and the tip (14) of the core (5) It is possible to escape to the molding material injection path (12) through the hole (13) The conical portion (5e) of the tip of the pulp pin (7) fits closely in the conical recess (7c) of the cavity side end face (11) of the valve pin (7) to close the tip pore (13a), and The portion (7a) of the pulp pin (7) extending in the straight portion of the pulp pin (7) is fitted into the cylindrical portion (8a) of the gate (8) with substantially zero fitting to close the got (8) and at the same time The tip ring part (11a) of the outer peripheral part of the cavity side end face (11) of the valve pin (7) is closed by the gap (K), and the gate cut is surely done with a small force. This ensures that the cavity (6) is shut off from the molding material injection path (12). Subsequently, the filling molding material (9) in the cavity (6) gradually cools and solidifies through the cooling step. When the molding material (9) is solidified, move the moving die plate (16) as shown in Fig. 3 to separate the male die (3) from the female die (2) and open the die. The molded article (10) is attached to the core (5) and pulled out of the mold cavity (4) of the female mold (2).
この時、 図 6の拡大詳細図からわかるようにシリンダ (10') の注射 針取付部(10a)の先端は成形材料注入路(12)から確実に遮断されている が、 この成形材料注入路(12)内の成形材料 (9)はホッ トランナブッシュ (20)によって溶融状態に保持されているので、 成形品であるシリンダ ( 10') は、 従来のようなコールドランナが付着していない無駄のない 完全に成形された状態で型窩 (4)から取り出される。 それ故、 従来無駄 となっていたコールドランナが発生しなくなる。 At this time, as can be seen from the enlarged detail view of FIG. 6, the tip of the injection needle attaching portion (10a) of the cylinder (10 ') is surely shut off from the molding material injection passage (12). Since the molding material (9) in (12) is held in a molten state by the hot runner bush (20), the cylinder (10 ') which is a molded article is not adhered with a cold runner as in the prior art It is removed from the mold cavity (4) in a fully molded condition without waste. As a result, cold runners, which are conventionally wasted, will not occur.
最後に、 押出部材 (26)を作動させて中間型 (3b)を雄型本体 (3a)から離 間させ、 シリンダ ( 10') の鍔部(10c)を係合させて押し出し、 コア(5)か らシリンダ ( 10,) を離脱させる。 シリンダ ( 10') の取り出しが完了す るとパーティング面を清掃した後、 再度型締工程に入り、 前述の作業 繰り返す。 Finally, the push-out member (26) is operated to separate the intermediate mold (3b) from the male mold body (3a), and the collar (10c) of the cylinder (10 ') is engaged and pushed out. ) Release the cylinder (10,). When the removal of the cylinder (10 ') is completed, the parting surface is cleaned, and then the clamping process is started again and the above-mentioned work is repeated.
次に、 図 7、 8を参照しながらコア(5)を使用しない場合について説 明する。 金型 (1)の構造は基本的には前述通りであり、 相違点は成形体 (10)がシリンダ(10')のような中空円筒体でなく、 リング状成形体(10") であることに伴う点である。 すなわち、 この場合はコア(5)の突起部(5a) が存在せず、 これとバルブピン(7)の先端とが当接しないため、 パルプ
ピン(7)の先端は平坦に成形されており、 バルブピン(7)の先端部に形成 された連通孔(13)は、バルブピン(7)によってゲート(8)が閉塞された時、 型窩(4)側に開口していることになる(図 8参照)。 Next, referring to FIGS. 7 and 8, the case where the core (5) is not used will be described. The structure of the mold (1) is basically as described above, and the difference is that the molded body (10) is not a hollow cylinder like a cylinder (10 ') but a ring-shaped molded body (10 ") That is, in this case, there is no projection (5a) of the core (5), and this does not abut the tip of the valve pin (7). The tip of the pin (7) is formed flat, and the communication hole (13) formed at the tip of the valve pin (7) is closed when the gate (8) is closed by the valve pin (7). 4) It will be open to the side (see Figure 8).
前記ゲート(8)も実施例 1 と同じで、 図 7、 8のゲート部分拡大図か らわかるように、 型窩(4)に開口している部分(8a)がス トレートな円筒 状に形成され、 この円筒部分 (8a)から後方に向かってラッパ状に開いた ラツバ状部分 (8b)とで構成されており、 このグート(8)部分に後述する バルブピン(7)の先端部分が精密に嵌り込むようになっている。 そして このグート(8)には後述するバルブピン(7)の先端部分が挿脱され、 グー ト(8)の開閉がなされるようになつている。 The gate (8) is also the same as in Example 1, and as can be seen from the enlarged gate parts in FIGS. 7 and 8, the portion (8a) opened in the mold cavity (4) is formed in a straight cylindrical shape. And the rib-like portion (8b) opened in a trumpet shape from the cylindrical portion (8a) to the rear, and the tip portion of the valve pin (7) to be described later is precisely It is supposed to fit in. The tip of a valve pin (7), which will be described later, is inserted into and removed from the goth (8) to open and close the goth (8).
バルブピン(7)の先端部分は、 平坦なキヤビテイ側端面(11)の中心軸 方向に穿設された先端細孔(13a)とこれに直角で先端細孔(13a)とバルブ ピン(7)の外面とを繋ぐ直角細孔(13b)とが形成されており、 この先端細 孔(13a)と直角細孔(13b)とで連通孔(13)が形成される。 The tip portion of the valve pin (7) comprises a tip pore (13a) drilled in the direction of the central axis of the flat cavity side end face (11) and a tip pore (13a) and valve pin (7) at right angles thereto. A right angle pore (13b) connecting the outer surface is formed, and a communication hole (13) is formed by the tip end hole (13a) and the right angle pore (13b).
第 1実施例と異なる点は、第 2実施例ではコア(5)が存在せず、 コア(5) の先端の円錐部分 (5e)とパルプピン (7)の先端側端面 (11)とが当接しない ので、 前記先端側端面(11)は平坦面に形成されており、 ゲート閉塞時、 グート(8)の出口とバルブピン(7)の先端側端面(11)とが一致するように なっている。 従って、 ゲートカッ ト時、 バルブピン(7)の先端部分がゲ 一ト(8)に嵌入した時でも、 先端部の連通孔(13)を介して型窩 (4)と成形 材料注入路(12)とは僅かに繋がっている。 The difference from the first embodiment is that the core (5) does not exist in the second embodiment, and the conical portion (5e) of the tip of the core (5) and the tip end face (11) of the pulp pin (7) Since the front end side end face (11) is formed into a flat surface because it does not contact, when the gate is closed, the outlet of the gut (8) and the front end side end face (11) of the valve pin (7) are aligned. There is. Therefore, even when the tip of the valve pin (7) is fitted into the gate (8) during gate cutting, the mold cavity (4) and the molding material injection passage (12) can be inserted via the communication hole (13) at the tip. And are slightly connected.
次に、 第 2実施例の作用について相違点だけを説明すると、 前述の ように射出成形機を作動させ、 ノズル (23)から計量された成形材料 (9) を射出して計量成形材料 (9)をキヤビティ(6)内に前述同様高圧で圧入す る。 キヤビティ(6)への計量成形材料 (9)の充填が完了すると保圧工程に 移り、 射出成形機のノズル(23)からの圧力をキヤビティ(6)内の充填成 形材料 (9)に掛け続ける。 充填成形材料 (9)は冷却と共に次第に固化して 行く と同時に収縮するが、 前記の圧力によりグート(8)から成形材料 (9) が補給され、 リング状成形体 (10")のヒケ発生を防止する。
• リング状成形体(10")がある程度冷却し、 殆ど収縮しなくなった状態 で保圧工程が終了し、 ピン駆動部(25)を逆作動させてパルプピン(7)を 前進させ、 図 8の拡大詳細図に示すようにバルブピン(7)の先端部分に てゲート(8)を閉塞する。 このときゲート(8)内のバルブピン(7)のキヤビ ティ側端面(11)と リング状成形体(10")との間に挟まれ、 逃げ場のなく なった余剰成形材料 (9a)が前記連通孔(13)を通って成形材料注入路(12) に逃げることができ、 ゲートカッ トを小さい力で円滑に行うことが出 来る。 (特に、 ゲート(8)まわりの成形体(10")の肉厚が 2 m m以下と薄い 場合、 ゲートカッ トが不可能である。 ) Next, the difference in the operation of the second embodiment will be described. The injection molding machine is operated as described above, and the molding material (9) measured from the nozzle (23) is injected to measure the molding material (9 )) In the cavity (6) as described above under high pressure. When filling of the measurement molding material (9) into the cavity (6) is completed, the process proceeds to the pressure holding step, and the pressure from the nozzle (23) of the injection molding machine is applied to the filling material (9) in the cavity (6). to continue. The filling and molding material (9) gradually shrinks as it cools and shrinks at the same time, but the above-mentioned pressure refuels the molding material (9) from the goth (8) and causes the ring-shaped molding (10 ") To prevent. • When the ring-shaped compact (10 ") cools to a certain extent and the shrinkage hardly occurs, the pressure holding process is finished, the pin drive section (25) is reversely operated, and the pulp pin (7) is advanced. As shown in the enlarged detail drawing, the gate (8) is closed by the tip of the valve pin (7) At this time, the cavity side end face (11) of the valve pin (7) in the gate (8) 10 "), and the excess molding material (9a) with no escape space can escape to the molding material injection path (12) through the communication hole (13), and the gate cut can be performed with a small force. You can do it smoothly. (Especially, when the thickness of the compact (10 ") around the gate (8) is as thin as 2 mm or less, the gate can not be cut.)
なお、 この時、 ゲート(8)の円筒部分(8a)にバルブピン(7)のス トレー トに伸びた部分(7a)がほぼゼロ嵌合にて嵌まり込んで前記ゲート(8)を 閉塞する。 ただ、 実施例 1と相違するのは、 連通孔(13)の先端細孔(13a) がコア(5)の突起部(5a)にて閉塞されず、 キヤビティ(6)と成形材料注入 路(12)とが連通孔(13)にて連通状態となっていることであるが、 パルプ ピン(7)の先端部分にてゲート(8)を閉塞すると、 バルブピン(7)の先端部 分は温度の低いゲート(8)に接触して熱を奪われ、 温度が低下して連通 孔(13)内の極く僅かな成形材料 (9)が固化して連通孔(13)を閉塞してしま い、 ゲートカッ トを完了させることになる。 なお、 前記固化した連通 孔(13)内の成形材料 (9)は、 バルブピン(7)が引き戻され、 高温の成形材 料注入路(12)の中に入ったとき再加熱され、 元の流動体に戻る。 At this time, the portion (7a) of the valve pin (7) extending to the straight portion is fitted into the cylindrical portion (8a) of the gate (8) with almost zero fitting to close the gate (8). . However, the difference from Example 1 is that the tip pore (13a) of the communication hole (13) is not blocked by the projection (5a) of the core (5), and the cavity (6) and the molding material injection path ( 12) is in communication with the communication hole (13), but closing the gate (8) at the tip of the pulp pin (7) will cause the tip of the valve pin (7) to Heat is taken in contact with the lower gate (8), and the temperature drops, and only a very small amount of molding material (9) in the communication hole (13) solidifies and blocks the communication hole (13). No, it will complete the gate cut. The molding material (9) in the solidified communication hole (13) is reheated when the valve pin (7) is pulled back and enters the high temperature molding material injection path (12), and the original flow Return to the body.
続いて、 冷却工程を経てキヤビティ(6)内の充填成形材料 (9)は次第に 冷却固化する。 成形材料 (9)が固化したところで、 図 3に示すように移 動ダイプレート(16)を作動させ雄型 (3)を雌型 (2)から離間させ型開を行 う。 リング状成形体(10")はコア(5)に装着され、 雌型 (2)の型窩(4)から 引き抜かれ、 最後に、 押出部材 (26)を作動させて取り出される。 Subsequently, the filling molding material (9) in the cavity (6) gradually cools and solidifies through the cooling step. When the molding material (9) is solidified, move the moving die plate (16) as shown in Fig. 3 to separate the male mold (3) from the female mold (2) and open the mold. The ring shaped body (10 ") is mounted on the core (5), withdrawn from the mold cavity (4) of the female die (2) and finally taken out by activating the pusher member (26).
この時、 図 8の拡大詳細図からわかるように前述同様、 リング状成 形体(10")は従来のようなコールドランナが付着していない無駄のない 完全に成形された状態で型窩 (4)から取り出される。 それ故、 従来無駄 となっていたコールドランナが発生しなくなる。
なお、 成形材料 (9)として粉末焼結材料とバインダ樹脂との混練物を 使用した場合はこのリング状成形体(10")は粉末焼結用のグリーン体 [溶 剤可溶性樹脂成分と溶剤不溶性樹脂成分を主とするバインダ樹脂内に 焼結用粉末 (=焼結対象粉末 +バインダ)が分子分散されたもの]であり、 見かけ上は通常の熱可塑性樹脂成形部材と同様のものであり、 その後 の脱脂および焼結工程を経て焼結部材となる。 産業上の利用可能性 At this time, as can be seen from the enlarged detail view of FIG. 8, the ring-shaped body (10 ′ ′) is in the form-free state without any waste attached with the cold runner as in the prior art as described above. Therefore, cold runners, which were previously wasted, will not occur. When a mixture of a powder sintered material and a binder resin is used as the molding material (9), the ring-shaped molded body (10 ′ ′) is a green body for powder sintering [solvent-soluble resin component and solvent-insoluble A powder for sintering (= powder to be sintered + binder) is molecularly dispersed in a binder resin mainly composed of a resin component], and apparently it is the same as an ordinary thermoplastic resin molded member, After the subsequent degreasing and sintering steps, it becomes a sintered member.
以上、 本発明によればバルブピンの先端部分にグート側端面に開口 し、 キヤビティ と成形材料注入路とを連通する連通孔を穿設しておく ことで、 バルブピンを作動させてゲートカッ トを行った時、 パルブピ ンのゲ一ト側端面とコアの先端との間に挟まれ、 逃げ場のなくなった 成形材料が前記連通孔を通って成形材料注入路に逃げることができ、 バルブピンの作動力を大幅に低減出来且つ確実にグートカッ トができ る。 As described above, according to the present invention, the valve pin is operated to perform gate cutting by opening the communicating hole connecting the cavity with the molding material injection path by opening the end of the valve pin to the end surface of the goat side. When it is pinched between the gate side end face of the pulp pin and the tip of the core, the molding material with no space can escape to the molding material injection path through the communication hole, and the operating force of the valve pin is greatly increased. It is possible to reduce to
またこのようにゲートカツ トが成形品の先端部分で行われるので、 従来のようなコールドランナが発生する材料費を大幅に節約すること ができる。 しかもコールドランナが発生しないとレヽう ことは、 コール ドランナを成形品から切除する工程がなくなり、 その分だけ設備費は じめとするコス トダウンが可能となる点や、 成形完了と共に完成品が 成形されて取り出されるので、 ラインの全自動化が可能となるだけで なく、 切除時に発生する成形材料パーティクルパーティクルが成形品、 特にシリンダのような医療用部材内に付着するというがことなく、 こ の部分でも不良品が発生をなくすことができるなどきわめて優れた効 果を奏するものである。
Also, since the gate cut is carried out at the tip of the molded product in this way, it is possible to save a great deal of the material cost that conventional cold runners generate. Furthermore, if cold runners do not occur, there is no process for cutting cold runners from molded articles, and equipment costs and other costs can be reduced accordingly, and the finished products are molded as molding is completed. Not only is it possible to fully automate the line, but the particles of molding material particles generated at the time of cutting are not attached to the molded product, particularly to a medical member such as a cylinder, and this portion However, they have very good effects, such as the elimination of defective products.