WO2005007776A1 - Method for production and upgrading of oil - Google Patents

Method for production and upgrading of oil Download PDF

Info

Publication number
WO2005007776A1
WO2005007776A1 PCT/NO2004/000216 NO2004000216W WO2005007776A1 WO 2005007776 A1 WO2005007776 A1 WO 2005007776A1 NO 2004000216 W NO2004000216 W NO 2004000216W WO 2005007776 A1 WO2005007776 A1 WO 2005007776A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy
oil
steam
reforming
hydrogen
Prior art date
Application number
PCT/NO2004/000216
Other languages
French (fr)
Inventor
Ola Olsvik
Kjell Moljord
Original Assignee
Statoil Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Statoil Asa filed Critical Statoil Asa
Priority to US10/563,991 priority Critical patent/US20060231455A1/en
Priority to EA200600074A priority patent/EA008755B1/en
Priority to CA002532811A priority patent/CA2532811A1/en
Publication of WO2005007776A1 publication Critical patent/WO2005007776A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04569Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for enhanced or tertiary oil recovery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/007Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 in the presence of hydrogen from a special source or of a special composition or having been purified by a special treatment
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/063Refinery processes
    • C01B2203/065Refinery processes using hydrotreating, e.g. hydrogenation, hydrodesulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • C01B2203/0844Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel the non-combustive exothermic reaction being another reforming reaction as defined in groups C01B2203/02 - C01B2203/0294
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/82Several process steps of C01B2203/02 - C01B2203/08 integrated into a single apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Definitions

  • the present invention relates to an environmental-friendly, integrated process for increased production and upgrading/refining of heavy and extra-heavy crude oil to finished products, based on extensive use of hydrogen to maximise the yield of liquid products, while cogenerating large amounts of steam, CO and optionally N 2 produced by large-scale natural gas conversion, used for increased oil production.
  • the finished products from upgrading/refining of heavy/extra heavy oils will be predominantly naphtha, kerosene, diesel and fuel oil, shipped separately or blended.
  • the upgrader is usually designed for the specific heavy oil in question, while the synthetic crude with API in the range of typically 20-35 API is an attractive feedstock for conventional refineries, within certain limitations.
  • the essential feature of the heavy/extra heavy oil upgrader will be the conversion of residue, either by carbon rejection or hydrogen addition, to give a stable synthetic crude that might be more or less residue- free, while the liquid fractions do not have the quality needed for road transportation fuels.
  • a subsequent refining of the synthetic crude is needed to produce finished products with the right quality, but this reprocessing is not very energy efficient since the synthetic crude oil has to be reheated and fractionated.
  • the heavy oils generally have high density and high viscosity due to the large presence of higher boiling, polyaromatic molecules in which the resin and asphaltene content can be as high as 70%.
  • these oils are low in hydrogen content, such as for Athabasca bitumen with an ratio (atomic) H/C equal to 1.49, compared to conventional crudes with a ratio H/C typically around 1.8, which is slightly lower than the value of the most important refinery products, gasoline and diesel (see, J. S. Speight: "The chemistry and technology of petroleum", 3rd ed., Marcel Dekker, Inc., New York, 1999).
  • natural gas is rich in hydrogen with a H/C -ratio around 3.8; therefore natural gas represents a natural source of hydrogen for upgrading of heavy oil, as it is when refineries need additional hydrogen to close their hydrogen balance.
  • the attractiveness of using natural gas as hydrogen source will depend on local factors such as availability and cost of the natural gas.
  • the need for hydrogen in the refineries depends on the feedstock and product slates, as well as the specific refinery configuration.
  • the general market trend is towards lighter products such as LPG, naphtha, gasoline and diesel, putting a pressure on the refineries with respect to upgrading of the heavier fractions.
  • new specification on the sulfur content in transportation fuels normally requires increased hydrotreating in the refineries, a type of processing that consumes hydrogen, thereby contributing to a hydrogen imbalance in the refineries.
  • Upgrading of the heavier fractions can be done either by "carbon-rejection” type of processes such as delayed coking or catalytic cracking, or by hydrogen addition such as hydrocracking.
  • the former produces “coke” which is burnt as energy input in the processing/upgrading or sold as a product (petroleum coke), while the latter gives a higher yield of high- value liquid products of the kind mentioned above, at the penalty of higher hydrogen consumption.
  • the particular high content of residue in heavy oils requires particular refinery configurations to process these crudes, and the high content of metals and carbon residue/asphaltenes in the residue limits the use of catalytic processes available to upgrade the heavy ends of those heavy crudes.
  • the hydrocracking option allows for production of ultra-clean (low sulfur) transportation fuels of a quality in compliance with the most stringent fuel specifications both in EU and in the US. This will normally require a two-step hydrocracking scheme, where the products from the residue hydrocracker must be hydrocracked in a VGO type of hydrocracker to give the ultra- clean transportation fuels.
  • the metals In catalytic hydrocracking of residue, the metals will end up on the catalyst, which by proper treatment can be dissolved and the metals, mainly Vanadium and Nickel, recuperated.
  • the sulfur ends up as H2S which is easily captured and for example converted to elementary sulfur by use of techniques commonly used in refineries today.
  • impurities such as metals and sulfur in the heavy oil, will be properly handed in the upgrader.
  • Heavy oils are, due to their physical properties and particularly the high viscosity, difficult to produce and transport. Technologies have been developed for partial upgrading at the wellhead to make the oil transportable, as an alternative to dilution of the viscous oil by lighter fractions such as typically naphtha.
  • the common solution for the Orinoco bitumen produced in Venezuela is transport by pipeline by naphtha dilution to an upgrader located at the coast, where the naphtha is separated from and recycled, while the crude is partially upgraded to an essentially residue-free synthetic crude with densities in the range of typically 20-32 API.
  • the synthetic crude is then exported to a conventional refinery for upgrading to finished products.
  • the amount of hydrogen required depends on the characteristics of the heavy oil, the upgrader/refinery scheme and the types of products, but a simple mass balance demonstrates that production of finished products from an extra-heavy oil requires so much hydrogen that it could possibly serve as a single solution for remote or stranded gas which then must be transported to (or close to) the heavy oil production site. In some cases, the natural gas could even be available as associated gas, produced with the oil.
  • WO03/018958 relates to a combined facility for production of gases for injection into an oil field and production of synthesis gas for synthesis of methanol or other oxygenated hydrocarbons or higher hydrocarbons in a synthesis loop.
  • Synthesis gas comprising a mixture of H and CO is produced from hydrocarbons, preferably from natural gas.
  • the natural gas may be found in the same formations as the heavy oil or in nearby the heavy oil reservoir.
  • Heat from the synthesis gas production is used to produce steam for injection into the formation to lower the viscosity of the heavy oil by heating it.
  • the synthesis gas is used to produce hydrocarbons by use of a Fischer-Tropsch catalyst. At least a part of the produced hydrocarbons is used to dilute the produced heavy hydrocarbons to lower the viscosity to facilitate the transportation of the oil in pipelines.
  • US 4.706.751 describes another heavy oil recovery process for the recovery of heavy oils from deep reservoirs.
  • Reactant streams are produced in a surface process unit.
  • the reactant streams that may be e.g. H 2 and O 2 plus water, or CO and steam plus water, is introduced into the well and reacted in a catalytic reactor downhole to produce high quality steam, H 2 , CO 2 and any gas or vapour that are readily soluble in the heavy oil such as methane, methanol, light hydrocarbons etc.
  • the reactions in the downhole reactor are exothermal and produce heat for steam formation and heating.
  • Cleaning waste gas from the combustion on the production installation can provide CO 2 for injection into oil reservoirs.
  • CO 2 cleaned from the flue gas from gas power plants be reinjected by laying a pipeline from a gas power plant to the production installation for hydrocarbons.
  • the present invention aims at combining various elements of known methods of natural gas conversion and heavy oil upgrading by upgrading of the heavy/extra heavy oil to high value, finished products by the use of large amounts of hydrogen generated from the natural gas.
  • As byproducts we obtain steam, CO 2 , water and optionally N 2 which can be used for enhanced recovery of the heavy oils from the reservoir.
  • the capture of CO 2 from the hydrogen generation plant represents a significant potential of reduction of the CO 2 emissions from the upgrading by injection of the CO 2 into underground storage (sequestering), or injection into to reservoir to obtain enhanced oil recovery.
  • an integrated process for production and upgrading of heavy and extra-heavy crude oil comprising (a) reforming of natural gas to produce hydrogen, CO 2 and steam (b) separating the produced hydrogen from the CO 2 , steam and any other gases to give a hydrogen rich fraction and a CO 2 rich fraction and steam, (c) injecting the steam alone or in combination with the CO 2 rich fraction into the reservoir containing heavy or extra heavy oil to increase the oil recovery, and (d) upgrading/refining of the heavy or extra heavy oil by hydroprocessing , comprising hydrocracking and hydrotreating using the hydrogen rich fraction in the hydroprocessing steps.
  • hydrotreating comprises, as used in the present invention, removal of sulfur, nitrogen and metals as well as hydrogenation of olefins and aromatics.
  • step (a) is steam reforming.
  • the steam reforming may be performed under supercritical conditions.
  • the reforming in step (a) is autothermal reforming or partial oxidation.
  • Air may be used as oxidizer in the autothermal reformer or in the partial oxidation reactor.
  • the process comprises the additional step of air separation to produce purified oxygen comprising more than 95%, preferably more than 98% oxygen, that is used as oxidizer in the reforming.
  • purified oxygen in the reforming and separation of the reformed gases reduces the gas volume in the reactors and the separation units. Accordingly the volume and building costs may be reduced and the separation of hydrogen from the remaining gases is more effective.
  • purified nitrogen co-produced with the purified oxygen is injected into the reservoir together with the CO 2 rich fraction in step (c) to stimulate the oil production.
  • Nitrogen is effective as pressure support in the reservoir together with the CO 2 rich fraction. It is therefore cost effective to use the produced purified nitrogen for injection.
  • the reformed gas from steam reforming, partial combustion or autothermal reforming comprises CO.
  • the CO is therefore preferably converted by a water gas shift reaction to produce additional CO 2 and H 2 .
  • the heavy or extra heavy oil is partially upgraded in the reservoir by hydrogen injection.
  • the heavy or extra heavy oil is partially upgraded in a downhole upgrading unit.
  • Partial upgrading of the heavy or extra heavy oil in the reservoir makes the oil less viscous. Upgrading in the reservoir may therefore increase the oil production, whereas both upgrading in the reservoir and in a downhole unit will improve the transportability of the oil
  • the heavy or extra heavy oil is upgraded on an offshore or onshore upgrading facility.
  • at least a part of the heat to increase recovery of the heavy or extra heavy oil is generated by in-situ combustion.
  • geothermal heat is used to increase recovery and transport of the heavy or extra heavy oil.
  • Figure 1 is a flowchart illustrating a first preferred embodiment
  • Figure 2 is a flowchart illustrating a second preferred embodiment.
  • Natural gas 115 ton per hour, is introduced into a steam reforming unit 2 via a gas line 1.
  • Steam reforming is an endothermal reaction.
  • the steam reforming unit comprises a conventional steam generation unit where water is heated and converted into hot steam by combustion of any suitable fuel such as natural gas, lower or higher hydrocarbons.
  • the product gas from the steam reformer is then sent to a shift converter (one or two step) in which CO is converted to CO 2 by the water gas shift reaction, and hydrogen is then separated by means of well known separation techniques, such as membrane separation or separation by absorption based on the different chemical properties of gases e.g. as described in WO00/18681, into a hydrogen rich fraction leaving the steam reformation unit 2 through a hydrogen line 3 and a fraction comprising mainly CO 2 and steam leaving the unit through line 4.
  • the hydrogen rich fraction in line 3 constitutes about 35 ton per hour, whereas about 300 ton CO 2 per hour and 210 ton steam per hour leaves the unit through line 4 .
  • This concept represents a favourable way of CO 2 capture due to the high concentration of the CO 2 in the process stream.
  • the preparation of a H 2 rich gas and a CO 2 rich gas may be performed high pressure at supercritical conditions as described in WO/00/18681.
  • the CO 2 and steam is led to a unit for heavy oil production 5 and injected to enhance the recovery of heavy oil.
  • Heavy oil produced in the unit for heavy oil production 5 is led from the unit to a unit for heavy oil upgrading 7 through a heavy oil line 6.
  • the heavy oil is upgraded by several steps of catalytic hydroprocessing of the heavy or extra heavy oil using hydrogen from line 3, by hydrocracking in combination with hydrotreating steps, to produce valuable liquid products (distillates) from the distillation residue, to saturate unsaturated hydrocarbons and to remove asphaltenes, metals, nitrogen and sulphur from the finished products.
  • the products from the heavy oil upgrading unit 7 leaves the unit through a plurality of lines 8. Table 1 indicates a typical yield structure from the unit 7.
  • Table 1 indicates a typical yield structure from the unit 7.
  • Example 2 Generation of hydrogen by autothermal reforming of natural gas
  • Figure 2 illustrates a second preferred embodiment of the present invention, where hydrogen for the heavy oil upgrading and gas for injection into the reservoir is generated by autothermal reforming (ATR) of natural gas.
  • ATR autothermal reforming
  • Natural gas 135 ton per hour (221.000 Sm per hour), is introduced through a gas line 10 and O 2 (from an air separation unit) is introduced through a line 10' into an ATR unit 11.
  • Hydrogen, 35 ton per hour, is separated from the remaining gases as described in example 1 and a hydrogen rich fraction is led into a hydrogen line 12 to a heavy oil upgrading unit 17.
  • Oxygen for the partial combustion is preferably introduced into the reactor(s) as purified oxygen or oxygen enriched air.
  • Purified oxygen is preferred as the absence of the inert nitrogen in the reactor reduces the total gas in the system and simplifies the separation of hydrogen.
  • the purified oxygen is generated in an air separation unit (ASU), separating oxygen and nitrogen in two fractions.
  • ASU air separation unit
  • the nitrogen, 4J GSm3/y, from the ASU is led through a nitrogen line 13 and CO 2 , 350 ton per hour from the ATR unit 11 is led through a line 14 to a unit for heavy oil production 15.
  • the steam amount available for injection is the difference between the steam produced in the synthesis gas heat recovery section and the steam needed for production of 70 MW power for the ASU.
  • the nitrogen, CO 2 and steam are injected to enhance the recovery of heavy oil.
  • Heavy oil produced in the unit for heavy oil production 15 is led from the unit to a unit for heavy oil upgrading 17 through a heavy oil line 16.
  • the products from the unit for heavy oil upgrading correspond to the products described in Example 1.
  • the air separation unit can deliver 23040 MTPD N 2 and 3840 MTPD O 2 .
  • This air separation unit requires approximately 70 MW of power, which is delivered in the form of high-pressure steam from the synthesis gas section.
  • the ratio between O2 and natural gas will be about 0.65 giving a nitrogen production of about 4J GSm3/year (2.34*1.75 GSm3/year)
  • the nitrogen is extracted at 3 bar and 0 degrees C.
  • the gas is compressed to 220 bars for injection (IOR). Compression requires approximately 180 MW.
  • the oxygen is fed to an ATR for production of synthesis gas from natural gas.
  • the process operates with a steam carbon ratio of 0.6.
  • the temperature and pressure at the outlet from the ATR is 1030 degrees Celsius and 45 bars respectively. See Table 2 for the natural gas composition. Note! All compositions are given on a dry basis, i.e. without water.
  • Gas composition out of the ATR The synthesis gas is further sent to CO shift conversion.
  • the gas mixture into the shift reactor can have a varying composition depending on the conditions in the ATR (steam ratio, pressure and temperature).
  • One-step shift reactor may convert the CO down to a few percent.
  • a two-step shift converter may decrease the CO content in the gas far below 1 percent.
  • the gas mixture out from the shift reactor contains significant amounts of steam. After cooling to e.g. 40 °C most of the steam will be condensed out.
  • the separation of CO 2 may be performed by amine washing (e.g. ethanol amine) capturing above 90 % of the CO 2 in the gas.
  • the CO 2 rich amine solution is fed to a stripping unit where the CO 2 will be liberated because of the temperature increase and pressure reduction, further CO 2 can be set free from the amine solution by stripping with steam.
  • the unit for heavy oil upgrading/refining may in both examples one can envisage use the gases produced in the present concept for both downhole upgrading and enhanced oil recovery.
  • Hydrogen could be used for partial downhole upgrading to obtain a transportable oil which would be upgraded to finished products at a nearby upgrader or exported to another refinery.
  • a downhole unit will reduce the loss of energy (heat) in transport lines of steam, gases and oil. Additionally, dilution of the heavy oil to make it flow through transport lines will be unnecessary.
  • the energy needed to increase the transportability of the heavy oil in the reservoir may also be geo heat or a combination of geo heat and energy produced in the reforming process both down hole and in more conventional facilities off- or onshore.
  • Any hydrogen produced in the gas conversion part i.e. ATR or steam reforming units, can be used for other purposes, such as fuel for fuel cells, and for other industrial purposes such as production of ammonia, methanol and synthetic fuel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

An integrated process for production and upgrading of heavy and extra-heavy crude oil, comprising (a) reforming of hydrocarbons such as natural gas to produce hydrogen, CO2 and steam (b) separating the produced hydrogen from the CO2, steam and any other gases to give a hydrogen rich fraction and a CO2 rich fraction and steam, (c) injecting the steam alone or in combination with the CO2 rich fraction into a reservoir containing heavy or extra heavy oil to increase the oil recovery, and (d) upgrading/refining of the heavy or extra heavy oil to finished products by extensive hydroprocessing, comprising several steps of hydrocracking and hydrotreating (sulfur, nitrogen and metals removal as well as hydrogenation of olefins and aromatics), using the hydrogen rich fraction.

Description

Method for production and upgrading of oil
The field of the invention
The present invention relates to an environmental-friendly, integrated process for increased production and upgrading/refining of heavy and extra-heavy crude oil to finished products, based on extensive use of hydrogen to maximise the yield of liquid products, while cogenerating large amounts of steam, CO and optionally N2 produced by large-scale natural gas conversion, used for increased oil production. The finished products from upgrading/refining of heavy/extra heavy oils will be predominantly naphtha, kerosene, diesel and fuel oil, shipped separately or blended.
The background of the invention
Compared to conventional oil, the utilization of heavy oil (density<20°API, viscosity >100cP) and extra heavy oil bitumen (density<10°API, viscosity>10000cP) is limited because of cost of production and upgrading. However, it is expected that the continued need for petroleum liquids such as transportation fuels will be met in the future more and more by heavy oils. Hence new technologies for increased production and more efficient upgrading/refining of heavy and extra heavy oil are much sought for. Due to its high viscosity the primary recovery of heavy oils by conventional methods is low. Recent developments in production technology, such as horizontal drilling, gravity drainage methods, non-thermal production from horizontal wells with multilaterals, cold production of heavy oil with sand co-production, pressure pulse flow enhancement are methods which can increase the recovery of heavy oils at a reasonable cost. In particular, improvements in cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD) have reduced the cost of those hot production methods, but still they require large amounts of steam (volumetric steam-to-oil ratios of 2 or higher) .
Today, heavy and extra-heavy oil are converted to finished products in two steps, where the first step referred to as upgrading gives a synthetic crude oil which has to be further refined to finished products. The upgrader is usually designed for the specific heavy oil in question, while the synthetic crude with API in the range of typically 20-35 API is an attractive feedstock for conventional refineries, within certain limitations. The essential feature of the heavy/extra heavy oil upgrader will be the conversion of residue, either by carbon rejection or hydrogen addition, to give a stable synthetic crude that might be more or less residue- free, while the liquid fractions do not have the quality needed for road transportation fuels. A subsequent refining of the synthetic crude is needed to produce finished products with the right quality, but this reprocessing is not very energy efficient since the synthetic crude oil has to be reheated and fractionated.
The heavy oils generally have high density and high viscosity due to the large presence of higher boiling, polyaromatic molecules in which the resin and asphaltene content can be as high as 70%. As a result, these oils are low in hydrogen content, such as for Athabasca bitumen with an ratio (atomic) H/C equal to 1.49, compared to conventional crudes with a ratio H/C typically around 1.8, which is slightly lower than the value of the most important refinery products, gasoline and diesel (see, J. S. Speight: "The chemistry and technology of petroleum", 3rd ed., Marcel Dekker, Inc., New York, 1999).
Hence, to produce valuable liquid products in high quantities, substantial amounts of hydrogen will be needed, and more so the heavier the crude oil. In comparison, natural gas is rich in hydrogen with a H/C -ratio around 3.8; therefore natural gas represents a natural source of hydrogen for upgrading of heavy oil, as it is when refineries need additional hydrogen to close their hydrogen balance. The attractiveness of using natural gas as hydrogen source will depend on local factors such as availability and cost of the natural gas.
The need for hydrogen in the refineries depends on the feedstock and product slates, as well as the specific refinery configuration. The general market trend is towards lighter products such as LPG, naphtha, gasoline and diesel, putting a pressure on the refineries with respect to upgrading of the heavier fractions. Moreover, new specification on the sulfur content in transportation fuels normally requires increased hydrotreating in the refineries, a type of processing that consumes hydrogen, thereby contributing to a hydrogen imbalance in the refineries.
Upgrading of the heavier fractions can be done either by "carbon-rejection" type of processes such as delayed coking or catalytic cracking, or by hydrogen addition such as hydrocracking. The former produces "coke" which is burnt as energy input in the processing/upgrading or sold as a product (petroleum coke), while the latter gives a higher yield of high- value liquid products of the kind mentioned above, at the penalty of higher hydrogen consumption.
The particular high content of residue in heavy oils requires particular refinery configurations to process these crudes, and the high content of metals and carbon residue/asphaltenes in the residue limits the use of catalytic processes available to upgrade the heavy ends of those heavy crudes. The hydrocracking option allows for production of ultra-clean (low sulfur) transportation fuels of a quality in compliance with the most stringent fuel specifications both in EU and in the US. This will normally require a two-step hydrocracking scheme, where the products from the residue hydrocracker must be hydrocracked in a VGO type of hydrocracker to give the ultra- clean transportation fuels.
In catalytic hydrocracking of residue, the metals will end up on the catalyst, which by proper treatment can be dissolved and the metals, mainly Vanadium and Nickel, recuperated. The sulfur ends up as H2S which is easily captured and for example converted to elementary sulfur by use of techniques commonly used in refineries today. Thus, the inherent high content of impurities such as metals and sulfur in the heavy oil, will be properly handed in the upgrader.
Today, the change in demand pattern has created regional lack of sufficient upgrading capacity in the refining industry, the so-called bottom-of-the-barrel problem. This, combined with limited hydrogen availability, will probably make it less attractive for conventional refineries to process heavier crudes.
Heavy oils are, due to their physical properties and particularly the high viscosity, difficult to produce and transport. Technologies have been developed for partial upgrading at the wellhead to make the oil transportable, as an alternative to dilution of the viscous oil by lighter fractions such as typically naphtha. The common solution for the Orinoco bitumen produced in Venezuela is transport by pipeline by naphtha dilution to an upgrader located at the coast, where the naphtha is separated from and recycled, while the crude is partially upgraded to an essentially residue-free synthetic crude with densities in the range of typically 20-32 API. The synthetic crude is then exported to a conventional refinery for upgrading to finished products.
As an alternative to this conventional two-step upgrading of heavy oil, we see potential advantages at locations where natural gas can be made available in large quantities, to profit from large scale hydrogen production from natural gas, by upgrading the heavy or extra-heavy crude oil to products in one step at a dedicated upgrader/refinery located so as to obtain maximum synergetic effects with the hydrogen production, which will take place so as to also obtain synergetic effects with respect to improved recovery of heavy or extra-heavy oil from the reservoir, by the use of energy such as steam in combination with by-products such as CO2 and/or N2, generated by the natural gas conversion step. The amount of hydrogen required of course depends on the characteristics of the heavy oil, the upgrader/refinery scheme and the types of products, but a simple mass balance demonstrates that production of finished products from an extra-heavy oil requires so much hydrogen that it could possibly serve as a single solution for remote or stranded gas which then must be transported to (or close to) the heavy oil production site. In some cases, the natural gas could even be available as associated gas, produced with the oil.
Due to its high viscosity the primary recovery of heavy oils by conventional methods is low. Recent developments in production technology, such as horizontal drilling, gravity drainage methods, non-thermal production from horizontal wells with multilaterals, cold production of heavy oil with sand co-production, pressure pulse flow enhancement are methods which can increase the recovery of heavy oils at a reasonable cost.
The reinjection of various gases into an oil reservoir in order to enhance the oil recovery from the reservoir, and to stabilise it, has long been known and used. In particular, improvements in cyclic steam stimulation (CSS) and steam assisted gravity drainage (SAGD) have reduced the cost of those hot production methods, but still they require large amounts of steam (volumetric steam-to-oil ratios of 2 or higher) . Gases such as
CO2, N2 and natural gas will reduce the surface tension between gas and oil, and thus contribute to both increased recovery and stabilisation of the reservoir. Additionally, natural gas as such may be injected into fields where the gas does not have a net value that exceeds the excess profits of increasing the oil recovery in the field. WO03/018958 relates to a combined facility for production of gases for injection into an oil field and production of synthesis gas for synthesis of methanol or other oxygenated hydrocarbons or higher hydrocarbons in a synthesis loop.
Introduction of gases as mentioned above is not sufficient to produce and transport heavy oil and extra heavy oil /bitumen even if oil soluble gases like e.g. CO2 and methane will, dependent on the pressure and temperature of the mixture, reduce the viscosity somewhat.
An integrated process for gas conversion and bitumen production is described in
WO02/077124. Synthesis gas, comprising a mixture of H and CO is produced from hydrocarbons, preferably from natural gas. The natural gas may be found in the same formations as the heavy oil or in nearby the heavy oil reservoir. Heat from the synthesis gas production is used to produce steam for injection into the formation to lower the viscosity of the heavy oil by heating it. The synthesis gas is used to produce hydrocarbons by use of a Fischer-Tropsch catalyst. At least a part of the produced hydrocarbons is used to dilute the produced heavy hydrocarbons to lower the viscosity to facilitate the transportation of the oil in pipelines.
US 4.706.751 describes another heavy oil recovery process for the recovery of heavy oils from deep reservoirs. Reactant streams are produced in a surface process unit. The reactant streams, that may be e.g. H2 and O2 plus water, or CO and steam plus water, is introduced into the well and reacted in a catalytic reactor downhole to produce high quality steam, H2, CO2 and any gas or vapour that are readily soluble in the heavy oil such as methane, methanol, light hydrocarbons etc. The reactions in the downhole reactor are exothermal and produce heat for steam formation and heating.
Cleaning waste gas from the combustion on the production installation can provide CO2 for injection into oil reservoirs. In addition it has been suggested that CO2 cleaned from the flue gas from gas power plants be reinjected by laying a pipeline from a gas power plant to the production installation for hydrocarbons. The present invention aims at combining various elements of known methods of natural gas conversion and heavy oil upgrading by upgrading of the heavy/extra heavy oil to high value, finished products by the use of large amounts of hydrogen generated from the natural gas. As byproducts we obtain steam, CO2, water and optionally N2, which can be used for enhanced recovery of the heavy oils from the reservoir. In particular, the capture of CO2 from the hydrogen generation plant represents a significant potential of reduction of the CO2 emissions from the upgrading by injection of the CO2 into underground storage (sequestering), or injection into to reservoir to obtain enhanced oil recovery.
Summary of the invention
According to the present invention there is provided an integrated process for production and upgrading of heavy and extra-heavy crude oil, comprising (a) reforming of natural gas to produce hydrogen, CO2 and steam (b) separating the produced hydrogen from the CO2, steam and any other gases to give a hydrogen rich fraction and a CO2 rich fraction and steam, (c) injecting the steam alone or in combination with the CO2 rich fraction into the reservoir containing heavy or extra heavy oil to increase the oil recovery, and (d) upgrading/refining of the heavy or extra heavy oil by hydroprocessing , comprising hydrocracking and hydrotreating using the hydrogen rich fraction in the hydroprocessing steps. The term "hydrotreating" comprises, as used in the present invention, removal of sulfur, nitrogen and metals as well as hydrogenation of olefins and aromatics.
According to a preferred embodiment the reforming in step (a) is steam reforming.
The steam reforming may be performed under supercritical conditions.
According to another preferred embodiment the reforming in step (a) is autothermal reforming or partial oxidation.
Air may be used as oxidizer in the autothermal reformer or in the partial oxidation reactor. Preferably the process comprises the additional step of air separation to produce purified oxygen comprising more than 95%, preferably more than 98% oxygen, that is used as oxidizer in the reforming. The use of purified oxygen in the reforming and separation of the reformed gases, reduces the gas volume in the reactors and the separation units. Accordingly the volume and building costs may be reduced and the separation of hydrogen from the remaining gases is more effective.
Preferably, purified nitrogen co-produced with the purified oxygen is injected into the reservoir together with the CO2 rich fraction in step (c) to stimulate the oil production. Nitrogen is effective as pressure support in the reservoir together with the CO2 rich fraction. It is therefore cost effective to use the produced purified nitrogen for injection.
The process according to any of the preceding claims, wherein CO produced during the reforming process is reacted in a water gas shift reaction to produce additional CO2 and
H2.
The reformed gas from steam reforming, partial combustion or autothermal reforming comprises CO. The CO is therefore preferably converted by a water gas shift reaction to produce additional CO2 and H2.
According to a preferred embodiment the heavy or extra heavy oil is partially upgraded in the reservoir by hydrogen injection.
According to a preferred embodiment the heavy or extra heavy oil is partially upgraded in a downhole upgrading unit.
Partial upgrading of the heavy or extra heavy oil in the reservoir makes the oil less viscous. Upgrading in the reservoir may therefore increase the oil production, whereas both upgrading in the reservoir and in a downhole unit will improve the transportability of the oil
It is preferred that the heavy or extra heavy oil is upgraded on an offshore or onshore upgrading facility. According to a preferred embodiment at least a part of the heat to increase recovery of the heavy or extra heavy oil is generated by in-situ combustion.
According to an embodiment geothermal heat is used to increase recovery and transport of the heavy or extra heavy oil.
As an alternative to traditional two-step upgrading of heavy oil (via synthetic crude), a potential advantages is seen at locations where natural gas can be made available in large quantities, to profit from large scale hydrogen production from natural gas, by upgrading/refining the heavy or extra-heavy crude oil to finished products in one step at a dedicated upgrader/refinery located so as to obtain maximum synergetic effects with the hydrogen production, which will take place so as to also obtain synergetic effects with respect to improved recovery of heavy or extra-heavy oil from the reservoir, by the use of energy such as steam in combination with by-products such as CO2 and/or N2, generated by the natural gas conversion step.
Brief description of the drawings
Figure 1 is a flowchart illustrating a first preferred embodiment, and Figure 2 is a flowchart illustrating a second preferred embodiment.
Detailed description of the invention
The present invention will be described by means of two examples describing two preferred embodiments of the invention. According to the present invention gas and optionally heat as steam for injection into an oil field
Example 1 - Generation of hydrogen by steam reforming of natural gas Figure 1 is a simplified flow diagram of a plant according to a first preferred embodiment and is based on the production of 200 000 barrels per day of Zuata Heavy (API=9) oil.
Natural gas, 115 ton per hour, is introduced into a steam reforming unit 2 via a gas line 1. Steam reforming is an endothermal reaction. The steam reforming unit comprises a conventional steam generation unit where water is heated and converted into hot steam by combustion of any suitable fuel such as natural gas, lower or higher hydrocarbons.
The natural gas from the gas line 1 and the hot steam is reacted in one or more reactors according to the following reactions: Steam reforming CH4 + H2O = CO + 3H2
Water gas shift CO + H2O = CO2 + H2
The product gas from the steam reformer is then sent to a shift converter (one or two step) in which CO is converted to CO2 by the water gas shift reaction, and hydrogen is then separated by means of well known separation techniques, such as membrane separation or separation by absorption based on the different chemical properties of gases e.g. as described in WO00/18681, into a hydrogen rich fraction leaving the steam reformation unit 2 through a hydrogen line 3 and a fraction comprising mainly CO2 and steam leaving the unit through line 4. The hydrogen rich fraction in line 3 constitutes about 35 ton per hour, whereas about 300 ton CO2 per hour and 210 ton steam per hour leaves the unit through line 4 . This concept represents a favourable way of CO2 capture due to the high concentration of the CO2 in the process stream.
The preparation of a H2 rich gas and a CO2 rich gas may be performed high pressure at supercritical conditions as described in WO/00/18681.
The CO2 and steam is led to a unit for heavy oil production 5 and injected to enhance the recovery of heavy oil. Heavy oil produced in the unit for heavy oil production 5 is led from the unit to a unit for heavy oil upgrading 7 through a heavy oil line 6. The heavy oil is upgraded by several steps of catalytic hydroprocessing of the heavy or extra heavy oil using hydrogen from line 3, by hydrocracking in combination with hydrotreating steps, to produce valuable liquid products (distillates) from the distillation residue, to saturate unsaturated hydrocarbons and to remove asphaltenes, metals, nitrogen and sulphur from the finished products. The products from the heavy oil upgrading unit 7 leaves the unit through a plurality of lines 8. Table 1 indicates a typical yield structure from the unit 7. Table 1
Figure imgf000011_0001
Example 2 - Generation of hydrogen by autothermal reforming of natural gas Figure 2 illustrates a second preferred embodiment of the present invention, where hydrogen for the heavy oil upgrading and gas for injection into the reservoir is generated by autothermal reforming (ATR) of natural gas. The example is based on the same heavy oil and production volume of oil as Example 1.
Natural gas, 135 ton per hour (221.000 Sm per hour), is introduced through a gas line 10 and O2 (from an air separation unit) is introduced through a line 10' into an ATR unit 11. The ATR unit 11 comprises one or more autothermal reforming reactors wherein natural gas is reformed by steam reforming combined with partial combustion. Steam reforming is, as mentioned above, an endothermal reaction and the energy required is supplied from partial combustion of a part of the natural gas in the same reactor according to the following reactions: Steam reforming CH4 + H2O = CO + 3H2
Partial combustion CH4 + 3/2 O2 = CO + 2H2O
The CO is thereafter converted into CO2 according the following reaction:
Water gas shift CO + H2O = CO2 + H2
Hydrogen, 35 ton per hour, is separated from the remaining gases as described in example 1 and a hydrogen rich fraction is led into a hydrogen line 12 to a heavy oil upgrading unit 17.
Oxygen for the partial combustion is preferably introduced into the reactor(s) as purified oxygen or oxygen enriched air. Purified oxygen is preferred as the absence of the inert nitrogen in the reactor reduces the total gas in the system and simplifies the separation of hydrogen. The purified oxygen is generated in an air separation unit (ASU), separating oxygen and nitrogen in two fractions.
The nitrogen, 4J GSm3/y, from the ASU is led through a nitrogen line 13 and CO2, 350 ton per hour from the ATR unit 11 is led through a line 14 to a unit for heavy oil production 15. The steam amount available for injection is the difference between the steam produced in the synthesis gas heat recovery section and the steam needed for production of 70 MW power for the ASU. In the unit for heavy oil production the nitrogen, CO2 and steam are injected to enhance the recovery of heavy oil. Heavy oil produced in the unit for heavy oil production 15 is led from the unit to a unit for heavy oil upgrading 17 through a heavy oil line 16. The products from the unit for heavy oil upgrading correspond to the products described in Example 1.
Calculations have been carried out for a plant, according to Figure 2, for production of hydrogen by Auto-Thermal Reforming (ATR) of natural gas. The hydrogen consumption will be about 35 ton/hr (410500 Sm3/hr) for upgrading 200000 bpd heavy oil. The natural gas needed for production of this amount of H2 will be about 1.75 GSm3/year depending on of much flue gas and LPG that are available in the integrated natural gas and heavy oil upgrading complex. In this example no flue gas or LPG are used as feed to the reforming section. By partly replacing the natural gas feed with flue gas and LPG the natural gas consumption may be decreased by more than 20 %.
The air separation unit can deliver 23040 MTPD N2 and 3840 MTPD O2. This air separation unit requires approximately 70 MW of power, which is delivered in the form of high-pressure steam from the synthesis gas section. The ratio between O2 and natural gas will be about 0.65 giving a nitrogen production of about 4J GSm3/year (2.34*1.75 GSm3/year)
The nitrogen is extracted at 3 bar and 0 degrees C. The gas is compressed to 220 bars for injection (IOR). Compression requires approximately 180 MW.
The oxygen is fed to an ATR for production of synthesis gas from natural gas. The process operates with a steam carbon ratio of 0.6. The temperature and pressure at the outlet from the ATR is 1030 degrees Celsius and 45 bars respectively. See Table 2 for the natural gas composition. Note! All compositions are given on a dry basis, i.e. without water.
Figure imgf000013_0001
Table 2. Composition of feeds to synthesis gas section
Figure imgf000013_0002
Figure imgf000014_0001
Table 3. Gas composition out of the ATR The synthesis gas is further sent to CO shift conversion. The gas mixture into the shift reactor can have a varying composition depending on the conditions in the ATR (steam ratio, pressure and temperature). One-step shift reactor may convert the CO down to a few percent. A two-step shift converter may decrease the CO content in the gas far below 1 percent. The gas mixture out from the shift reactor contains significant amounts of steam. After cooling to e.g. 40 °C most of the steam will be condensed out. The separation of CO2 may be performed by amine washing (e.g. ethanol amine) capturing above 90 % of the CO2 in the gas. The CO2 rich amine solution is fed to a stripping unit where the CO2 will be liberated because of the temperature increase and pressure reduction, further CO2 can be set free from the amine solution by stripping with steam.
99%o of the CO2 in the gas (equivalent to 330 ton CO2 per hour) is recovered in an MDEA process. Due to a high concentration of CO2 in the natural gas feed, this example includes CO2 removal prior to ATR (equivalent to 20 ton CO2 per hour), so that the total amount of recovered CO2 is 350 ton per hour. Recovered CO2 is compressed to 220 bar, and may if so desired be mixed with nitrogen (and eventually available steam) prior to injection into the reservoir. This concept also represents a favourable way of CO2 capture due to the high concentration of the CO2 in the process stream. The remaining gas is used in fired heaters for superheating of steam in power production and preheating of natural gas feeds.
The unit for heavy oil upgrading/refining may in both examples one can envisage use the gases produced in the present concept for both downhole upgrading and enhanced oil recovery. Hydrogen could be used for partial downhole upgrading to obtain a transportable oil which would be upgraded to finished products at a nearby upgrader or exported to another refinery. A downhole unit will reduce the loss of energy (heat) in transport lines of steam, gases and oil. Additionally, dilution of the heavy oil to make it flow through transport lines will be unnecessary.
The energy needed to increase the transportability of the heavy oil in the reservoir may also be geo heat or a combination of geo heat and energy produced in the reforming process both down hole and in more conventional facilities off- or onshore.
It is also possible to supply heat to a reservoir by injection air, oxygen or oxygen enriched air into the reservoir. For reservoir temperatures above about 50 °C, spontaneous combustion will usually occur soon after the start of air injection. The heat produced by the combustion will, if the temperature of the combustion is high enough, vaporize the water and some of the oil to enhance the recovery of oil from the reservoir.
Any hydrogen produced in the gas conversion part, i.e. ATR or steam reforming units, can be used for other purposes, such as fuel for fuel cells, and for other industrial purposes such as production of ammonia, methanol and synthetic fuel.

Claims

Claims 1.
An integrated process for production and upgrading of heavy and extra-heavy crude oil, comprising (a) reforming of hydrocarbons such as natural gas to produce hydrogen, CO2 and steam (b) separating the produced hydrogen from the CO2, steam and any other gases to give a hydrogen rich fraction and a CO2 rich fraction and steam, (c) injecting the steam alone or in combination with the CO2 rich fraction into a reservoir containing heavy or extra heavy oil to increase the oil recovery, and (d) upgrading/refining of the heavy or extra heavy oil to finished products by extensive hydroprocessing, comprising several steps of hydrocracking and hydrotreating, using the hydrogen rich fraction.
2.
The process of claim 1, wherein the reforming in step (a) is steam reforming.
3.
The process of claim 2, wherein the reforming is performed under supercritical conditions.
4. The process of claim 1, wherein the reforming in step (a) is autothermal reforming or partial oxidation.
5.
The process of claim 4, wherein air is used as oxidizer in the autothermal reformer or in the partial oxidation reactor.
6.
The process of claim 3, comprising the additional step of air separation to produce purified oxygen comprising more than 95%, preferably more than 98% oxygen, that is used as oxidizer in the reforming.
7.
The process of claim 6, wherein purified nitrogen co-produced with the purified oxygen is injected into the reservoir together with the CO2 rich fraction in step (d) to stimulate the oil production.
8.
The process according to any of the preceding claims, wherein CO produced during the reforming process is reacted in a water gas shift reaction to produce additional CO2 and H2.
9.
The process according to any of the preceding claims, wherein the heavy or extra heavy oil is partially upgraded in the reservoir by hydrogen injection.
10.
The process according to any of the claims 1 to 8, wherein the heavy or extra heavy oil is partially upgraded in a downhole upgrading unit.
11. The process according to any of the preceding claims, wherein the heavy or extra heavy oil is upgraded on an offshore or onshore upgrading facility, employing particular compact process unit design, such as compact gas reforming .
12. The process according to any of the preceding claims, wherein at least a part of the heat to increase recovery of the heavy or extra heavy oil is generated by in-situ combustion.
13.
The process according to any of the claims 1 to 11, wherein geothermal heat is used to increase recovery and transport of the heavy or extra heavy oil.
PCT/NO2004/000216 2003-07-16 2004-07-13 Method for production and upgrading of oil WO2005007776A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/563,991 US20060231455A1 (en) 2003-07-16 2004-07-13 Method for production and upgrading of oil
EA200600074A EA008755B1 (en) 2003-07-16 2004-07-13 Method for production and upgrading of oil
CA002532811A CA2532811A1 (en) 2003-07-16 2004-07-13 Method for production and upgrading of oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20033230A NO20033230D0 (en) 2003-07-16 2003-07-16 Procedure for oil recovery and upgrading
NO20033230 2003-07-16

Publications (1)

Publication Number Publication Date
WO2005007776A1 true WO2005007776A1 (en) 2005-01-27

Family

ID=27800810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2004/000216 WO2005007776A1 (en) 2003-07-16 2004-07-13 Method for production and upgrading of oil

Country Status (5)

Country Link
US (1) US20060231455A1 (en)
CA (1) CA2532811A1 (en)
EA (1) EA008755B1 (en)
NO (1) NO20033230D0 (en)
WO (1) WO2005007776A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007050477A1 (en) 2005-10-24 2007-05-03 Shell Internationale Research Maatschappij B.V. Methods of hydrotreating a liquid stream to remove clogging compounds
US7506685B2 (en) * 2006-03-29 2009-03-24 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
EP2050809A1 (en) * 2007-10-12 2009-04-22 Ineos Europe Limited Process for obtaining hydrocarbons from a subterranean bed of oil shale or of bituminous sand
DE102007060512A1 (en) * 2007-12-13 2009-06-18 Eads Deutschland Gmbh Apparatus and method for producing hydrogen gas by dehydrogenating hydrocarbon fuels
CN100560935C (en) * 2006-12-18 2009-11-18 辽河石油勘探局 A kind of oil reservoir fire-flooding thermal-ignition method
US7740065B2 (en) 2007-11-28 2010-06-22 Saudi Arabian Oil Company Process to upgrade whole crude oil by hot pressurized water and recovery fluid
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
CN101316983B (en) * 2005-10-24 2012-11-28 国际壳牌研究有限公司 Methods of filtering a liquid stream produced from an in situ heat treatment process
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
US8567200B2 (en) 2006-12-18 2013-10-29 Peter Holroyd Brook Process
US9382485B2 (en) 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
US9605522B2 (en) 2006-03-29 2017-03-28 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US9605523B2 (en) 2007-05-20 2017-03-28 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
EP2795055B1 (en) 2011-12-21 2018-01-10 International Energy Consortium AS An integrated system for offshore industrial activities with fume injection

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05006314A (en) * 2002-12-13 2006-02-08 Statoil Asa A method for oil recovery from an oil field.
EP2010754A4 (en) 2006-04-21 2016-02-24 Shell Int Research Adjusting alloy compositions for selected properties in temperature limited heaters
US20100212893A1 (en) * 2006-11-14 2010-08-26 Behdad Moini Araghi Catalytic down-hole upgrading of heavy oil and oil sand bitumens
FR2906879A1 (en) * 2007-02-06 2008-04-11 Air Liquide Installation for producing a mixture of nitrogen and carbon dioxide for injection into a subterranean hydrocarbon reservoir comprises an air separator, an oxygen consumption unit, a carbon dioxide separator and a mixer
US7632394B2 (en) * 2007-05-29 2009-12-15 Westinghouse Plasma Corporation System and process for upgrading heavy hydrocarbons
CA2698238C (en) 2007-10-22 2014-04-01 Osum Oil Sands Corp. Method of removing carbon dioxide emissions from in-situ recovery of bitumen and heavy oil
CA2713536C (en) 2008-02-06 2013-06-25 Osum Oil Sands Corp. Method of controlling a recovery and upgrading operation in a reservoir
CN101981272B (en) * 2008-03-28 2014-06-11 埃克森美孚上游研究公司 Low emission power generation and hydrocarbon recovery systems and methods
CA2718885C (en) 2008-05-20 2014-05-06 Osum Oil Sands Corp. Method of managing carbon reduction for hydrocarbon producers
FR2938635A1 (en) * 2008-11-18 2010-05-21 Air Liquide Oxygen and fluid i.e. water, producing method, involves sending compressed air to cryogenic distillation air separation apparatus, and sending water for assisted recovery of hydrocarbon e.g. petrol, after vaporization of water
US9074122B2 (en) * 2008-12-31 2015-07-07 Intevep, S.A. Mitigation of H2S in steam injection technology using amines of natural origin
GB2471862B (en) * 2009-07-14 2012-09-26 Statoilhydro Asa Upgrading heavy hydrocarbons using supercritical or near super-critical carbon dioxide
US8240370B2 (en) * 2009-12-18 2012-08-14 Air Products And Chemicals, Inc. Integrated hydrogen production and hydrocarbon extraction
US9115324B2 (en) 2011-02-10 2015-08-25 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation
US9156691B2 (en) 2011-04-20 2015-10-13 Expander Energy Inc. Process for co-producing commercially valuable products from byproducts of heavy oil and bitumen upgrading process
US9169443B2 (en) 2011-04-20 2015-10-27 Expander Energy Inc. Process for heavy oil and bitumen upgrading
US9163491B2 (en) 2011-10-21 2015-10-20 Nexen Energy Ulc Steam assisted gravity drainage processes with the addition of oxygen
US9315452B2 (en) 2011-09-08 2016-04-19 Expander Energy Inc. Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment
WO2013033812A1 (en) 2011-09-08 2013-03-14 Steve Kresnyak Enhancement of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment
US8889746B2 (en) 2011-09-08 2014-11-18 Expander Energy Inc. Enhancement of Fischer-Tropsch process for hydrocarbon fuel formulation in a GTL environment
US9115575B2 (en) 2011-09-13 2015-08-25 Conocophillips Company Indirect downhole steam generator with carbon dioxide capture
CA2776369C (en) 2012-05-09 2014-01-21 Steve Kresnyak Enhancement of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment
WO2013173904A1 (en) 2012-05-15 2013-11-28 Nexen Energy Ulc Sagdox geometry for impaired bitumen reservoirs
GB2503734B (en) * 2012-07-06 2019-08-28 Statoil Canada Ltd Steam / energy self sufficient recovery of heavy hydrocarbons
US9765604B2 (en) * 2013-02-22 2017-09-19 Lawrence Livemore National Security, Llc Systems and methods for multi-fluid geothermal energy systems
US9266730B2 (en) 2013-03-13 2016-02-23 Expander Energy Inc. Partial upgrading process for heavy oil and bitumen
CA2818322C (en) 2013-05-24 2015-03-10 Expander Energy Inc. Refinery process for heavy oil and bitumen
CN104847317A (en) * 2014-02-13 2015-08-19 中国石油化工股份有限公司 Method for raising recovery efficiency of super-deep low permeability heavy oil reservoir
CN104847320A (en) * 2014-02-13 2015-08-19 中国石油化工股份有限公司 Ultra-deep-seated and low-permeable thickened oil identified viscosity reduction method
WO2015178898A1 (en) * 2014-05-21 2015-11-26 Shell Oil Company Method and system for enhancing natural gas production
WO2015178899A1 (en) * 2014-05-21 2015-11-26 Shell Oil Company Method and system for enhancing natural gas production
CN105604532A (en) * 2016-01-26 2016-05-25 辽宁石油化工大学 Method for exploiting thick oil reservoir by carbon dioxide method
US10752847B2 (en) 2017-03-08 2020-08-25 Saudi Arabian Oil Company Integrated hydrothermal process to upgrade heavy oil
CA2972203C (en) 2017-06-29 2018-07-17 Exxonmobil Upstream Research Company Chasing solvent for enhanced recovery processes
CA2974712C (en) 2017-07-27 2018-09-25 Imperial Oil Resources Limited Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes
CA2978157C (en) 2017-08-31 2018-10-16 Exxonmobil Upstream Research Company Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation
CA2983541C (en) 2017-10-24 2019-01-22 Exxonmobil Upstream Research Company Systems and methods for dynamic liquid level monitoring and control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018680A1 (en) * 1998-09-16 2000-04-06 Den Norske Stats Oljeselskap A.S Process for preparing a h2-rich gas and a co2-rich gas at high pressure
WO2000018681A1 (en) * 1998-09-16 2000-04-06 Den Norske Stats Oljeselskap A.S Method for preparing a h2-rich gas and a co2-rich gas at high pressure
US6328104B1 (en) * 1998-06-24 2001-12-11 World Energy Systems Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
WO2002077124A2 (en) * 2001-03-27 2002-10-03 Exxonmobil Research And Engineering Company Integrated bitumen production and gas conversion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4706751A (en) * 1986-01-31 1987-11-17 S-Cal Research Corp. Heavy oil recovery process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328104B1 (en) * 1998-06-24 2001-12-11 World Energy Systems Incorporated Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking
WO2000018680A1 (en) * 1998-09-16 2000-04-06 Den Norske Stats Oljeselskap A.S Process for preparing a h2-rich gas and a co2-rich gas at high pressure
WO2000018681A1 (en) * 1998-09-16 2000-04-06 Den Norske Stats Oljeselskap A.S Method for preparing a h2-rich gas and a co2-rich gas at high pressure
WO2002077124A2 (en) * 2001-03-27 2002-10-03 Exxonmobil Research And Engineering Company Integrated bitumen production and gas conversion

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007050477A1 (en) 2005-10-24 2007-05-03 Shell Internationale Research Maatschappij B.V. Methods of hydrotreating a liquid stream to remove clogging compounds
CN101316983B (en) * 2005-10-24 2012-11-28 国际壳牌研究有限公司 Methods of filtering a liquid stream produced from an in situ heat treatment process
AU2006306412B2 (en) * 2005-10-24 2010-08-19 Shell Internationale Research Maatschappij B.V. Methods of hydrotreating a liquid stream to remove clogging compounds
EA013513B1 (en) * 2005-10-24 2010-06-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Method for producing crude products with subsurface heat treatment in situ
US7809538B2 (en) 2006-01-13 2010-10-05 Halliburton Energy Services, Inc. Real time monitoring and control of thermal recovery operations for heavy oil reservoirs
US9605522B2 (en) 2006-03-29 2017-03-28 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US7506685B2 (en) * 2006-03-29 2009-03-24 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US7770643B2 (en) 2006-10-10 2010-08-10 Halliburton Energy Services, Inc. Hydrocarbon recovery using fluids
US7832482B2 (en) 2006-10-10 2010-11-16 Halliburton Energy Services, Inc. Producing resources using steam injection
CN100560935C (en) * 2006-12-18 2009-11-18 辽河石油勘探局 A kind of oil reservoir fire-flooding thermal-ignition method
US8567200B2 (en) 2006-12-18 2013-10-29 Peter Holroyd Brook Process
US9605523B2 (en) 2007-05-20 2017-03-28 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
EP2050809A1 (en) * 2007-10-12 2009-04-22 Ineos Europe Limited Process for obtaining hydrocarbons from a subterranean bed of oil shale or of bituminous sand
US7740065B2 (en) 2007-11-28 2010-06-22 Saudi Arabian Oil Company Process to upgrade whole crude oil by hot pressurized water and recovery fluid
US8815081B2 (en) 2007-11-28 2014-08-26 Saudi Arabian Oil Company Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
US9656230B2 (en) 2007-11-28 2017-05-23 Saudi Arabian Oil Company Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
US10010839B2 (en) 2007-11-28 2018-07-03 Saudi Arabian Oil Company Process to upgrade highly waxy crude oil by hot pressurized water
DE102007060512B4 (en) * 2007-12-13 2012-07-12 Eads Deutschland Gmbh Apparatus and method for producing hydrogen gas by dehydrogenating hydrocarbon fuels
DE102007060512A1 (en) * 2007-12-13 2009-06-18 Eads Deutschland Gmbh Apparatus and method for producing hydrogen gas by dehydrogenating hydrocarbon fuels
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
US9382485B2 (en) 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
EP2795055B1 (en) 2011-12-21 2018-01-10 International Energy Consortium AS An integrated system for offshore industrial activities with fume injection

Also Published As

Publication number Publication date
US20060231455A1 (en) 2006-10-19
EA200600074A1 (en) 2006-08-25
NO20033230D0 (en) 2003-07-16
EA008755B1 (en) 2007-08-31
CA2532811A1 (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US20060231455A1 (en) Method for production and upgrading of oil
CN101970611B (en) Process to upgrade heavy oil by hot pressurized water and ultrasonic wave generating pre-mixer
KR101754692B1 (en) Process for heavy oil and bitumen upgrading
JP3933580B2 (en) Production of diesel fuel oil from bitumen
CA2439311C (en) Process for producing a diesel fuel stock from bitumen and synthesis gas
RU2664102C2 (en) Method for partial upgrading of heavy oil and bitumen
US9328291B2 (en) Refinery process for heavy oil and bitumen
JP2004532304A (en) Integrated bitumen production and gas conversion
AU2002306733A1 (en) Integrated bitumen production and gas conversion
CA2737872C (en) Process for heavy oil and bitumen upgrading
AU2002255770A1 (en) Production of diesel fuel from bitumen
AU2002255713A1 (en) Process for producing a diesel fuel stock from bitumen and synthesis gas
CA2809503A1 (en) Partial upgrading process for heavy oil and bitumen
US9988890B2 (en) System and a method of recovering and processing a hydrocarbon mixture from a subterranean formation
Birdgeneau The Canadian Long Lake Project integrating SAGD, cogeneration and upgrading technologies to develop Athabasca Bitumen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006231455

Country of ref document: US

Ref document number: 10563991

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2532811

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 200600074

Country of ref document: EA

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10563991

Country of ref document: US