WO2005007913A1 - Eisengusswerkstoff - Google Patents

Eisengusswerkstoff Download PDF

Info

Publication number
WO2005007913A1
WO2005007913A1 PCT/EP2004/007914 EP2004007914W WO2005007913A1 WO 2005007913 A1 WO2005007913 A1 WO 2005007913A1 EP 2004007914 W EP2004007914 W EP 2004007914W WO 2005007913 A1 WO2005007913 A1 WO 2005007913A1
Authority
WO
WIPO (PCT)
Prior art keywords
content
material according
weight
cast iron
cast
Prior art date
Application number
PCT/EP2004/007914
Other languages
English (en)
French (fr)
Inventor
Milan LAMPIC-OPLÄNDER
Jörg BILLASCH
Original Assignee
Fritz Winter Eisengiesserei Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fritz Winter Eisengiesserei Gmbh & Co. Kg filed Critical Fritz Winter Eisengiesserei Gmbh & Co. Kg
Priority to DE502004005766T priority Critical patent/DE502004005766D1/de
Priority to EP04741074A priority patent/EP1646732B1/de
Priority to MXPA06000901A priority patent/MXPA06000901A/es
Priority to JP2006519885A priority patent/JP2007527951A/ja
Priority to US10/563,181 priority patent/US20070023106A1/en
Publication of WO2005007913A1 publication Critical patent/WO2005007913A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys

Definitions

  • the invention relates to a cast iron material with lamellar graphite, which is particularly suitable for the manufacture of brake disks, light and heavy engine blocks and cylinder heads.
  • cast iron with lamellar graphite (gray cast iron) is a popular construction material. Therefore, blocks for internal combustion engines are typically cast from cast iron materials of the type in question.
  • the requirements regarding high tensile strengths can basically be met by reducing the carbon and silicon content or the degree of saturation and by alloying Cr, Cu, Ni, Mn or Mo up to a total content of the alloyed elements of up to about 2%.
  • the resistance to thermomechanical fatigue can also be set sufficiently high in this way.
  • the demand for high thermal conductivity cannot be met by reducing the carbon and silicon content or the degree of saturation or alloying with certain alloying elements, since the thermal conductivity of gray cast iron is known to be a function of the amount of graphite contained in the cast and decreases with decreasing amounts of graphite , The alloyed elements also generally lead to a decrease in thermal conductivity.
  • an iron casting material for the production of camshafts is known from EP 1 213 071 A2 which (in% by weight) 3.5 - 3.7% C, 0.9 - 1.1% Si, up to 1% Mn as well as lanthanum not bound to sulfur with a share of 0.02 - 0.05% and optionally 0.3 - 0.6% Cr, 0.1 - 1.0% Cu, 0, May contain 3-0.6% Mo and 0.02-0.05% Ti.
  • the addition of lanthanum to the known material was carried out with the aim of increasing the hardness of the material and causing grain refinement to improve the tribological behavior.
  • EP 1 004 789 AI Another example of an iron casting material with lamellar graphite is known from EP 1 004 789 AI.
  • This material is used for the production of brake discs, which are characterized by an increased service life.
  • the casting material known from EP 1 004 789 Al in weight% 3.9-4.2% C, 0.7-1.2% Si, up to 0.02% P, up to 0 , 02% S and up to 0.05% AI included.
  • the known material may contain Mn, V, Cu and Cr, the total proportion of these alloying elements not exceeding 1.6%.
  • a brake disc made from such a material is characterized by a particularly high thermal conductivity with good toughness.
  • the known alloy was specifically tested on the basis of an exemplary embodiment which (in% by weight) 4.1% C, 1.0% Si, 0.02% P, 0.03% S, 0.3% Mn, 0 , 01% V, 0.4% Cu, 0.3% Mo and 0.015% Al contained.
  • the object of the invention was to create an alloy concept which makes it possible in a simple manner to set the optimum properties for a wide range of products by varying the contents of the respective alloy components.
  • an iron casting material with lamellar graphite which has the following composition (in% by weight):
  • the invention provides an Fe-C-Si-X cast alloy which has in particular a combination of properties which is optimized both with regard to its strength and with regard to its thermal conductivity and castability and in which the risk of a gradual decrease in the good properties occurring in practical casting operation is reduced Minimum is reduced.
  • the cast iron material according to the invention is largely free of undesired or unnecessary elements and by-products.
  • the sulfur and oxygen levels are measured in such a way that they no longer have a disruptive influence on the properties of the iron material. This ensures that the iron lattice is cleaned and contains sufficient free capacity to hold the required foreign atoms.
  • minimum levels of oxygen and sulfur are prescribed because both elements serve as building blocks for the formation of crystallization nuclei.
  • the contents of carbon and silicon are dimensioned such that even with a comparatively wide variation in the degree of saturation S, the amount of eutectic graphite MEG remains high.
  • the amount of eutectic graphite MEG present in the cast material according to the invention far exceeds that of normal cast iron. Its MEG value is usually only around 1.85% by weight. In the cast material according to the invention thus a 10% to 20% higher volume share is available. This excess is a decisive advantage of the iron casting material according to the invention compared to conventional iron material.
  • the material according to the invention thus has a significantly superior self-feeding capacity for the purpose of compensating for the shrinkage of the iron by expanding the graphite compared to conventional cast material. In practical casting operations, this property leads to a significant increase in the reliability with which high-quality cast products are produced.
  • the reducing melt treatment by inoculation should strictly depend on the respective level of the oxygen and / or sulfur content.
  • the invention provides elements whose atomic radius does not differ too much from that of iron.
  • the deviation is preferably up to max. 2%.
  • the alloying elements should not be strong carbide formers and should not directly segregate. According to the invention, it is therefore provided that, if necessary, copper, nickel, manganese or molybdenum is alloyed to the iron material in order to adjust its required properties. Tin can also be added for this purpose, the atomic radius of which is up to 50% larger than that of iron.
  • the iron casting material according to the invention contains copper in amounts of 0.4% by weight to 0.6% by weight in order to promote the formation of pearlite without negative effects on the desired high graphitization.
  • Another positive effect of the presence of Cu is that directions of segregation are formed on this element.
  • the range of Cu contents is limited to 0.45-0.55 in order to achieve these effects.
  • the alloy according to the invention can also contain nickel in contents of 0.05-0.8% by weight, preferably 0.05-0.7% by weight. In combination with Ni or alone, nitrogen contents of 0.05-0.08% by weight can also be provided. Both alloying elements ensure that the strength of the finished casting is maintained even in the event of a partial pearlite fall. Therefore, Ni and N are preferably present in the iron material according to the invention in combination or individually, in particular if cast parts are produced which, due to their shape or mass, cool slowly with the risk that pearlite will decompose. The rule should be that the contents of Ni and / or N are higher, the larger the module of the respective casting.
  • module refers to the ratio of the cast part volume to the heat-emitting surface, for which "cm” is usually used as the unit of measurement.
  • Mn in the range from 0.4% by weight to 0.7% by weight also support pearlite formation.
  • manganese is also added in particular in order to form segregation directions on manganese.
  • the Mn contents can be limited to the range from 0.45 to 0.65% by weight in order to achieve this effect.
  • the maximum phosphorus content is limited to 0.04% by weight in order to minimize the formation of phosphideutectic which would be detrimental to the toughness of the material.
  • sulfur content is also limited to a maximum of 0.04% by weight in order to avoid sulfide formation.
  • the contents of at least 0.01% by weight provided according to the invention are used for nucleation, which leads to finely divided oxysulfides.
  • Ce the higher the respective S content, the higher the Ce content.
  • the oxysulfides formed by cerium in conjunction with sulfur promote the formation of graphite and increase the strength and hardness of the material without reducing the toughness of the material.
  • Mo can be added to the iron casting material according to the invention in contents of 0.15% by weight to 0.45% by weight in order to block dislocation movements in the event of thermal stress due to diffusion from the iron grid and thereby to prevent crack formation.
  • the security with which the properties of the material according to the invention which are obtained by adding Mo can be increased by limiting the upper limit of the Mo content to 0.35% by weight or the lower limit to 0.2 % By weight is raised.
  • Tin contents which are 0.05% by weight to 0.15% by weight, lead to the formation of a micro segregation zone around the graphite lamellae when the casting remains in the mold for a longer time and prevent the carbon from diffusing into the graphite basic matrix.
  • strontium favors the nucleation and formation of a structure that is favorable in terms of the desired properties.
  • at least 0.0005 wt% Sr is required.
  • the content is more than 0.01% by weight, there is no longer any positive effect.
  • Sr is present in a content of 0.0005 to 0.002% by weight.
  • Levels of lanthanum in the range of 0.005-0.02% by weight have a favorable effect on the castability of the cast alloy according to the invention and promote the hardness of the material and its tribological behavior by causing grain refinement.
  • vanadium is added to the alloy according to the invention in order to increase the hardness and tensile strength of the material. Vanadium alloys the cementite of pearlite and leads to the formation of shorter, rounded lamellae of lamellar graphite, with the result that the hardness and toughness increase. If vanadium is added to an alloy according to the invention for this purpose, this can take place depending on the module of the respective component in order to reliably achieve the desired success. The V content should increase with increasing thickness. Practical trials have shown that optimal
  • the cast part properties if the V content is 0.025 - 0.035% by weight for a module of the respective cast part of 0.25 - 0.65 cm, the V content> 0.035 - for a module of 0.65 - 1.2 cm 0.065% by weight and with a module above 1.2 cm the V content is more than 0.055-0.1 % By weight. If the content according to the invention is more than 0.1% by weight, the solubility limit is exceeded.
  • a variant of the alloy according to the invention which is particularly suitable for the production of brake discs is characterized in that its carbon contents are in the range from 3.8 to 4.1% by weight.
  • the relatively high carbon content leads to strengths in the range of 150 to 200 MPa.
  • castings produced from the alloys composed in this way have a high thermal conductivity with equally high toughness.
  • the silicon content is preferably in the range from 0.9 to 1.2% by weight.
  • Another variant of the invention provides for the casting of castings in which high strength combined with good thermal conductivity is paramount that the C content is in the range from 3.4 to 3.8% by weight, in particular 3% by weight. 4 - 3.6 wt .-% is.
  • the iron casting material according to the invention composed in this way has high tensile strengths, which in the cast state regularly amount to more than 300 MPa.
  • the Si content of the alloy is 1.15-1.4% by weight, in particular 1.2-1.4% by weight, in order to avoid the risk of reoxidation during casting counteracted with reduced C contents.
  • the oxygen content of an iron casting alloy according to the invention is of particular importance.
  • the speed and extent of nucleation are determined by the 0 2 content controlled.
  • An increase in the oxygen content leads to rapid particle growth, while lower oxygen contents result in less growth.
  • These effects are achieved at 0 2 contents which are in the range from 30 to 70 ppm.
  • brake disks or similarly designed components are produced from the alloy according to the invention, the structure can be optimally achieved via the oxygen content by limiting the oxygen contents to 30 to 40 ppm.
  • thin-walled cast parts such as light engine blocks or the like with a module of 0.1 to 0.4 cm, high 0 2 contents of 50 to 70 ppm have proven to be favorable, since they promote rapid grain growth within the short cooling time.
  • the high tensile strengths of a cast material according to the invention can be assured particularly reliably by the fact that in the cast iron material according to the invention more than 50% of the oxygen contained in it is present in an oxide type whose starting temperature for the reduction with oxygen is above 1,700 K.
  • the cast iron material according to the invention also has good corrosion resistance. Because of this special combination of properties, the cast iron material according to the invention is particularly suitable for producing brake disks and engine blocks or cylinder heads for internal combustion engines.
  • the high tensile strengths in combination with the good castability, machinability and high thermal conductivity make the material according to the invention particularly suitable for use as a material for the production of blocks for modern diesel engines, in which the combustion process leads to extremely high pressure loads comes in the area of the combustion chamber.
  • cast iron alloys according to the invention have been cast with the compositions B1 - B7 of truck brake disks given in Table 1 in% by weight, whose Sc value,% MEG value, tensile strength R and Brinell hardness HB are given in Table 1b.
  • Table 1b also contains an evaluation of the structure of the products obtained in each case.
  • the truck brake disks cast from the alloys listed in Table la consistently have tensile strengths in the range from 160 to 230 MPa.
  • the hardness values are in the range from 147 to 220, so that the brake discs not only have high strength, but also good wear resistance. Furthermore, they have excellent thermal conductivity so that they can safely absorb and dissipate the forces acting on them even under high loads.
  • Table 2a shows the contents of C, Si, S, Mn, Cu, V, Mo, Sn and Ni for alloys Dl-D5 of cast iron materials according to the invention, from which thin-walled car engine blocks with a 0.7-0.8 cm amount module have been cast.
  • the alloys D1-D6 in question each contained 60 ppm by weight of O 2 and 0.01% by weight of La.
  • Table 2b contains the associated values% MEG, SC, the tensile strength Rm and the Brinell hardness HB averaged over different measuring locations as well as an evaluation of the structure.
  • Table 3a shows the contents of C, Si, S, Mn, Cu, V, Mo, Sn and Ni for alloys ZI - Z6 of cast iron materials according to the invention, from which 100 kg (alloys ZI - Z4) and 400 kg (alloys Z5, Z6) heavy cylinder heads have been cast.
  • the module of the 100 kg cylinder heads was between 2.5 - 3 cm, while the module of the 400 kg cylinder heads was 1 cm.
  • the alloys ZI-Z6 in each case contained 40 ppm by weight of 0 2 and 0.01% by weight of La.
  • Table 3b contains the associated values% MEG and SC, the tensile strength Rm and the Brinell hardness HB as well as an evaluation of the structure.
  • one (in% by weight) is 3.6% C, 1.35% Si, 0.1% Sn, 0.5% Mn, 0.5% Cu, 0.01% V, 0.2 % Mo, 40 ppm by weight 0 2 and 0.03% S and a cast iron alloy according to the invention as the remainder iron and unavoidable impurities, a heavy crankcase was cast.
  • the alloy's SC was 0.93 and its% MEG was 1.98.
  • the finished housing had a tensile strength Rm of 320 MPa and a finely structured pearlitic structure.
  • the invention thus provides an iron casting material which has a superior range of properties which can be varied over a wide range.
  • the material according to the invention is characterized by particularly good machinability. Its high tensile strength makes it possible to produce known cast structures, which were previously only made from conventional gray cast iron, with higher strengths, without the need for complex redesigns.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Braking Arrangements (AREA)

Abstract

Die Erfindung betrifft einen Eisenwerkstoff mit Lamellengraphit, der es auf einfache Weise ermöglicht, für eine weite Produktpalette durch Variation der Gehalte an den jeweiligen Legierungsbestandteilen die jeweils optimalen Eigenschaften einzustellen. Zu diesem Zweck weist erfindungsgemäßer Eisengusswerkstoff (in Gew.-%) 3,4 - 4,1 % C, 0,9 - 1,4 % Si, 0,4 - 0,7 % Mn, 0,4 - 0,6 % Cu, 0,01 - 0,04 % S, 0,003 - 0,007 % O2, ≤ 0,04 % P und als Rest Eisen sowie unvermeidbare Verunreinigungen auf. Zusätzlich können wahlweise einzeln oder in Kombination 0,15 - 0,45 % Mo, 0,005 - 0,02 % La, 0,0005 - 0,01 % Sr, 0,05 -0,8 % Ni, 0,005 - 0,1 % V, 0,05 - 0,15 % Sn, 0,05 - 0,08 % N sowie 0,01 - 0,02 % Ce enthalten sein. Dabei gilt für den Sättigungsgrad Sc = C%/4,26-0,3*(Si%+P%): 0,85 % ≤ SC ≤ 1,05 % und für die jeweilige Menge %MEG = 2,25 % - 0,2 Si%: 1,97 % ≤ MEG ≤ 2,07 %.

Description

EISENGUSSWERKSTOFF
Die Erfindung betrifft einen Eisengusswerkstoff mit Lamellengraphit, der insbesondere zum Herstellen von Bremsscheiben, Motorblöcken leichter und schwerer Bauart sowie von Zylinderköpfen geeignet ist.
Aufgrund seiner guter Zerspanbarkeit und sehr günstiger Gießeigenschaften bei geringem Risiko für das Auftreten verdeckter Fehler ist Gusseisen mit Lamellengraphit (Grauguss) ein beliebter Konstruktionswerkstoff. Daher werden aus Eisengusswerkstoffen der in Rede stehenden Art typischerweise Blöcke für Verbrennungsmotoren gegossen.
Die bereits heute an die Zugfestigkeit des Werkstoffes gestellten Anforderungen haben allerdings die Grenzen der problemlosen Anwendbarkeit von herkömmlichem Grauguss erreicht. Dies ist darin begründet, dass einerseits gesteigerte Leistungen, z.B. beim Guss von Verbrennungsmotoren, gefordert werden und andererseits der Leichtbau ein zentrales Ziel moderner Gusskonstruktionen ist. Erschwerend kommt hinzu, dass von den Anwendern nicht nur höhere Zugfestigkeit von in der Regel mehr als 300 MPa, sondern auch eine Optimierung anderer Eigenschaften, wie z.B. hohe Wärmeleitfähigkeit, hoher Widerstand gegen thermomechanische Ermüdung und hohe Beständigkeit gegen Reib- und Gleitverschleiß, gefordert werden. Darüber hinaus unterliegt die Qualität des Gussergebnisses strengen Prüfungen. Die Forderungen bezüglich hoher Zugfestigkeiten können durch Verringerung des Kohlenstoff- und Siliziumgehaltes bzw. des Sättigungsgrades sowie durch Legieren von Cr, Cu, Ni, Mn oder Mo bis zu einem Gesamtgehalt der zulegierten Elemente von bis zu etwa 2 % grundsätzlich erfüllt werden. Auch der Widerstand gegen die thermomechanische Ermüdung lässt sich auf diese Weise hinreichend hoch einstellen.
Allerdings führen die genannten Maßnahmen zu einer erheblichen Verminderung der Gießbarkeit und des Eigenspeisungsvermögens des verarbeiteten
Eisengusswerkstoffs. Das Risiko der Entstehung verdeckter Fehler und teilcarbidischer Erstarrung (Kantenhärte) steigt. Gleichzeitig wird die Zerspanbarkeit des Werkstoffs erheblich verschlechtert. Daher müssen bei einer industriellen Produktion für die mit den genannten Maßnahmen erzielte Steigerung der Zugfestigkeit und des Widerstands gegen thermomechanische Ermüdung Ausschussraten von bis zu 30 % in Kauf genommen werden.
Die Forderung nach einer hohen Wärmeleitfähigkeit ist durch die Herabsetzung des Kohlenstoff- und Siliziumgehaltes bzw. des Sättigungsgrades oder ein Legieren mit bestimmten Legierungselementen jedoch keineswegs zu erfüllen, da die Wärmeleitfähigkeit von Grauguss bekanntermaßen eine Funktion der im Guss enthaltenen Graphitmenge ist und mit kleiner werdenden Graphitmengen abnimmt. Auch die zulegierten Elemente führen grundsätzlich zu einem Absinken der Wärmeleitfähigkeit.
Letzteres macht sich insbesondere bemerkbar, wenn aus einem entsprechend legierten, relativ hohe Festigkeiten aufweisenden Werkstoff leistungsfähige Bremsscheiben gegossen werden sollen. Das Legieren mit carbidbildenden Elementen wie Cr und Mo führt aufgrund des Seigerungsverhaltens dieser Elemente selbst dann zu einer Bildung von unerwünschten komplexen Carbiden, wenn es innerhalb theoretischer Grenzen für die Löslichkeit dieser Elemente geschieht (Daumenregel: Atomradius des jeweiligen Elements < 1,15 x Atomradius Fe) . Dies hat neben der Tatsache, dass es sich bei diesen Carbiden um "Abfallprodukte" mit negativen Auswirkungen auf die Zerspanbarkeit handelt, den grundsätzlichen Nachteil, dass es dann, wenn im Gießbetrieb anfallendes Gussmaterial im Kreislauf wieder verwendet wird, zu einer Steigerung der Entropie im Gesamtsystem des Kreislaufs kommt.
Beim Wiederverwenden des im Kreislauf wieder eingesetzten Materials werden nämlich die Carbide in der Regel nicht vollständig zerstört. Stattdessen bleiben sie als so genannte Cluster erhalten, die beim Erstarren wieder Carbide bilden. In Folge des erneuten Legierens mit der jeweils vorgeschriebenen Menge an Chrom und Molybdän werden dann wieder neue Carbide gebildet. Im Ergebnis führt dieser Prozess der Anreicherung des verarbeiteten Gusswerkstoffs mit Carbiden zur langsamen, jedoch unvermeidlichen Zunahme an nicht nutzbarem Chrom und Molybdän, welche in einem schleichend eintretenden Verfall der Eigenschaften des Gusswerkstoffs mündet. Infolgedessen, dass die geseigerten Elemente die Temperaturlage des eutektischen Gleichgewichts im System Fe-C-X unterschiedlich beeinflussen und die in der Schmelze ebenfalls vorhandenen, inaktiven nichtmetallischen Phasen ebenfalls dem Prozess der schleichenden Zunahme unterworfen sind, kann es im Extremfall im Gussbetrieb zu dem als "umgekehrten Hartguss" gefürchteten Gießfehler kommen. Neben dem voranstehend erläuterten Stand der Technik ist aus der EP 1 213 071 A2 ein Eisengusswerkstoff für die Herstellung von Nockenwellen bekannt, der (in Gew.-%) 3,5 - 3,7 % C, 0,9 - 1,1 % Si, bis zu 1 % Mn sowie nicht an Schwefel gebundenes Lanthan mit einem Anteil von 0,02 - 0,05 % aufweist und wahlweise 0,3 - 0,6 % Cr, 0,1 - 1,0 % Cu, 0,3 - 0,6 % Mo und 0,02 - 0,05 % Ti enthalten kann. Die Zugabe an Lanthan zu dem bekannten Werkstoff erfolgte dabei mit dem Ziel, die Härte des Werkstoffs zu steigern und eine das tribologische Verhalten verbessernde Kornfeinung zu bewirken. Im Einzelnen erläutert worden sind die Eigenschaften einer solcherart zusammengesetzten Legierung in der EP 1 213 071 A2 anhand eines Ausführungsbeispiels, das (in Gew.-%) 3,69 % C, 0,95 % Si, 0,05 % La, 0,029 % S, 0,0035 % 0, 0,29 % Mn, 0,5 % Cr, 0,2 % Cu, 0,51 % Mo und 0,022 % Ti aufwies.
Ein weiteres Beispiel für einen Eisengusswerkstoff mit Lamellengraphit ist aus der EP 1 004 789 AI bekannt. Dieser Werkstoff wird zur Herstellung von Bremsscheiben eingesetzt, die sich durch eine erhöhte Standzeit auszeichnen. Zu diesem Zweck sind im aus der EP 1 004 789 AI bekannten Gusswerkstoff in Gew.-% 3,9 - 4,2 % C, 0,7 - 1,2 % Si, bis zu 0,02 % P, bis zu 0,02 % S und bis zu 0,05 % AI enthalten. Zusätzlich können in dem bekannten Werkstoff Gehalte an Mn, V, Cu und Cr enthalten sein, wobei der gesamte Anteil dieser Legierungselemente 1,6 % nicht überschreiten soll. Eine aus einem solchen Werkstoff hergestellte Bremsscheibe zeichnet sich durch eine besonders hohe Wärmeleitfähigkeit bei gleichzeitig guter Zähigkeit aus. Konkret erprobt worden ist die bekannte Legierung anhand eines Ausführungsbeispiels, das (in Gew.-%) 4,1 % C, 1,0 % Si, 0,02 % P, 0,03 % S, 0,3 % Mn, 0,01 % V, 0,4 % Cu, 0,3 % Mo und 0,015 % AI enthielt. Ausgehend von dem voranstehend erläuterten Stand der Technik bestand die Aufgabe der Erfindung darin, ein Legierungskonzept zu schaffen, das es auf einfache Weise ermöglicht, für eine weite Produktpalette durch Variation der Gehalte an den jeweiligen Legierungsbestandteilen die jeweils optimalen Eigenschaften einzustellen.
Diese Aufgabe wird erfindungsgemäß durch einen Eisengusswerkstoff mit Lamellengraphit gelöst, der folgende Zusammensetzung aufweist (in Gew.-%):
C: 3,4 - 4,1 %, Si: 0,9 - 1,4 %, Mn: 0,4 - 0,7 %, Cu : 0 , 4 - 0,6 %, S: 0,01 - 0,04 %, 02: 0,003 - 0,007 %, P: < 0,04 %, Rest aus Fe und unvermeidbare Verunreinigungen, wobei die Zusammensetzung zusätzlich wahlweise eines oder mehrere der folgenden Elemente enthalten kann: Mo: 0,15 - 0,45 %, La: 0,005 - 0,02 %, Sr: 0, 0005 - 0,01 %, V: 0,005 - 0,1 %, Ni: 0,05 - 0,8 %, Sn: 0,05 - 0,15 %, N: 0,05 - 0,08 % und für den Sättigungsgrad Sc = C%/4, 26-0, 3* (Si%+P%) (C%: jeweiliger C-Gehalt, Si%: jeweiliger Si-Gehalt, P%: jeweiliger P-Gehalt) gilt 0,85 % < Sc < 1,05 % sowie für die jeweilige Menge %MEG = 2,25 % - 0,2 Si% (Si%: jeweiliger Si-Gehalt) gilt 1,97 % < MEG < 2,07 %.
Die Erfindung stellt eine Fe-C-Si-X-Gusslegierung zur Verfügung, die insbesondere eine sowohl hinsichtlich ihrer Festigkeit als auch hinsichtlich ihrer Wärmeleitfähigkeit und Vergießbarkeit optimierte Eigenschaftskombination besitzt und bei der das Risiko einer im praktischen Gießbetrieb eintretenden schleichenden Abnahme der guten Eigenschaften auf ein Minimum reduziert ist.
Erfindungsgemäßer Eisengusswerkstoff ist weitestgehend frei von unerwünschten bzw. unbenötigten Elementen und Nebenprodukten. So sind die Schwefel- und Sauerstoffgehalte derart bemessen, dass sie keinen störenden Einfluss auf die Eigenschaften des Eisenwerkstoffs mehr haben. Dadurch wird erreicht, dass das Eisengitter gereinigt ist und hinreichend freie Kapazität zur Aufnahme von benötigten Fremdatomen enthält. Gleichzeitig sind Mindestgehalte an Sauerstoff und Schwefel vorgeschrieben, weil beide Elemente als Bausteine für die Bildung von Kristallisationskeimen dienen.
Indem die erfindungsgemäß vorgegebenen Abstimmungsregeln für den Sättigungsgrad und die Menge an eutektischem Graphit eingehalten werden, sind die Gehalte an Kohlenstoff und Silizium so bemessen, dass selbst bei einer vergleichsweise weiten Variierung des Sättigungsgrades S die eutektische Graphitmenge MEG hoch bleibt.
Die bei erfindungsgemäßem Gusswerkstoff vorhandene Menge des eutektischen Graphits MEG übertrifft die von normalem Gusseisen weit. Dessen MEG-Wert beträgt üblicherweise nur rund 1.85 Gew.-%. Bei erfindungsgemäßem Gusswerkstoff steht somit ein um 10 % bis 20 % höherer Volumenanteil zur Verfügung. In diesem Überschuss ist ein entscheidender Vorteil des erfindungsgemäßen Eisengusswerkstoffs gegenüber konventionellem Eisenwerkstoff begründet. So weist erfindungsgemäßer Werkstoff ein deutlich überlegenes Eigenspeisungsvermögens zum Zwecke des Ausgleichs der Schrumpfung des Eisens durch Ausdehnung des Graphits gegenüber konventionellem Gusswerkstoff auf. Diese Eigenschaft führt im praktischen Gießbetrieb zu einer deutlichen Steigerung der Zuverlässigkeit, mit der qualitativ hochwertige Gießprodukte erzeugt werden.
Bei der Erzeugung eines erfindungsgemäßen Gusswerkstoffs soll sich die reduzierende Schmelzbehandlung durch Impfen streng nach dem jeweiligen Niveau der Gehalte an Sauerstoff und / oder Schwefel richten.
Als Legierungselemente sieht die Erfindung Elemente vor, deren Atomradius sich von demjenigen des Eisens nicht allzu stark unterscheidet. Bevorzugt beträgt die Abweichung bis max. 2 %. Die Legierungselemente sollen keine starken Carbidbildner sein und nicht direkt seigern. Erfindungsgemäß wird ist es daher vorgesehen, dem Eisenwerkstoff zur Einstellung seiner jeweils geforderten Eigenschaften erforderlichenfalls Kupfer, Nickel, Mangan oder Molybdän zuzulegieren. Auch kann zu diesem Zweck Zinn zugegeben werden, dessen Atomradius um bis zu 50 % größer ist als derjenige des Eisens.
Demgemäß enthält erfindungsgemäßer Eisengusswerkstoff Kupfer in Mengen von 0,4 Gew.-% bis 0,6 Gew.-%, um die Bildung des Perlits ohne negative Auswirkungen auf die gewünscht hohe Graphitisierung zu fördern. Ein weiterer positiver Effekt der Anwesenheit von Cu besteht darin, dass an diesem Element Seigerungsrichtungen ausgebildet werden. Bei der Herstellung von leichteren Gussstücken, wie Leichtbaumotorblöcken, hat es sich als vorteilhaft erwiesen, wenn der Bereich der Gehalte an Cu auf 0,45 - 0,55 eingegrenzt wird, um diese Effekte zu erzielen.
Ergänzend kann die erfindungsgemäße Legierung auch Nickel in Gehalten von 0,05 - 0,8 Gew.-%, bevorzugt 0,05 - 0,7 Gew.-%, enthalten. In Kombination mit Ni oder alleine können auch Gehalte an Stickstoff von 0,05 - 0,08 Gew.-% vorgesehen werden. Beide Legierungselemente stellen sicher, dass hohe Festigkeiten des fertigen Gussteils auch bei teilweisem Perlitzerfall erhalten werden. Daher sind Ni und N im erfindungsgemäßen Eisenwerkstoff in Kombination oder einzeln bevorzugt insbesondere dann vorhanden, wenn Gussteile erzeugt werden, die aufgrund ihrer Formgebung oder Masse langsam abkühlen mit der Gefahr, dass es zum Zerfall des Perlits kommt. Die Regel sollte dabei sein, dass die Gehalte an Ni und / oder N höher sind, je größer der Modul des jeweiligen Gussteils.
Mit dem Fachbegriff "Modul" ist hier das Verhältnis des Gussteil-Volumens zur wärmeabgebenden Fläche bezeichnet, für das als Maßeinheit üblicherweise "cm" verwendet wird.
Gehalte an Mn im Bereich von 0,4 Gew.-% bis 0,7 Gew.-% unterstützen ebenfalls die Perlitbildung.' Auch Mangan wird jedoch insbesondere zugegeben, um Seigerungsrichtungen an Mangan auszubilden. Für die Herstellung leichterer, schneller abkühlender Gusstücke können die Mn-Gehalte auf den Bereich von 0,45 - 0,65 Gew.-% beschränkt werden, um diesen Effekt zu erreichen. Der maximale Gehalt an Phosphor wird auf 0,04 Gew.-% beschränkt, um die Bildung von Phosphideutektikum zu minimieren, das der Zähigkeit des Werkstoff abträglich wäre. Auch der Gehalt an Schwefel ist zur Vermeidung von Sulfidbildungen aus diesem Grund auf ein Maximum von 0,04 Gew.-% beschränkt. Im Fall der Anwesenheit von Cer dienen die gemäß der Erfindung vorgesehenen Gehalte von mindestens 0,01 Gew.-% der Keimbildung, die zu feinst verteilten Oxisulfiden führt. Als Regel kann angesetzt werden, dass bei Anwesenheit von Ce der Ce-Gehalt umso höher eingestellt werden sollte, je höher der jeweilige S-Gehalt ist. Die durch Cer in Verbindung mit Schwefel gebildeten Oxisulfide fördern die Graphitbildung und bewirken eine Steigerung der Festigkeit und Härte des Werkstoffs ohne die Zähigkeit des Werkstoffs herabzusetzen.
Mo kann dem erfindungsgemäßen Eisengusswerkstoff in Gehalten von 0,15 Gew.-% bis 0,45 Gew.-% beigegeben werden, um bei thermischer Beanspruchung durch Diffusion aus dem Eisengitter Versetzungsbewegungen zu blockieren und dadurch die Einleitung der Rissbildung zu verhindern. Die Sicherheit, mit der die durch die Zugabe von Mo sich einstellenden Eigenschaften des erfindungsgemäßen Werkstoffs erreicht werden, lässt sich dabei dadurch steigern, dass die Obergrenze des Mo-Gehalts auf 0,35 Gew.-% beschränkt bzw. die Untergrenze auf 0,2 Gew.-% angehoben wird.
Zinn-Gehalte, die 0,05 Gew.-% bis 0,15 Gew.-% betragen, führen bei längerer Verweilzeit des Gussstücks in der Form zur Bildung einer Mikroseigerungszone um die Graphitlamellen herum und verhindern die Diffusion des Kohlenstoffs aus dem Graphit in die Grundmatrix. Die Zugabe von Strontium begünstigt die Keimbildung und Ausprägung eines im Hinblick auf die angestrebten Eigenschaften günstigen Gefüges. Um diesen Zweck sicher zu erreichen, sind mindestens 0,0005 Gew.-% Sr erforderlich. Bei Gehalten von mehr als 0,01 Gew.-% lässt sich dagegen keine positive Wirkung mehr feststellen. Insbesondere bei größeren Gussstücken, bei denen die Festigkeit von besonderer Bedeutung ist, stellt sich eine besonders positive Wirkung ein, wenn Sr in Gehalten von 0,0005 bis 0,002 Gew.-% anwesend ist.
Gehalte an Lanthan im Bereich von 0,005 - 0,02 Gew.-% wirken sich günstig auf die Vergießbarkeit der erfindungsgemäßen Gusslegierung aus und fördern die Härte des Werkstoffs sowie dessen tribologisches Verhalten, indem sie eine Kornfeinung bewirken.
Vanadium wird der erfindungsgemäßen Legierung erforderlichenfalls zugegeben, um die Härte und Zugfestigkeit des Werkstoffs zu steigern. Vanadium legiert den Zementit des Perlits und führt zur Bildung von kürzeren, abgerundeten Lammellen des Lamellengraphits mit der Folge, dass die Härte und Zähigkeit ansteigen. Sofern zu diesem Zweck Vanadium einer erfindungsgemäßen Legierung zugegeben wird, kann dies in Abhängigkeit vom Modul des jeweiligen Bauelements erfolgen, um den gewünschten Erfolg sicher zu erreichen. Der Gehalt an V sollte dabei mit zunehmender Dicke ansteigen. So haben praktische Erprobungen gezeigt, dass sich optimale
Gussteileigenschaften einstellen, wenn bei einem Modul des jeweiligen Gussteils von 0,25 - 0,65 cm der V-Gehalt 0,025 - 0,035 Gew.-%, bei einem Modul von 0,65 - 1,2 cm der V- Gehalt >0,035 - 0,065 Gew.-% und bei einem oberhalb von 1,2 cm liegenden Modul der V-Gehalt mehr als 0,055 - 0,1 Gew.-% beträgt. Bei erfindungsgemäßem Gehalten von mehr als 0,1 Gew.-% ist die Löslichkeitsgrenze überschritten.
Eine insbesondere für die Herstellung von Bremsscheiben geeignete Variante der erfindungsgemäßen Legierung ist dadurch gekennzeichnet, dass ihre Kohlenstoffgehalte im Bereich von 3,8 - 4,1 Gew.-% liegen. Der relativ hohe Kohlenstoffgehalt führt Festigkeiten, die im Bereich von 150 bis 200 MPa liegen. Gleichzeitig weisen aus der derart zusammengesetzten Legierungen erzeugte Gussstücke eine hohe Wärmeleitfähigkeit bei gleichfalls hoher Zähigkeit auf. Der Silizium-Gehalt liegt zum selben Zweck bevorzugt im Bereich von 0,9 - 1,2 Gew.-%.
Für das Gießen von Gussteilen, bei denen eine hohe Festigkeit bei gleichzeitig guter Wärmeleitfähigkeit im Vordergrund steht, sieht eine andere Variante der Erfindung vor, dass der C-Gehalt im Bereich von 3,4 - 3,8 Ge .-%, insbesondere 3,4 - 3,6 Gew.-% liegt.
Versuche haben gezeigt, dass derart zusammengesetzter erfindungsgemäßer Eisengusswerkstoff hohe Zugfestigkeiten aufweist, die im vergossenen Zustand regelmäßig mehr als 300 MPa betragen.
Beim Gießen dickwandigerer Gussteile ist darüber hinaus vorteilhaft, wenn der Si-Gehalt der Legierung 1,15 - 1,4 Gew.-%, insbesondere 1,2 - 1,4 Gew.-%, beträgt, um beim Gießen der Gefahr einer Reoxidation bei verminderten C- Gehalten zu begegnen.
Besondere Bedeutung kommt den Sauerstof gehalten einer erfindungsgemäßen Eisengusslegierung zu. Über den 02-Gehalt werden Geschwindigkeit und Umfang der Keimbildung gesteuert. So führt eine Erhöhung des Sauerstoffgehalts zu einem schnellen Teilchenwachstum, während niedrigere Sauerstoffgehalte ein geringeres Wachstum zur Folge haben. Erreicht werden diese Effekte bei 02-Gehalten, die im Bereich von 30 bis 70 ppm liegen. Werden aus der erfindungsgemäßen Legierung Bremsscheiben oder vergleichbar gestaltete Bauelemente hergestellt, so lassen sich über den Sauerstoffgehalt dadurch optimale Gefüge erreichen, dass die Sauerstoffgehalte auf 30 bis 40 ppm beschränkt werden. Bei dünnwandigen Gussteilen, wie leichten Motorblöcken oder ähnlichem mit einem Modul von 0,1 bis 0,4 cm, haben sich hohe 02-Gehalte von 50 bis 70 ppm als günstig herausgestellt, da sie innerhalb der jeweils kurzen Abkühlzeit ein schnelles Kornwachstum begünstigen. Bei dickwandigeren Bauteilen mit Modulen im Bereich von 0,4 - 1 cm, beispielsweise schwereren Motorblöcken, werden optimierte Ge ügeeigenschaften erreicht, wenn der 02-Gehalt 40 bis 60 ppm beträgt. Beim Gießen von komplex geformten Gussteilen, wie Zylinderköpfen, mit einem Modul im Bereich von 1 bis 2,5 cm wird dagegen ein bezogen auf die von diesen Bauteilen geforderten Eigenschaften optimiertes Kornwachstum erreicht, wenn der 02-Gehalt der erfindungsgemäßen Legierung im Bereich von 30 bis 50 ppm liegt .
Besonders sicher lassen sich die hohen Zugfestigkeiten eines erfindungsgemäßen Gusswerkstoffs dadurch gewährleisten, dass im erfindungsgemäßen Eisengusswerkstoff im vergossenen Zustand mehr als 50 % des in ihm enthaltenen Sauerstoffs in einer Oxidart vorliegen, deren Starttemperatur der Reduktion mit Sauerstoff über 1.700 K liegt . Neben der verbesserten Festigkeit, Wärmeleitfähigkeit, Zähigkeit und Zerspanbarkeit weist erfindungsgemäßer Eisengusswerkstoff auch eine gute Korrosionsbeständigkeit auf. Aufgrund dieser speziellen Eigenschaftskombination eignet sich erfindungsgemäßer Eisengusswerkstoff in besonderer Weise zur Herstellung Bremsscheiben sowie von Motorblöcken oder Zylinderköpfen für Verbrennungskraftmaschinen. Insbesondere die hohen Zugfestigkeiten in Kombination mit der guten Vergießbarkeit, Zerspanbarkeit und hohen Wärmeleitfähigkeit machen den erfindungsgemäßen Werkstoff dazu in besonderer Weise geeignet, als Werkstoff für die Herstellung von Blöcken für moderne Dieselmotoren eingesetzt zu werden, bei denen es im Zuge des Verbrennungsprozesses zu extrem hohen Druckbelastungen im Bereich des Verbrennungsraumes kommt.
Die Eigenschaften von erfindungsgemäßem Eisengusswerkstoff wurden an einer Vielzahl von Beispielen nachgewiesen.
So sind aus erfindungsgemäßen Eisengusslegierungen mit den in Tabelle la in Gew.-% angegebenen Zusammensetzungen Bl - B7 LKW-Bremsscheiben gegossen worden, deren Sc-Wert, %MEG- Wert, Zugfestigkeit R und Brinell-Härte HB in Tabelle lb angegeben sind. Tabelle lb enthält zusätzlich eine Bewertung des Gefüges der jeweils erhaltenen Produkte.
Es zeigt sich, dass die aus den in Tabelle la angegebenen Legierungen gegossenen LKW-Bremsscheiben durchweg Zugfestigkeiten im Bereich von 160 bis 230 MPa besitzen. Die Härte-Werte liegen dabei im Bereich von 147 bis 220, so dass die Bremsscheiben nicht nur hohe Festigkeiten, sondern auch eine gute Verschleißbeständigkeit besitzen. Des Weiteren weisen sie eine hervorragende Wärmeleitfähigkeit auf, so dass sie auch unter hohen Belastungen die auf sie einwirkenden Kräfte sicher aufnehmen und abführen können.
In Tabelle 2a sind die Gehalte an C, Si, S, Mn, Cu, V, Mo, Sn und Ni für Legierungen Dl - D5 von erfindungsgemäßen Eisengusswerkstoffen angegeben, aus denen dünnwandige PKW- Motorblöcke mit einem 0,7 - 0,8 cm betragenden Modul gegossen worden sind. Zusätzlich enthielten die betreffenden Legierungen Dl - D6 jeweils 60 Gew. -ppm 02 und 0,01 Gew.-% La. Tabelle 2b enthält die zugehörigen Werte %MEG, SC, die Zugfestigkeit Rm und die jeweils über verschiedene Messorte gemittelte Brinellhärte HB sowie eine Bewertung des Gefüges.
In Tabelle 3a sind die Gehalte an C, Si, S, Mn, Cu, V, Mo, Sn und Ni für Legierungen ZI - Z6 von erfindungsgemäßen Eisengusswerkstoffen angegeben, aus denen 100 kg (Legierungen ZI - Z4) bzw. 400 kg (Legierungen Z5,Z6) schwere Zylinderköpfe gegossen worden sind. Der Modul der 100 kg-Zylinderköpfe lag zwischen 2,5 - 3 cm, während der Modul der 400 kg schweren Zylinderköpfe bei 1 cm lag. Zusätzlich enthielten die betreffenden Legierungen ZI - Z6 jeweils 40 Gew. -ppm 02 und 0,01 Gew.-% La. Tabelle 3b enthält die zugehörigen Werte %MEG und SC, die Zugfestigkeit Rm und die Brinellhärte HB sowie eine Bewertung des Gefüges .
Schließlich ist aus einer (in Gew.-%) 3,6 % C, 1,35 % Si, 0,1 % Sn, 0,5 % Mn, 0,5 % Cu, 0,01 % V, 0,2 % Mo, 40 Gew.- ppm 02 und 0,03 % S sowie als Rest Eisen und unvermeidbare Verunreinigungen bestehenden erfindungsgemäßen Eisengusslegierung ein schweres Kurbelgehäuse gegossen worden. Der SC-Wert der Legierung betrug 0,93 und ihr %MEG- Wert 1,98. Das fertige Gehäuse wies eine Zugfestigkeit Rm von 320 MPa und ein feinstrukturiertes perlitisches Gefüge auf.
Mit der Erfindung steht somit ein Eisengusswerkstoff zur Verfügung, der ein überlegenes Eigenschaftsspektrum besitzt, das über einen weiten Bereich variiert werden kann. Dabei zeichnet sich der erfindungsgemäße Werkstoff durch eine besonders gute Zerspanbarkeit aus. Seine hohe Zugfestigkeit ermöglicht es, bekannte Gusskonstruktionen, die bisher nur aus konventionellem Grauguss hergestellt worden sind, mit höheren Festigkeiten zu erzeugen, ohne dass dazu aufwändige Umkonstruktionen erforderlich sind.
Figure imgf000016_0001
Rest Eisen und unvermeidbare Verunreinigungen
Tabelle la
Figure imgf000016_0002
Tabelle lb
Figure imgf000017_0001
Rest Eisen und unvermeidbare Verunreinigungen Tabelle 2a
Figure imgf000017_0002
Tabelle 2b
Figure imgf000017_0003
Rest Eisen und unvermeidbare Verunreinigungen Tabelle 3a
Figure imgf000017_0004
Tabelle 3b

Claims

P A T E N T AN S P R Ü C H E
1. Eisengusswerkstoff mit Lamellengraphit, mit folgender Zusammensetzung (in Gew.-%): C: 3,4 - 4,1 %, Si: 0,9 - 1, %, Mn: 0,4 - 0,7 %, Cu: 0,4 - 0, 6 %, S: 0,01 - 0,04 %, 02: 0,003 - 0,007 %, P: < 0,04 %, Rest aus Fe und unvermeidbare Verunreinigungen, wobei die Zusammensetzung zusätzlich wahlweise eines oder mehrere der folgenden Elemente enthalten kann: Mo 0,15 0,45 %, La 0,005 - 0,02 %, Sr 0,0005 - 0,01 %, Ni: 0,05 - 0,8 %, V: 0,005 - 0,1 %, Sn: 0,05 - 0,15 %, N: 0,05 - 0,08 %, Ce: 0,01 - 0,02 % und für den Sättigungsgrad Sc = C%/4, 26-0, 3* (Si%+P%) (C%: jeweiliger C-Gehalt, Si%: jeweiliger Si-Gehalt, P%: jeweiliger P-Gehalt) gilt 0,85 % < Sc < 1,05 % sowie für die jeweilige Menge %MEG = 2,25 % - 0,2 Si% (Si%: jeweiliger Si-Gehalt) gilt 1,97 % < MEG < 2,07 %
2. Eisengusswerkstoff nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s der C-Gehalt 3,8 - 4,1 Gew.-% beträgt.
3. Eisengusswerkstoff nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , d a s s der Si-Gehalt 0,9 - 1,2 Gew.-% beträgt.
4. Eisengusswerkstoff nach einem der Ansprüche 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , d a s s der 02-Gehalt 0,003 - 0,004 Gew.-% beträgt.
5. Eisengusswerkstoff nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s der C-Gehalt 3,4 - 3,6 Gew.-% beträgt.
6. Eisengusswerkstoff nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , d a s s der Si-Gehalt 1,15 - 1,4 Gew.-% beträgt.
7. Eisengusswerkstoff nach einem der Ansprüche 5 oder 6, d a d u r c h g e k e n n z e i c h n e t , d a s s der Sr-Gehalt 0,005 - 0,002 Gew.-% beträgt.
8. Eisengusswerkstoff nach einem der Ansprüche 5 bis 7, d a d u r c h g e k e n n z e i c h n e t, d a s s der V-Gehalt 0,025 - 0,045 Gew.-% beträgt.
9. Eisengusswerkstoff nach einem der Ansprüche 5 bis 8 d a d u r c h g e k e n n z e i c h n e t , d a s s der Sn-Gehalt 0,05 - 0,15 Gew.-% beträgt.
10. Eisengusswerkstoff nach einem der Ansprüche 5 bis 9, d a d u r c h g e k e n n z e i c h n e t , -d a s s der Si-Gehalt 1,15 - 1,25 Gew.-% beträgt.
11. Eisengusswerkstoff nach einem der Ansprüche 5 bis 10, d a d u r c h g e k e n n z e i c h n e t , d a s s der 02-Gehalt 0,003 - 0,005 Gew.-% beträgt.
12. Eisengusswerkstoff nach einem der Ansprüche 5 bis 10, d a d u r c h g e k e n n z e i c h n e t , d a s s der 02-Gehalt 0,004 - 0,006 Gew.-% beträgt.
13. Eisengusswerkstoff nach einem der Ansprüche 5 bis 10, d a d u r c h g e k e n n z e i c h n e t , d a s s der 02-Gehalt 0,005 - 0,007 Gew.-% beträgt.
14. Eisengusswerkstoff nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s der S-Gehalt mindestens 0,02 Gew.-% beträgt.
15. Eisengusswerkstoff nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s der Mo-Gehalt 0,2 - 0,4 Gew.-% beträgt.
16. Eisengusswerkstoff nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s der Mn-Gehalt 0,45 - 0,65 Gew.-% beträgt.
17. Eisengusswerkstoff nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s der Cu-Gehalt 0,45 - 0,55 Gew.-% beträgt.
18. Eisengusswerkstoff nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , d a s s sein Sr-Gehalt mindestens 0,05 Gew.-% beträgt.
19. Eisengusswerkstoff nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, d a s s im vergossenen Zustand mehr als 50 % des in ihm enthaltenen Sauerstoffs in einer Oxidart vorliegen, deren Starttemperatur der Reduktion mit Sauerstoff über 1.700 K liegt.
PCT/EP2004/007914 2003-07-16 2004-07-16 Eisengusswerkstoff WO2005007913A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE502004005766T DE502004005766D1 (de) 2003-07-16 2004-07-16 Eisengusswerkstoff
EP04741074A EP1646732B1 (de) 2003-07-16 2004-07-16 Eisengusswerkstoff
MXPA06000901A MXPA06000901A (es) 2003-07-16 2004-07-16 Material de hierro fundido.
JP2006519885A JP2007527951A (ja) 2003-07-16 2004-07-16 鋳鉄材料
US10/563,181 US20070023106A1 (en) 2003-07-16 2004-07-16 Cast iron material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP03016137 2003-07-16
EP03016137.6 2003-07-16
EPPCT/EP03/10603 2003-09-24
EP0310603 2003-09-24

Publications (1)

Publication Number Publication Date
WO2005007913A1 true WO2005007913A1 (de) 2005-01-27

Family

ID=34081803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/007914 WO2005007913A1 (de) 2003-07-16 2004-07-16 Eisengusswerkstoff

Country Status (5)

Country Link
EP (1) EP1646732B1 (de)
DE (1) DE502004005766D1 (de)
ES (1) ES2298771T3 (de)
MX (1) MXPA06000901A (de)
WO (1) WO2005007913A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028902A1 (de) * 2004-06-15 2006-01-26 Buderus Guss Gmbh Bremsscheibe
RU2475563C1 (ru) * 2012-02-22 2013-02-20 Юлия Алексеевна Щепочкина Чугун
CN113046622A (zh) * 2019-12-27 2021-06-29 南通虹冈铸钢有限公司 一种提高d7003球墨铸铁淬火硬度的加工工艺
CN114150214A (zh) * 2021-12-13 2022-03-08 东港市辽成机械有限公司 一种ht200灰铸铁及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007006973A1 (de) * 2007-02-13 2008-08-14 M. Busch Gmbh & Co Kg Gusseisenlegierung mit Lamellengraphit
SE535043C2 (sv) 2010-12-02 2012-03-27 Scania Cv Ab Gråjärnslegering samt bromsskiva innefattande gråjärnslegering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311185A1 (de) * 1983-03-26 1984-09-27 Hoechst Ag, 6230 Frankfurt Unlegierter grauguss fuer pauling-kessel
US5242510A (en) * 1992-09-25 1993-09-07 Detroit Diesel Corporation Alloyed grey iron having high thermal fatigue resistance and good machinability
EP1004789A2 (de) * 1998-11-26 2000-05-31 Fritz Winter Eisengiesserei GmbH &amp; Co. KG Bremsscheibe für Nutzfahrzeuge
EP1213071A2 (de) * 2000-12-07 2002-06-12 Fritz Winter Eisengiesserei GmbH &amp; Co. KG Verfahren, Vorrichtung und Eisengusslegierung zum Herstellen einer Nockenwelle sowie Nockenwelle mit angegossenen Nocken

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3311185A1 (de) * 1983-03-26 1984-09-27 Hoechst Ag, 6230 Frankfurt Unlegierter grauguss fuer pauling-kessel
US5242510A (en) * 1992-09-25 1993-09-07 Detroit Diesel Corporation Alloyed grey iron having high thermal fatigue resistance and good machinability
EP1004789A2 (de) * 1998-11-26 2000-05-31 Fritz Winter Eisengiesserei GmbH &amp; Co. KG Bremsscheibe für Nutzfahrzeuge
EP1213071A2 (de) * 2000-12-07 2002-06-12 Fritz Winter Eisengiesserei GmbH &amp; Co. KG Verfahren, Vorrichtung und Eisengusslegierung zum Herstellen einer Nockenwelle sowie Nockenwelle mit angegossenen Nocken

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028902A1 (de) * 2004-06-15 2006-01-26 Buderus Guss Gmbh Bremsscheibe
DE102004028902B4 (de) * 2004-06-15 2017-11-09 Robert Bosch Gmbh Bremsscheibe
RU2475563C1 (ru) * 2012-02-22 2013-02-20 Юлия Алексеевна Щепочкина Чугун
CN113046622A (zh) * 2019-12-27 2021-06-29 南通虹冈铸钢有限公司 一种提高d7003球墨铸铁淬火硬度的加工工艺
CN114150214A (zh) * 2021-12-13 2022-03-08 东港市辽成机械有限公司 一种ht200灰铸铁及其制造方法

Also Published As

Publication number Publication date
EP1646732A1 (de) 2006-04-19
ES2298771T3 (es) 2008-05-16
EP1646732B1 (de) 2007-12-19
DE502004005766D1 (de) 2008-01-31
MXPA06000901A (es) 2006-05-04

Similar Documents

Publication Publication Date Title
DE69835099T2 (de) Kugelgraphitgusseisenlegierung mit molybdän und daraus hergestellter rotor für scheibenbremse
DE102009004189B4 (de) Bauteil aus einer Gusseisenlegierung, insbesondere für Zylinderköpfe
DE112014001570B4 (de) Austenitischer hitzebeständiger Stahlguss und Verfahren zu dessen Herstellung
EP2013371B1 (de) Verwendung von einer kupfer-nickel-zinn-legierung
DE102007023323B4 (de) Verwendung einer Al-Mn-Legierung für hochwarmfeste Erzeugnisse
EP3143173B1 (de) Verfahren zur herstellung eines motorbauteils, motorbauteil und verwendung einer aluminiumlegierung
EP1978120A1 (de) Aluminium-Silizium-Gussleglerung und Verfahren zu Ihrer Herstellung
DE112006001375T5 (de) Hochdruckguss-Magnesiumlegierung
EP3024958B1 (de) Hochwarmfeste aluminiumgusslegierung und gussteil für verbrennungsmotoren gegossen aus einer solchen legierung
EP2920334B1 (de) Verfahren zur herstellung eines motorbauteils, motorbauteil und verwendung einer aluminiumlegierung
WO2014169890A1 (de) Gleitlagerlegierung auf zinnbasis
DE102018209267A1 (de) Kolben für Verbrennungsmotoren und Verwendung eines Kolbens für Verbrennungsmotoren
WO2017174185A1 (de) Aluminiumlegierung, insbesondere für ein giessverfahren, sowie verfahren zum herstellen eines bauteils aus einer solchen aluminiumlegierung
DE102020205193A1 (de) Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und die Verwendung einer Aluminiumlegierung
DE102006032699B4 (de) Aluminiumlegierung und deren Verwendung für ein Gussbauteil insbesondere eines Kraftwagens
EP1646732B1 (de) Eisengusswerkstoff
DE2627329C2 (de) Austenitisches Gußeisen
WO2006042509A1 (de) Legierung auf basis von aluminium sowie formteil aus dieser legierung
DE102020125421A1 (de) Sphäroguss mit hohem Elastizitätsmodul und hoher Festigkeit und Kurbelwelle
DE3736350C2 (de)
EP3810818A1 (de) Aluminiumlegierung, verfahren zur herstellung eines motorbauteils, motorbauteil und verwendung einer aluminiumlegierung zur herstellung eines motorbauteils
DE202009017752U1 (de) Einsatzstahl
DE3009491A1 (de) Stahl fuer das kaltschmieden und verfahren zu seiner herstellung
US20070023106A1 (en) Cast iron material
DE102014224229A1 (de) Verfahren zur Herstellung eines Motorbauteils, Motorbauteil und Verwendung einer Aluminiumlegierung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004741074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006519885

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/000901

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2004741074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007023106

Country of ref document: US

Ref document number: 10563181

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10563181

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004741074

Country of ref document: EP