WO2005008059A1 - Brennstoffeinspritzventil für brennkraftmaschinen - Google Patents

Brennstoffeinspritzventil für brennkraftmaschinen Download PDF

Info

Publication number
WO2005008059A1
WO2005008059A1 PCT/CH2004/000451 CH2004000451W WO2005008059A1 WO 2005008059 A1 WO2005008059 A1 WO 2005008059A1 CH 2004000451 W CH2004000451 W CH 2004000451W WO 2005008059 A1 WO2005008059 A1 WO 2005008059A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection valve
valve seat
housing
fuel injection
valve member
Prior art date
Application number
PCT/CH2004/000451
Other languages
English (en)
French (fr)
Inventor
Marco Ganser
Original Assignee
Ganser-Hydromag Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ganser-Hydromag Ag filed Critical Ganser-Hydromag Ag
Priority to AT04738091T priority Critical patent/ATE440216T1/de
Priority to DE502004009930T priority patent/DE502004009930D1/de
Priority to EP04738091A priority patent/EP1649160B1/de
Publication of WO2005008059A1 publication Critical patent/WO2005008059A1/de
Priority to US11/331,201 priority patent/US20060113406A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0205Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine
    • F02M63/0215Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine by draining or closing fuel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials
    • F02M2200/9053Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting

Definitions

  • the present invention relates to a fuel injection valve for intermittent fuel injection into the combustion chamber of internal combustion engines.
  • Such fuel injectors are disclosed in O-A-02/086309.
  • valves in the feed lines to the fuel injection valves for limiting the flow rate in fuel injection systems in which fuel is supplied to the individual fuel injection valves from a high-pressure fuel accumulator (accumulator or Com on Rail) (see, for example, DE- A-43 44 190; DE-A-22 07 643; US-A-4, 589, 393).
  • accumulator accumulator or Com on Rail
  • These flow limit valves block the fuel flow in the event of a malfunction of the fuel injection valves.
  • the valve seat part is designed as a nozzle body which is separate from the valve housing and which is provided with the injection openings and the valve seat for the injection valve member.
  • This nozzle body is attached to the housing by means of a welded connection. Since the nozzle body is made of a different, usually more wear-resistant material than the housing, problems with welding can arise due to the different material properties.
  • the welded connection is subjected to a great deal of stress on the one hand by the high system pressure prevailing in the fuel injection valve and on the other hand by the impact of the injection valve member on the nozzle body when it is being closed. Therefore, very high demands have to be made on the quality of the welded joint.
  • the injection valve member of the fuel injection valves described in the mentioned WO-A-02/086309 is also subjected to strong mechanical stresses at its end facing the valve seat part or nozzle body, for the same reasons as mentioned above in connection with the valve seat part or the nozzle body. This is particularly the case when the nozzle body is made of a more wear-resistant material than the injection valve member.
  • the present invention is based on the object of being able to connect the latter to the housing in a simple and reliable manner in a fuel injector of the type mentioned at the outset with a nozzle body which is separate from the housing.
  • valve seat part provided on the outside with a conical seat surface can be brought from the inside of the housing into contact with the likewise conical contact surface on the housing.
  • the valve seat part is held firmly and sealingly in the housing.
  • the present invention is also based on the object of increasing the service life of the injection valve member in a fuel injector of the type mentioned in the simplest and cheapest possible way.
  • the end of the injection valve member which interacts with the valve seat part is designed as a separate insert part, it is possible to produce this insert part from a more wear-resistant material than the remaining part of the injection valve member.
  • 1 is a longitudinal section of the lower part of a fuel injector
  • Fig. 6 in a representation corresponding to Fig. 1 shows a fourth embodiment of a fuel injector.
  • the fuel injector 1 shown schematically in FIG. 1, "of which only the lower part is shown, has a housing 2 which is formed by an upper housing part, not shown, a lower housing part 2a and a valve seat element 2b.
  • the valve seat element 2b is by means of a retaining element 3 designed as a clamping nut is tightly connected to the lower housing part 2a.
  • a valve seat part 4 is held in the valve seat element 2b, which is designed as a nozzle body 4a separate from the valve seat element 2b and has a valve seat 5 and injection openings 6.
  • the valve seat part 4 can also be formed in one piece with the valve seat element 2b, as is shown, for example, in FIGS. 1 and 2 of the already mentioned WO-A-02/086309.
  • This high-pressure chamber 8 is connected to a high-pressure fuel inlet in a manner not shown and extends to the valve seat 5.
  • an injection valve member 9 Arranged in the interior of the housing 2, ie in the bore 7, is an injection valve member 9, which is designed as a valve needle and is coaxial with the longitudinal axis A of the housing and which, in the closed position shown in FIG closure.
  • the injection valve member 9 is lifted off the valve seat 5 by means of a control device (not shown).
  • the injection valve member 9 is guided with a guide part 9b by means of a close sliding fit in the valve seat element 2b.
  • its guide part 9b is provided with abutment surfaces 10.
  • the injection valve member 9 is pressed down by a closing spring 11 in the closing direction of the injection valve member 9.
  • the closing spring 11 is supported at its end shown in FIG.
  • the fuel injection valve 1 shown in FIG. 1 corresponds to the fuel injection valves which are shown and described in the previously mentioned WO-A-02/086309. For this reason, reference is made to this WO-A-02/086309 for a precise explanation of the structure and the mode of operation of the fuel injection valve 1.
  • Fuel injector 1 according to FIG. 1 has a flow rate limiting valve 14 arranged in the interior of the high-pressure chamber 8.
  • the flow rate limiting valve 14 includes a valve body 15 which is coaxial with the longitudinal axis A of the housing and is accommodated in a valve chamber 16 which forms part of the high-pressure chamber 8.
  • the valve body 15 has a U-shaped cross section and consists of a cylindrical bottom part 15a and an annular part 15b which is coaxial with the bottom part 15a and which is open towards the valve seat 5.
  • the valve body 15 is guided with its bottom part 15a through a guide section 9c of the injection valve member 9 with a close sliding fit.
  • the base part 15a is acted upon by the fuel pressure prevailing in the high-pressure chamber 8.
  • annular gap 18 is formed, the width of which is preferably 0.03-0.2 mm.
  • the valve body 15 is adjustable between an open position (upper end position) and a closed position (lower end position). In the open position, the valve body 15 bears with its end face 19 against an annular stop face 20 which is formed in the lower housing part 2a. On this end face 19 opposite end of the valve body 15 is provided with a conical sealing surface 21 which cooperates in the closed position of the valve body 15 with a likewise conical seat surface 22 in the valve seat element 2b. Both the sealing surface 21 and the seat surface 22 are formed by sections of lateral surfaces of circular cones which have approximately the same opening angle.
  • the sealing surface 21 and the seat surface 22 can also be designed as flat surfaces which run at right angles to the longitudinal axis A of the housing.
  • the valve body 15 is loaded by a spring element 23 which acts in the opening direction and is designed as a compression spring.
  • This spring element 23 runs in the interior of the annular part 15b and is supported on the bottom part 15a of the valve body 15. At the other end, the spring element 23 is supported on a support surface 24 which is formed in the valve seat element 2b.
  • the mode of operation of the flow rate limiting valve 14 is similar to the mode of operation of the check valves shown there in DE-A-43 44 190.
  • the valve body 15 assumes its open position in the normal operating state between the injection processes. If, during an injection process, the injection openings 6 are released by lifting the injection valve member 9 from the valve seat 5, a pressure drop occurs on the injection side, which causes the valve body 15, which is subjected to the high operating pressure on its end face 19, to move against the force of the spring element 23 from the open position to the closed position , However, the valve body 15 does not move into its closed position.
  • the injection valve member 9 closes the injection openings 6 the valve body 15 comes to a stop in an intermediate position between its open position and its closed position. In this intermediate position, fuel flows in via the annular gap 18. Due to the rising pressure on the side of the valve body 15 facing the valve seat part 4 and under the action of the spring element 23, the valve body 15 moves back into its open position.
  • both the sealing surface 21 on the valve body 15 and the seat surface 22 on the valve seat element 2b are designed as sections of lateral surfaces of circular cones, the opening angles of which are designed such that a self-locking effect occurs when the valve body 15 is in the closed position.
  • these circular cones have a half opening angle of 2 ° - 7 °.
  • the annular part 15b of the valve body 15 has a relatively large wall thickness.
  • the valve body 15 is now in its closed position and prevails in the high-pressure chamber 8 upstream of the seat surface 22, i.e. thus also in the annular gap 18, the high fuel pressure (e.g. 2000 bar and more), the annular part 15b is pressed together in the radial direction. If the feed pressure drops, the annular part 15b widens again, which results in the valve body 15 jamming on the conical seat surface 22.
  • An engine with a fuel injector 1 with an integrated flow rate limiting valve 14 can thus be stopped and started again without a defective fuel injector 1 leading to an engine overload.
  • the engine therefore has emergency running properties even after a stop.
  • the annular gap 18 forms a fuel flow connection in the intermediate positions of the valve body 15.
  • Such can also be done in another way, for example by at least one longitudinal groove extending in the direction of the longitudinal axis A of the housing the outside of the valve body 15 or in the wall 16a of the valve chamber.
  • the valve body 15 can also have a cross-sectional shape other than that shown and e.g. have a T-shaped cross section.
  • the annular part adjoining the base part 15a unlike as shown in FIG. 1 — has a smaller diameter than the base part 15a and, like the base part 15a, is guided through the guide section 9c of the injection valve member 9.
  • the valve body 15 thus has a guide bore penetrating both the bottom part 15a and the annular part, through which the injection valve member 9 runs with a close sliding fit.
  • the fuel flow connection mentioned above can also be formed by a passage in the valve body 15 itself in this embodiment of the valve body 15.
  • the leakage liquid is prevented from passing through the narrow sliding fit, because the annular part of the valve body 15 in the closed position of the valve body 15 is subject to both the high pressure acting on its cylindrical outer surface and the force acting in the radial direction the wedged conical surfaces 21 and 22 are deformed and pressed against the injection valve member 9.
  • the valve body 15 can be designed with a smaller diameter, so that the wall thickness of the lower housing part 2a can be greater and its wall can be more pressure-resistant.
  • valve seat part 4 held in the valve seat element 2b is one of the valve seat element 2b separate nozzle body 4a formed.
  • FIG. 2 shows the injection-side end of the fuel injection valve 1 on an enlarged scale.
  • the nozzle body 4a is made of a much harder material than the housing 2 - of the fuel injector 1, in order to keep the wear and tear smaller extend the life of the fuel injector 1. Since the material used to manufacture the nozzle body 4a is very expensive, the nozzle body 4a is made very small for cost reasons.
  • the outside of the nozzle body 4a has a conical seat surface 26, which is formed by a section of the lateral surface of a straight circular cone, the axis of which coincides with the longitudinal axis A of the housing.
  • This seat surface 26 the nozzle body 4a rests on a likewise conical support surface 27, which is formed in the valve seat element 2b.
  • This contact surface 27 is also formed by a section of the lateral surface of a straight circular cone, the axis of which coincides with the longitudinal axis A of the housing.
  • the half opening angles 28 of the two circular cones forming the seat surface 26 and the support surface 27 are selected such that the nozzle body 4a is held in the valve seat element 2b in a self-locking and sealing manner. These half opening angles 28 are 2 ° - 7 °.
  • the nozzle body 4a is inserted into the valve seat element 2b from above during assembly.
  • both the valve seat 5 and the seat surface 26 are formed in the same clamping of the nozzle body 4a by grinding.
  • a guide surface 2 1 for guiding the guide part 9b of the injection valve member 9 and the bearing surface 27 are ground on the valve seat element 2b in the same clamping of the valve seat element 2b thereon.
  • the grinding tool grinding mandrel is preferably from the side of the support surface
  • the seat surface 22 is located in the lower housing part 2a.
  • the valve body 15 is installed in the housing 2 from above.
  • the stop surface 20 and the holding element 3 are omitted.
  • a stop element can be installed in the housing part 2a after the valve body 15 has been installed, e.g. a snap ring or circlip (Seegerring or the like).
  • the end face 19 of the valve body 15 could be supported on the underside of the support ring 12. Then the force of the spring element 23 would be passed up to the support ring 12. This would reduce the force of the closing spring 11 acting in the closing direction of the injection valve member 9 before the start of an injection process, which can be advantageous in certain cases.
  • the housing part 2a and the valve seat element 2b can also be made in one piece and form part of the housing 2.
  • the clamping nut 3 can be omitted.
  • the machining of the guide surface 2 'and the support surface 27 from the side of the support surface 27 is particularly advantageous.
  • the described inventive design of the nozzle body 4a is also possible with fuel injection valves in which the fuel is supplied to the valve seat 5 via a feed channel which is laterally offset with respect to the longitudinal axis A of the housing (instead of via the central high-pressure chamber 8 as shown).
  • valve seat part 4 which is designed as a separate nozzle body 4a, is produced from a more wear-resistant (harder) material than the housing 2, which extends the life of the valve seat part 4.
  • FIGS. 2-5 embodiments of fuel injection valves 1 are shown, in which the service life of the injection valve member 9 is also extended.
  • the tip 9a of the injection valve member 9 is formed by an insert part 30 which is connected or coupled to the adjoining section 9 'of the injection valve member 9 for a common movement and one on the conical valve seat 5 for contact Coming sealing surface 31 has.
  • the insert part 30 consists of a harder, more wear-resistant, but also more expensive material than the rest of the injection valve member 9. It is therefore desirable to keep this insert part 30 as small as possible.
  • the insert part 30 has a cylindrical shape and engages in an opening 32 in the adjacent section 9 'of the injection valve member 9. So that the insert part 30 can be replaced if necessary, it is held with a press fit in the opening 32.
  • the insert part 30 has smaller dimensions than the insert part 30 according to FIG. 2 and has a sealing body 33 and a holding part 34 with a smaller diameter, which is integral with the sealing body 33.
  • the sealing body 33 is provided with the sealing surface 31 and projects beyond the adjacent area 9 'of the injection valve member 9, while the holding part 34 engages in the opening 32 in this adjacent section 9' of the injection valve member 9 and is held therein with an interference fit.
  • the holding part 34 which is also integral with the sealing body 33, is provided with a recess 35, into which an extension 36 engages on the adjacent section 9 ′ of the injection valve member 9.
  • the insert part 30 is held on the extension 36, also by means of a press fit.
  • FIG. 5 shows an embodiment in which the insert part 30 is designed as a spherical body which engages in a recess 37 in the adjacent section 9 'of the injection valve member 9.
  • the side wall 37a of the recess 37 is formed by a section of the lateral surface of a straight circular cone, the axis of which coincides with the longitudinal axis A of the housing.
  • the insert part 30 lies with an essentially linear contact surface 38 on the side wall 37a of the recess 37 which diverges towards the valve seat 5.
  • the diameter this contact surface 38 is denoted by Dl.
  • the insert part 30 is provided with a flat surface 39 which lies opposite this base surface 37b.
  • the insert part 30 is also provided with a through-bore 40 which is coaxial with the longitudinal axis A of the housing and connects the space 41 between the base surface 37b of the recess 37 and the flat surface 39 of the insert part 30 with a space 42 which, viewed in the direction of flow of the fuel, downstream of the valve seat 5 lies and communicates with the combustion chamber of the engine via the injection openings 6.
  • the spherical insert part 30 has an essentially linear sealing surface 31 ', the diameter of which is denoted by D2. This diameter D2 is smaller than the diameter D1 of the contact surface 38 with which the insert part 30 rests on the wall 37a of the recess 37.
  • the insert part 30 lies loosely in the recess 37, ie it is not firmly connected to the adjacent section 9 'of the injection valve member 9.
  • the insert part 30 follows the adjacent section 9 'of the injection valve member 9, for the following reasons:
  • the pressure is in room 41 much lower than the system or operating pressure. Because of this pressure difference and the mentioned differences in the diameters D1 and D2, the insert part 30 is pressed into the recess 37 and thus pressed against the adjacent section 9 'of the injection valve member 9.
  • tip 9a of the injection valve member 9 can also be formed as a separate insert part 30 if the fuel valve 1 is not designed with a flow limiting valve 14 and regardless of whether the valve seat part 4 is formed by the housing 2 and / or by the valve seat element 2b separate nozzle body 4a is formed or is in one piece with the housing 2.
  • FIG. 6 schematically shows the lower part of a fourth embodiment of a fuel injection valve 1, in which FIG. 6 the same reference numerals are used for those parts which correspond to parts of the embodiments shown in FIGS. 1 and 2 as in FIGS. 1 and 2 ,
  • the valve seat part 4 is held in the housing 2.
  • the valve seat part 4 has at its end opposite the valve seat 5 on its outside a conical seat surface 43 which is formed by a section of the lateral surface of a straight circular cone, the axis of which coincides with the longitudinal axis A of the housing.
  • the valve seat part 4 rests on a likewise conical bearing surface 44, which is formed in the housing 2.
  • This bearing surface 44 is likewise formed by a section of the lateral surface of a straight circular cone, the axis of which coincides with the longitudinal axis A. of the housing.
  • the half opening angles 45 of the two circular cones forming the seat surface 43 and the support surface 44 are selected such that the valve seat part 4 is held in the housing 2 in a self-locking and sealing manner. These half opening angles 45 are 2 ° - 7 °.
  • the valve seat part 4 like the nozzle body 4a of the embodiments according to FIGS. 1 and 2, is made of a much harder material than the housing 2 of the fuel injector 1 in order to keep the wear down and thus to extend the service life of the fuel injector 1.
  • valve seat part 4 is inserted into the housing 2 from above.
  • the valve seat part 4 is designed as an elongate component and has an outside diameter that is smaller than the outside diameter of the housing 2. In the embodiment according to FIG. 6, the outside diameter of the lower end of the fuel injection valve 1 is therefore smaller than in the embodiment according to FIG. 1 and 2.
  • the injection valve member 9 is guided in the valve seat part 4. Accordingly, the wall 46 of the inner bore 47 of the valve seat part 4 is designed as a guide surface for the guide part 9b of the injection valve member 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Der untere Teil eines länglichen Gehäuses ist als Ventilsitzelement (2b) ausgebildet, in dem ein Ventilsitzteil (4) gehalten ist. Dieser Ventilsitzteil (4) weist einen mit Einspritzöffnungen (6) versehenen Ventilsitz (5) auf und ist als ein vom Ventilsitzelement (2b) getrennter, mit letzterem verbundener Düsenkörper ausgebildet. Im Gehäuse ist längsverstellbar ein Einspritzventilglied (9) geführt, das zum Verschliessen und Freigeben der Einspritzöffnungen (6) mit dem Ventilsitz (5) zusammenwirkt. Der Ventilsitzteil (4) ist an seiner Aussenseite mit einer, durch die Mantelfläche eines Kreiskegels gebildeten Sitzfläche (26) versehen. Mit dieser Sitzfläche (26) liegt der Ventilsitzteil (4) an einer ebenfalls durch die Mantelfläche eines Kreiskegels gebildeten Auflagefläche (27) am Ventilsitzelement (2b) an. Die halben Oeffnungswinkel (28) der die Sitzfläche (26) und die Auflagefläche (27) festlegenden Kreiskegel sind derart gewählt, dass der Düsenkörper (4) selbsthemmend und dichtend im Ventilsitzelement (2b) gehalten sind.

Description

Brennstoffeinspritzventil für Brennkraftmaschinen
Die vorliegende Erfindung betrifft ein Brennstoffeinspritzventil zur intermittierenden Brennstoffeinspritzung in den Brennraum von Brennkraftmaschinen. Derartige Brennstoffeinspritzventile sind in der O-A-02/086309 offenbart.
Bei einem Brennstoffeinspritzventil, wie es beispielsweise aus der O-A-02/086309 bekannt ist, kann es vorkommen, dass infolge eines Versagens das Einspritzventilglied länger als für einen Volllasteinspritzvorgang erforderlich in der Offenstellung verbleibt. Das führt dazu, dass dem entsprechenden Zylinderbrennraum ein Übermass an Brennstoff zugeführt wird, was zu einer Beschädigung des Motors führen kann.
Zur Vermeidung solcher Beschädigungen ist es nun bekannt, bei Brennstoffeinspritzsystemen, bei denen den einzelnen Brennstoffeinspritzventilen Brennstoff von einem Hochdruck-BrennstoffSpeicher (Akkumulator oder Com on Rail) zugeführt wird, in den Zuleitungen zu den Brennstoffeinspritzventilen Ventile zur Begrenzung der Durchflussmenge anzuordnen (siehe z.B. DE-A-43 44 190; DE-A-22 07 643; US-A-4, 589, 393) . Diese Durchflussmengenbegrenzungsventile sperren den Brennstoffdurchfluss im Fälle eines Funktionsfehlers der Brennstoffeinspritzventile.
Diese bekannten Lösungen sind aufwendig und teuer, da einerseits in jeder Zuleitung zu den Brennstoffeinspritzventilen ein solches Durchflussmengenbegrenzungsventil vorgesehen werden muss und andererseits die Gehäuseteile dieser Ventile und die dazu gehörigen Verschraubungen für den sehr hohen Betriebsdruck (bis 2000 bar) ausgelegt werden müssen. Das bedeutet unter anderem, dass viel Aufwand erforderlich ist, um die Werkstücke nach aussen hin dicht zu machen.
Bei gewissen der in der bereits erwähnten WO-A-02/086309 beschriebenen Ausführungsformen von
Brennstoffeinspritzventilen ist der Ventilsitzteil als ein vom Ventilgehäuse getrennter Düsenkörper ausgebildet, der mit den Einspritzöffnungen sowie dem Ventilsitz für das Einspritzventilglied versehen ist. Dieser Düsenkörper ist mittels einer Schweissverbindung am Gehäuse befestigt. Da der Düsenkörper aus einem anderen, in der Regel verschleissfesteren Material besteht als das Gehäuse, können sich wegen der unterschiedlichen Materialeigenschaften Probleme beim Verschweissen ergeben. Zudem wird die Schweissverbindung einerseits durch den im Brennstoffeinspritzventil herrschenden hohen Systemdruck und andererseits durch das Aufprallen des Einspritzventilgliedes auf den Düsenkörper beim Schliessen sehr stark beansprucht. Daher müssen an die Qualität der Schweissverbindung sehr hohe Anforderungen gestellt werden.
Das Einspritzventilglied der in der erwähnten WO-A- 02/086309 beschriebenen Brennstoffeinspritzventile ist an seinem dem Ventilsitzteil bzw. Düsenkörper zugekehrten Ende ebenfalls starken mechanischen Beanspruchungen ausgesetzt, und zwar aus den gleichen Gründen wie vorstehend im Zusammenhang mit dem Ventilsitzteil bzw. dem Düsenkörper erwähnt. Dies vor allem dann, wenn der Düsenkörper aus einem verschleissfesteren Material besteht als das Einspritzventilglied. Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, bei einem Brennstoffeinspritzventil der eingangs genannten Art mit einem vom Gehäuse getrennten Düsenkörper letzteren auf einfache und zuverlässige Weise mit dem Gehäuse verbinden zu können.
Diese Aufgabe wird mit einem Brennstoffeinspritzventil mit den Merkmalen des Anspruches 1 gelöst.
Der auf seiner Aussenseite mit einer kegeligen Sitzfläche versehene Ventilsitzteil kann von der Innenseite des Gehäuses her zur Anlage an die ebenfalls kegelige Auflagefläche am Gehäuse gebracht werden. Als Folge der selbsthemmenden Ausgestaltung der Sitz- und Auflageflächen ist der Ventilsitzteil fest und dichtend im Gehäuse gehalten.
Im weiteren liegt der vorliegenden Erfindung auch noch die Aufgabe zugrunde, bei einem Brennstoffeinspritzventil der eingangs genannten Art auf möglichst einfache und kostengünstige Weise die Lebensdauer des Einspritzventilgliedes zu erhöhen.
Diese Aufgabe wird mit einem Brennstoffeinspritzventil mit den Merkmalen des Anspruches 9 gelöst.
Dadurch, dass das mit dem Ventilsitzteil zusammenwirkende Ende des Einspritzventilgliedes als separater Einsatzteil ausgebildet ist, ist es möglich, diesen Einsatzteil aus einem verschleissfesterem Material herzustellen als der übrige Teil des Einspritzventilgliedes.
Bevorzugte Weiterausgestaltungen des erfindungsgemässen Brennstoffeinspritzventils bilden Gegenstand der abhängigen Ansprüche. Im Folgenden werden anhand der Figuren Ausführungsbeispiele des Erfindungsgegenstandes näher erläutert. Es zeigen rein schematisch:
Fig. 1 im Längsschnitt den unteren Teil eines Brennstoffeinspritzventils,
Fig. 2 in gegenüber der Fig. 1 vergrössertem Massstab und im Längsschnitt den Bereich des unteren Endes einer zweiten Ausführungsform eines Brennstoffeinspritzventils,
Fig. 3 und 4 im Längsschnitt jeweils den Endbereich von alternativen Ausführungsformen eines Einspritzventilgliedes,
Fig. 5 in einer der Fig. 2 entsprechenden Darstellung den Bereich des unteren Endes einer dritten Ausführungsform eines Brennstoffeinspritzventils, und
Fig. 6 in einer der Fig. 1 entsprechenden Darstellung eine vierte Ausführungsform eines Brennstoffeinspritzventils .
Das in der Figur 1 schematisch dargestellte Brennstoffeinspritzventil 1, "von dem nur der untere Teil gezeigt ist, weist ein Gehäuse 2 auf, das durch einen nicht dargestellten oberen Gehäuseteil, einen unteren Gehäuseteil 2a und ein Ventilsitzelement 2b gebildet ist. Das Ventilsitzelement 2b ist mittels eines als Spannmutter ausgebildeten Halteelementes 3 mit dem unteren Gehäuseteil 2a dicht verbunden. Im Ventilsitzelement 2b ist ein Ventilsitzteil 4 gehalten, der als vom Ventilsitzelement 2b getrennter Düsenkörper 4a ausgebildet ist und einen Ventilsitz 5 sowie Einspritzöffnungen 6 aufweist. Der Ventilsitzteil 4 kann unter Umständen auch mit dem Ventilsitzelement 2b einstückig ausgebildet sein, wie das z.B. in den Figuren 1 und 2 der bereits erwähnten WO-A-02/086309 gezeigt ist. Im Inneren des Gehäuses 2 ist eine zentrale, zur Längsachse A des Gehäuses 2 koaxiale Bohrung 7 mit sich über ihre Länge änderndem Durchmesser ausgebildet, die einen Hochdruckraum 8 festlegt. Dieser Hochdruckraum 8 steht auf nicht gezeigte Weise mit einem Brennstoffhochdruckeinlass in Verbindung und erstreckt sich bis zum Ventilsitz 5 hin.
Im Inneren des Gehäuses 2, d. h. in der Bohrung 7, ist ein als Ventilnadel ausgebildetes, zur Gehäuselängsachse A koaxiales Einspritzventilglied 9 angeordnet, das in der in der Figur 1 gezeigten Schliessstellung mit seiner Spitze 9a mit dem Ventilsitz 5 zusammenwirkt, um die Einspritzöffnungen 6 zu verschliessen. Zum Freigeben der Einspritzöffnungen 6 wird das Einspritzventilglied 9 mittels einer nicht dargestellten Steuervorrichtung vom Ventilsitz 5 abgehoben. Das Einspritzventilglied 9 ist mit einem Führungsteil 9b mittels einer engen Gleitpassung im Ventilsitzelement 2b geführt. Zur Gewährleistung einer hydraulischen Verbindung im Bereich dieser Führung des Einspritzventilgliedes 9 ist dessen Führungsteil 9b mit Anschliffflächen 10 versehen. Das Einspritzventilglied 9 wird mittels einer Schlie,ssfeder 11 in Schliessrichtung des Einspritzventilgliedes 9 nach unten gedrückt. Die Schliessfeder 11 stützt sich an ihrem in der Figur 1 gezeigten Ende auf einem Stützring 12 ab, der auf einer Schulter 13 am Einspritzventilglied 9 aufliegt. Am anderen, nicht gezeigten Ende ist die Schliessfeder 11 gehäusefest abgestützt. Soweit - und mit Ausnahme der Lagerung des Ventilsitzteils 4 im Ventilsitzelement 2b - entspricht das in der Figur 1 dargestellte Brennstoffeinspritzventil 1 den Brennstoffeinspritzventilen, die in der schon früher erwähnten WO-A-02/086309 gezeigt und beschrieben sind. Aus diesem Grunde wird für eine genaue Erläuterung des Aufbaues sowie der Wirkungsweise des Brennstoffeinspritzventils 1 auf diese WO-A-02/086309 verwiesen.
Im Gegensatz zu den vorstehend erwähnten, bekannten Brennstoffeinspritzventilen weist das
Brennstoffeinspritzventil 1 gemäss Figur 1 ein im Inneren des Hochdruckraumes 8 angeordnetes Durchflussmengen- begrenzungsventil 14 auf. Zum Durchflussmengen- begrenzungsventil 14 gehört ein zur Gehäuselängsachse A koaxialer Ventilkörper 15, der in einer Ventilkammer 16 untergebracht ist, die Teil des Hochdruckraumes 8 bildet. Der Ventilkörper 15 hat einen U-förmigen Querschnitt und besteht aus einem zylindrischen Bodenteil 15a und einem zum Bodenteil 15a koaxialen ringförmigen Teil 15b, der zum Ventilsitz 5 hin offen ist. Der Ventilkörper 15 ist mit seinem Bodenteil 15a durch einen Führungsabschnitt 9c des Einspritzventilgliedes 9 mit einer engen Gleitpassung geführt. Der Bodenteil 15a wird vom im Hochdruckraum 8 herrschenden Brennstoffdruck beaufschlagt. Durch die Wand 16a der Ventilkammer 16 und die äussere Mantelfläche 17 des Ventilkörpers 15 wird ein Ringspalt 18 gebildet, dessen Breite vorzugsweise 0,03 - 0,2 mm beträgt. Der Ventilkörper 15 ist zwischen einer Offenstellung (obere Endlage) und einer Schliessstellung (untere Endlage) verstellbar. In der Offenstellung steht der Ventilkörper 15 mit seiner Stirnfläche 19 an einer ringförmigen Anschlagfläche 20 an, die im unteren Gehäuseteil 2a ausgebildet ist. Am dieser Stirnfläche 19 gegenüberliegenden Ende ist der Ventilkörper 15 mit einer konischen Dichtfläche 21 versehen, die in der Schliessstellung des Ventilkörpers 15 mit einer ebenfalls konischen Sitzfläche 22 im Ventilsitzelement 2b zusammenwirkt. Sowohl die Dichtfläche 21 wie auch die Sitzfläche 22 werden durch Abschnitte von Mantelflächen von Kreiskegeln gebildet, die etwa denselben Oeffnungswinkel haben. Die Dichtfläche 21 und die Sitzfläche 22 können aber auch als ebene Flächen ausgebildet sein, die rechtwinklig zur Gehäuselängsachse A verlaufen. Der Ventilkörper 15 ist durch ein in Oeffnungsrichtung wirkendes, als Druckfeder ausgebildetes Federelement 23 belastet. Dieses Federelement 23 verläuft im Inneren des ringförmigen Teils 15b und stützt sich am Bodenteil 15a des Ventilkörpers 15 ab. Am anderen Ende stützt sich das Federelement 23 an einer Stützfläche 24 ab, die im Ventilsitzelement 2b ausgebildet ist.
Die Wirkungsweise des Durchflussmengenbegrenzungsventils 14 ist ähnlich wie die in der DE-A-43 44 190 beschriebene Wirkungsweise der dort gezeigten Sperrventile.
Der Ventilkörper 15 nimmt im .normalen Betriebszustand zwischen den Einspritzvorgängen seine Offenstellung ein. Werden bei einem Einspritzvorgang durch Abheben des Einspritzventilgliedes 9 vom Ventilsitz 5 die Einspritzöffnungen 6 freigegeben, tritt einspritzseitig ein Druckabfall auf, der eine Bewegung des an seiner Stirnseite 19 mit dem Betriebshochdruck beaufschlagten Ventilkörpers 15 gegen die Kraft des Federelementes 23 aus der Offenstellung gegen die Schliessstellung bewirkt. Dabei bewegt sich der Ventilkörper 15 jedoch nicht bis in seine Schliessstellung. Bei Beendigung des Einspritzvorganges durch Verschliessen der Einspritzöffnungen 6 durch das Einspritzventilglied 9 kommt der Ventilkörper 15 in einer Zwischenstellung zwischen seiner Offenstellung und seiner Schliessstellung zum Stehen. In dieser Zwischenstellung fliesst über den Ringspalt 18 Brennstoff nach. Auf Grund des wieder ansteigenden Druckes auf der dem Ventilsitzteil 4 zugekehrten Seite des Ventilkörpers 15 und unter der Wirkung des Federelementes 23 bewegt sich der Ventilkörper 15 wieder zurück in seine Offenstellung.
Bleibt das Einspritzventilglied 9 jedoch in Folge eines Fehlers in seiner Offenstellung stehen und hält somit der Druckabfall einspritzseitig an, so bewegt sich der Ventilkörper 15 in seine Schliessstellung, in der er mit seiner Dichtfläche 21 an der Sitzfläche 22 anliegt. In dieser Schliessstellung wird somit der Durchfluss von Brennstoff zum Ventilsitz 5 unterbrochen. Dies bedeutet, dass nur diejenige Brennstoffmenge, die durch die enge Führung zwischen dem Führungsabschnitt 9c des Einspritzventilgliedes 9 und dem Ventilkörper 15 fliessen kann (Leckmenge) , in den Brennraum des entsprechenden Zylinders nachfliessen kann. Diese Leckmenge ist wegen der Ausgestaltung dieser Führung zwischen Ventilkörper 15 und Einspritzventilglied 9 als enge Gleitpassung jedoch nur sehr gering. Im Schadensfall kann es daher im betroffenen Zylinder bestenfalls zu einer Verbrennung unter Teillast kommen.
Wie bereits erwähnt, ist sowohl die Dichtfläche 21 am Ventilkörper 15 wie auch die Sitzfläche 22 am Ventilsitzelement 2b als Abschnitte von Mantelflächen von Kreiskegeln ausgebildet, deren Oeffnungswinkel derart ausgebildet sind, dass bei sich in Schliessstellung befindlichem Ventilkörper 15 eine Selbsthemmwirkung auftritt. Zu diesem Zwecke haben diese Kreiskegel einen halben Oeffnungswinkel von 2° - 7°. Diese selbsthemmende Wirkung hat zur Folge, dass sich der Ventilkörper 15 bei abgestelltem Motor, d.h. bei fehlendem Speisedruck, nicht selbsttätig von der Sitzfläche 22 abhebt. Folglich kann bei einem defekten Brennstoffeinlassventil 1 auch beim erneuten Anlassen des Motors kein Brennstoff in den Zylinderbrennraum gelangen (mit Ausnahme der geringen Leckmenge, die durch die enge Gleitpassung zwischen dem Ventilkörper 15 und dem Einspritzventilglied 9 fliessen kann) .
Der ringförmige Teil 15b des Ventilkörpers 15 weist eine verhältnismässig grosse Wandstärke auf. Befindet sich nun der Ventilkörper 15 in seiner Schliessstellung und herrscht im Hochdruckraum 8 stromaufwärts der Sitzfläche 22, d.h. also auch im Ringspalt 18, der Brennstoffhochdruck (z.B. 2000 bar und mehr), so wird der ringförmige Teil 15b in radialer Richtung zusammen gedrückt. Sinkt der Speisedruck, so weitet sich der ringförmige Teil 15b wieder auf, was ein Verklemmen des Ventilkörpers 15 an der konischen Sitzfläche 22 zur Folge hat.
Ein Motor mit einem Brennstoffeinspritzventil 1 mit einem integrierten Durchflussmengenbegrenzungsventil 14 kann somit gestoppt und wieder gestartet werden, ohne dass ein defektes Brennstoffeinspritzventil 1 zu einer Motorüberlast führt. Der Motor weist somit Notlaufeigenschaften auch nach einem Stopp auf.
Wie bereits erwähnt bildet der Ringspalt 18 in den Zwischenstellungen des Ventilkörpers 15 eine Brennstoffdurchflussverbindung. Eine solche kann auch auf andere Weise erfolgen, z.B. durch wenigstens eine, sich in Richtung der Gehäuselängsachse A erstreckende Längsnut auf der Aussenseite des Ventilkörpers 15 oder in der Wand 16a der Ventilkammer.
Der Ventilkörper 15 kann auch eine andere als die gezeigte Querschnittsform haben und z.B. einen T-förmigen Querschnitt aufweisen. Bei einer solchen Querschnittsform hat der an den Bodenteil 15a anschliessende ringförmige Teil - anders als wie in Figur 1 gezeigt - einen kleineren Durchmesser als der Bodenteil 15a und wird gleich wie der Bodenteil 15a durch den Führungsabschnitt 9c des Einspritzventilgliedes 9 geführt. Bei dieser Variante weist somit der Ventilkörper 15 eine sowohl den Bodenteil 15a wie auch den ringförmigen Teil durchsetzende Führungsbohrung auf, durch die das Einspritzventilglied 9 mit enger Gleitpassung verläuft. Das sich am Bodenteil 15a und an der Stützfläche 24 abstützende Federelement 23 umgibt dann den ringförmigen Teil. Die vorstehend erwähnte Brennstoffdurchflussverbindung kann bei dieser Ausgestaltung des Ventilkörpers 15 auch durch einen Durchlass im Ventilkörper 15 selbst gebildet werden. Bei dieser alternativen Ausführungsform wird das Durchtreten von Leckflüssigkeit durch die enge Gleitpassung verhindert, weil der ringförmige Teil des Ventilkörpers 15 in Schliessstellung des Ventilkörpers 15 sich sowohl unter dem hohen Druck, der auf seine zylindrische Aussenfläche wirkt, wie auch durch die in radialer Richtung wirkende Kraft der ineinander verkeilten konischen Flächen 21 und 22 verformt und sich an das Einspritzventilglied 9 anpresst. Zudem kann bei dieser Variante der Ventilkörper 15 mit einem geringeren Durchmesser ausgebildet werden, so dass die Wandstärke des unteren Gehäuseteils 2a grösser und dessen Wand druckfester sein kann.
Der im Ventilsitzelement 2b gehaltene Ventilsitzteil 4 ist wie bereits erwähnt als ein vom Ventilsitzelement 2b getrennter Düsenkörper 4a ausgebildet. Anhand der Figur 2, die das einspritzseitige Ende des Brennstoffeinspritzventils 1 in vergrössertem Massstab zeigt, wird nun die Art und Weise, wie dieser Ventilsitzteil 4 bzw. Düsenkörper 4a im Ventilsitzelement 2b gehalten ist, näher erläutert.
Wie aus der schon früher erwähnten WO-A-02/086309 (siehe z.B. Figur 13) bekannt ist, wird der Düsenkörper 4a aus einem wesentlich härteren Material hergestellt, als das Gehäuse 2 - des Brennstoffeinspritzventils 1, um den Verschleiss kleiner zu halten und damit die Lebensdauer des Brennstoffeinspritzventils 1 zu verlängern. Da das zur Herstellung des Düsenkörpers 4a verwendete Material sehr teuer ist, wird der Düsenkörper 4a aus Kostengründen sehr klein ausgebildet.
Der Düsenkörper 4a weist an seiner Aussenseite eine kegelige Sitzfläche 26 auf, die durch einen Abschnitt der Mantelfläche eines geraden Kreiskegels, dessen Achse mit der Gehäuselängsachse A zusammenfällt, gebildet wird. Mit dieser Sitzfläche 26 liegt der Düsenkörper 4a an einer ebenfalls kegeligen Auflagefläche 27 an, die im Ventilsitzelement 2b ausgebildet ist. Diese Auflagefläche 27 wird ebenfalls durch einen Abschnitt der Mantelfläche eines geraden Kreiskegels gebildet, dessen Achse mit der Gehäuselängsachse A zusammenfällt. Die halben Oeffnungswinkel 28 der beiden die Sitzfläche 26 und die Auflagefläche 27 bildenden -Kreiskegel sind derart gewählt, dass der Düsenkörper 4a selbsthemmend und dichtend im Ventilsitzelement 2b gehalten ist. Diese halben Oeffnungswinkel 28 betragen 2° - 7°. Wie aus Figur 2 hervorgeht, wird bei der Montage der Düsenkörper 4a von oben in das Ventilsitzelement 2b eingesetzt .
Bei der Herstellung des Düsenkörpers 4a werden in derselben Aufspannung des Düsenkörpers 4a durch Schleifen sowohl der Ventilsitz 5 wie auch die Sitzfläche 26 ausgebildet. Desgleichen werden am Ventilsitzelement 2b in derselben Aufspannung des Ventilsitzelementes 2b an diesem eine Führungsfläche 21 zur Führung des Führungsteils 9b des Einspritzventilgliedes 9 und die Auflagefläche 27 geschliffen. Zu diesem Zweck wird das Schleifwerkzeug (Schleifdorn) vorzugsweise von der Seite der Auflagefläche
27 her in das Ventilsitzelement 2b eingeführt.
Bei einer nicht gezeigten Variante des in der Fig. 1 gezeigten Brennstoffeinspritzventils 1 befindet sich die Sitzfläche 22 im unteren Gehäuseteil 2a. In diesem Fall wird der Ventilkörper 15 von oben her in das Gehäuse 2 eingebaut. Die Anschlagfläche 20 und das Haltelement 3 entfallen. Um die Offenstellung des Ventilkörpers 15 zu definieren kann nach der Montage des Ventilkörpers 15 in den Gehäuseteil 2a ein Anschlagelement eingebaut werden, z.B. ein Spreng- oder Sicherungsring (Seegerring oder dgl.). Alternativ könnte sich die Stirnfläche 19 des Ventilkörpers 15 an der Unterseite des Stützringes 12 abstützen. Dann würde die Kraft des Federelementes 23 nach oben an den Stützring 12 weiter geleitet. Dadurch würde die in Schliessrichtung , des Einspritzventilgliedes 9 wirkende Kraft der Schliessfeder 11 vor Beginn eines Einspritzvorganges verringert, was in gewissen Fällen vorteilhaft sein kann.
Bei der vorstehend beschriebenen Variante können der Gehäuseteil 2a und das Ventilsitzelement 2b auch einstückig ausgeführt sein und Teil des Gehäuses 2 bilden. Dabei kann die Spannmutter 3 wie erwähnt entfallen. In diesem Fall ist die Bearbeitung der Führungsfläche 2' und der Auflagefläche 27 von der Seite der Auflagefläche 27 her besonders vorteilhaft.
Die beschriebene erfindungsgemässe Ausgestaltung des Düsenkörpers 4a ist auch bei Brennstoffeinspritzventilen möglich, bei denen die Brennstoffzufuhr zum Ventilsitz 5 über einen gegenüber der Gehäuselängsachse A seitlich versetzten Zuführkanal erfolgt (statt wie gezeigt über den zentralen Hochdruckraum 8).
Wie vorstehend erläutert, wird der als separater Düsenkörper 4a ausgebildete Ventilsitzteil 4 aus einem verschleissfesteren (härteren) Material hergestellt, als das Gehäuse 2, was eine Verlängerung der Lebensdauer des Ventilsitzteils 4 mit sich bringt. Anhand der Figuren 2 - 5 werden nun Ausführungsformen von Brennstoffeinspritzventilen 1 gezeigt, bei denen auch die Lebensdauer des Einspritzventilgliedes 9 verlängert wird.
Bei den in den Figuren 2 - 5 gezeigten Ausführungsbeispielen ist die Spitze 9a des Einspritzventilgliedes 9 durch einen Einsatzteil 30 gebildet, der mit dem angrenzenden Abschnitt 9' des Einspritzventilgliedes 9 für eine gemeinsame Bewegung verbunden bzw. gekoppelt ist und eine am konischen Ventilsitz 5 zur Anlage kommende Dichtfläche 31 aufweist. Der Einsatzteil 30 besteht aus einem härteren, verschleissfesteren, aber auch teureren Material als der übrige Teil des Einspritzventilgliedes 9. Es wird daher angestrebt, diesen Einsatzteil 30 möglichst klein zu halten. Bei der Ausführungsform gemäss Figur 2 hat der Einsatzteil 30 eine zylindrische Form und greift in eine Oeffnung 32 im angrenzenden Abschnitt 9' des Einspritzventilgliedes 9 ein. Damit der Einsatzteil 30 bei Bedarf ausgewechselt werden kann, ist er mit einem Presssitz in der Oeffnung 32 gehalten.
Bei der in der Figur 3 gezeigten Variante hat der Einsatzteil 30 geringere Abmessungen als der Einsatzteil 30 gemäss Figur 2 und weist einen Dichtkörper 33 und einen im Durchmesser kleineren Halteteil 34 auf, der mit dem Dichtkörper 33 einstückig ist. Der Dichtkörper 33 ist mit der Dichtfläche 31 versehen und steht über den angrenzenden Bereich 9' des Einspritzventilgliedes 9 vor, während der Halteteil 34 in die Oeffnung 32 in diesem angrenzenden Abschnitt 9' des Einspritzventilgliedes 9 eingreift und in dieser mit einem Presssitz gehalten ist.
Bei der in der Figur 4 gezeigten Ausführungsform ist der mit dem Dichtkörper 33 ebenfalls einstückige Halteteil 34 mit einer Ausnehmung 35 versehen, in die ein Fortsatz 36 am angrenzenden Abschnitt 9' des Einspritzventilgliedes 9 eingreift. Der Einsatzteil 30 ist am Fortsatz 36 gehalten, und zwar ebenfalls mittels eines Presssitzes.
In der Figur 5 wird eine Ausführungsform gezeigt, bei der der Einsatzteil 30 als Kugelkörper ausgebildet ist, der in eine Ausnehmung 37 im angrenzenden Abschnitt 9' des Einspritzventilgliedes 9 eingreift. Die Seitenwand 37a der Ausnehmung 37 wird durch einen Abschnitt der Mantelfläche eines geraden Kreiskegels gebildet, dessen Achse mit der Gehäuselängsachse A zusammenfällt. Der Einsatzteil 30 liegt mit einer im Wesentlichen linienförmigen Anlagefläche 38 an der zum Ventilsitz 5 hin divergierenden Seitenwand 37a der Ausnehmung 37 an. Der Durchmesser dieser Anlagefläche 38 ist mit Dl bezeichnet. Auf der der Grundfläche 37a der Ausnehmung 37 zugekehrten Seite ist der Einsatzteil 30 mit einer ebenen Fläche 39 versehen, die dieser Grundfläche 37b gegenüberliegt. Auf diese Weise wird ein Drehen des Einsatzteils 30 in der Ausnehmung 37 verhindert. Der Einsatzteil 30 ist ferner mit einer zur Gehäuselängsachse A koaxialen Durchgangsbohrung 40 versehen, die den Raum 41 zwischen der Grundfläche 37b der Ausnehmung 37 und der ebenen Fläche 39 des Einsatzteils 30 mit einem Raum 42 verbindet, der in Strömungsrichtung des Brennstoffs gesehen stromabwärts des Ventilsitzes 5 liegt und über die Einspritzöffnungen 6 mit dem Brennraum des Motors in Verbindung steht.
Der kugelförmige Einsatzteil 30 weist eine im Wesentlichen linienförmige Dichtfläche 31' auf, deren Durchmesser mit D2 bezeichnet ist. Dieser Durchmesser D2 ist kleiner als der Durchmesser Dl der Anlagefläche 38, mit der der Einsatzteil 30 an der Wand 37a der Ausnehmung 37 anliegt.
Der Einsatzteil 30 liegt lose in der Ausnehmung 37, d.h. er ist nicht fest mit dem angrenzenden Abschnitt 9' des Einspritzventilgliedes 9 verbunden. Beim Abheben des Einspritzventilgliedes 9 vom Ventilsitz 5 weg zur Freigabe der Einspritzöffnungen 6 folgt der Einsatzteil 30 dem angrenzenden Abschnitt 9' des Einspritzventilgliedes 9, und zwar aus folgenden Gründen: Bei sich in Schliessstellung befindlichem Einspritzventilglied 9 (wie in Figur 5 dargestellt) ist der Druck im Raum 41 viel geringer als der System- oder Betriebsdruck. Wegen dieses Druckunterschiedes und der erwähnten Unterschiede der Durchmesser Dl und D2 wird der Einsatzteil 30 in die Ausnehmung 37 hinein gedrückt und somit an den angrenzenden Abschnitt 9' des Einspritzventilgliedes 9 angedrückt . Es versteht sich, dass die Spitze 9a des Einspritzventilgliedes 9 auch dann als separater Einsatzteil 30 ausgebildet werden kann, wenn das Brennstoffventil 1 nicht mit einem Durchflussbegrenzungsventil 14 ausgebildet ist und unabhängig davon, ob der Ventilsitzteil 4 als vom Gehäuse 2 und/oder vom Ventilsitzelement 2b getrennter Düsenkörper 4a ausgebildet ist oder mit dem Gehäuse 2 einstückig ist.
In der Figur 6 ist schematisch der untere Teil einer vierten Ausführungsform eines Brennstoffeinspritzventils 1 dargestellt, wobei in dieser Figur 6 für diejenigen Teile, die Teilen der in den Figuren 1 und 2 gezeigten Ausführungsformen entsprechen, dieselben Bezugszeichen verwendet werden wie in den Figuren 1 und 2.
Bei der Ausführungsform gemäss Figur 6 ist der Ventilsitzteil 4 im Gehäuse 2 gehalten. Hiezu weist der Ventilsitzteil 4 an seinem dem Ventilsitz 5 gegenüberliegenden Ende an seiner Aussenseite eine kegelige Sitzfläche 43 auf, die durch einen Abschnitt der Mantelfläche eines geraden Kreiskegels, dessen Achse mit der Gehäuselängsachse A zusammenfällt, gebildet wird. Mit dieser Sitzfläche 43 liegt der Ventilsitzteil 4 an einer ebenfalls kegeligen Auflagefläche 44 an, die im Gehäuse 2 ausgebildet ist. Diese Auflagefläche 44 wird ebenfalls durch einen Abschnitt der Mantelfläche eines geraden Kreiskegels gebildet, dessen Achse mit der Gehäuselängsachse A .zusammenfällt. Die halben Oeffnungswinkel 45 der beiden die Sitzfläche 43 und die Auflagefläche 44 bildenden Kreiskegel sind derart gewählt, dass der Ventilsitzteil 4 selbsthemmend und dichtend im Gehäuse 2 gehalten ist. Diese halben Oeffnungswinkel 45 betragen 2° - 7°. Der Ventilsitzteil 4 ist, gleich wie der Düsenkörper 4a der Ausführungsformen gemäss den Figuren 1 und 2, aus einem wesentlich härteren Material hergestellt, als das Gehäuse 2 des Brennstoffeinspritzventils 1, um den Verschleiss kleiner zu halten und damit die Lebensdauer des Brennstoffeinspritzventils 1 zu verlängern.
Bei der Montage wird der Ventilsitzteil 4 von oben in das Gehäuse 2 eingesetzt.
Der Ventilsitzteil 4 ist als länglicher Bauteil ausgebildet und hat einen Aussendurchmesser, der kleiner ist als der Aussendurchmesser des Gehäuses 2. Bei der Ausführungsform gemäss Fig. 6 ist daher der Aussendurchmesser des unteren Endes des Brennstoffeinspritzventils 1 kleiner als bei der Ausführungsform gemäss den Fig. 1 und 2.
Bei der in der Figur 6 gezeigten Ausführungsform wird das Einspritzventilglied 9 im Ventilsitzteil 4 geführt. Dementsprechend ist die Wand 46 der Innenbohrung 47 des Ventilsitzteils 4 als Führungsfläche für den Führungsteil 9b des Einspritzventilgliedes 9 ausgebildet.

Claims

Patentansprüche
1. Brennstoffeinspritzventil zur intermittierenden Brennstoffeinspritzung in den Brennraum von Brennkraftmaschinen, mit einem länglichen Gehäuse (2), einem Ventilsitzteil (4), der einen mit Einspritzöffnungen (6) versehenen Ventilsitz (5) aufweist, einem im Gehäuse (2) angeordneten, längsverstellbaren Einspritzventilglied (9), das zum Verschliessen und Freigeben der Einspritzöffnungen (6) mit dem Ventilsitz (5) zusammenwirkt, und einer Steuervorrichtung zur Steuerung der Verstellbewegung des Einspritzventilgliedes (9), dadurch gekennzeichnet, dass der Ventilsitzteil (4) an seiner Aussenseite mit einer, durch die Mantelfläche eines Kreiskegels gebildeten Sitzfläche (26; 43) versehen ist, mit der er an einer ebenfalls durch die Mantelfläche eines Kreiskegels gebildeten Auflagefläche (27; 44) am Gehäuse (2) anliegt, wobei die halben Oeffnungswinkel (28; 45) der die Sitzfläche (26; 43) und die Auflagefläche (27; 44) festlegenden Kreiskegel derart gewählt sind, dass der Ventilsitzteil (4) selbsthemmend und dichtend im Gehäuse (2) gehalten ist.
2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Ventilsitzteil (4) als ein vom Gehäuse (2) getrennter, mit dem Gehäuse (2) verbundener Düsenkörper (4a) ausgebildet ist
3. Brennstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die vorzugsweise etwa gleich grossen halben Oeffnungswinkel (28; 45) 2°-7° betragen.
4. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass das Einspritzventilglied (9) in einem zur Längsachse (A) des Gehäuses (2) koaxial verlaufenden Hochdruckraum (8), der mit einem Brennstoffhochdruckeinlass in Verbindung steht und sich bis zum Ventilsitz (5) erstreckt, angeordnet ist.
5. Brennstoffeinspritzventil nach einem der Ansprüche 1 4, dadurch gekennzeichnet, dass der längliche Ventilsitzteil (4) eine Innenbohrung (47) aufweist, deren Wand ((46) als Führung für das Einspritzventilglied (9) ausgebildet ist.
6. Brennstoffeinspritzventil nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass der Ventilsitzteil (4) aus einem verschleissfesteren Material besteht als das Gehäuse (2) .
7. Verfahren zur Herstellung des Brennstoffeinspritzventils nach einem der Ansprüche 1 6, dadurch gekennzeichnet, dass in derselben Aufspannung des Gehäuses (2) an letzterem sowohl die Auflagefläche (27) wie auch eine Führungsfläche (2') für das Einspritzventilglied (9) ausgebildet wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Bearbeitung der Auflagefläche (27) und der Führungsfläche (2') mittels eines Werkzeuges erfolgt, das von der Seite mit der Auflagefläche (27) her in das Gehäuse (2) eingeführt wird.
. Brennstoffeinspritzventil zur intermittierenden Brennstoffeinspritzung in den Brennraum von Brennkraftmaschinen, mit einem länglichen Gehäuse (2), einem Ventilsitz (5) mit Einspritzöffnungen (6), einem im Gehäuse (2) angeordneten, längsverstellbaren Einspritzventilglied (9), das zum Verschliessen und Freigeben der Einspritzöffnungen (6) mit dem Ventilsitz (5) zusammenwirkt, und einer Steuervorrichtung zur Steuerung der Verstellbewegung des Einspritzventilgliedes (9), dadurch gekennzeichnet, dass das mit dem Ventilsitz (5) zusammenwirkende Ende (9a) des Einspritzventilgliedes (9) durch einen Einsatzteil (30) gebildet ist, der mit dem angrenzenden Abschnitt (9') des Einspritzventilgliedes
(9) für eine gemeinsame Bewegung verbunden ist und eine am Ventilsitz (5) zur Anlage kommende Dichtfläche (31) aufweist.
10. Brennstoffeinspritzventil nach Anspruch 9, dadurch gekennzeichnet, dass der Einsatzteil (30) aus einem verschleissfesteren Material besteht als der übrige Teil des Einspritzventilgliedes (9) .
11. Brennstoffeinspritzventil nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Einsatzteil (30) mit dem angrenzenden Abschnitt (9!) des Einspritzventilgliedes (9) form- und/oder kraftschlüssig verbunden ist.
12. Brennstoffeinspritzventil nach einem der Ansprüche 9 - 11, dadurch gekennzeichnet, dass der Einsatzteil (30) auswechselbar mit dem angrenzenden Abschnitt (9') des Einspritzventilgliedes (9) verbunden ist.
13. Brennstoffeinspritzventil nach einem der Ansprüche 9 12, dadurch gekennzeichnet, dass der Einsatzteil (30) in eine Oeffnung (32) im angrenzenden Abschnitt (9') des Einspritzventilgliedes (9) eingreift und in dieser Oeffnung (32) gehalten ist.
14. Brennstoffeinspritzventil nach einem der Ansprüche 9 - 12, dadurch gekennzeichnet, dass der Einsatzteil (30) durch einen Fortsatz (36) am angrenzenden Abschnitt (9') des Einspritzventilgliedes (9) gehalten ist, der in eine Ausnehmung (35) am Einsatzteil (30) eingreift.
PCT/CH2004/000451 2003-07-17 2004-07-14 Brennstoffeinspritzventil für brennkraftmaschinen WO2005008059A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT04738091T ATE440216T1 (de) 2003-07-17 2004-07-14 Brennstoffeinspritzventil für brennkraftmaschinen
DE502004009930T DE502004009930D1 (de) 2003-07-17 2004-07-14 Brennstoffeinspritzventil für brennkraftmaschinen
EP04738091A EP1649160B1 (de) 2003-07-17 2004-07-14 Brennstoffeinspritzventil für brennkraftmaschinen
US11/331,201 US20060113406A1 (en) 2003-07-17 2006-01-13 Fuel injection valve for internal combustion engines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH12482003 2003-07-17
CH1248/03 2003-07-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/331,201 Continuation US20060113406A1 (en) 2003-07-17 2006-01-13 Fuel injection valve for internal combustion engines

Publications (1)

Publication Number Publication Date
WO2005008059A1 true WO2005008059A1 (de) 2005-01-27

Family

ID=34069953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2004/000451 WO2005008059A1 (de) 2003-07-17 2004-07-14 Brennstoffeinspritzventil für brennkraftmaschinen

Country Status (6)

Country Link
US (1) US20060113406A1 (de)
EP (1) EP1649160B1 (de)
KR (1) KR20060030116A (de)
AT (1) ATE440216T1 (de)
DE (1) DE502004009930D1 (de)
WO (1) WO2005008059A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073975A1 (de) * 2005-12-22 2007-07-05 Robert Bosch Gmbh Brennstoffeinspritzventil
EP2175124A1 (de) 2006-10-16 2010-04-14 Ganser-Hydromag Ag Brennstoffeinspritzventil für Verbrennungskraftmaschinen
WO2019206897A1 (en) * 2018-04-25 2019-10-31 Robert Bosch Gmbh Fuel injector valve seat assembly including an insert that forms a valve seat
WO2020165009A1 (de) * 2019-02-11 2020-08-20 Liebherr-Components Deggendorf Gmbh Düse eines kraftstoffinjektors und kraftstoffinjektor mit einer solchen düse
US12025086B2 (en) 2019-02-11 2024-07-02 Liebherr-Components Deggendorf Gmbh Nozzle of a fuel injector and fuel injector having such a nozzle

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007008863A1 (de) * 2005-08-26 2008-08-28 Robert Bosch Gmbh Brennstoffeinspritzventil
US10415527B2 (en) * 2015-01-30 2019-09-17 Hitachi Automotive Systems, Ltd. Fuel injection valve
WO2018151833A1 (en) 2017-02-16 2018-08-23 Sweetwater Energy, Inc. High pressure zone formation for pretreatment
WO2019206898A1 (en) * 2018-04-25 2019-10-31 Robert Bosch Gmbh Fuel injector valve seat assembly including an insert having anticoking features
DE112019001387T5 (de) * 2018-04-25 2020-12-03 Robert Bosch Gmbh Kraftstoffeinspritzventilsitzanordnung, die einsatzpositionierungs- und -haltemerkmale umfasst
DE112019001538T5 (de) * 2018-04-25 2020-12-10 Robert Bosch Gmbh Kraftstoffeinspritzventilsitzanordnung, die einen in position geformten einsatz umfasst, und verfahren zur herstellung davonhintergrund
AU2020412611A1 (en) 2019-12-22 2022-07-14 Apalta Patents OÜ Methods of making specialized lignin and lignin products from biomass
EP4222088A1 (de) * 2020-10-02 2023-08-09 Sweetwater Energy, Inc. Druckventilverarbeitung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB885627A (en) * 1959-09-15 1961-12-28 Goetaverken Ab Improvements in fuel injection valves for internal combustion engines
US4083498A (en) * 1975-10-21 1978-04-11 Lucas Industries Limited Fuel injection nozzles
WO1995021324A1 (en) * 1994-02-07 1995-08-10 Man B & W Diesel A/S A fuel injector for a large two-stroke internal combustion engine
EP0677656A1 (de) * 1994-03-14 1995-10-18 Cummins Engine Company, Inc. Verschleissfester Kraftstoffeinspritzkolbenzusammenbau
EP0961025A1 (de) * 1998-05-29 1999-12-01 Wärtsilä NSD Schweiz AG Brennstoffeinspritzdüse
DE19944878A1 (de) * 1999-09-18 2001-03-22 Volkswagen Ag Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10024661A1 (de) * 2000-05-18 2002-03-28 Siemens Ag Einspritznadel mit einer Nadelspitze

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4544096A (en) * 1983-07-28 1985-10-01 Energy Conservation Innovations, Inc. Electronically controlled fuel injection system for diesel engine
FR2558533B1 (fr) * 1984-01-23 1986-06-13 Renault Dispositif de securite pour soupape d'injection de moteur a combustion interne
US6279843B1 (en) * 2000-03-21 2001-08-28 Caterpillar Inc. Single pole solenoid assembly and fuel injector using same
DE10034446A1 (de) * 2000-07-15 2002-01-24 Bosch Gmbh Robert Brennstoffeinspritzventil

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB885627A (en) * 1959-09-15 1961-12-28 Goetaverken Ab Improvements in fuel injection valves for internal combustion engines
US4083498A (en) * 1975-10-21 1978-04-11 Lucas Industries Limited Fuel injection nozzles
WO1995021324A1 (en) * 1994-02-07 1995-08-10 Man B & W Diesel A/S A fuel injector for a large two-stroke internal combustion engine
EP0677656A1 (de) * 1994-03-14 1995-10-18 Cummins Engine Company, Inc. Verschleissfester Kraftstoffeinspritzkolbenzusammenbau
EP0961025A1 (de) * 1998-05-29 1999-12-01 Wärtsilä NSD Schweiz AG Brennstoffeinspritzdüse
DE19944878A1 (de) * 1999-09-18 2001-03-22 Volkswagen Ag Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10024661A1 (de) * 2000-05-18 2002-03-28 Siemens Ag Einspritznadel mit einer Nadelspitze

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007073975A1 (de) * 2005-12-22 2007-07-05 Robert Bosch Gmbh Brennstoffeinspritzventil
EP2175124A1 (de) 2006-10-16 2010-04-14 Ganser-Hydromag Ag Brennstoffeinspritzventil für Verbrennungskraftmaschinen
US7891586B2 (en) 2006-10-16 2011-02-22 Ganser-Hydromag Ag Fuel injection valve for internal combustion engines
WO2019206897A1 (en) * 2018-04-25 2019-10-31 Robert Bosch Gmbh Fuel injector valve seat assembly including an insert that forms a valve seat
WO2020165009A1 (de) * 2019-02-11 2020-08-20 Liebherr-Components Deggendorf Gmbh Düse eines kraftstoffinjektors und kraftstoffinjektor mit einer solchen düse
US12025086B2 (en) 2019-02-11 2024-07-02 Liebherr-Components Deggendorf Gmbh Nozzle of a fuel injector and fuel injector having such a nozzle

Also Published As

Publication number Publication date
KR20060030116A (ko) 2006-04-07
EP1649160B1 (de) 2009-08-19
DE502004009930D1 (de) 2009-10-01
EP1649160A1 (de) 2006-04-26
US20060113406A1 (en) 2006-06-01
ATE440216T1 (de) 2009-09-15

Similar Documents

Publication Publication Date Title
EP2283226B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
EP2394049B1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
EP1718862B1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
WO2009016003A1 (de) Kraftstoffeinspritzventil mit verbesserter dichtheit am dichtsitz eines druckausgeglichenen steuerventils
EP1869311B1 (de) Brennstoffeinspritzventil
EP1649160B1 (de) Brennstoffeinspritzventil für brennkraftmaschinen
WO2000017512A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE602005005982T2 (de) Einspritzdüse
DE602005005981T2 (de) Einspritzdüse
EP1574701A1 (de) Common-Rail Injektor
DE102008035087A1 (de) Einspritzventil
WO2004104406A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1218630A2 (de) Einspritzventil, insbesondere für common-rail-einspriztsysteme
WO2007014734A1 (de) Kraftstoff-einspritzsystem für eine brennkraftmaschine
DE102006029393A1 (de) Injektor
DE10160490B4 (de) Kraftstoff-Einspritzvorrichtung, Kraftstoffsystem sowie Brennkraftmaschine
DE10050599B4 (de) Einspritzventil mit einem Pumpkolben
AT500011B1 (de) Einspritzinjektor für brennkraftmaschinen
AT511731B1 (de) Kavitationsoptimierte drosselbohrungen
WO2008138742A1 (de) Injektor mit druckausgeglichenem steuerventil
DE10147830A1 (de) Kraftstoffinjektor
WO2009013069A1 (de) Kraftstoffeinspritzinjektor mit einer nicht geführten düsennadel
WO2008049726A1 (de) Fluiddosiervorrichtung
EP2084390A1 (de) Injektor mit axial-druckausgeglichenem steuerventil
WO2011029829A1 (de) Injektor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11331201

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067001138

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004738091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067001138

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004738091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11331201

Country of ref document: US