WO2005006595A1 - Radio reception method and communication terminal device - Google Patents

Radio reception method and communication terminal device Download PDF

Info

Publication number
WO2005006595A1
WO2005006595A1 PCT/JP2003/008882 JP0308882W WO2005006595A1 WO 2005006595 A1 WO2005006595 A1 WO 2005006595A1 JP 0308882 W JP0308882 W JP 0308882W WO 2005006595 A1 WO2005006595 A1 WO 2005006595A1
Authority
WO
WIPO (PCT)
Prior art keywords
dpch
signal
power
base stations
received power
Prior art date
Application number
PCT/JP2003/008882
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Toda
Takashi Kitade
Motoyasu Taguchi
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to PCT/JP2003/008882 priority Critical patent/WO2005006595A1/en
Priority to AU2003248062A priority patent/AU2003248062A1/en
Publication of WO2005006595A1 publication Critical patent/WO2005006595A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • H04B1/712Weighting of fingers for combining, e.g. amplitude control or phase rotation using an inner loop

Definitions

  • the present invention relates to a radio reception method and a communication terminal device used for communication in a CDMA (Code Division Multiple Access) system.
  • CDMA Code Division Multiple Access
  • the CDMA method is a multiple access using spread-spectrum communication technology, is less susceptible to multipath distortion, and has the characteristic of being able to expect a diversity effect by performing rake reception.
  • the outline of RAKE reception is as follows.
  • the direct wave that the transmitted wave directly reaches from the transmitting station to the receiving station and the reflected wave that is reflected by the building and arrives at the receiving station are synthesized. Will be received.
  • a wave that has passed through many paths (multipath) is received.
  • the receiving station synthesizes and receives signals that have passed through many paths.
  • signals on different paths interfere with each other and fading occurs.
  • the autocorrelation of the spreading code of the CDMA method becomes small when it is offset in time.
  • the despreading unit performs despreading with a spreading code given a phase offset corresponding to the propagation delay time, a signal with a propagation delay time corresponding to the phase offset can be obtained. . That is, by giving a phase offset corresponding to the propagation delay time to the phase of the spreading code, it is possible to obtain a signal of each path from the received signal.
  • a good demodulated signal can be obtained by adding and combining (that is, RAKE combining) the signals of each path obtained in this way with a predetermined weight in the combining unit.
  • RAKE combining Such a method is called RAKE reception, and signals of a plurality of paths can be selectively weighted and combined, so that path diversity reception can be performed.
  • CPICH Common Pilot CHannel
  • S SDT Site Selection Diversity Transmit power control
  • the base station determines whether or not the own station is P rima r y c e l l based on the ID label of the FB I, and only the base station that is P r i
  • the base station of a cell other than Primarycell transmits only the DPCCH. This Accordingly, the base station that performs downlink data transmission can be limited, so that the amount of interference of the downlink signal can be reduced.
  • the DPD CH transmits actual transmission data
  • the DPC CH transmits a pilot signal and the like, and these channels are collectively called a DP CH (Dedicated Physical Channel), and transmission power is controlled. .
  • DP CH Dedicated Physical Channel
  • the wireless receiver used in such a CDMA wireless communication system performs synchronous detection of DPCH using phase estimation of CP ICH. This is because the transmission power of the CP ICH is generally higher than the transmission power of the DP CH, and therefore, the accuracy of phase estimation using the CP I CH is higher than that of the DPCH.
  • FIG. 2 shows a receiving system of a communication terminal device used in a CDMA wireless communication system.
  • the communication terminal device inputs the received signal received by antenna AN to radio processing section RF.
  • the radio processing unit RF performs radio reception processing such as amplification and frequency conversion on the received signal.
  • Radio processing unit The received signal subjected to radio reception processing by RF is passed through an analog-to-digital converter (A / D) 1. Entered in 2 b.
  • a / D analog-to-digital converter
  • a plurality of despreading sections 2a and 2b are provided to correspond to a plurality of downlink signals from a plurality of radio base stations, respectively, and the despreading sections 2a and 2b are respectively provided.
  • the despreading process is performed using different spreading codes and code phases.
  • the plurality of despreading units 2a regenerate pilot signals included in the CP ICH using spreading codes corresponding to the spreading codes of the respective base stations.
  • the plurality of despreading sections 2b despread the DPCH using spreading codes (actually, double spreading codes assigned to each base station and its own terminal) corresponding to the spreading code of each base station.
  • the transmission data contained in the DPCH is reproduced by spreading.
  • the phase estimating unit 3 obtains a phase estimation value of the signal after despreading based on the pilot signal, and sends it to the synchronous detection unit 4.
  • Synchronous detector 4 is the position from phase estimator 3 By calculating the complex conjugate of the phase estimation value and multiplying it by the despread signal, phase compensation and RAKE weighting are performed.
  • RAKE combining section 5 assigns the signal after the synchronous detection to the finger and combines the synchronous detection output.
  • the decoding unit 6 performs an error correction decoding process on the signal after RAKE combining.
  • each base station independently controls the transmission power of DPCH, so the transmission power ratio of DPCH and CP ICH transmitted from each base station differs for each base station. Weights will not be accurate.
  • the received power of DPCH may be very small even if the received power of CPICH from a certain base station is very large. In such a case, the noise signal is multiplied by a large rake weight and synthesized, and the signal quality of the RAKE-combined signal deteriorates.
  • the base station transmits DPCCH and DPDCH, and The base station designated as rimarycell transmits only DPCCH.
  • ID label specified by the mobile station is transmitted correctly, no problem will occur, but if it is not transmitted correctly, the following problems will occur.
  • the base station does not transmit DPDCH even though the mobile station specifies Primary 11, the mobile station considers that base station as a target for RAKE combining and therefore reduces the noise component. It will be the target of composition. Conversely, even if the base station transmits the DPDCH even though it is designated as "No Primary cell", the mobile station cannot target the DPDCH for RAKE combining. Disclosure of the invention
  • An object of the present invention is to improve reception quality by performing RAKE combining accurately. It is an object of the present invention to provide a wireless receiving method and a communication terminal device capable of receiving the information.
  • This object is achieved by weighting and RAKE combining DPCH signals from each base station based on the received power of the DPCH signal instead of the CP ICH.
  • the DPCH with high received power can be RAKE-combined with a large weight, so that noise components are not subject to synthesis.
  • the base station signal that is actually transmitting the DPDCH can be the target of RAKE combining.
  • the power ratio between the DPCH and CPICH of the path with the highest received power received from each base station is calculated, and for the path that does not have the maximum received power, the power ratio is calculated separately.
  • the PICH received power is multiplied by the power ratio. Is more preferable if is the received power of the DPCH.
  • FIG. 1 is a diagram for explaining site selection diversity transmission control
  • FIG. 2 is a block diagram showing a configuration of a conventional communication terminal device
  • FIG. 3 is a block diagram showing a configuration of a communication terminal device according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram showing another configuration example of the communication terminal device according to the first embodiment
  • FIG. 5 is a block diagram showing another configuration example of the communication terminal device according to the first embodiment
  • FIG. 6 is a block diagram showing another configuration example of the communication terminal device according to Embodiment 1;
  • FIG. 5 is a block diagram showing a configuration of a communication terminal apparatus according to Embodiment 2.
  • reference numeral 100 denotes the overall configuration of a communication terminal device that receives signals from a plurality of base stations as a wireless receiving device according to Embodiment 1 of the present invention.
  • Communication terminal apparatus 100 inputs a received signal received by antenna AN to radio processing section RF.
  • the radio processing unit RF performs radio reception processing such as amplification and frequency conversion on the received signal.
  • Radio processing unit The received signal subjected to radio reception processing by RF is subjected to de-spreading of the CP I CH via analog-to-digital converter (AZD) 101.
  • a plurality of despreading sections 102a and 102b are provided to respectively correspond to a plurality of downlink signals from a plurality of radio base stations, and each despreading section 102a and 102b has a different spreading code.
  • each of the plurality of despreading units 102a reproduces a pilot signal included in the CPICH using a spreading code corresponding to the spreading code of each base station.
  • the plurality of despreading sections 102b despread the DPCH using the spreading code corresponding to the spreading code of each base station (actually, the double spreading code assigned to each base station and its own terminal). By performing the spreading process, the transmission data included in the DPCH from each base station is reproduced.
  • phase estimating section 103a The despread result of the CP I CH is sent to phase estimating section 103a, and phase estimating section 103a averages one or more symbols to obtain a phase estimated value of the signal after despreading, and weights this by weighting section 105a.
  • the result of the despreading of the DPCH is sent to phase estimating section 103b, and phase estimating section 103b performs an inverse averaging by performing symbol averaging of one or more symbols.
  • the phase estimation value of the spread signal is obtained, and this is transmitted to DPCH power measurement section 104.
  • DPCH power measurement section 104 measures the received power of DPCH by squaring the estimated value of DPCH phase of each finger.
  • the power of D PCH may be directly measured from the D PCH despread value.
  • the weighting unit 105 calculates a phase estimation value used for synchronous detection from the CPHICH phase information and the RAKE weight, which is the magnitude of the DPCH phase estimation value. That is, in the present embodiment, the magnitude of the DPCH phase estimation value (that is, the DPCH reception level) is used instead of the CPICH reception level as the RAKE weight.
  • Synchronous detection section 106 performs synchronous detection by multiplying the complex conjugate of the phase estimation value calculated by weighting section 105 on the DPCH despread signal.
  • the RAKE combining unit 107 obtains the sum of the synchronous detection outputs. Since the RAKE weight is reflected in the phase estimation value itself by the weighting unit 105, a simple addition is performed here.
  • the decoding unit 108 performs error correction decoding and the like on the RAKE synthesized signal.
  • the weighting unit 105 performs the following calculation on the phase estimation value calculated from the C P I CH of each finger, thereby setting the magnitude to 1.
  • Equation (1) where, in equation (1), e cpich (1, m) is a phase estimation vector calculated from the CPICH of the m-th slot in one pass.
  • the magnitude of the phase estimation value is defined as the magnitude of the phase estimation value of DPCH.
  • Equation (2) dpch (1, m) is a phase estimation vector calculated from the DPCH pilot symbol in the m-th slot in one pass.
  • weighting of each finger of RAKE combining section 107 is performed in accordance with the reception power of DPCH from a plurality of base stations.
  • the DPDCH signal size is used instead of the DPCH phase estimation value during the site selection diversity transmission control, even if the ID label cannot be transmitted accurately, a large weight is assigned to the DPCH with high received power. Since it is possible to perform RAKE combining by adding, the base station that is actually transmitting the DP DCH can be the RAKE combining target without making the noise component the combining target.
  • phase estimation for synchronous detection is performed based on the CP ICH, and weighting for RAKE combining is performed based on the received power of the DPCH, so that RAKE combining is performed accurately.
  • phase estimation for synchronous detection is performed based on the CP ICH, and weighting for RAKE combining is performed based on the received power of the DPCH, so that RAKE combining is performed accurately.
  • a weighting section 105 for weighting each phase estimation value estimated by phase estimating section 103a according to each received power measured by DPCH power measuring section 104, and a weighted phase
  • a synchronous detector 106 that synchronously detects DPCH signals from multiple base stations using estimated values and a RAKE combiner 107 that RAKE-combines DPCH signals from multiple base stations after synchronous detection are provided.
  • phase compensation and weighting processing according to the received power of the DPCH can be performed simultaneously to obtain a weighted synchronous detection output.
  • Combining section 107 only needs to add a plurality of DPCH signals after synchronous detection, and processing in RAKE combining section 107 can be simplified.
  • the configuration of the communication terminal device of the present invention is not limited to this. Synchronous detection is performed based on the phase estimation value of the CP I CH as usual, and the weight of each finger in the RAKE combining unit is determined by the received power of the DP CH. May be performed according to the conditions.
  • a synchronous detection section that synchronously detects DPCH signals from multiple base stations using the phase information shown in equation (1) estimated by phase estimation section 103a, and a DPCH signal from multiple base stations after synchronous detection.
  • communication terminal device of the present invention may be configured as shown in FIG. In FIG. 4, in which parts corresponding to those in FIG. 3 are assigned the same reference numerals, communication terminal apparatus 200 has CPICH power measurement section 201 and power ratio measurement section 202.
  • CP I CH power measuring section 201 measures the power of CP I CH from each base station based on the output of each phase estimating section 103a.
  • Power ratio measuring section 202 calculates the power ratio between the DP CH and the CP I CH of the path having the highest reception strength among the received signals received from each base station.
  • Weighting section 203 uses, as a weighting factor for each phase estimation value, a value obtained by multiplying the individually calculated CPICH reception power by this power ratio for paths that do not have the maximum reception power.
  • the power ratio between the CP I CH and the DP CH is constant on the path from the same base station, and in general, the CP I CH has higher transmission power than the DP CH, so that it is possible to estimate with higher accuracy. It is. Also, the power ratio can be calculated more accurately for paths with higher reception strength than for paths with lower reception strength. By doing so, it becomes possible to accurately estimate the magnitude of the DPCH of the path having a low received power, and it is possible to more accurately estimate the RAKE weight.
  • communication terminal apparatus 300 includes noise measuring section 301 and noise compensating section 302.
  • the noise measurement unit 301 measures the noise and interference of the DPCH signal for each finger.
  • the noise compensator 302 corrects the RAKE weight of each path according to the noise and interference components. For example, the larger the measured noise, the smaller the RAKE weight.
  • Weighting section 303 weights the phase estimation value using the noise-compensated RAKE weight.
  • the DPKE RAKE weight is 1 edpch (1, m) 1 or less than a certain threshold
  • the phase estimation value is set to 0
  • the received signal at the level that causes deterioration can be excluded from the target of synthesis. it can.
  • finger assignment is performed based on a long-time averaged delay profile.However, as described above, it is effective when the reception level instantaneously decreases due to fluctuations such as fusing. become.
  • communication terminal apparatus 400 inputs the power ratio between CPICH and DPCH measured by power ratio measurement section 202 to threshold setting section 401. . . Power ratio measuring section 202 measures the power ratio between DPCH and CP I CH for each base station.
  • the threshold setting unit 401 sets the reception level threshold of the CPICH for each base station by multiplying the power ratio of each base station by the threshold level of the DPCH.
  • the weighting section 402 uses the threshold value set in this way to determine the threshold value of the DPCH signal of each base station obtained by the DPCH measurement section 104. Then, the weight coefficient for the DPCH signal below the set threshold is set to 0. As a result, only signals from base stations that have a reception level higher than the reception level threshold of the CP ICH are weighted for RAKE combining. To be attached. As a result, unnecessary DPCH signals from base stations can be excluded from RAKE combining targets, and it becomes unnecessary to measure the received power of DPCH from all base stations.
  • communication terminal apparatus 500 has the same configuration as communication terminal apparatus 100 in FIG. 7, in which parts corresponding to those in FIG. 3 are assigned the same reference numerals, communication terminal apparatus 500 has the same configuration as communication terminal apparatus 100 in FIG.
  • the combining determination unit 501 measures the reception power of the DP DCH signal of the synchronous detection output of each finger, and controls the RAKE combining unit 107 so that only fingers whose DPDCH reception power is equal to or greater than a certain threshold are to be RAKE combined. .
  • FIG. 7 describes the case where the target of RAKE combining is determined based on the received power of the DPDCH signal, whether or not the target of RAKE combining may be determined based on the reception level difference between DPDCH and DPCCH.
  • the DPCCH is transmitted not only from the Primary cell or the Non-Primary cell but also from the constantly transmitted power DPDCt ⁇ ⁇ Primary cell, so the reception from the NonPrimary cell 11 This is because the signal has a large power difference between DPDCH and DPCCH.
  • the determination threshold can be fixed. Alternatively, only the maximum path of each base station may be determined for the purpose of preventing erroneous determination.
  • the reception power of the symbol with the highest reception level may be set to the reception level of the DPDCH, or the average value of the upper N (N is 1 or more) of the highest reception power among the symbols of the DPDCH may be set to the reception level of the DP DCH. .
  • N is 1 or more
  • a method for determining the RAKE combining target based on the Primaryeel 1 information transmitted by the own station (communication terminal device) and transmitting the FBI which is the original operation of the site selection diversity transmission power control, and a method using the DPDCH described above. May be switched depending on the propagation path environment. By doing so, the determination accuracy can be further improved.
  • the downlink TPC bit is used, the quality of FBI transmission can be estimated. For example, when there are many bits indicating that the transmission power is increased as the downlink TPC bits, it is understood that the reception environment of the base station is poor and the probability that the FBI is not correctly received is high.
  • the RAKE weight is set using the received power of the DPCH (including the DPDCH), so that the optimum RAKE combining can be performed at the time of handover or site selection diversity transmission control. Will be able to
  • the present invention can be applied to, for example, a mobile phone.

Abstract

A phase estimation section (103a) estimates the phase of received signals from a plurality of base stations according to the phase of the CPICH signal from the base stations. A DPCH power measurement section (104) detects respective reception powers of the DPCH signals from the base stations. A synchronous detection section (106) weights the phase information estimated by the phase estimation section (103a) according to the reception powers detected by the DPCH power measurement section (104) and by using the weighted phase estimation value, synchronous-detects the DPCH signals from the base stations. An RAKE combining section (107) RAKE-combines the DPCH signals from the base stations after the synchronous detection.

Description

明 細 書 無線受信方法及び通信端末装置 技術分野  Description Wireless reception method and communication terminal device
本発明は、 C DMA (Code Division Multiple Access) 方式の通信に用いら れる無線受信方法及ぴ通信端末装置に関する。 背景技術  The present invention relates to a radio reception method and a communication terminal device used for communication in a CDMA (Code Division Multiple Access) system. Background art
近年、 自動車や携帯電話等の陸上移動通信に対する需要が著しく増加してお り、 高速 ·高品質伝送に加えて、 限られた周波数でより多くの加入者容量を確 保するための周波数有効利用技術が重要となっている。  In recent years, the demand for land mobile communications such as automobiles and mobile phones has increased remarkably, and in addition to high-speed and high-quality transmission, effective use of frequency to secure more subscriber capacity at a limited frequency Technology is important.
周波数有効利用のための多元接続の一つとして C DMA方式が注目されて いる。 C DMA方式はスペク トル拡散通信技術を利用した多元接続で、 マルチ パス歪みの影響を受けにくく、 R AK E受信を行うことにより、 ダイバーシチ 効果も期待できるといった特徴を有する。  As one of the multiple access for effective use of frequency, the CDMA system is drawing attention. The CDMA method is a multiple access using spread-spectrum communication technology, is less susceptible to multipath distortion, and has the characteristic of being able to expect a diversity effect by performing rake reception.
ここで R A K E受信についての概略説明をすると、 移動体通信においては、 送信局から送信波が直接受信局に到来する直接波と、 建物などにより反射され て受信局に到来する反射波とが合成されて受信されることになる。 この場合、 反射波の経路は多数あることから多数の経路 (マルチパス) を通ってきた波が 受信される。 このように、 受信局においては、 多くの経路を経由した信号が合 成されて受信される。 この結果受信局においては、 異なるパスの信号同士が干 渉を起こしてフェージングが生じるようになる。  Here, the outline of RAKE reception is as follows.In mobile communication, the direct wave that the transmitted wave directly reaches from the transmitting station to the receiving station and the reflected wave that is reflected by the building and arrives at the receiving station are synthesized. Will be received. In this case, since there are many paths of the reflected wave, a wave that has passed through many paths (multipath) is received. In this way, the receiving station synthesizes and receives signals that have passed through many paths. As a result, in the receiving station, signals on different paths interfere with each other and fading occurs.
C DMA方式の拡散符号は、 時間的にオフセットされると自己相関が小さく なる。 これを利用して、 逆拡散部において、 伝搬遅延時間に対応した位相オフ セットが与えられた拡散符号により逆拡散を行うと、 その位相オフセットに対 応する伝搬遅延時間の信号を得ることができる。 すなわち、拡散符号の位相に伝搬遅延時間に相当する位相オフセットを与え ることにより、 受信信号から各パスの信号を取得することができる。 従って、 逆拡散部を並列に複数設け、 各逆拡散部において、 各パスの信号の伝搬遅延時 間に対応した位相オフセットを与えた逆拡散符号を用いて逆拡散処理を行う ことにより、 各パスを通ってきた信号を独立に得ることができる。 The autocorrelation of the spreading code of the CDMA method becomes small when it is offset in time. By utilizing this, if the despreading unit performs despreading with a spreading code given a phase offset corresponding to the propagation delay time, a signal with a propagation delay time corresponding to the phase offset can be obtained. . That is, by giving a phase offset corresponding to the propagation delay time to the phase of the spreading code, it is possible to obtain a signal of each path from the received signal. Therefore, by providing a plurality of despreading units in parallel and performing despreading processing in each despreading unit using a despreading code given a phase offset corresponding to the propagation delay time of the signal of each path, The signal that has passed through can be obtained independently.
このようにして得た各パスの信号を、 合成部において所定の重みを与えて加 算合成 (すなわち RAKE合成) することにより、 良好な復調信号を得ること ができる。 このような方式を RAKE受信と呼ぴ、 複数のパスの信号を選択的 に重み付け合成できるのでパスダイバーシチ受信を行うことができる。  A good demodulated signal can be obtained by adding and combining (that is, RAKE combining) the signals of each path obtained in this way with a predetermined weight in the combining unit. Such a method is called RAKE reception, and signals of a plurality of paths can be selectively weighted and combined, so that path diversity reception can be performed.
—方、 現在 3GPP (3rd Generation Partnership Project) において標準 化が進められている CDMA通信システムでは、 共通パイロットチャネル (C P I CH; Common Pilot CHannel) というチャネルが存在する。 これは、 パ イロットシンボルを常時送信しているチャネルで、 このチャネルを用いること により移動局は、 パイロットシンポルを含まない通信チャネルに対しても伝搬 路推定を行い、 同期検波をすることができるようになる。  On the other hand, in the CDMA communication system that is currently being standardized in 3GPP (3rd Generation Partnership Project), there is a channel called Common Pilot CHannel (CPICH). This is a channel that constantly transmits pilot symbols.By using this channel, the mobile station can perform channel estimation and perform synchronous detection even on communication channels that do not include pilot symbols. become.
また送信電力制御の一つに S SDT (Site Selection Diversity Transmit power control) がある。 これは、 図 1に示すように、移動局 MSが各セル C e 1 l # l〜Ce l 1 #3 (すなわち各基地局 BTS) から送信されている第 1 共通パイ口ットチャネル (P— C P I CH; Primary CPICH) の受信レベル を測定し、最も受信レべノレが高いセルを P r i ma r y c e l lと判定する。 そして P r i m a r y c e l lであることを示す I Dラベルを F B I (FeedBack Information) に含めて基地局に送信する。  One of the transmission power controls is S SDT (Site Selection Diversity Transmit power control). This is because, as shown in FIG. 1, the mobile station MS transmits the first common pilot channel (P—CPI) transmitted from each cell C e1 l #l to Cel 1 # 3 (that is, each base station BTS). CH: Primary CPICH) is measured, and the cell with the highest reception level is determined as a Primary cell. Then, an ID label indicating Primary cell is included in FBI (FeedBack Information) and transmitted to the base station.
基地局は、 FB Iの I Dラベルに基づき自局が P r ima r y c e l lか 否かを判断し、 P r i ma r y c e l lである基地局のみが D P C CH  The base station determines whether or not the own station is P rima r y c e l l based on the ID label of the FB I, and only the base station that is P r i
Data Channel) を送信する。 一方、 P r ima r y c e l l以外のセル (N o n P r ima r y c e 1 1 ) の基地局は D P C C Hのみを送信する。 これ により下りデータ送信を行う基地局を制限できるので、 下り信号の干渉量を減 らすことができる。 Data Channel). On the other hand, the base station of a cell other than Primarycell (N on Primaryce11) transmits only the DPCCH. this Accordingly, the base station that performs downlink data transmission can be limited, so that the amount of interference of the downlink signal can be reduced.
この D PD CHでは実際の伝送データが伝送され、 D P C CHではパイ口ッ ト信号等が伝送され、 これらのチャネルは合わせて D P CH (Dedicated Physical Channel)と呼ばれており送信電力制御がなされる。  The DPD CH transmits actual transmission data, the DPC CH transmits a pilot signal and the like, and these channels are collectively called a DP CH (Dedicated Physical Channel), and transmission power is controlled. .
このような C D M A方式の無線通信システムに用いられる無線受信装置で は、 CP I CHの位相推定 :を用いて、 DPCHの同期検波を行う。 これは、 一般に DP CHの送信電力より CP I CHの送信電力が大きくされており、 こ のため CP I CHを用いた位相推定の精度が DPCHのものより高いからで ある。  The wireless receiver used in such a CDMA wireless communication system performs synchronous detection of DPCH using phase estimation of CP ICH. This is because the transmission power of the CP ICH is generally higher than the transmission power of the DP CH, and therefore, the accuracy of phase estimation using the CP I CH is higher than that of the DPCH.
図 2に、 CDMA方式の無線通信システムに用いられる通信端末装置の受信 系を示す。 通信端末装置は、 アンテナ ANで受信した受信信号を無線処理部 R Fに入力する。 無線処理部 R Fは受信信号に対して増幅及び周波数変換等の無 線受信処理を行う。 無線処理部 R Fにより無線受信処理が行われた受信信号は アナログディジタル変換回路 (A/D) 1を介して CP I CHを逆拡散する逆 拡散部 2 a及び D PCHを逆拡散する逆拡散部 2 bに入力される。  FIG. 2 shows a receiving system of a communication terminal device used in a CDMA wireless communication system. The communication terminal device inputs the received signal received by antenna AN to radio processing section RF. The radio processing unit RF performs radio reception processing such as amplification and frequency conversion on the received signal. Radio processing unit The received signal subjected to radio reception processing by RF is passed through an analog-to-digital converter (A / D) 1. Entered in 2 b.
ここで逆拡散部 2 a、 2 bはそれぞれ複数の無線基地局からの複数の下り回 線信号に対応するために複数個設けられており、 各逆拡散部 2 a、 2 bはそれ ぞれ異なる拡散コード及びコード位相を用いて逆拡散処理を行うようになつ ている。 具体的には、 複数の逆拡散部 2 aはそれぞれ各基地局の拡散コードに 対応した拡散コードを用いて CP I CHに含まれるパイロット信号を再生す る。 一方、 複数の逆拡散部 2 bはそれぞれ各基地局の拡散コードに対応した拡 散コード (実際には各基地局と自端末とに割り当てられた二重拡散コード) を 用いて D P CHを逆拡散処理することにより、 D P CHに含まれる送信データ を再生する。  Here, a plurality of despreading sections 2a and 2b are provided to correspond to a plurality of downlink signals from a plurality of radio base stations, respectively, and the despreading sections 2a and 2b are respectively provided. The despreading process is performed using different spreading codes and code phases. Specifically, the plurality of despreading units 2a regenerate pilot signals included in the CP ICH using spreading codes corresponding to the spreading codes of the respective base stations. On the other hand, the plurality of despreading sections 2b despread the DPCH using spreading codes (actually, double spreading codes assigned to each base station and its own terminal) corresponding to the spreading code of each base station. The transmission data contained in the DPCH is reproduced by spreading.
位相推定部 3はパイ口ット信号に基づいて逆拡散後の信号の位相推定値を 求め、 これを同期検波部 4に送出する。 同期検波部 4は位相推定部 3からの位 相推定値の複素共役を算出し、 これを逆拡散後の信号に乗算することにより、 位相補償と RAKE重み付け処理を行う。 RAKE合成部 5は同期検波後の信 号をフィンガに割り当てて同期検波出力を合成する。 復号部 6は RAKE合成 後の信号に対して誤り訂正復号処理を行う。 The phase estimating unit 3 obtains a phase estimation value of the signal after despreading based on the pilot signal, and sends it to the synchronous detection unit 4. Synchronous detector 4 is the position from phase estimator 3 By calculating the complex conjugate of the phase estimation value and multiplying it by the despread signal, phase compensation and RAKE weighting are performed. RAKE combining section 5 assigns the signal after the synchronous detection to the finger and combines the synchronous detection output. The decoding unit 6 performs an error correction decoding process on the signal after RAKE combining.
し力 し、 上述したような従来の CDMA方式の無線通信システムに用いられ る無線受信装置では、 以下のような課題が生じる。  However, the following problems occur in the wireless receiving device used in the conventional CDMA wireless communication system as described above.
ハンドオーバ時には、 基地局それぞれが独立して D P C Hの送信電力制御を 行っているため、 各基地局から送信される DP CHと CP I CHの送信電力比 が基地局毎に異なり、 この結果 RAKE合成の重みが正確でなくなる。 極端な 例を挙げれば、 ある基地局からの C P I CHの受信電力が非常に大きくても D PCHの受信電力が非常に小さい場合がある。 このような場合には、 雑音信号 に大きな R A K E重みを掛けて合成することになり RAKE合成後信号の信 号品質が悪くなる。  At the time of handover, each base station independently controls the transmission power of DPCH, so the transmission power ratio of DPCH and CP ICH transmitted from each base station differs for each base station. Weights will not be accurate. As an extreme example, the received power of DPCH may be very small even if the received power of CPICH from a certain base station is very large. In such a case, the noise signal is multiplied by a large rake weight and synthesized, and the signal quality of the RAKE-combined signal deteriorates.
またサイトセレクションダイバーシチ送信制御時は、移動局から P r i ma r y c e l lと指定された場合、 または移動局から受信した F B Iの信頼が +分でない場合、 基地局は DPCCHと DPDCHを送信し、 No n P r i m a r y c e l lと指定された基地局は D P C C Hのみを送信する。 ここで 移動局が指定する I Dラベルが、 正確に伝送された場合は問題が生じないが、 正確に伝送されない場合は次の様な問題が生じる。  In addition, during site selection diversity transmission control, if the mobile station specifies Primary cell, or if the FBI received from the mobile station is not reliable for + minutes, the base station transmits DPCCH and DPDCH, and The base station designated as rimarycell transmits only DPCCH. Here, if the ID label specified by the mobile station is transmitted correctly, no problem will occur, but if it is not transmitted correctly, the following problems will occur.
一つは、 移動局が P r i ma r y c e 1 1と指定しているにもかかわらず 基地局が DPDCHを送信していない場合、 移動局は、 その基地局を RAKE 合成対象としているため雑音分を合成対象としてしまう。 また反対に、 No n P r ima r y c e l lと指定しているにもかかわらず基地局が D PD CH を送信していても移動局はそれを RAKE合成対象とすることができない。 発明の開示  One is that if the base station does not transmit DPDCH even though the mobile station specifies Primary 11, the mobile station considers that base station as a target for RAKE combining and therefore reduces the noise component. It will be the target of composition. Conversely, even if the base station transmits the DPDCH even though it is designated as "No Primary cell", the mobile station cannot target the DPDCH for RAKE combining. Disclosure of the invention
本発明の目的は、 RAKE合成を的確に行うことにより受信品質を向上させ ることができる無線受信方法及び通信端末装置を提供することである。 An object of the present invention is to improve reception quality by performing RAKE combining accurately. It is an object of the present invention to provide a wireless receiving method and a communication terminal device capable of receiving the information.
この目的は、 CP I CHではなく、 DPCH信号の受信電力に基づいて各基 地局からの DP CH信号を重み付けて RAKE合成することにより達成され る。  This object is achieved by weighting and RAKE combining DPCH signals from each base station based on the received power of the DPCH signal instead of the CP ICH.
このようにすれば、 ハンドオーバ時のように、 各基地局から送信される DP CHと CP I CHの送信電力比が基地局毎に異なる場合でも、 実際に受信電力 の大きい DP CHに大きな重みを付けて RAKE合成できるようになるので、 RAKE合成後信号の受信品質を向上させることができる。 またサイトセレク ションダイバーシチ送信制御時に、 I Dラベルを正確に伝送できなかった場合 でも、 受信電力の大きい DP CHに大きな重みを付けて RAKE合成できるよ うになるので、 雑音成分を合成対象とすることなく、 実際に DPDCHを送信 している基地局信号を RAKE合成対象とすることができる。  In this way, even when the transmission power ratio between the DPCH transmitted from each base station and the CP ICH differs from base station to base station, as in the case of handover, a large weight is assigned to the DPCH that actually has high reception power. Since the RAKE combining can be performed by adding the RAKE combining, the reception quality of the signal after the RAKE combining can be improved. In addition, even if the ID label cannot be transmitted correctly during site selection diversity transmission control, the DPCH with high received power can be RAKE-combined with a large weight, so that noise components are not subject to synthesis. However, the base station signal that is actually transmitting the DPDCH can be the target of RAKE combining.
また各基地局から受信した最も受信電力の高いパスの DP CHと C P I C Hの電力比を算出し、最大受信電力でないパスに関しては個別に算出したじ P I CHの受信電力に前記電力比を乗じたものを DP CHの受信電力とすれば、 さらに好適である。  In addition, the power ratio between the DPCH and CPICH of the path with the highest received power received from each base station is calculated, and for the path that does not have the maximum received power, the power ratio is calculated separately.The PICH received power is multiplied by the power ratio. Is more preferable if is the received power of the DPCH.
つまりこのようにすれば、 受信電力の低いパスの DP CHの大きさも正確に 推定できることができるようになるので、 R A K E重みを一段と正確に推定す ることができるようになる。 図面の簡単な説明  In other words, with this configuration, it is possible to accurately estimate the size of the DPCH of the path having a low received power, so that it is possible to more accurately estimate the R AKE weight. Brief Description of Drawings
図 1は、 サイトセレクションダイバーシチ送信制御の説明に供する図; 図 2は、 従来の通信端末装置の構成を示すプロック図;  FIG. 1 is a diagram for explaining site selection diversity transmission control; FIG. 2 is a block diagram showing a configuration of a conventional communication terminal device;
図 3は、 本発明の実施の形態 1に係る通信端末装置の構成を示すプロック 図;  FIG. 3 is a block diagram showing a configuration of a communication terminal device according to Embodiment 1 of the present invention;
図 4は、 実施の形態 1に係る通信端末装置の他の構成例を示すプロック図; 図 5は、 実施の形態 1に係る通信端末装置の他の構成例を示すプロック図; 図 6は、 実施の形態 1に係る通信端末装置の他の構成例を示すプロック図; 及び FIG. 4 is a block diagram showing another configuration example of the communication terminal device according to the first embodiment; FIG. 5 is a block diagram showing another configuration example of the communication terminal device according to the first embodiment; FIG. 6 is a block diagram showing another configuration example of the communication terminal device according to Embodiment 1;
図 Ίは、 実施の形態 2に係る通信端末装置の構成を示すプロック図である。 発明を実施するための最良の形態  FIG. 5 is a block diagram showing a configuration of a communication terminal apparatus according to Embodiment 2. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について、 添付図面を参照して詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
(実施の形態 1 )  (Embodiment 1)
図 3において、 100は全体として、 本発明の実施の形態 1の無線受信装置 として複数の基地局からの信号を受信する通信端末装置の構成を示す。  In FIG. 3, reference numeral 100 denotes the overall configuration of a communication terminal device that receives signals from a plurality of base stations as a wireless receiving device according to Embodiment 1 of the present invention.
通信端末装置 100は、 アンテナ ANで受信した受信信号を無線処理部 R F に入力する。 無線処理部 R Fは受信信号に対して増幅及び周波数変換等の無線 受信処理を行う。 無線処理部 R Fにより無線受信処理が行われた受信信号はァ ナログディジタル変換回路 (AZD) 101を介して CP I CHを逆拡散する 逆拡散部 102 a及び DP CHを逆拡散する逆拡散部 102 bに入力される。 ここで逆拡散部 102 a、 102 bはそれぞれ複数の無線基地局からの複数 の下り回線信号に対応するために複数個設けられており、各逆拡散部 102 a、 102 bはそれぞれ異なる拡散コード及びコード位相を用いて逆拡散処理を 行うようになっている。 具体的には、 複数の逆拡散部 102 aはそれぞれ各基 地局の拡散コードに対応した拡散コードを用いて CP I CHに含まれるパイ ロット信号を再生する。 一方、 複数の逆拡散部 102 bはそれぞれ各基地局の 拡散コード (実際には各基地局と自端末とに割り当てられた二重拡散コ一ド) に対応した拡散コードを用いて D P C Hを逆拡散処理することにより、 各基地 局からの DP CHに含まれる送信データを再生する。  Communication terminal apparatus 100 inputs a received signal received by antenna AN to radio processing section RF. The radio processing unit RF performs radio reception processing such as amplification and frequency conversion on the received signal. Radio processing unit The received signal subjected to radio reception processing by RF is subjected to de-spreading of the CP I CH via analog-to-digital converter (AZD) 101. De-spreading unit 102a and de-spreading unit 102 for de-spreading DP CH. Entered in b. Here, a plurality of despreading sections 102a and 102b are provided to respectively correspond to a plurality of downlink signals from a plurality of radio base stations, and each despreading section 102a and 102b has a different spreading code. And despreading processing is performed using the code phase. Specifically, each of the plurality of despreading units 102a reproduces a pilot signal included in the CPICH using a spreading code corresponding to the spreading code of each base station. On the other hand, the plurality of despreading sections 102b despread the DPCH using the spreading code corresponding to the spreading code of each base station (actually, the double spreading code assigned to each base station and its own terminal). By performing the spreading process, the transmission data included in the DPCH from each base station is reproduced.
CP I CHの逆拡散結果は位相推定部 103 aに送出され、位相推定部 10 3 aは 1以上のシンボル平均を行って逆拡散後の信号の位相推定値を求め、 こ れを重み付け部 105に送出する。 一方、 DPCHの逆拡散結果は位相推定部 103 bに送出され、位相推定部 103 bは 1以上のシンボル平均を行って逆 拡散後の信号の位相推定値を求め、 これを D P CH電力測定部 1 04に送出す る。 The despread result of the CP I CH is sent to phase estimating section 103a, and phase estimating section 103a averages one or more symbols to obtain a phase estimated value of the signal after despreading, and weights this by weighting section 105a. To send to. On the other hand, the result of the despreading of the DPCH is sent to phase estimating section 103b, and phase estimating section 103b performs an inverse averaging by performing symbol averaging of one or more symbols. The phase estimation value of the spread signal is obtained, and this is transmitted to DPCH power measurement section 104.
DPC H電力測定部 1 04は、各フィンガの D P C H位相推定値を 2乗する ことにより D P CHの受信電力を測定する。 なお D P CH逆拡散値から直接 D PCHの電力を測定するようにしても良い。  DPCH power measurement section 104 measures the received power of DPCH by squaring the estimated value of DPCH phase of each finger. The power of D PCH may be directly measured from the D PCH despread value.
重み付け部 1 05は、 C P I CH位相情報と D P CHの位相推定値の大きさ である RAKE重みとから、同期検波に用いる位相推定値を算出する。つまり、 この実施の形態では、 RAKE重みとして CP I CHの受信レベルを用いるの ではなく、 DPCHの位相推定値の大きさ (すなわち DP CHの受信レベル) を用いるようになつている。  The weighting unit 105 calculates a phase estimation value used for synchronous detection from the CPHICH phase information and the RAKE weight, which is the magnitude of the DPCH phase estimation value. That is, in the present embodiment, the magnitude of the DPCH phase estimation value (that is, the DPCH reception level) is used instead of the CPICH reception level as the RAKE weight.
同期検波部 1 06は、 重み付け部 1 0 5で算出した位相推定値の複素共役を DPC H逆拡散信号に掛けることにより同期検波を行う。 R AK E合成部 1 0 7は、 各同期検波出力の和を求める。 なお、 RAKE重みは、 重み付け部 10 5によつて位相推定値自体に反映されているので、 ここでは単なる加算を行う。 復号部 1 08は、 R AK E合成信号に対して誤り訂正復号などを行う。  Synchronous detection section 106 performs synchronous detection by multiplying the complex conjugate of the phase estimation value calculated by weighting section 105 on the DPCH despread signal. The RAKE combining unit 107 obtains the sum of the synchronous detection outputs. Since the RAKE weight is reflected in the phase estimation value itself by the weighting unit 105, a simple addition is performed here. The decoding unit 108 performs error correction decoding and the like on the RAKE synthesized signal.
ここで重み付け部 105における、 DPCHの受信レベル応じて RAKE重 み付けされた位相推定値の算出方法について説明する。  Here, a method of calculating a phase estimation value weighted by RAKE according to the reception level of the DPCH in weighting section 105 will be described.
重み付け部 105は、各フィンガの C P I CHから算出した位相推定値に対 し、 以下の計算を行うことにより、 その大きさを 1にする。  The weighting unit 105 performs the following calculation on the phase estimation value calculated from the C P I CH of each finger, thereby setting the magnitude to 1.
cp i chd , )= i c p i ch(l , )/ | 。 pich(l, m) | cp i chd,) = i cpi ch (l,) / | pich (l, m) |
(1) 但し、 (1) 式で ecpich ( 1 , m) は、 1パスにおける mスロット目の CP I CHから算出した位相推定べクトルである。 (1) where, in equation (1), e cpich (1, m) is a phase estimation vector calculated from the CPICH of the m-th slot in one pass.
次に、 次式を用い、 位相推定値の大きさを D P CHの位相推定値の大きさと する。  Next, using the following equation, the magnitude of the phase estimation value is defined as the magnitude of the phase estimation value of DPCH.
f o rDe t e c t i ond ' ξ, cp i ch(l , Π1ノ X | ξ dp ch(l , Hi) | fo rDe tecti ond 'ξ, cp i ch (l, Π1 ノ X | ξ dp ch (l, Hi) |
(2) 但し、 (2) 式で dpch (1 , m) は、 1パスにおける mスロット目の DP C Hパイ口ットシンボルから算出した位相推定べクトルである。 (2) In Equation (2), dpch (1, m) is a phase estimation vector calculated from the DPCH pilot symbol in the m-th slot in one pass.
このように、 通信端末装置 100においては、 RAKE合成部 107の各フ ィンガに対する重み付けを、複数基地局からの D P CHの受信電力に応じて行 うようになされている。  As described above, in communication terminal apparatus 100, weighting of each finger of RAKE combining section 107 is performed in accordance with the reception power of DPCH from a plurality of base stations.
これにより、 ハンドオーバ時のように、 各基地局から送信される DP CHと CP I CHの送信電力比が基地局毎に異なる場合でも、 実際に受信電力の大き い DP CHに大きな重みを付けて RAKE合成できるようになるので、 RAK E合成後信号の受信品質を向上させることができる。  As a result, even when the transmission power ratio between the DPCH and the CP ICH transmitted from each base station differs from base station to base station, as in the case of handover, a weight is assigned to the DPCH that actually has large reception power. Since RAKE combining can be performed, the reception quality of the RAKE combined signal can be improved.
またサイトセレクションダイバーシチ送信制御時に、 前記 DPCHの位相推 定値の大きさの代わりに DPDCH信号の大きさを用いれば, I Dラベルを正確 に伝送できなかった場合でも、 受信電力の大きい DP CHに大きな重みを付け て RAKE合成できるようになるので、 雑音成分を合成対象とすることなく、 実際に DP DCHを送信している基地局を RAKE合成対象とすることがで きる。  Also, if the DPDCH signal size is used instead of the DPCH phase estimation value during the site selection diversity transmission control, even if the ID label cannot be transmitted accurately, a large weight is assigned to the DPCH with high received power. Since it is possible to perform RAKE combining by adding, the base station that is actually transmitting the DP DCH can be the RAKE combining target without making the noise component the combining target.
以上の構成によれば、 同期検波のための位相推定は CP I CHに基づいて行 い、 RAKE合成の重み付けは D P C Hの受信電力に基づいて行うようにした ことにより、 RAKE合成を的確に行うことができ、 受信品質の向上した通信 端末装置 100を得ることができる。  According to the above configuration, phase estimation for synchronous detection is performed based on the CP ICH, and weighting for RAKE combining is performed based on the received power of the DPCH, so that RAKE combining is performed accurately. As a result, it is possible to obtain the communication terminal device 100 with improved reception quality.
なおこの実施の形態では、位相推定部 103 aにより推定された各位相推定 値を D P CH電力測定部 1 04により測定された各受信電力に応じて重み付 けする重み付け部 105と、重み付けした位相推定値を用いて複数基地局から の DP CH信号それぞれを同期検波する同期検波部 106と、 同期検波後の複 数基地局からの DP CH信号を RAKE合成する RAKE合成部 107とを 設けた場合について説明した。 そして、 このような構成によれば、 同期検波部 106において、 位相補償と DPCHの受信電力に応じた重み付け処理とを同 時に行つて重み付けされた同期検波出力を得ることができるので、 R A K E合 成部 107では同期検波後の複数の D P C H信号を加算するだけで済み、 R A KE合成部 107での処理を簡単化することができる。 In this embodiment, a weighting section 105 for weighting each phase estimation value estimated by phase estimating section 103a according to each received power measured by DPCH power measuring section 104, and a weighted phase When a synchronous detector 106 that synchronously detects DPCH signals from multiple base stations using estimated values and a RAKE combiner 107 that RAKE-combines DPCH signals from multiple base stations after synchronous detection are provided Was explained. According to such a configuration, in synchronous detection section 106, phase compensation and weighting processing according to the received power of the DPCH can be performed simultaneously to obtain a weighted synchronous detection output. Combining section 107 only needs to add a plurality of DPCH signals after synchronous detection, and processing in RAKE combining section 107 can be simplified.
しかし、 本発明の通信端末装置の構成はこれに限らず、 同期検波は通常通り CP I CHの位相推定値に基づいて行い、 RAKE合成部での各フィンガの重 み付けを DP CHの受信電力に応じて行うようにしても良い。 つまり、 位相推 定部 103 aにより推定された (1) 式で示される位相情報を用いて複数基地 局からの D P C H信号を同期検波する同期検波部と、 同期検波後の複数基地局 からの D P C H信号を各 D P C H信号の受信電力に応じて重み付けする重み 付け部と、 重み付けした D P C H信号を RAKE合成する RAKE合成部とを 設けるようにすれば、 上述した実施の形態と同様の効果を得ることができる。 また本発明の通信端末装置は、 図 4に示すように構成しても良い。 図 3との 対応部分に同一符号を付して示す図 4において、 通信端末装置 200は、 CP I CH電力測定部 201を有すると共に、 電力比測定部 202を有する。 C P I CH電力測定部 201は各位相推定部 103 aの出力に基づいて各基地局 からの C P I CHの電力を測定する。  However, the configuration of the communication terminal device of the present invention is not limited to this. Synchronous detection is performed based on the phase estimation value of the CP I CH as usual, and the weight of each finger in the RAKE combining unit is determined by the received power of the DP CH. May be performed according to the conditions. In other words, a synchronous detection section that synchronously detects DPCH signals from multiple base stations using the phase information shown in equation (1) estimated by phase estimation section 103a, and a DPCH signal from multiple base stations after synchronous detection. By providing a weighting unit for weighting the signal according to the received power of each DPCH signal and a RAKE combining unit for RAKE combining the weighted DPCH signals, the same effect as in the above-described embodiment can be obtained. it can. Further, the communication terminal device of the present invention may be configured as shown in FIG. In FIG. 4, in which parts corresponding to those in FIG. 3 are assigned the same reference numerals, communication terminal apparatus 200 has CPICH power measurement section 201 and power ratio measurement section 202. CP I CH power measuring section 201 measures the power of CP I CH from each base station based on the output of each phase estimating section 103a.
電力比測定部 202は、各基地局から受信する受信信号の中で最も受信強度 の高いパスの DP CHと CP I CHの電力比を算出する。 重み付け部 203は、 最大受信電力でないパスに関しては、 個別に算出した CP I CH受信電力にこ の電力比を乗じたものを、 各位相推定値への重み係数として用いる。  Power ratio measuring section 202 calculates the power ratio between the DP CH and the CP I CH of the path having the highest reception strength among the received signals received from each base station. Weighting section 203 uses, as a weighting factor for each phase estimation value, a value obtained by multiplying the individually calculated CPICH reception power by this power ratio for paths that do not have the maximum reception power.
これにより RAKE重みを一段と正確に推定することができる。 これは、 同 一基地局からのパスでは、 CP I CHと DP CHの電力比が一定であり、 一般 には、 DP CHより CP I CHの方が送信電力が大きいため精度良く推定でき るからである。 また受信強度の高いパスの方が受信強度の低いパスより電力比 が正確に算出できるからである。 こうすることにより受信電力の低いパスの D PCHの大きさも正確に推定できることができるようになり、 RAKE重みを 一段と正確に推定することができる。  This makes it possible to more accurately estimate the RAKE weight. This is because the power ratio between the CP I CH and the DP CH is constant on the path from the same base station, and in general, the CP I CH has higher transmission power than the DP CH, so that it is possible to estimate with higher accuracy. It is. Also, the power ratio can be calculated more accurately for paths with higher reception strength than for paths with lower reception strength. By doing so, it becomes possible to accurately estimate the magnitude of the DPCH of the path having a low received power, and it is possible to more accurately estimate the RAKE weight.
また本発明の通信端末装置は、 図 5に示すように構成しても良い。 図 3との 対応部分に同一符号を付して示す図 5において、 通信端末装置 300は、 雑音 測定部 301及び雑音補償部 302を有する。 雑音測定部 301は、 各フィン ガ毎に DP CH信号の雑音及び干渉波分の測定を行う。 雑音補償部 302は、 各パスの RAKE重みをこの雑音及ぴ干渉成分に応じて補正する。 例えば大き な雑音が測定されたものほど RAKE重みを小さくする。 重み付け部 303は、 雑音補償された R A K E重みを使つて位相推定値を重み付け処理する。 Further, the communication terminal device of the present invention may be configured as shown in FIG. With Figure 3 In FIG. 5, in which corresponding parts are assigned the same reference numerals, communication terminal apparatus 300 includes noise measuring section 301 and noise compensating section 302. The noise measurement unit 301 measures the noise and interference of the DPCH signal for each finger. The noise compensator 302 corrects the RAKE weight of each path according to the noise and interference components. For example, the larger the measured noise, the smaller the RAKE weight. Weighting section 303 weights the phase estimation value using the noise-compensated RAKE weight.
これにより、 DPCHの RAKE重みを正確に推定することができる。 これ は、 RAKE重みには、 雑音分や干渉波成分が含まれており、 特に受信レベル の低いパスについては実際の受信レベルより RAKE重みが大きくなってし まうが、 図 5の構成によりこの課題を解決できるからである。  By this means, it is possible to accurately estimate the RAKE weight of the DPCH. This is because the RAKE weight contains noise and interference wave components, and the RAKE weight is larger than the actual received level especially for paths with low received levels. It is because it can solve.
また DPCHの RAKE重みである 1 edpch (1, m) 1力 ある閾値以下 の場合は、 その位相推定値を 0とすれば、 劣化要因となるレベルの受信信号を 合成対象から除外することができる。 より具体的には、 フィンガ割り当ては長 時間平均した遅延プロファイルを基にフィンガを割り当てるが、 上述のように すれば、 フ ージングなどの変動により瞬時的に受信レベルが低くなる場合な どに有効となる。 In addition, if the DPKE RAKE weight is 1 edpch (1, m) 1 or less than a certain threshold, if the phase estimation value is set to 0, the received signal at the level that causes deterioration can be excluded from the target of synthesis. it can. More specifically, finger assignment is performed based on a long-time averaged delay profile.However, as described above, it is effective when the reception level instantaneously decreases due to fluctuations such as fusing. Become.
また本宪明の通信端末装置は、 図 6に示すように構成しても良い。 図 4との 対応.部分に同一符号を付して示す図 6において、 通信端末装置 400は、 電力 比測定部 202により測定された CP I CHと DPCHの電力比を閾値設定 部 401に入力する。.電力比測定部 202は基地局毎に DPCHと CP I CH の電力比を測定する。  Further, the communication terminal device of the present invention may be configured as shown in FIG. Correspondence with Fig. 4 In Fig. 6 where parts are assigned the same reference numerals, communication terminal apparatus 400 inputs the power ratio between CPICH and DPCH measured by power ratio measurement section 202 to threshold setting section 401. . . Power ratio measuring section 202 measures the power ratio between DPCH and CP I CH for each base station.
閾値設定部 401は各基地局の電力比に DPCHの閾値レベルを乗ずるこ とで基地局毎の CP I CHの受信レベル閾値を設定する。 重み付け部 402は、 このように設定した閾ィ Ϊを用いて、 D P CH測定部 104により得られた各基 地局の DPCH信号を閾値判定する。 そして設定された閾値以下の DPCH信 号に対する重み係数を 0とする。 これにより、 CP I CHの受信レベル閾値よ りも大きい受信レベルが得られた基地局の信号をのみを RAKE合成の重み 付け対象とする。 この結果、 不必要な基地局からの DP CH信号を RAKE合 成対象から除外することができ、 全ての基地局からの D P C Hの受信電力を測 定する必要が無くなる。 The threshold setting unit 401 sets the reception level threshold of the CPICH for each base station by multiplying the power ratio of each base station by the threshold level of the DPCH. The weighting section 402 uses the threshold value set in this way to determine the threshold value of the DPCH signal of each base station obtained by the DPCH measurement section 104. Then, the weight coefficient for the DPCH signal below the set threshold is set to 0. As a result, only signals from base stations that have a reception level higher than the reception level threshold of the CP ICH are weighted for RAKE combining. To be attached. As a result, unnecessary DPCH signals from base stations can be excluded from RAKE combining targets, and it becomes unnecessary to measure the received power of DPCH from all base stations.
(実施の形態 2)  (Embodiment 2)
この実施の形態では、 サイトセレクションダイバーシチ送信制御時に好適な RAKE合成を行うことができる通信端末装置について説明する。  In this embodiment, a description will be given of a communication terminal device capable of performing suitable RAKE combining at the time of site selection diversity transmission control.
図 3との対応部分に同一符号を付して示す図 7において、 通信端末装置 50 0は、 合成判定部 501を有することを除いて、 図 3の通信端末装置 100と 同様の構成でなる。  In FIG. 7, in which parts corresponding to those in FIG. 3 are assigned the same reference numerals, communication terminal apparatus 500 has the same configuration as communication terminal apparatus 100 in FIG.
合成判定部 501は、各フィンガの同期検波出力の DP DCH信号の受信電 力を測定し、 DPDCH受信電力がある閾値以上のフィンガのみを RAKE合 成対象とするように RAKE合成部 107を制御する。  The combining determination unit 501 measures the reception power of the DP DCH signal of the synchronous detection output of each finger, and controls the RAKE combining unit 107 so that only fingers whose DPDCH reception power is equal to or greater than a certain threshold are to be RAKE combined. .
これにより、 実際に受信した信号の DPDCHの有り/無しに応じて RAK E合成対象かどうかを決めることができるので、 D P C C Hを送信していない 基地局に割り当てているフィンガ出力を合成しないで済む。 これにより、 I D ラベルが正確に基地局に伝送されなかつた場合でも、 的確な R A K E合成処理 を行うことができるようになる。  By this means, it is possible to determine whether or not to be a target for RAKE combining according to the presence / absence of the DPDCH of the actually received signal, so that it is not necessary to combine finger outputs assigned to base stations that are not transmitting DPCCH. As a result, even when the ID label is not transmitted to the base station accurately, it is possible to perform an accurate RAKE combining process.
なお図 7では、 D P D C H信号の受信電力に基づいて RAKE合成対象を決 定する場合について述べたが、 DPDCHと DPC C Hの受信レベル差によつ て RAKE合成対象かどうかを決定しても良い。 これは、 DPCCHは、 P r i ma r y c e l l又は No n P r ima r y c e l lに限らず常に送 信される力 DPDCt^±P r i ma r y c e l lのみ送信されるため、 N o n P r ima r y c e 1 1からの受信信号は D P D C Hと D P C C Hの 電力差が大きいからである。 この方法によれば、 DPDCH、 DPCCHとも 距離減衰分は同じなので、 判定閾値を一定とすることができる。 また誤判定を 防ぐ目的で各基地局の最大パスのみを判定対象とするものでも良い。  Although FIG. 7 describes the case where the target of RAKE combining is determined based on the received power of the DPDCH signal, whether or not the target of RAKE combining may be determined based on the reception level difference between DPDCH and DPCCH. This is because the DPCCH is transmitted not only from the Primary cell or the Non-Primary cell but also from the constantly transmitted power DPDCt ^ ± Primary cell, so the reception from the NonPrimary cell 11 This is because the signal has a large power difference between DPDCH and DPCCH. According to this method, since the distance attenuation is the same for both DPDCH and DPCCH, the determination threshold can be fixed. Alternatively, only the maximum path of each base station may be determined for the purpose of preventing erroneous determination.
また D P D C Hの受信レベルを測定する場合、 D P D C Hの受信信号の中で 最も受信レベルの大きいシンボルの受信電力を D P D C Hの受信レベルにし たり、 DPDCHの各シンボルの中で大きい受信電力の上位 N個(Nは 1以上) の平均値を DP DCHの受信レベルにしても良い。 これにより、 伝送信号量に よって D P D C Hの送信ビット数が変化した場合であっても DPDCHの受 信電力を測定することができる。 When measuring the DPDCH reception level, The reception power of the symbol with the highest reception level may be set to the reception level of the DPDCH, or the average value of the upper N (N is 1 or more) of the highest reception power among the symbols of the DPDCH may be set to the reception level of the DP DCH. . By this means, it is possible to measure the received power of DPDCH even when the number of DPDCH transmission bits changes due to the amount of transmission signal.
またサイトセレクションダイバーシチ送信電力制御本来の動作である自局 (通信端末装置) が決定し FB Iを送信した P r ima r y e e l 1情報を 基に RAKE合成対象を決定する方法と、 上述した DPDCHによる実際の受 信状態から決定する方法を伝搬路環境により切り替えても良い。 こうすること により、 一段と判定精度を向上させることができる。 なお下り TPCビットな どを用いれば、 F B I伝送の品質を推定できる。 例えば下り T P Cビットとし て送信電力を上げることを示すビットが多い場合、 基地局の受信環境が悪く従 つて FB Iを正確に受信していない確率が高いことが分かる。  In addition, a method for determining the RAKE combining target based on the Primaryeel 1 information transmitted by the own station (communication terminal device) and transmitting the FBI, which is the original operation of the site selection diversity transmission power control, and a method using the DPDCH described above. May be switched depending on the propagation path environment. By doing so, the determination accuracy can be further improved. If the downlink TPC bit is used, the quality of FBI transmission can be estimated. For example, when there are many bits indicating that the transmission power is increased as the downlink TPC bits, it is understood that the reception environment of the base station is poor and the probability that the FBI is not correctly received is high.
本発明は、 上述した実施の形態に限定されずに、 種々変更して実施すること ができる。  The present invention is not limited to the above-described embodiment, but can be implemented with various modifications.
以上説明したように本発明によれば、 DPCH (DPDCHを含む) の受信 電力を用いて RAKE重みを設定するようにしたことにより、 ハンドオーバ時 やサイトセレクションダイバーシチ送信制御時に最適な RAKE合成を行う ことができるようになる。  As described above, according to the present invention, the RAKE weight is set using the received power of the DPCH (including the DPDCH), so that the optimum RAKE combining can be performed at the time of handover or site selection diversity transmission control. Will be able to
本明細書は、 2002年 4月 1 1日出願の特願 2002— 108928に基 づく。 その内容はすべてここに含めておく。 産業上の利用可能性  This specification is based on Japanese Patent Application No. 2002-108928 filed on April 11, 2002. All its contents are included here. Industrial applicability
本発明は、 例えば携帯電話機に適用し得る  The present invention can be applied to, for example, a mobile phone.

Claims

請求の範囲 The scope of the claims
1. 複数の基地局からの CP I CH信号に基づいて各基地局からの DP CH 信号を位相補償すると共に、各 D P CH信号の受信電力に基づいて受信電力が 大きい D P CH信号ほど大きな重み付けを行って複数の D P CH信号を重み 付け合成する、 ことを特徴とする無線受信方法。  1. Based on the CP ICH signals from multiple base stations, the DPCH signals from each base station are phase-compensated, and based on the received power of each DPCH signal, the higher the received power, the greater the weight of the DPCH signal. Performing a weighted synthesis of a plurality of DPCH signals.
2. 各基地局から受信した最も受信電力の高いパスの DP CH信号と CP I CH信号の受信電力比を算出し、 最大受信電力でないパスに関しては個別に算 出した CP I CH信号の受信電力に前記電力比を乗じたものを DP CH信号 の受信電力とする、 請求項 1に記載の無線受信方法。  2. Calculate the received power ratio between the DPCH signal and the CP I CH signal of the path with the highest received power received from each base station, and calculate the received power of the CP I CH signal separately for paths that do not have the maximum received power. 2. The wireless reception method according to claim 1, wherein a product of the power ratio and the received power ratio is used as a received power of the DPCH signal.
3. 複数の基地局からの CP I CH信号の位相に基づいて複数の基地局から の受信信号の位相を推定する位相推定手段と、複数の基地局からの D P CH信 号それぞれの受信電力を測定する D P CH電力測定手段と、 前記位相推定手段 により推定された各位相推定値を前記 D P C H電力測定手段により測定され た各受信電力に応じて重み付けする重み付け手段と、 重み付けした位相推定ィ直 を用いて前記複数基地局からの DP CH信号それぞれを同期検波する同期検 波手段と、 同期検波後の前記複数基地局からの D P C H信号を合成する R AK E合成手段と、 を具備する通信端末装置。 3. Phase estimation means for estimating the phase of the received signals from multiple base stations based on the phases of the CP I CH signals from multiple base stations, and the received power of each DPCH signal from multiple base stations. A DPCH power measuring means for measuring, a weighting means for weighting each phase estimation value estimated by the phase estimating means according to each reception power measured by the DPCH power measuring means, and a weighted phase estimator. A communication terminal device comprising: synchronous detection means for synchronously detecting each of DPCH signals from the plurality of base stations using the same; and RAKE combining means for synthesizing DPCH signals from the plurality of base stations after synchronous detection. .
4. 複数の基地局からの CP I CH信号の位相に基づいて複数の基地局から の受信信号の位相を推定する位相推定手段と、複数の基地局からの D P CH信 号それぞれの受信電力を測定する DP CH電力測定手段と、 前記位相推定手段 により推定された位相情報を用いて前記複数基地局からの DP CH信号を同 期検波する同期検波手段と、 同期検波後の前記複数基地局からの D P C H信号 を各 D P CH信号の受信電力に応じて重み付けする重み付け手段と、 重み付け した D P C H信号を合成する R AK E合成手段と、 を具備することを特徴とす る通信端末装置。  4. Phase estimation means for estimating the phases of the received signals from multiple base stations based on the phases of the CP I CH signals from multiple base stations, and the received power of each DPCH signal from multiple base stations. DPCH power measuring means for measuring, synchronous detecting means for synchronously detecting DPCH signals from the plurality of base stations using the phase information estimated by the phase estimating means, and the plurality of base stations after synchronous detection. A communication terminal device comprising: weighting means for weighting the DPCH signal according to the received power of each DPCH signal; and RAKE combining means for combining the weighted DPCH signal.
5. さらに、 複数の基地局からの CP I CH信号それぞれの受信電力を測定 する CP I CH電力測定手段と、各基地局から受信した最も受信電力の高いパ スの DP CH信号と CP I CH信号の受信電力比を測定する電力比測定手段 とを具備し、 前記重み付け手段は、 最大受信電力でないパスに関しては個別に 算出した CP I CH信号の受信電力に前記電力比を乗じたものを重みとして 用いる、 請求項 3に記載の通信端末装置。 5. Further, a CPICH power measuring means for measuring the reception power of each of the CPICH signals from a plurality of base stations, and a parameter having the highest reception power received from each base station. Power ratio measuring means for measuring the received power ratio between the DP CH signal and the CP I CH signal of the base station, wherein the weighting means calculates the received power of the CP I CH signal separately for the path having the maximum received power. 4. The communication terminal device according to claim 3, wherein a value obtained by multiplying the power ratio is used as a weight.
6. さらに、 複数の基地局からの CP I CH信号それぞれの受信電力を測定 する CP I CH電力測定手段と、各基地局から受信した最も受信電力の高いパ スの DP CH信号と CP I CH信号の受信電力比を測定する電力比測定手段 とを具備し、 前記重み付け手段は、 最大受信電力でないパスに関しては個別に 算出した CP I CH信号の受信電力に前記電力比を乗じたものを重みとして 用いる、 請求項 4に記載の通信端末装置。 6. Furthermore, a CP ICH power measuring means for measuring the received power of each CP I CH signal from a plurality of base stations, and a DP CH signal and a CP I CH of a path having the highest received power received from each base station. Power ratio measuring means for measuring a received power ratio of a signal, wherein the weighting means weights a value obtained by multiplying the received power of the CP I CH signal individually calculated by the power ratio for a path having a maximum received power. The communication terminal device according to claim 4, which is used as:
7. さらに、 前記電力比測定手段により得られた各基地局毎の電力比に DP CHの閾値レベルを乗ずることにより基地局毎の CP I CHの受信レベル閾 値を設定する閾値設定手段を具備し、 前記重み付け手段は、 設定された閾値以 下の重みを 0とする、 請求項 5に記載の通信端末装置。  7. Further, threshold value setting means for setting the reception level threshold value of the CP I CH for each base station by multiplying the power ratio for each base station obtained by the power ratio measuring means by the threshold level of the DP CH is provided. The communication terminal device according to claim 5, wherein the weighting unit sets a weight equal to or less than a set threshold value to 0.
8. さらに、 前記電力比測定手段により得られた各基地局毎の電力比に D P CHの閾値レベルを乗ずることにより基地局毎の CP I CHの受信レベル閾 値を設定する閾値設定手段を具備し、 前記重み付け手段は、 設定された閾値以 下の重みを 0とする、 請求項 6に記載の通信端末装置。 8. Further, a threshold setting means is provided for setting the reception level threshold of the CP ICH for each base station by multiplying the power ratio of each base station obtained by the power ratio measuring means by the threshold level of the DPCH. 7. The communication terminal device according to claim 6, wherein the weighting unit sets a weight equal to or less than a set threshold value to 0.
PCT/JP2003/008882 2003-07-14 2003-07-14 Radio reception method and communication terminal device WO2005006595A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/008882 WO2005006595A1 (en) 2003-07-14 2003-07-14 Radio reception method and communication terminal device
AU2003248062A AU2003248062A1 (en) 2003-07-14 2003-07-14 Radio reception method and communication terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008882 WO2005006595A1 (en) 2003-07-14 2003-07-14 Radio reception method and communication terminal device

Publications (1)

Publication Number Publication Date
WO2005006595A1 true WO2005006595A1 (en) 2005-01-20

Family

ID=34044622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008882 WO2005006595A1 (en) 2003-07-14 2003-07-14 Radio reception method and communication terminal device

Country Status (2)

Country Link
AU (1) AU2003248062A1 (en)
WO (1) WO2005006595A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426691C (en) * 2005-05-25 2008-10-15 上海华为技术有限公司 RAKE receiving method and RAKE receiver using the method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190526A (en) * 1996-12-26 1998-07-21 Sony Corp Receiving device, receiving method and terminal equipment of radio system
JP2001308826A (en) * 2000-04-26 2001-11-02 Hitachi Ltd Base station
JP2002111570A (en) * 2000-09-27 2002-04-12 Sharp Corp Method for demodulating signal and receiver
JP2003018081A (en) * 2001-07-05 2003-01-17 Toshiba Corp Mobile radio terminal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190526A (en) * 1996-12-26 1998-07-21 Sony Corp Receiving device, receiving method and terminal equipment of radio system
JP2001308826A (en) * 2000-04-26 2001-11-02 Hitachi Ltd Base station
JP2002111570A (en) * 2000-09-27 2002-04-12 Sharp Corp Method for demodulating signal and receiver
JP2003018081A (en) * 2001-07-05 2003-01-17 Toshiba Corp Mobile radio terminal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426691C (en) * 2005-05-25 2008-10-15 上海华为技术有限公司 RAKE receiving method and RAKE receiver using the method

Also Published As

Publication number Publication date
AU2003248062A1 (en) 2005-01-28

Similar Documents

Publication Publication Date Title
WO2001022756A1 (en) Transmission power controller
US20090291642A1 (en) Systems and Methods for SIR Estimation for Power Control
JP4448633B2 (en) Mobile communication terminal
JP2991196B1 (en) CDMA receiving method and receiver
JP4097918B2 (en) Mobile communication method in base station, mobile communication base station apparatus and mobile station apparatus
JP2000151465A (en) Radio communication equipment and radio communication method
EP1298814B1 (en) CDMA receiver and channel estimation method
EP0924875B1 (en) Diversity reception method and apparatus in a CDMA system
WO2001020832A1 (en) Cdma receiver
JP4588931B2 (en) Mobile radio terminal
US6724808B1 (en) Transmission power control method of measuring Eb/N0 after weighted signals are combined
JP2011228976A (en) Mobile station device
JP4683244B2 (en) Mobile communication system and mobile terminal speed estimation method
US20110151802A1 (en) Apparatus and method for estimating channel in mobile communication system
WO1999051049A1 (en) Base station and method of communication
JP2003304177A (en) Radio receiving method and communication terminal device
WO2005006595A1 (en) Radio reception method and communication terminal device
JP3628247B2 (en) Signal demodulation method and receiving apparatus
US20050036538A1 (en) Method and apparatus for calculation of correction factors for path weights in a rake receiver
WO2008092299A1 (en) Power control apparatus and method
JP2004120643A (en) Rake receiver and receiving control program of the same
JP4418289B2 (en) Geometry measuring method, radio receiving apparatus and mobile station apparatus
US8463311B2 (en) Mobile terminal and power control method
JP2004524740A (en) Method for determining interference power in a CDMA wireless receiver
JP3758075B2 (en) Received signal power measuring method and mobile communication terminal in mobile communication system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase