WO2005009664A1 - Mehrkopf-reibschweissverfahren und vorrichtung zur durchführung des verfahrens - Google Patents

Mehrkopf-reibschweissverfahren und vorrichtung zur durchführung des verfahrens Download PDF

Info

Publication number
WO2005009664A1
WO2005009664A1 PCT/EP2004/008050 EP2004008050W WO2005009664A1 WO 2005009664 A1 WO2005009664 A1 WO 2005009664A1 EP 2004008050 W EP2004008050 W EP 2004008050W WO 2005009664 A1 WO2005009664 A1 WO 2005009664A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction welding
phase
welding process
offset
head
Prior art date
Application number
PCT/EP2004/008050
Other languages
English (en)
French (fr)
Inventor
Leonhard Crasser
Original Assignee
Multi Orbital Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Multi Orbital Systems Gmbh filed Critical Multi Orbital Systems Gmbh
Priority to EP04741138A priority Critical patent/EP1648648B1/de
Priority to DE502004004969T priority patent/DE502004004969D1/de
Publication of WO2005009664A1 publication Critical patent/WO2005009664A1/de
Priority to US11/335,087 priority patent/US20060113358A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/1205Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using translation movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/129Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding specially adapted for particular articles or workpieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0609Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding characterised by the movement of the parts to be joined
    • B29C65/0618Linear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0609Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding characterised by the movement of the parts to be joined
    • B29C65/0627Angular, i.e. torsional
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0609Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding characterised by the movement of the parts to be joined
    • B29C65/0636Orbital
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/116Single bevelled joints, i.e. one of the parts to be joined being bevelled in the joint area
    • B29C66/1162Single bevel to bevel joints, e.g. mitre joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/52Joining tubular articles, bars or profiled elements
    • B29C66/524Joining profiled elements
    • B29C66/5243Joining profiled elements for forming corner connections, e.g. for making window frames or V-shaped pieces
    • B29C66/52431Joining profiled elements for forming corner connections, e.g. for making window frames or V-shaped pieces with a right angle, e.g. for making L-shaped pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/843Machines for making separate joints at the same time in different planes; Machines for making separate joints at the same time mounted in parallel or in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9512Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by controlling their vibration frequency
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9516Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools by controlling their vibration amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/001Profiled members, e.g. beams, sections
    • B29L2031/003Profiled members, e.g. beams, sections having a profiled transverse cross-section
    • B29L2031/005Profiled members, e.g. beams, sections having a profiled transverse cross-section for making window frames

Definitions

  • the invention relates to a multi-head friction welding process for the simultaneous welding of the joining surfaces of molded parts, the individual molded parts being aligned with one another on both sides adjacent to the joining surfaces in friction welding heads, clamped tightly and the joining surfaces being pressed against one another, and the free ends of the molded parts on both sides of the joining surfaces with the aid are set in motion by eccentric shafts rotating in the friction welding heads, and both friction welding heads oscillate in substantially opposite phase in the X, Z and Y, Z directions.
  • the invention further relates to an apparatus for performing the method.
  • Friction welding processes as such are known per se, friction being generated by relative movement and simultaneous pressure in order to generate the necessary welding energy on the surfaces to be welded.
  • the friction welding energy is introduced into the end of the profile bar via a vibrating plate rigidly connected to the clamping jaw, the clamping jaws assigned to the joining planes being simultaneously displaced against one another under pressure for welding.
  • the vibration generator known from EP 707 919 AI is equipped with a control eccentric and a parallel guide which converts the rotational energy supplied on the input side by a motor into a circular, parallel kinetic energy.
  • the ends of the profile bars to be welded are rubbed against each other in exact association with one another for welding from their initial position by the antiphase vibration movement transmitted from the vibrating plate to the clamping jaws until the joining surfaces are heated to the welding temperature. Subsequently, the vibration generators and thus the clamping jaws, which are set in vibration by the respective vibration generator, are mechanically forcibly returned to the initial position, the profile rod ends remaining under pressure over the welding duration and the cooling phase.
  • the object of the invention is therefore to create a multi-head friction welding method and a device suitable for carrying it out, with which disadvantages of the known measures can be overcome. At the same time, a much simpler and therefore more cost-effective vibration generator is to be used.
  • a multi-head friction welding device for performing the method is characterized by the measures of claim 9.
  • Figure 1 is a plan view of the friction welding unit with two profile sections to be welded at right angles.
  • FIG. 2 shows a side view of the friction welding unit in the north-south direction of FIG. 1;
  • 3A to 3D show a diagrammatic view of the axis offset of the vibration axes of the two vibration generators of a friction welding head in the joining plane for an in-phase and an antiphase vibration with a different axis offset;
  • FIG. 4A examples of different phase positions of the friction vibration effective in the joining plane for an axis offset according to FIG. 3A with an in-phase friction vibration
  • FIG. 4B is a diagram of the thrust components for a frictional vibration according to FIG. 4A;
  • FIG. 5B is a diagram of the thrust components for a friction vibration according to FIG. 5A;
  • Fig. 7 is a plan view of a multi-head friction welding device for welding a rectangular profile frame.
  • a friction welding unit 30 is shown with two friction welding heads 44, which is used for friction welding two profile bars 1 and 2 with a miter of 45 °.
  • the friction welding heads 44 are each provided with a clamping unit 64, in which the respective end of the profile bar is clamped in order to introduce the vibration energy into the ends of the profile bar via the oscillating plate 62 connected to the clamping unit.
  • the friction welding heads 44 are actuated in such a way that the opposite free ends of the profiled bars oscillate essentially in opposite phases, i. H. that the thrust vectors are opposed at all times.
  • the frequency it is provided for the circular vibrations to be introduced into the profile bars that this is between 20 Hz and 500 Hz, depending on the material used for the profile bars, the vibration having a maximum amplitude of preferably less than 3 mm.
  • the vibration having a maximum amplitude of preferably less than 3 mm.
  • a mounting plate 35 is fastened on the turntable 32, which with respect to FIG. 2 in the north-south direction with the aid of an axle cylinder 37 and an associated thrust shaft 36, which engages the mounting plate, along the guide shafts 38 in ball bushing guides 39 (FIG. 2 ) can be pushed back and forth.
  • slides 40 in profile rail guides can be moved in the east-west direction with reference to FIG. 1. This displacement takes place with the aid of axle cylinders 50 which are attached to mounting walls 51 on both sides of the mounting plate 35.
  • the guide shafts 53 fastened to the mounting wall 51 for guidance serve the purpose of ensuring a tilt-free displacement of the slide 40.
  • any other sliding devices can also be regarded as suitable.
  • the vibration energy required for the friction welding is transmitted from the friction welding heads 44 to the clamping units 64 via an eccentric shaft 60 and a vibrating plate 62.
  • these clamping units have the shape of a right-angled triangle and, in side view, are provided with a U-shaped receiving region, not shown, the base of which extends perpendicular to the joining plane.
  • the upper and lower legs of the U-shaped receiving area which are triangular in plan view, extend over the entire width of the profile bars to be processed and are held in place with the aid of a clamping plate 68.
  • The- se clamping plate 68 can be clamped vertically with the profile clamping cylinder 69 against the inserted profile rod.
  • the friction welding heads 44 arranged on the respective slide 40 are only equipped with a simple eccentric shaft 60 and can be easily synchronized with the aid of an electronic control, in particular to the start and stop position, as will be explained below , This ensures that the friction welding process starts with the desired phase distance, and this phase distance is maintained continuously, ie the phase offset between the individual friction welding heads 44 is reliably maintained.
  • the friction welding heads 44 are mounted on the slide 40 in such a way that an axial offset ⁇ can be set between the two opposing eccentric shafts Eal and Ea2.
  • a horizontal axis offset ⁇ and in the illustration according to FIG. 2 a vertical axis offset ⁇ is provided.
  • an axis offset in any angular position is also possible.
  • the use of a vertical or horizontal axis offset for two different embodiments has the same effect and is selected depending on the type of design of the molded parts to be welded.
  • a corresponding rigid mounting of at least one friction welding head on the slide 40 can be provided for the axis offset.
  • a controlled displaceability of the friction welding heads on both slides 40 is also provided.
  • the friction welding units 30 described above can also be used, as shown in FIG. 7, in the known friction welding device for welding a rectangular square profile frame in order to weld the four corners of a square profile frame to the rods 1, 2, 3 and 4 at the same time.
  • the friction welding device shown can also be used to weld square profile frames with corner connections that deviate from 90 °.
  • the amplitude, axis offset and the phase position of the friction welding heads on the four frame corners must be matched to one another in pairs so that the forces and torques introduced by all friction welding heads are compensated for during the welding process.
  • 3A to 3D are a schematic representation of the axis offset ⁇ with respect to the axes Eal and Ea2 of the eccentric shafts of the friction welding heads 44 for an orbital vibration with circular trajectories for opposing and synchronous phase vectors.
  • phase offset 180 ° with respect to mutually opposite path points can be assumed. With this phase shift there is a maximum energy input.
  • a phase offset of ⁇ 180 ° is of course also provided if a reduced energy input is desirable.
  • FIGS. 4A and 4B The implementation of a friction welding process is shown in FIGS. 4A and 4B for an in-phase rotating vibration, i.e. a linearly effective thrust / speed vector, and with reference to FIGS. 5A and 5B for an anti-phase rotating friction vibration, i.e. described an orbitally effective thrust / speed vector, the phase difference being 180 °.
  • the rotating friction vibrations are the kinematic relationships in the joint plane seen in an axial view from one side.
  • the friction welding heads 44 are first brought into the zero position, in which the phase vectors on the two mutually associated trajectory curves point to the starting position of the eccentric shafts, designated by A. In this position, the molded parts 1 and 2 are clamped in the clamping units 64, with the joining surfaces facing each other as precisely as possible.
  • the axially offset eccentric shafts are set in rotation in such a way that the phase vectors for FIGS. 4A and 4B move out of phase from the zero position.
  • the positions of the phase vectors are shown after a rotation of approximately 30 °.
  • Velocity vector is plotted in each position.
  • a superposition of the speed vectors of the frictional vibration of the two friction welding heads pointing towards each other leads to a thrust component which changes in amplitude in linear parallel position and leads to a linear frictional movement which becomes zero at 0 ° and 180 °. correspond
  • antiphase friction vibrations in which in each position of the phase vectors there are opposing speed vectors and thus orbitally rotating thrust vectors, ie orbitally rotating friction movements.
  • the fault-free break-proof welding is also ensured in that the eccentric shafts are braked synchronously in the switch-off phase without changing the phase position and in the zero position of the friction welding heads, ie. H. be brought to a standstill in the initial position A. With this braking, the phase position is maintained unchanged.
  • This also has the advantage that a higher torque can be achieved with a reduction in the rotational frequency due to the strong drive motors in order to compensate for the higher thrust moments that occur in the seam when the seam is switched off. Since the powerful drive motors are also used as brake motors, a correspondingly large braking force is available for the braking phase - as already mentioned.
  • FIG. 6 A further embodiment of the invention is shown diagrammatically in FIG. 6.
  • the friction welding process begins with an axis offset ⁇ ⁇ 0 and a constant phase offset of 180 ° in the initial positions A 1 .
  • the friction welding process begins with a variable axis offset ⁇ in any initial positions A of the phase vectors, but with a constant phase offset of, for example, 180 °.
  • a constant phase offset for example, 180 °.
  • the second phase vector is then braked to a stop in the same end position. Because of the two intersections of the path curves, there are also two possible end positions 1 and 2 (FIG. 6D, option 4).
  • a path-time control is advantageously used, which considerably simplifies the design of the electronic control in connection with the phase control during the welding and braking process.
  • the invention therefore offers not only the advantage of the simpler construction of the vibration generators due to the axis offset ⁇ , but also a simple design of the regulating and control device during the welding and braking phases

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

Ein Mehrkopf-Reibschweissverfahren und eine Vorrichtung zur Durchführung des Verfahrens sieht vor, dass die Achsen der Exzenterwellen von aufeinander ausgerichteten gegeneinander verspannten Formteilen gegeneinander um einen Achsversatz von δ = 0 bis δ = 2r, wobei r die Schwingungsamplitude ist, verstellbar sind, und sich die Phasenvektoren der beiden Reibschweissköpfe (44) zumindest am Ende des Reibschweissvorgangs in einer gemeinsamen Bahnposition treffen, wobei die Exzenterwellen (60) der Reibschweissköpfe (44) von einer im wesentlichen gleich- oder gegenphasiger Phasenlage ausgehend zum Ende des Reibschweissvorgangs unter Beibehaltung der Phasendrehrichtung abgebremst werden und die Phasenvektoren der beiden Reibschweissköpfe in einer gemeinsamen Position der Bahnkurven zum Stillstand kommen.

Description

Mehrkopf-Reibschweißverfahren und Vorrichtung zur Durchführung des Verfahrens
Die Erfindung betrifft ein Mehrkopf-Reibschweißverfahren zum gleichzeitigen Verschweißen der Fügeflächen von Formteilen, wobei die einzelnen Formteile beiderseits benachbart zu den Fügeflächen in Reibschweißköpfen paßgenau aufeinander ausgerichtet, festgespannt und die Fügeflächen gegeneinander gedrückt werden, sowie jeweils die freien Enden der Formteile beiderseits der Fügeflächen mit Hilfe von in den Reibschweißköpfen sich drehenden Exzenterwellen in Schwingung versetzt werden, und wobei beide Reibschweißköpfe in X-, Z- und Y-, Z-Richtung im wesentlichen gegenphasig schwingen. Die Erfindung betrifft ferner eine Vorrichtung zur Durchführung des Verfahrens.
Reibschweißverfahren als solche sind an sich bekannt, wobei durch relative Bewegung und gleichzeitigem Druck Reibung erzeugt wird, um die nötige Schweißenergie an den zu verschweißenden Flächen zu erzeugen.
Die Eingangs erwähnten Mehrkopf-Reibschweißverfahren, die für linearsymmetrische und rotationssymmetrische Verschweißungen geeignet sind, werden in der DE 1938099 AI sowie der DE 19938100 AI beschrieben. Bei diesen Reibschweißverfahren finden zur Erzeugung der Relativbewegung in der Fügeebene der aneinander anstoßenden Profilenden Reibschweißgeneratoren Verwendung, wie sie aus der EP 707919 AI bekannt sind. Diese Reibschweißgeneratoren sind in Reibschweißköpfe eingebaut, welche jeweils auf jeder Seite der Fügeebene zweier miteinander zu verschweißender Profilstäbe angeordnet sind. Diese Profilstäbe werden mit Klemmbacken derart festgehalten, daß sie mit ihren Fügeflächen paßgenau aneinander anliegen. Die Reibschweißenergie wird über eine mit der Klemmbacke starr verbundenen Schwingplatte in das Profilstabende eingeleitet, wobei zum Verschweißen die der Fügeebenen zugeordneten Klemmbacken gleichzeitig unter Druck gegeneinander verschoben werden. Der durch die EP 707 919 AI bekannte Schwinggenerator ist mit einem Steuerexzenter und einer Parallelführung ausgerüstet, welche die eingangsseitig von einem Motor gelieferte Rotationsenergie in eine zirkuläre parallel geführte Bewegungsenergie umsetzt. Die zu verschweißenden Profilstabenden werden in exakter Zuordnung zueinander zum Verschweißen aus ihrer Anfangslage durch die von der Schwingplatte auf die Klemmbacken übertragenen gegenphasigen Schwingungsbewegung so lange gegeneinander gerieben bis die Fügeflächen auf die Verschweißungstemperatur aufgeheizt sind. Anschließend werden die Schwinggeneratoren und damit die über die Schwingplatte von dem jeweiligen Schwinggenerator in Schwingung versetzten Klemmbacken mechanisch zwangsgeführt in die Anfangslage zurückgebracht, wobei die Profilstabenden über die Schweißdauer und die Abkühlphase druckbelastet bleiben.
Diese Zurückführung der beiden miteinander zu verschweißenden Profilstabenden in die Anfangslage wird durch die Massenträgheit der Mitnehmerspindel und durch einen Anschlag am Steuerexzenter bewirkt. Daraus ergibt sich als ein Nachteil, daß bei einer großen in der Schweißnaht wirksamen Schubkraft der mit dem Steuerexzenter zusammenwirkende Nocken infolge einer Undefinierten Rückstellkraft eine definierte Rückstellung in die Anfangslage (Nullposition) nicht sicherstellt. Bei einer sehr niederen Schubkraft in der Schweißnaht kann der Nocken nach dem Anschlag in eine Undefinierte Lage zurückprellen.
Der Erfindung liegt deshalb die Aufgabe zugrunde ein Mehrkopf-Reibschweißverfahren und eine für die Durchführung geeignete Vorrichtung zu schaffen, womit Nachteile der bekannten Maßnahmen überwunden werden können. Gleichzeitig soll ein wesentlich einfacherer aufgebauter und damit kostengünstiger Schwinggenerator Verwendung finden.
Für das Mehrkopf-Reibschweißverfahren der Eingangs genannten Art wird diese Aufgabe erfindungsgemäß durch die Merkmale des Anspruchs 1 gelöst.
Eine Mehrkopf-Reibschweißvorrichtung zur Durchführung des Verfahrens wird durch die Maßnahmen des Anspruchs 9 charakterisiert.
Weitere Ausgestaltungen der Erfindung sind Gegenstand von Unteransprüchen. Die sich durch die Maßnahmen der Erfindung ergebenden Vorteile werden im wesentlichen darin gesehen, daß einerseits der Schwingungsgenerator nur mit einem Einfachexzenter und nicht einem komplizierten Doppelexzenter ausgestattet sein muß, wie er bei dem Eingangs erwähnten bekannten Schwingungsgenerator Verwendung findet. Außerdem ist bei der Erfindung keine Rückstellkraft beim Beenden der Schweißphase erforderlich; vielmehr ist eine sichere und definierte Ab- bremsung in die Position der Anfangslage aufgrund der starken für die Verschweißung, insbesondere bei metallischen Formteilen, benötigten Antriebsmotoren gewährleistet, da die volle Motorleistung für die Abbremsung und zur Überwindung der Schubkräfte in der hart werdenden Schweißnaht zur Verfügung steht. Hierfür genügt eine sehr kurze Zeit von einer bis nur mehreren Zehntel Sekunden. Grundsätzlich ergibt sich als großer Vorteil, daß zu jedem Zeitpunkt während des Schweißens und des Abbremsens die Massenmomente ausgeglichen sind.
Die Vorteile und Merkmale der Erfindung ergeben sich auch aus der nachfolgenden Beschreibung eines Ausführungsbeispieles in Verbindung mit den Ansprüchen und der Zeichnung.
Es zeigen:
Fig. 1 eine Draufsicht auf die Reibschweißeinheit mit zwei rechtwinklig zu verschweißenden Profilabschnitten;
Fig. 2 eine Seitenansicht der Reibschweißeinheit in Richtung Nord-Süd der Fig. 1;
Fig. 3A bis 3D eine diagrammatische Ansicht des Achsversatzes der Schwingachsen der beiden Schwingungsgeneratoren eines Reibschweißkopfes in der Fügeebene für eine gleichphasige und eine gegen- phasige Schwingung mit unterschiedlichem Achsversatz;
Fig. 4A Beispiele verschiedener Phasenlagen der in der Fügeebene wirksamen Reibschwingung für einen Achsversatz gemäß Fig. 3A mit einer gleichphasigen Reibschwingung; Fig. 4B ein Diagramm der Schubkomponenten für eine Reibschwingung gemäß Fig. 4A;
Fig. 5A Beispiele verschiedener Phasenlagen der in der Fügeebene wirksamen Reibschwingung für einen Achsversatz gemäß Fig. 3A mit einer gleichphasigen Reibschwingung;
Fig. 5B ein Diagramm der Schubkomponenten für eine Reibschwingung gemäß Fig. 5A;
Fig. 6A bis βD weitere Ausgestaltungen der Erfindung;
Fig. 7 eine Draufsicht auf eine Mehrkopf-Reibschweißvorrichtung zum Verschweißen eines rechtwinkligen Profilrahmens.
In Fig. 1 ist eine Reibschweißeinheit 30 mit zwei Reibschweißköpfen 44 dargestellt, die zum Reibschweißfügen zweier Profilstäbe 1 und 2 mit einer Gehrung von 45° Verwendung findet. Zu diesem Zweck sind die Reibschweißköpfe 44 jeweils mit einer Klemmeinheit 64 versehen, in welcher das jeweilige Ende des Profilstabes verklemmt wird, um über die mit der Klemmeinheit verbundenen Schwingplatte 62 die Schwingungsenergie in die Profilstabenden einzuleiten. Dazu werden die Reibschweißköpfe 44 derart angesteuert, daß die gegenüberliegenden freien Enden der Profilstäbe im wesentlichen gegenphasig schwingen, d. h. daß die Schubvektoren zu jedem Zeitpunkt gegengerichtet sind.
Als Parameter für den Reibschweißvorgang ergeben sich vier Größen, nämlich die Frequenz und die Amplitude der Schwingung sowie der Druck bzw. Zustellgeschwindigkeit und die Zeit, während welcher die beiden Fügeflächen gegeneinander gedrückt werden.
Bezüglich der Frequenz ist für die in die Profilstäbe einzuleitenden Zirkularschwingen vorgesehen, daß diese je nach dem für die Profilstäbe verwendeten Material zwischen 20 Hz und 500 Hz liegt, wobei die Schwingung eine maximale Amplitude von vorzugsweise weniger als 3 mm hat. Für das Verfestigen der Verschweißung, d.h. wenn z.B. bei Kunststoff die Bearbeitungstemperatur für spanende Bearbeitung erreicht ist, wird von einer Zeitdauer von weniger als 30 Sekunden ausgegangen. Innerhalb dieser Werte sind erhebliche Unterschiede je nach dem für die Profilstäbe 1 und 2 verwendeten Material gegeben. Bei der Verwendung thermoplastischer Kunststoffe (PVC) mit einem E-Modul von ca. 2800 Nm bei Raumtemperatur wird erwartet, daß bei einer Schwingungsfrequenz etwa 120 Hz und einer Amplitude etwa 0,6 mm der Schweißvorgang bereits nach wenigen Sekunden abgeschlossen werden kann. Diese Bedingungen wirken sich auch sehr günstig für die Lärmvermeidung aus.
Die mit einer gegenüber einer Basisplatte 31 drehbar auf der Drehscheibe 32 aufgebaute Reibschweißeinheit 30 kann mit Hilfe einer Fixierschraube 33 in Schwenkpositionen festgehalten werden. Auf der Drehscheibe 32 ist eine Montageplatte 35 befestigt, die bezüglich der Fig. 2 in Nord-Süd-Richtung mit Hilfe eines Achszylinders 37 und einer zugeordneten Schubwelle 36, welche an der Montageplatte angreift, entlang der Führungsschäfte 38 in Kugelbuchsenführungen 39 (Fig. 2) vor- und zurückschiebbar ist.
Auch auf der Montageplatte 35 sind seinerseits Schieber 40 in Profilschienenführungen mit Bezug auf Fig. 1 in Ost-West-Richtung verschiebbar. Diese Verschiebung erfolgt mit Hilfe von Achszylindern 50, welche an Montagewänden 51 auf beiden Seiten der Montageplatte 35 befestigt sind. Die zur Führung an der Montagewand 51 befestigten Führungsschäfte 53 dienen dem Zweck, eine kippfreie Verschiebung der Schieber 40 zu gewährleisten. Es sind jedoch auch beliebig andere Schiebevorrichtungen als geeignet anzusehen.
Die für die Reibverschweißung benötigte Schwingungsenergie wird von den Reibschweißköpfen 44 über einer Exzenterwelle 60 und einer Schwingplatte 62 auf die Klemmeinheiten 64 übertragen. Diese Klemmeinheiten haben in der Draufsicht die Form eines rechtwinkligen Dreiecks und sind in Seitenansicht mit einem nicht dargestellten U-förmigen Aufnahmebereich versehen, dessen Basis senkrecht zur Fügeebene verläuft. Die in der Draufsicht dreieckigen oberen und unteren Schenkel des U-förmigen Aufnahmebereichs greifen über die gesamte Breite der zu verarbeitenden Profilstäbe und werden mit Hilfe einer Klemmplatte 68 festgehalten. Die- se Klemmplatte 68 wird mit Profilspannzylinder 69 gegen den eingelegten Profilstab senkrecht verspannbar. Die auf dem jeweiligen Schieber 40 angeordneten Reibschweißköpfe 44 sind abweichend von dem in der EP 707 919 beschriebenen Schwingungsgenerator nur mit einfachen Exzenterwelle 60 ausgerüstet und mit Hilfe einer elektronischen Steuerung leicht zu synchronisieren, und zwar insbesondere auf die Anlauf und die Stopposition, wie noch erläutert wird. Dadurch wird sichergestellt, daß der Reibschweißvorgang mit dem gewünschten Phasenabstand anläuft, und dieser Phasenabstand kontinuierlich beibehalten wird, d. h. die Phasenablage zwischen den einzelnen Reibschweißköpfen 44 sicher eingehalten wird.
Wie aus den Fig. 1 und 2 hervorgeht, sind die Reibschweißköpfe 44 derart auf dem Schieber 40 montiert, daß ein Achsversatz δ zwischen den beiden einander gegenüberliegenden Exzenterwellen Eal und Ea2 einstellbar ist. In der Darstellung gemäß Fig. 1 ist ein horizontaler Achsversatz δ und in der Darstellung gemäß Fig. 2 ein vertikaler Achsversatz δ vorgesehen. Es ist selbstverständlich auch ein Achsversatz in beliebiger Winkellage möglich. Die Verwendung eines vertikalen oder horizontalen Achsversatzes für zwei verschiedene Ausführungsformen ist gleichwirkend und wird je nach Art der Ausgestaltung der zu verschweißenden Formteile ausgewählt. Zum Achsversatz kann eine entsprechende starre Montage zumindest eines Reibschweißkopfes auf dem Schieber 40 vorgesehen sein. Es ist jedoch auch eine gesteuerte Verschiebbarkeit der Reibschweißkopfe auf beiden Schiebern 40 vorgesehen.
Die vorausstehend beschriebenen Reibschweißeinheiten 30 können auch, wie in Fig. 7 dargestellt, in der bekannten Reibschweißvorrichtung zum Verschweißen eines rechtwinkligen Viereckprofilrahmens Verwendung finden, um die vier Ecken eines Viereckprofilrahmens mit den Stäben 1, 2, 3 und 4 zeitgleich zu verschweißen. Mit der dargestellten Reibschweißvorrichtung können auch Viereckprofilrahmen mit von 90° abweichenden Eckverbindungen verschweißt werden. Dabei sind während des Reibschweißvorgangs die Amplitude, Achsversatz und die Phasenlage der Reibschweißköpfe an den jeweils vier Rahmenecken paarweise so aufeinander abzustimmen, daß sich die von allen Reibschweißköpfen eingeleiteten Kräfte und Drehmomente während des Schweißvorgangs kompensieren. In den Fig. 3A bis 3D sind ist in schematischer Darstellung der Achsversatz δ bezüglich der Achsen Eal und Ea2 der Exzenterwellen der Reibschweißköpfe 44 für eine Orbitalschwingung mit kreisförmigen Bahnkurven für gegenläufige und gleichlaufende Phasenvektoren dargestellt.
Grundsätzlich ist für eine optimale Reibung zwischen den Fügeebenen von einem Phasenversatz von 180° bezogen aufeinander gegenüberliegende Bahnpunkte auszugehen. Bei diesem Phasenversatz findet ein maximaler Energieeintrag statt. Es ist natürlich auch ein Phasenversatz <180° vorgesehen, wenn ein reduzierter Energieeintrag wünschenswert ist.
Die Durchführung eines Reibschweißvorgangs wird anhand der Fig. 4A und 4B für eine gleichphasig umlaufende Reibschwingung, d.h. einen linear wirksamen Schub- /Geschwindigkeitsvektor, und anhand der Fig. 5A und 5B für eine gegenphasig umlaufende Reibschwingung, d.h. einen orbital wirksamen Schub-/Geschwindigkeits- vektor, beschrieben, wobei die Phasendifferenz 180° beträgt. In der Darstellung sind die umlaufenden Reibschwingungen d.h. die kinematischen Verhältnisse in der Fügeebene in einer axialen Ansicht von einer Seite aus gesehen.
Für den Reibschweißvorgang werden zunächst die Reibschweißköpfe 44 in Nullposition gebracht, in der die Phasenvektoren auf den beiden einander zugeordneten Bahnkurven auf die mit A bezeichnete Anfangslage der Exzenterwellen weisen. In dieser Stellung werden die Formteile 1 und 2 in die Klemmeinheiten 64 eingespannt, wobei sich die Fügeflächen möglichst paßgenau gegenüberstehen.
Aus dieser Nullposition heraus werden die achsversetzten Exzenterwellen derart in Drehung gesetzt, daß sich die Phasenvektoren für die Fig. 4A und 4B gegenphasig aus der Nullposition heraus bewegen. In den Figuren sind die Positionen der Phasenvektoren jeweils nach einer Drehung von etwa 30° dargestellt. Entsprechendes gilt für die Fig. 5A und 5B. In jeder Position ist Geschwindigkeitsvektor aufgetragen. Eine Überlagerung der Geschwindigkeitsvektoren der Reibschwingung der beiden gegeneinander weisenden Reibschweißköpfe führt zu einer Schubkomponente, welche sich in linearer Parallellage amplitudenmäßig verändern und zu einer linearen Reibbewegung führen, welche bei 0° und 180° zu Null wird. Entspre- chendes gilt für gegenphasige Reibschwingungen, bei denen sich in jeder Position der Phasenvektoren gegengerichtete Geschwindigkeitsvektoren und sich damit orbital umlaufende Schubvektoren d.h. orbital umlaufende Reibbewegungen ergeben.
Aufgrund des Achsversatzes δ von genau einer doppelten Schwingungsamplitude berühren sich die Bahnkurven einmal bei jeder 36θ°-Drehung der Exzenterwellen und bewegen sich danach wieder voneinander weg. Daraus ergibt sich, daß sich die in der Nullposition paßgenau in Deckung befindlichen Fügeflächen an den Randpositionen nicht während des gesamten Reibschweißvorgangs überreiben.
In der Praxis zeigt sich, daß die Reibschweißverbindung bei einem zeitweisen Fehlen der Überdeckung in Randzonen darunter nicht leidet, da bei den üblichen geringen Schweißamplituden von weniger als 1 mm in die Randzone noch genügend Energie eingetragen wird, so daß auch diese sich bis zur Plastifizierungs- phase erwärmt. Das durch die Erwärmung unter dem Fügedruck austretende Schweißgut gewährleistet aufgrund der Wulstbildung eine gute bruchfeste Verschweißung der gesamten Fügefläche.
Die fehlerfreie bruchfeste Verschweißung wird auch dadurch gewährleistet, daß die Exzenterwellen in der Abschaltphase ohne Änderung der Phasenlage synchronisiert abgebremst und in der Nullposition der Reibschweißköpfe, d. h. in der Anfangslage A zum Stillstand gebracht werden. Bei diesem Abbremsen wird die Phasenlage unverändert beibehalten.
Durch die Tatsache, daß die für das Reibschweißen notwendige starke Antriebsleistung auch für das Abbremsen zur Verfügung stehen, ist eine sichere Rückstellung auf Null, d.h. auf die mit der Anfangslage identisch Endlage sichergestellt.
Das kontinuierliche Drehen während der Schweißphase und das Abstoppen in einer bestimmten Stellung der Exzenterwellen, und zwar in diese gemeinsame Endlage E der Bahnkurven erfolgt mit Hilfe elektronischer Regelung, um am Ende des Bremsvorgangs, d. h. quasi während der letzten Umdrehung, wenn die Bewegung praktisch fast auf Null heruntergebremst ist, den Stillstand genau in der Anfangslage A zu gewährleisten. Zu diesem Zweck wird während der Schweiß- und Bremsphase ständig die Phasenlage abgegriffen, und die Abbremsung zumindest während der letzten Umdrehung bis zum Stillstand geregelt.
Dabei ergibt sich auch noch der Vorteil, daß mit Verringerung der Drehfrequenz aufgrund der starken Antriebsmotore ein höheres Moment gefahren werden kann, um die beim Abschalten in der Naht entstehenden höheren Schubmomente zu kompensieren. Da die antriebsstarken Antriebsmotore gleichzeitig als Bremsmotore Verwendung finden, steht für die Bremsphase - wie bereits erwähnt - eine entsprechend große Bremskraft zur Verfügung.
Durch diese geregelte Abbremsung bis zum Stillstand treten keine Materialienhomogenitäten in der Schmelzzone auf, welche bei einer schlagartigen Unterbrechung der eingeleiteten Schwingungsgenergie wie bei dem erwähnten und bekannten Schwingungsgenerator infolge der nicht sicheren Rückstellung auf die Nullposition und dem Rückprellen der Mitnehmerspindel unvermeidbar ist.
In Fig. 6 ist eine weitere Ausgestaltung der Erfindung diagrammatisch dargestellt. Bei dieser Ausführungsform wird der Achsversatz δ während des Reibschweißvorgangs nicht konstant gehalten, sondern nach dem Anfang des Reibschweißvorgangs aus einem Achsversatz δ = 2r, wobei r gleich der Schwingungsamplitude ist, variiert bzw. auf einen Achsversatz von vorzugsweise δ<r verändert. Dadurch wird sichergestellt, daß die fehlende Überdeckung der Randzonen auf eine sehr kurze Zeitspanne während des gesamten Reibschweißvorgangs minimiert wird.
Wie aus der Darstellung gemäß Fig. 6 hervorgeht, ergibt sich durch die Veränderung des Achsversatzes während des Reibschweißvorgangs eine mehr oder weniger große Überdeckung der Reibflächen. Um allerdings den Reibschweißvorgang auf Null abzubremsen, muß die Abbremsung bei einem Achsversatz δ = 2r am Ende des Reibschweißvorgangs auf die Endposition E oder bei einem Achsversatz δ < 2r auf die Endposition E1 erfolgen, in welchem sich die Bahnkurven jeweils schneiden.
Bei dieser geregelten Verstellung des Achsversatzes wird der Phasenversatz der zusammenwirkenden Reibschwingungen beibehalten. Durch diese Verstellbarkeit des Achsversatzes ergeben sich prinzipiell vier wesentliche Möglichkeiten des Reibschweißvorgangs:
1) Bei δ = 2r und einem konstanten Achsveratz sowie konstanten Phasenversatz von 180° stimmt die Anfangslage A mit der Endlage E überein (Fig. 6A, Möglichkeit 1);
2) Bei einem variablen Achsversatz, d.h. δ sowie Anfangsposition A' und Endposition E1 sind variabel, wird der Achsversatz nach Beginn des Reibschweißvorgangs auf δ ~ 0 bei einem ebenfalls konstantem Phasenversatz von 180° und vor dem Ende des Reibschweißvorgangs auf δ = 2r gestellt. Der Reibschweißvorgang wird dann auf die Endposition E1 abgebremst (Fig. 6B, Möglichkeit 2);
3) Der Reibschweißvorgang beginnt mit einem Achsversatz δ ~ 0 und einem konstanten Phasenversatz von 180° in den Anfangspositionen A1. Vor dem Ende des Reibschweißvorgangs wird der Achsversatz auf δ = 2r gestellt und der Vorgang in die Endposition E abgebremst (Fig. 6C, Möglichkeit 3);
4) Der Reibschweißvorgang beginnt mit einem variablen Achsversatz δ in beliebigen Anfangspositionen A der Phasenvektoren jedoch mit einem konstanten Phasenversatz von z.B. 180°. Zum Ende des Reibschweißvorgangs d.h. bis zum abgebremsten Stillstand eines Phasenvektors in einem der die Endposition E1 darstellenden Schnittpunkte der beiden Bahnkurven wird der konstante Phasenversatz beibehalten. Danach wird der zweite Phasenvektor bis in dieselbe Endposition zum Stillstand abgebremst nachgeführt. Wegen der zwei Schnittpunkte der Bahnkurven ergeben sich auch zwei mögliche Endpositionen 1 bzw.2 ( Fig. 6D, Möglichkeit 4).
Für die während der Schweißphase notwendigen zusammenführenden Relativbewegungen der Fügeflächen findet vorteilhafterweise eine Weg-Zeitsteuerung Verwendung, welche die Auslegung der elektronischen Steuerung in Verbindung mit der Phasenregelung während des Schweiß- und Abbremsvorgangs wesentlich vereinfacht. Die Erfindung bietet daher nicht nur den Vorteil des einfacheren Aufbaus der Schwingungsgeneratoren aufgrund des Achsversatzes δ, sondern auch einer einfachen Auslegung der Regel- und Steuervorrichtung während der Schweiß- und Abbremsphasen

Claims

Patentansprüche
1. Mehrkopf-Reibschweißverfahren zum gleichzeitigen Verschweißen der Fügeflächen von Formteilen, wobei die einzelnen Formteile beiderseits benachbart zu den Fügeflächen in Reibschweißköpfen paßgenau aufeinander ausgerichtet festgespannt und die Fügeflächen gegeneinander gedrückt werden, sowie jeweils die freien Enden der Formteile beiderseits der Fügeflächen mit Hilfe von in den Reibschweißköpfen sich drehenden Exzenterwellen in Schwingung versetzt werden, und wobei beide Reibschweißvektoren der freien Enden der Formteile bzw. Reibschweißköpfe in X-, Z- und Y-, Z-Richtung im wesentlichen gleich- oder gegenphasig schwingen, dadurch gekennzeichnet,
- daß der Reibschweißvorgang mit einem konstanten Phasenversatz von < 180° verläuft;
- daß die Achsenposition (Eal, Ea2) der Exzenterwellen (60) der Reibschweißköpfe (44) zu Beginn des Reibschweißvorgangs in eine vorgegebene Anfangsposition zwischen einer Achsüberdeckung (δ = 0) bis zu einem Abstand von der Größe zweier Schwingungsamplituden (δ = 2r) eingestellt wird;
- daß der Reibschweißvorgang mit einem Achsversatz zwischen δ = 0 bis δ = 2r beginnt und mit einem Achsversatz von δ < 2r beendet wird, wobei die Exzenterwellen zum Ende der Reibschweißphases derart gesteuert abgebremst werden, daß die umlaufenden Phasenvektoren der Schwingungen der beiden Reibschweißköpfe in einer gemeinsamen Endposition zum Stillstand kommen.
2. Mehrkopf-Reibschweißverfahren nach Anspruch 1, dadurch gekennzeichnet,
- daß der Achsversatz während des gesamten Reibschweißvorgangs auf δ = 2r eingestellt wird, sodaß die Reibschweißvektoren von der gemeinsamen Anfangsposition (A) ausgehen und sich am Ende des Reibschweißvorgangs wieder in derselben Position (Endposition E) treffen.
3. Mehrkopf-Reibschweißverfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Achsversatz δ für des gesamten Reibschweißvorgangs bei konstantem Phasenversatz variabel verändert wird, wobei der Achsversatz nach Beginn des Reibschweißvorgangs für die aktive Reibperiode auf δ ~ 0 gestellt und am Ende des Reibschweißvorgangs zurück in den Achsversatz δ = 2r gesteuert wird.
4. Mehrkopf-Reibschweißverfahren nach Anspruch 1, dadurch gekennzeichnet,
- daß daß der Reibschweißvorgang mit einem Achsversatz von δ ~ 0 und einem konstanten Phasenversatz beginnt und erst vor dem Ende des Reibschweißvorgangs auf einen Achsversatz von δ = 2r gestellt wird.
5. Mehrkopf-Reibschweißverfahren nach Anspruch 1, dadurch gekennzeichnet,
- daß der Reibschweißvorgang mit einem Achsversatz zwischen δ = 2r und δ ~ 0 beginnt und dieser Achsversatz während dem ganzen Reibschweißvorgang beibehalten wird,
- daß der konstante Phasenversatz bis zum Ende des Reibschweißvorgangs bzw. bis zum abgebremsten Stillstand eines Phasenvektors in einen die Endposition E' darstellenden Schnittpunkt der beiden Bahnkurven beibehalten wird, und daßder zweite Phasenvektor zum Stillstand bis in dieselbe Endposition abgebremst nachgeführt wird.
6. Mehrkopf-Reibschweißverfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet,
- daß die Schwingungsamplitude auf eine Größe zwischen 0,1 mm und der Fügeflächenbreite bzw. Fügeflächenlänge, vorzugsweise auf etwa 3 mm, eingestellt werden.
7. Mehrkopf-Reibschweißverfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, - daß es zum Verschweißen von Tür- und Fensterprofilrahmen aus Kunststoff- oder Metallprofilen Verwendung findet.
8. Mehrkopf-Reibschweißverfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet,
- daß die Schwingungsfrequenz der Reibschweißköpfe auf einen Wert zwischen 15 Hz und 500 Hz bei einer Amplitude von <5 mm eingestellt wird, und daß die Formteile für weniger als 40 Sekunden mit der Schwingungsfrequenz aneinander gerieben werden.
9. Mehrkopf-Reibschweißvorrichtung mit mehreren, vorzugsweise vier auf einem Maschinenbett (80) zustellbar angeordneten Reibschweißeinrichtungen (30) zum Verschweißen der Fügeflächen offener oder geschlossener Formteilrahmen zur Durchführung des Verfahrens nach einem oder mehreren der Ansprüche 1 bis 4, wobei jede Reibschweißeinheit (30) aus zwei Reibschweißköpfen (44) besteht, deren Schwingplatten (62) jeweils mit einer Klemmeinheit (64) fest verbunden sind, in welcher jeweils ein freies Ende eines Formteils verspannbar ist, wobei ferner die zwei einer Fügeebene zugeordneten Reibschweißköpfe (44) mit ihren Klemmeinheiten (64) auf einer Montageplatte (35) derart gegeneinander verfahrbar montiert sind, daß sie gegen die Fügeebene zustellbar sind, dadurch gekennzeichnet,
- daß die Reibschweißköpfe derart achsversetzt positionierbar sind, daß die Achsen der Exzenterwellen (Eal, Ea2) in eine Achsüberdeckung (δ = 0) bis zweimal der Schwingungsamplitude (δ = 2r) gegeneinander verstellbar sind und sich die Bahnkurven der Phasenvektoren zumindest in der Endposition beim Stillstand in einer gemeinsamen Position auf ihren Bahnkurven treffen.
10. Mehrkopf-Reibschweißvorrichtung nach Anspruch 9, dadurch gekennzeichnet,
- daß der Achsabstand (δ) zwischen 0,1 mm und der Fügeflächenbreite bzw. Fügeflächenlänge, vorzugsweise jedoch auf etwa 3 mm, einstellbar ist.
11. Mehrkopf-Reibschweißvorrichtung nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, - daß die Vorrichtung zur Verschweißung der Fügeflächen offener und geschlossener Formteilrahmen Verwendung findet, wobei jede Fügefläche einer Reibschweißeinheit (30) zugeordnet ist.
PCT/EP2004/008050 2003-07-18 2004-07-19 Mehrkopf-reibschweissverfahren und vorrichtung zur durchführung des verfahrens WO2005009664A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04741138A EP1648648B1 (de) 2003-07-18 2004-07-19 Mehrkopf-reibschweissverfahren und vorrichtung zur durchführung des verfahrens
DE502004004969T DE502004004969D1 (de) 2003-07-18 2004-07-19 Mehrkopf-reibschweissverfahren und vorrichtung zur durchführung des verfahrens
US11/335,087 US20060113358A1 (en) 2003-07-18 2006-01-18 Multihead friction welding method and device for carrying out the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10332824A DE10332824A1 (de) 2003-07-18 2003-07-18 Mehrkopf-Reibschweißverfahren und Vorrichtung zur Durchführung des Verfahrens
DE10332824.6 2003-07-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/335,087 Continuation-In-Part US20060113358A1 (en) 2003-07-18 2006-01-18 Multihead friction welding method and device for carrying out the method

Publications (1)

Publication Number Publication Date
WO2005009664A1 true WO2005009664A1 (de) 2005-02-03

Family

ID=34041948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/008050 WO2005009664A1 (de) 2003-07-18 2004-07-19 Mehrkopf-reibschweissverfahren und vorrichtung zur durchführung des verfahrens

Country Status (5)

Country Link
US (1) US20060113358A1 (de)
EP (1) EP1648648B1 (de)
AT (1) ATE372851T1 (de)
DE (2) DE10332824A1 (de)
WO (1) WO2005009664A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932650A1 (de) * 2006-12-12 2008-06-18 Branson Ultraschall Verfahren und Vorrichtung zum Herstellen von Gehrungs-Eckverbindungen durch Vibrationsschweissen
EP1932642A1 (de) * 2006-12-12 2008-06-18 Fentech AG Verfahren zum Verbinden von Holzteilen
EP2179837A2 (de) 2008-10-27 2010-04-28 Murat Makina Sanayi Ve Ticaret Limited Sirketi Profilverbindungssystem

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1395851B1 (it) * 2009-09-30 2012-10-26 Sirius Electric S R L Saldatrice a vibrazione.
DE102010034393A1 (de) 2010-08-13 2012-02-16 Hochschule Magdeburg-Stendal (Fh) Verfahren und Vorrichtung zum Fügen eines ersten Werkstücks mit einem zweiten Werkstück durch Reibschweißen
EP2788141B1 (de) 2011-12-05 2019-09-18 Apci Llc Vorrichtung für lineares reibschweissen
CA2854974C (en) 2011-12-05 2018-03-06 Apci, Llc Apparatus for linear friction welding
WO2013085942A1 (en) * 2011-12-05 2013-06-13 Apci, Llc Linear friction welding method
JP6530882B2 (ja) * 2012-12-27 2019-06-12 高周波熱錬株式会社 ラック製造装置及びラック製造方法
CN103302395B (zh) * 2013-04-26 2016-06-08 邹志峰 一种多焊头焊接设备
JP6343431B2 (ja) * 2013-06-03 2018-06-13 高周波熱錬株式会社 ラック製造方法及び中空ラックバー
US9308687B2 (en) * 2013-07-01 2016-04-12 Pavlo Barlasov Method and apparatus for high speed plastic strapping welding
US10336002B2 (en) * 2013-07-01 2019-07-02 Pavlo Barlasov Method and apparatus for high speed plastic strapping welding
CN103817474B (zh) * 2013-11-21 2015-12-02 惠州市毅隆机电设备有限公司 一种数控全自动铝包木门窗定位成型焊接机
US10099313B2 (en) 2015-08-07 2018-10-16 Apci, Llc Linear friction welding system with phase change assembly
CN108290600B (zh) * 2015-11-04 2020-09-01 高周波热錬株式会社 制造齿杆的方法
US10737353B2 (en) 2018-09-19 2020-08-11 Apci, Llc Torque controlled linear friction welder system
US10850347B2 (en) 2018-09-19 2020-12-01 Apci, Llc Linear friction welding system with pre-heating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1481215A (en) * 1975-05-14 1977-07-27 Clarke Chapman Ltd Friction welding
DE19938100A1 (de) * 1999-08-12 2001-02-15 Exama Maschinen Gmbh Mehrkopf-Reibschweißverfahren

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436857C2 (de) * 1994-10-17 2003-06-18 Willi Fischer Schwingschweißkopf zum Reibschweißfügen oder Entgraten technischer Bauteile, Rohre oder Profile
WO1996022875A1 (en) * 1995-01-27 1996-08-01 Andersen Corporation Vibratory welded window and door joints, method and apparatus for manufacturing the same
DE19938099A1 (de) * 1999-08-12 2001-02-15 Exama Maschinen Gmbh Mehrkopf-Reibschweissverfahren und Vorrichtung zur Durchführung des Verfahrens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1481215A (en) * 1975-05-14 1977-07-27 Clarke Chapman Ltd Friction welding
DE19938100A1 (de) * 1999-08-12 2001-02-15 Exama Maschinen Gmbh Mehrkopf-Reibschweißverfahren

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1932650A1 (de) * 2006-12-12 2008-06-18 Branson Ultraschall Verfahren und Vorrichtung zum Herstellen von Gehrungs-Eckverbindungen durch Vibrationsschweissen
EP1932642A1 (de) * 2006-12-12 2008-06-18 Fentech AG Verfahren zum Verbinden von Holzteilen
WO2008071395A1 (de) * 2006-12-12 2008-06-19 Branson Ultraschall Verfahren und vorrichtung zum herstellen von gehrungs-eckverbindungen durch vibrationsschweissen
WO2008071390A1 (de) * 2006-12-12 2008-06-19 Fentech Ag Verfahren zum verbinden von holzteilen
US8066835B2 (en) 2006-12-12 2011-11-29 Branson Ultraschall Method and apparatus for the production of mitered corner joints by vibration welding
EP2179837A2 (de) 2008-10-27 2010-04-28 Murat Makina Sanayi Ve Ticaret Limited Sirketi Profilverbindungssystem
EP2179837A3 (de) * 2008-10-27 2011-04-13 Murat Makina Sanayi Ve Ticaret Limited Sirketi Profilverbindungssystem

Also Published As

Publication number Publication date
ATE372851T1 (de) 2007-09-15
EP1648648B1 (de) 2007-09-12
EP1648648A1 (de) 2006-04-26
US20060113358A1 (en) 2006-06-01
DE502004004969D1 (de) 2007-10-25
DE10332824A1 (de) 2005-02-10

Similar Documents

Publication Publication Date Title
EP1648648B1 (de) Mehrkopf-reibschweissverfahren und vorrichtung zur durchführung des verfahrens
EP1207994B1 (de) Mehrkopf-reibschweissverfahren
EP3389912B1 (de) Linearreibschweissmaschine
EP1656231A1 (de) Orbital-reibschweissverfahren und vorrichtung zur durchführung des verfahrens
AT514821B1 (de) Biegepresse und Biegeverfahren
EP0421019A1 (de) Verfahren und Vorrichtung zum Fügen von Kunststoffteilen durch Ultraschall
DE102011006506B4 (de) Ultraschall-Heißsiegelverfahren mit Siegel-Druckregelung
EP1338404B1 (de) Vorrichtung und Verfahren zum Schweissen von Kunststoffprofilen
EP1642700B1 (de) Verfahren und Vorrichtung zum Bewegen einer Schweissbacke
WO2001012421A1 (de) Mehrkopf-reibschweissverfahren und vorrichtung zur durchführung des verfahrens
EP2447043A2 (de) Verfahren zur energieeffizienten Siegelung von Schlauchbeuteln
EP1561567B1 (de) Vorrichtung und Verfahren zum Verschweissen von Kunststoffprofilen zu einem Rahmenteil
EP3556540B1 (de) Vibrationsschweissvorrichtung, verfahren zum verbinden von mindestens zwei länglichen bauteilen mittels vibrationsschweissen sowie ein herstellungsverfahren für die vibrationsschweissvorrichtung
EP1447167A1 (de) Verfahren und Vorrichtung zum Reibschweissen von Fügeflächen zweier Formteile
DE102007035962B4 (de) Verfahren zur Bildung einer Schweißverbindung
DE4431989A1 (de) Schweißmaschine zur Verbindung zweier Dünnbleche und Schweißverbindung
DE10129429C2 (de) Vorrichtung zur Schneidbearbeitung eines bahnförmigen Werkstücks
EP1495976B1 (de) Vorrichtung zum Verschweissen eines Folienschlauches
DE102010034393A1 (de) Verfahren und Vorrichtung zum Fügen eines ersten Werkstücks mit einem zweiten Werkstück durch Reibschweißen
EP1854606B1 (de) Korpuspresse
WO2002092268A2 (de) Schneidaggregat für eine durchlaufmaschine
EP1138409B1 (de) Formwerkzeug für nach dem Innenhochdruck-Umformen herzustellende hohle Bauteile aus zwei Blechplatinen
DE102004049376A1 (de) Verfahren und Vorrichtung zum Erzeugen einer Schweißkraft
WO2008071395A1 (de) Verfahren und vorrichtung zum herstellen von gehrungs-eckverbindungen durch vibrationsschweissen
DE102005032020B4 (de) Verfahren zum Reibschweißen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11335087

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004741138

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004741138

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11335087

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004741138

Country of ref document: EP