JP4588931B2 - Mobile radio terminal - Google Patents

Mobile radio terminal Download PDF

Info

Publication number
JP4588931B2
JP4588931B2 JP2001204992A JP2001204992A JP4588931B2 JP 4588931 B2 JP4588931 B2 JP 4588931B2 JP 2001204992 A JP2001204992 A JP 2001204992A JP 2001204992 A JP2001204992 A JP 2001204992A JP 4588931 B2 JP4588931 B2 JP 4588931B2
Authority
JP
Japan
Prior art keywords
transmission path
transmission
mobile radio
amplitude
combining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001204992A
Other languages
Japanese (ja)
Other versions
JP2003018081A (en
Inventor
裕 浅沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001204992A priority Critical patent/JP4588931B2/en
Publication of JP2003018081A publication Critical patent/JP2003018081A/en
Application granted granted Critical
Publication of JP4588931B2 publication Critical patent/JP4588931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、CDMA(Code Division Multiple Access)方式により無線通信を行う自動車電話システムや携帯電話システムをはじめとする無線通信システムで用いられる移動無線端末に関する。
【0002】
【従来の技術】
周知のように、無線通信システムには、距離変動、長区間中央値変動(シャドウイング)、短区間中央値変動などの伝送路の変動を補償するために送信電力制御を行うものがある。
【0003】
一般に、必要以上の電力で送信を行うと、他の通信局に対する干渉が増大するため、干渉が通信容量に大きな影響を与える移動通信システム、特に多重化にCDMA方式を使用するCDMA移動通信システムでは、送信電力制御は重要な技術であり、伝送路変動を追従できるように短い周期で送信電力制御を行う。
【0004】
また無線通信では、さまざまな受信方式があるが、基準位相を用いる同期検波方式が広く使用されている。一般に、基準位相はパイロット信号で伝送され、その伝送方法には様々な形式がある。
【0005】
携帯電話システムなどの移動通信システムの下り回線のように、多数の回線が多重化されている場合、各回線で個別に用いる個別チャネル信号に対して、パイロット信号は回線間で共通に用いることがある。以下、このようなパイロット信号を共通パイロット信号と称する。
【0006】
この場合、個別チャネル信号は1対1の通信であるので、回線毎に適切な電力制御を行うことができる。しかし、共通パイロット信号は1対複数の通信であるので、回線毎に適切な電力制御を行うことができない。このため、共通パイロット信号は、定常的な電力で送信されることが普通である。
【0007】
そして、無線通信では、伝送路の変動を補償するためにダイバーシチが行われることが多い。ダイバーシチには、一般的に使用される受信アンテナダイバーシチのほか、CDMAシステムで使用されるRAKE受信が代表的なダイバーシチ受信方式である。
【0008】
ダイバーシチは、複数の伝搬路を経由して伝送された信号を合成受信することにより、特性を向上するもので、代表的な合成方法としては、伝送路特性に応じて重み付けを行う最大比合成法がある。
【0009】
そしてまた、無線通信では、特性を向上するために、チャネル符号化が行われることがある。チャネル符号化は、あるブロックの情報ビットをより多数の伝送ビットで伝送することにより行われる。チャネル符号化を行う場合は、符号化されたデータにインターリーブを行うことにより、高速なフェージング下の特性を向上することができる。
【0010】
符号化ブロック長に対し、フェージング速度が十分速いときには特性向上が顕著に現れるため、符号化ブロック長は長い方がよい。また、符号化されたデータの復号の際、各ビットの信頼度を利用する軟判定復号を行って利得を得る方法が一般的である。
【0011】
以上の送信電力制御、共通パイロット信号を利用した同期検波、ダイバーシチ受信、軟判定復号の4つの要素技術は、より広帯域の伝送路を用いるW−CDMA(Wideband Code Division Multiple Access)を採用するシステムの下り回線において使用されている。
【0012】
またW−CDMAで用いられる受信機では、ダイバーシチ受信としてRAKE受信を行うが、このようなダイバーシチ受信では、合成結果のSIRを最大にする最大比合成法が好適する。最大比合成法は、ダイバーシチの各ブランチ(パス)からの信号の位相を一致させ、振幅に係数を乗算後、合成することにより実現される。
【0013】
各ブランチの雑音電力が一定の場合において、最大比合成法を用いる受信機では、図4に示すように、各伝送路の個別チャネル信号DPCHs1(t)~DPCHsn(t)に、それぞれパイロット信号受信機11−a〜1n−aにて共通パイロット信号CPICHから求めた伝送路特性h1(t)~hn(t)の共役複素h1*(t)~hn*(t)を、複素乗算器21−a〜2n−aにてそれぞれ乗算して、同期検波の結果s1(t)h1*(t)~sn(t)hn*(t)を得て、これらを合成部30−aにて合成することにより、最大比合成を行う。
【0014】
伝送路特性h1(t)~hn(t)は、振幅と位相で表現でき、予め定められた共通パイロット信号を受信することにより推定される。そして、この推定された振幅を信号に乗算することによりダイバーシチの各ブランチ(パス)信号の重みは最大比となり、推定された位相により信号を補正することにより、ブランチ間の同相合成が実現される。
【0015】
送信電力制御を行う場合には、個別チャネル信号の電力またはSIRが一定になるように制御され、また符号化ブロック長は送信電力制御の周期より長く設定されている。したがって、個別チャネル信号の電力と共通パイロット信号の電力の比は、一符号化ブロック内で変化することになる。
【0016】
ここで、レーリーフェージングのような変動伝送路における、個別チャネル信号、共通パイロット信号の受信振幅の様子を図5に示す。個別チャネル信号は、送信電力制御の効果により、ほぼ一定の受信振幅になっているのに対し、共通パイロット信号は伝送路変動によって、受信振幅が変動する。
【0017】
したがって、図4に示した受信機のように、共通パイロット信号から伝送路特性を得る受信機を、送信電力制御を行うシステムで用いると、個別チャネル信号の処理では、受信時に同じ振幅であった信号が復号器入力時に異なる振幅になってしまう。
【0018】
この場合は、振幅が信号の信頼度を示さないため、復号時に軟判定の効果を充分に得ることはできない。つまり、共通パイロット信号を位相基準にしても問題はないが、共通パイロット信号を振幅基準にすると受信性能が劣化してしまうことになる。
【0019】
このため、W−CDMAを採用するシステムの受信機では、個別チャネル信号にも、個別パイロットと呼ばれるパイロット信号を挿入するようにし、この個別パイロットから伝送路特性を得るような受信機を用いるようにしている。図6にその構成を示す。
【0020】
この受信機では、パイロット信号受信機11−b〜1n−bが、各伝送路の個別チャネル信号DPCH内の個別パイロットより伝送路特性h1(t)~hn(t)と、この複素共役h1*(t)~hn*(t)とを推定し、これらを複素乗算器21−b〜2n−bにてそれぞれ乗算して、同期検波の結果s1(t)h1*(t)~sn(t)hn*(t)を得て、これらを合成部30−bにて合成することにより、最大比合成を行う。
【0021】
この場合、各伝送路の個別パイロットは、伝送路毎に同様の送信電力制御を受けているため、振幅による信頼度は維持される。
しかし、個別パイロットは個別チャネル信号の一部として挿入されているため、共通パイロット信号より、電力が著しく低いのが一般的である。このため、共通パイロット信号より伝送路特性を得た場合と比べ、伝送路特性の推定精度が低く、受信性能もそれに応じて低いものとなる。
【0022】
これに対して従来は、送信電力制御を受けない共通パイロット信号と、送信電力制御を受ける個別パイロットでは、振幅の変化は異なるが、位相の変化は同一であることに着目し、図7に示すような受信機を採用した。
【0023】
この受信機では、パイロット信号受信機11−c〜1n−cにて、各伝送路の特性h1(t)~hn(t)を推定するとともに、個別パイロットから振幅基準w1~wnを推定する。
【0024】
またパイロット信号受信機21−c〜2n−cでは、共通パイロット信号から各伝送路特性の複素共役h1*(t)~hn*(t)を求め、これより位相成分を推定することにより位相基準を求める。
【0025】
そして、同期検波部31−c〜3n−cが、上記位相基準に基づいて、それぞれ伝送路特性h1(t)~hn(t)を同期検波した後、乗算器41−c〜4n−cにて振幅基準w1~wnを乗算して、振幅の変動成分を除去し、合成部50―cにて合成することにより、最大比合成を行う。
【0026】
しかしながら、このような構成の受信機であっても、共通パイロットは電力が大きく干渉や雑音による伝送路推定誤差の影響が小さいが、パイロット信号受信機11−c〜1n−cにて推定した振幅基準w1~wnの信頼度が低いため、合成によって得た信号の振幅が十分な信頼度を示さないという問題がある。
【0027】
【発明が解決しようとする課題】
従来の移動無線端末では、共通パイロットチャネルと伝送チャネルの電力制御方式が異なる無線通信方式を採用する場合、RAKE受信機において、干渉・雑音による伝送路推定誤差が大きかったり、あるいはRAKE合成出力の振幅の信頼性が低いという問題があった。
【0028】
この発明は上記の問題を解決すべくなされたもので、共通パイロットチャネルと伝送チャネルの電力制御方式が異なる無線通信方式を採用する場合であっても、RAKE受信機において、干渉・雑音による伝送路推定誤差の影響が小さく、かつRAKE合成出力の振幅の信頼性が高い移動無線端末を提供することを目的とする。
【0029】
【課題を解決するための手段】
上記の目的を達成するために、請求項1に係わる本発明は、CDMA方式により無線通信を行うもので、複数の移動無線端末に宛てて送信する共通信号については所定の送信電力で基地局から送信するように制御し、特定の移動無線端末に個別に送信する個別信号については、対応する移動無線端末毎に送信電力を制御して基地局から送信する移動通信システムで用いられる移動無線端末において、複数の伝送路について、それぞれ共通信号と個別信号とを検出する逆拡散手段と、この逆拡散手段にて求めた共通信号から、各伝送路の特性を推定した推定値とその共役複素とを求める伝送路推定手段と、この伝送路推定手段にて求めた推定値の共役複素を用いて、対応する伝送路の個別信号に対して、それぞれ同期検波とダイバーシチ合成の重み付けを行う検波手段と、この伝送路推定手段にて求めた各伝送路の推定値から、振幅の正規化係数を求める係数演算手段と、検波手段にて得た各伝送路の検波結果を合成する合成手段と、この合成手段の合成結果に、正規化係数を乗算して振幅の正規化を行う正規化手段を具備して構成するようにした。
【0030】
また、請求項2に係わる本発明は、CDMA方式により無線通信を行うもので、複数の移動無線端末に宛てて送信する共通信号については所定の送信電力で基地局から送信するように制御し、特定の移動無線端末に個別に送信する個別信号については、対応する移動無線端末毎に送信電力を制御して基地局から送信する移動通信システムで用いられる移動無線端末において、複数の伝送路について、それぞれ共通信号と個別信号とを検出する逆拡散手段と、この逆拡散手段にて求めた共通信号から、各伝送路の特性を推定した推定値とその共役複素とを求める伝送路推定手段と、この伝送路推定手段にて求めた推定値の共役複素を用いて、対応する伝送路の個別信号に対して、それぞれ同期検波とダイバーシチ合成の重み付けを行う検波手段と、この伝送路推定手段にて求めた各伝送路の推定値から、振幅の正規化係数を求める係数演算手段と、検波手段にて求めた各伝送路の検波結果に、それぞれ正規化係数を乗算して、振幅の正規化を行う正規化手段と、この正規化手段にて得た各伝送路の正規化結果を合成する合成手段とを具備して構成するようにした。
【0031】
上記構成の移動無線端末では、共通信号から、伝送路の特性を推定した推定値とその共役複素とを求め、この共役複素に基づいて個別信号の同期検波とダイバーシチ合成の重み付けを行うとともに、上記推定値に基づいて求めた振幅の正規化係数で合成結果を正規化するようにしている。
【0032】
したがって、上記構成の移動無線端末によれば、雑音や干渉の影響の少ない共通信号に基づいて、個別信号の同期検波と振幅の正規化を行うので、信号振幅の信頼度が高い合成結果を得ることができ、共通信号と個別信号の送信電力の制御方法が異なっても、干渉や雑音による伝送路推定誤差の影響が小さく、かつ合成出力の振幅の信頼性を高めることができる。
【0033】
【発明の実施の形態】
図面を参照して、この発明の一実施形態について説明する。
以下の説明では、3GPP(3rd Generation Partnership Project) W−CDMA FDDシステムを例に挙げて説明する。
【0034】
すなわち、無線アクセス方式として符号分割多元接続(CDMA)方式を使用し、基地局からは、移動局宛てに共通する共通パイロット信号CPICHと、各移動局に個別に送られる個別信号DPCHが送信されている。個別信号DPCHには個別パイロットが含まれている。
【0035】
基地局は、システム運用が変わらない限り一定の送信電力で共通パイロット信号CPICHを送信し、個別信号DPCHについては10ミリ秒あるいは15ミリ秒の周期で送信電力制御し、移動局における受信電力を最適化している。
【0036】
またこのシステムでは、個別信号DPCHで伝送される情報に対し符号化率1/3〜1/2の誤り訂正符号化がなされ、さらに符号化のブロックの時間長は10ミリ秒から80ミリ秒の範囲に設定されている。
【0037】
したがって、符号化のブロック時間長より、送信電力制御周期の方が短いので、個別チャネルの電力と共通チャネルの電力の比は、一符号化ブロック内で変化する。
【0038】
図1は、この発明の一実施形態に係わる移動無線端末の受信系の構成を示すものである。
基地局より受信したRF信号は、RF部1にて受信され、ここでベースバンド信号に周波数変換された後、A/D変換され、逆拡散部2に出力される。
【0039】
逆拡散部2は、RF部1にて得られたディジタル信号を、拡散符号を用いて逆拡散することにより、n個の伝送路p1〜pnを検出し、各伝送路p1〜pnについて上述した共通パイロット信号CPICHと個別信号DPCHを得て、これらの受信信号をRAKE合成部3に出力する。
【0040】
RAKE合成部3は、各伝送路p1〜pnの受信信号をRAKE合成することにより、受信ダイバーシチを実現するものである。ここで得られた合成結果は、復号部4に出力される。
復号部4は、上記合成結果を復号するもので、この合成結果の振幅に基づいて誤り訂正符号の軟判定復号を行う。
【0041】
次に、図2を参照して、上述したRAKE合成部3について説明する。
RAKE合成部3は、パイロット信号受信機11〜1nと、複素乗算器21〜2nと、合成部30と、正規化係数演算部40と、正規化部50とを備える。
【0042】
パイロット信号受信機11は、伝送路p1の共通パイロット信号CPICHから伝送路推定値h1(t)およびこの共役複素h1*(t)を求める。同様に、パイロット信号受信機12〜1nは、それぞれ伝送路p2〜pnの共通パイロット信号CPICHから伝送路推定値h2(t)~hn(t)およびこの共役複素h2*(t)~hn*(t)を求める。
【0043】
複素乗算器21は、伝送路p1の個別信号DPCHに対して、パイロット信号受信機11で求めた伝送路推定値の共役複素h1*(t)を乗算して、同期検波と最大比合成の重み付けを行い、合成部30に出力する。なお、この際の重み係数は、|h1(t)|で表される。
【0044】
同様に、複素乗算器22〜2nは、それぞれ伝送路p2〜pnの個別信号DPCHに対して、パイロット信号受信機12〜1nで求めた伝送路推定値の共役複素h2*(t)~hn*(t)を乗算して、同期検波と最大比合成の重み付けを行い、合成部30に出力する。なお、この際の重み係数は、それぞれ|h2(t)|~|hn(t)|で表される。
【0045】
正規化係数演算部40は、パイロット信号受信機11〜1nで求めた伝送路推定値h1(t)~hn(t)に基づいて、振幅に関する正規化係数aを求める。正規化係数aは、下式に示すよう各パスワードの振幅重みの2乗の総和の逆数である。
【数1】

Figure 0004588931
【0046】
合成部30は、複素乗算器21〜2nの出力をダイバーシチ合成し、この合成結果を正規化部50に出力する。
正規化部50は、合成部30の出力に、正規化係数演算部40で求めた正規化係数aを乗算して、正規化を行う。
【0047】
以上のように、上記構成の移動無線端末では、RAKE合成部3において、雑音や干渉の影響の少ない共通パイロット信号CPICHに基づいて、各伝送路の位相および振幅を推定し、この推定結果に基づいて複数の伝送路p1〜pnをダイバーシチ合成するようにしている。
【0048】
したがって、上記構成の移動無線端末によれば、共通パイロット信号CPICHと個別信号DPCHの送信電力の制御方法が異なっても、干渉や雑音による伝送路推定誤差が小さく、かつRAKE合成出力の振幅の信頼性を高めることができる。
【0049】
尚、この発明は上記実施の形態に限定されるものではない。
例えば、上記実施の形態では、正規化部50において合成部30の出力に、正規化係数演算部40で求めた正規化係数aを乗算して正規化を行うようにしているが、RAKE合成や伝送路推定値の乗算は線形処理であるので、RAKE合成前の各パスの信号、あるいは、各パスの伝送路推定値に対して、正規化係数aを乗算するようにしても同じ結果が得られる。
【0050】
また、正規化係数aは、各パスの伝送路推定値より求まるので、伝送路が一定と見なせるような期間については、正規化係数aを一定とすることにより、演算量を削減することができる。
【0051】
さらに、上記実施の形態では、重み正規化後およびRAKE合成後の個別信号は、伝送路推定値の正規化処理が行われているため、符号ブロック内のシンボル間で等利得重みとなっているので、図3に示すように、自乗回路60によって正規化部50の出力を2乗することにより、個別信号の最大比重みにするようにしてもよい。
【0052】
重み正規化およびRAKE合成後の個別信号は、2乗することによりダイナミックレンジが広がり、SIRが小さい場合は、本来の重みは信号振幅で乗じる必要があるので重み誤差が増大する。
【0053】
これらを考慮して、復号部4のダイナミックレンジが狭い場合や所要SIRが小さいときは、符号ブロック内のシンボル間で等利得重みを選択し、一方、復号部4のダイナミックレンジが広い場合や所要SIRが大きいときは、符号ブロック内のシンボル間で最大比重みを選択すると、それぞれ良好な受信特性を得ることができる。
【0054】
そしてまた、上述の実施形態では、各伝送路p1〜pnの重み係数をそれぞれ伝送路推定値の振幅|h1(t)|~|hn(t)|としたが、例えば、SIRに基づく重み付け方法をとる場合でも適用することができる。
このとき、各伝送路p1〜pnの重み係数をそれぞれw1(t)~wn(t)とすれば、正規化係数は、下式で示される。
【数2】
Figure 0004588931
【0055】
その他、この発明の要旨を逸脱しない範囲で種々の変形を施しても同様に実施可能であることはいうまでもない。
【0056】
【発明の効果】
以上述べたように、共通信号から、伝送路の特性を推定した推定値とその共役複素とを求め、この共役複素に基づいて個別信号の同期検波とダイバーシチ合成の重み付けを行うとともに、上記推定値に基づいて求めた振幅の正規化係数で合成結果を正規化するようにしている。
【0057】
したがって、この発明によれば、雑音や干渉の影響の少ない共通信号に基づいて、個別信号の同期検波と振幅の正規化を行うので、信号振幅の信頼度が高い合成結果を得ることができ、共通信号と個別信号の送信電力の制御方法が異なっても、干渉や雑音による伝送路推定誤差の影響が小さく、かつ合成出力の振幅の信頼性を高めることが可能な移動無線端末を提供できる。
【図面の簡単な説明】
【図1】この発明に係わる移動無線端末の受信系の一実施形態の構成を示す回路ブロック図。
【図2】図1に示した移動無線端末のRAKE合成部の構成を示す回路ブロック図。
【図3】図1に示した移動無線端末のRAKE合成部の変形例の構成を示す回路ブロック図。
【図4】従来の移動無線端末のRAKE合成部の構成を示す回路ブロック図。
【図5】変動伝送路における、共通パイロット信号と個別チャネル信号の受信振幅の変動の様子を示す波形図。
【図6】従来の移動無線端末のRAKE合成部の構成を示す回路ブロック図。
【図7】従来の移動無線端末のRAKE合成部の構成を示す回路ブロック図。
【符号の説明】
1…RF部
2…逆拡散部
3…RAKE合成部
4…復号部
11〜1n…パイロット信号受信機
21〜2n…複素乗算器
30…合成部
40…正規化係数演算部
50…正規化部
60…自乗回路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mobile radio terminal used in a radio communication system including a car phone system and a mobile phone system that perform radio communication by a CDMA (Code Division Multiple Access) system.
[0002]
[Prior art]
As is well known, some wireless communication systems perform transmission power control in order to compensate for transmission path fluctuations such as distance fluctuation, long interval median fluctuation (shadowing), and short interval median fluctuation.
[0003]
In general, if transmission is performed with more power than necessary, interference with other communication stations increases. Therefore, in a mobile communication system in which interference greatly affects communication capacity, particularly in a CDMA mobile communication system using a CDMA system for multiplexing. Transmission power control is an important technique, and transmission power control is performed in a short cycle so that transmission path fluctuations can be tracked.
[0004]
In wireless communication, there are various reception methods, but a synchronous detection method using a reference phase is widely used. In general, the reference phase is transmitted as a pilot signal, and there are various transmission methods.
[0005]
When a large number of lines are multiplexed, such as a downlink of a mobile communication system such as a mobile phone system, a pilot signal may be used in common between lines for individual channel signals used individually on each line. is there. Hereinafter, such a pilot signal is referred to as a common pilot signal.
[0006]
In this case, since the dedicated channel signal is one-to-one communication, appropriate power control can be performed for each line. However, since the common pilot signal is a one-to-multiple communication, appropriate power control cannot be performed for each line. For this reason, the common pilot signal is usually transmitted with steady power.
[0007]
In wireless communication, diversity is often performed to compensate for transmission path fluctuations. As diversity, RAKE reception used in a CDMA system is a typical diversity reception method in addition to commonly used reception antenna diversity.
[0008]
Diversity improves characteristics by combining and receiving signals transmitted via multiple propagation paths. A typical combining method is a maximum ratio combining method that performs weighting according to transmission path characteristics. There is.
[0009]
In wireless communication, channel coding may be performed in order to improve characteristics. Channel coding is performed by transmitting a certain block of information bits with a larger number of transmission bits. When channel encoding is performed, characteristics under high-speed fading can be improved by interleaving the encoded data.
[0010]
When the fading speed is sufficiently high with respect to the coding block length, the characteristic improvement is conspicuous. Therefore, the coding block length should be long. In addition, when decoding encoded data, a method of obtaining a gain by performing soft decision decoding using the reliability of each bit is common.
[0011]
The above four elemental technologies of transmission power control, synchronous detection using a common pilot signal, diversity reception, and soft decision decoding are systems that employ W-CDMA (Wideband Code Division Multiple Access) that uses a wider bandwidth transmission path. Used in the downlink.
[0012]
A receiver used in W-CDMA performs RAKE reception as diversity reception. For such diversity reception, a maximum ratio combining method that maximizes the SIR of the combining result is preferable. The maximum ratio combining method is realized by matching the phases of signals from each branch (path) of diversity, multiplying the amplitude by a coefficient, and then combining them.
[0013]
When the noise power of each branch is constant, a receiver using the maximum ratio combining method receives pilot signals on the individual channel signals DPCHs1 (t) to DPCHsn (t) of each transmission line as shown in FIG. The conjugate complex h1 * (t) to hn * (t) of the transmission path characteristics h1 (t) to hn (t) obtained from the common pilot signal CPICH by the units 11-a to 1n-a are converted into the complex multiplier 21- Multiply by a to 2n-a to obtain the result of synchronous detection s1 (t) h1 * (t) to sn (t) hn * (t), and synthesize them in the synthesis unit 30-a. By doing so, the maximum ratio synthesis is performed.
[0014]
The transmission path characteristics h1 (t) to hn (t) can be expressed by amplitude and phase, and are estimated by receiving a predetermined common pilot signal. Then, by multiplying the signal by this estimated amplitude, the weight of each branch (path) signal of diversity becomes the maximum ratio, and by correcting the signal by the estimated phase, in-phase synthesis between the branches is realized. .
[0015]
When performing transmission power control, the power or SIR of the dedicated channel signal is controlled to be constant, and the coding block length is set longer than the period of transmission power control. Therefore, the ratio between the power of the dedicated channel signal and the power of the common pilot signal changes within one encoded block.
[0016]
Here, FIG. 5 shows the reception amplitude of the individual channel signal and the common pilot signal in a variable transmission path such as Rayleigh fading. The dedicated channel signal has a substantially constant reception amplitude due to the effect of transmission power control, while the reception amplitude of the common pilot signal varies due to transmission path fluctuation.
[0017]
Therefore, when a receiver that obtains transmission line characteristics from a common pilot signal, such as the receiver shown in FIG. 4, is used in a system that performs transmission power control, the processing of dedicated channel signals has the same amplitude at the time of reception. The signal will have a different amplitude at the input of the decoder.
[0018]
In this case, since the amplitude does not indicate the reliability of the signal, the effect of soft decision cannot be sufficiently obtained at the time of decoding. That is, there is no problem even if the common pilot signal is phase-referenced, but reception performance is degraded when the common pilot signal is amplitude-referenced.
[0019]
For this reason, in a receiver of a system employing W-CDMA, a pilot signal called an individual pilot is inserted into an individual channel signal, and a receiver that obtains transmission path characteristics from this individual pilot is used. ing. FIG. 6 shows the configuration.
[0020]
In this receiver, the pilot signal receivers 11-b to 1n-b have transmission path characteristics h1 (t) to hn (t) and their complex conjugate h1 * from the individual pilots in the individual channel signal DPCH of each transmission path. (t) to hn * (t) are estimated and multiplied by the complex multipliers 21-b to 2n-b, respectively, and the result of synchronous detection s1 (t) h1 * (t) to sn (t ) hn * (t) is obtained, and these are synthesized by the synthesis unit 30-b to perform the maximum ratio synthesis.
[0021]
In this case, since the individual pilot of each transmission path is subjected to the same transmission power control for each transmission path, reliability by amplitude is maintained.
However, since the dedicated pilot is inserted as part of the dedicated channel signal, the power is generally much lower than that of the common pilot signal. For this reason, compared with the case where the transmission path characteristics are obtained from the common pilot signal, the estimation accuracy of the transmission path characteristics is low, and the reception performance is accordingly reduced.
[0022]
On the other hand, the conventional pilot signal not subjected to the transmission power control and the individual pilot subjected to the transmission power control are different in the amplitude change but the phase change is the same as shown in FIG. Such a receiver was adopted.
[0023]
In this receiver, the pilot signal receivers 11-c to 1n-c estimate the characteristics h1 (t) to hn (t) of the respective transmission lines and the amplitude references w1 to wn from the individual pilots.
[0024]
Further, in the pilot signal receivers 21-c to 2n-c, complex conjugates h1 * (t) to hn * (t) of each transmission path characteristic are obtained from the common pilot signal, and the phase component is estimated from this to obtain the phase reference. Ask for.
[0025]
Then, the synchronous detectors 31-c to 3n-c perform synchronous detection of the transmission line characteristics h1 (t) to hn (t) based on the phase reference, respectively, and then to the multipliers 41-c to 4n-c. Then, the amplitude ratios w1 to wn are multiplied to remove the amplitude fluctuation component, and the synthesis is performed by the synthesis unit 50-c to perform the maximum ratio synthesis.
[0026]
However, even with a receiver having such a configuration, the common pilot has a large power and is less affected by transmission path estimation errors due to interference and noise. However, the amplitude estimated by the pilot signal receivers 11-c to 1n-c Since the reliability of the references w1 to wn is low, there is a problem that the amplitude of the signal obtained by the synthesis does not show sufficient reliability.
[0027]
[Problems to be solved by the invention]
In a conventional mobile radio terminal, when a radio communication scheme in which the power control schemes of the common pilot channel and the transmission channel are different is adopted, a transmission path estimation error due to interference / noise is large in the RAKE receiver, or the amplitude of the RAKE composite output There was a problem of low reliability.
[0028]
The present invention has been made to solve the above problem, and even in the case where a radio communication scheme in which the power control schemes of the common pilot channel and the transmission channel are different is adopted, a transmission path caused by interference and noise in the RAKE receiver. An object of the present invention is to provide a mobile radio terminal that is less affected by an estimation error and has high reliability of the amplitude of the RAKE composite output.
[0029]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1 performs wireless communication by a CDMA system, and a common signal transmitted to a plurality of mobile wireless terminals is transmitted from a base station with a predetermined transmission power. For individual signals that are controlled to be transmitted and individually transmitted to a specific mobile radio terminal, in a mobile radio terminal used in a mobile communication system that controls transmission power for each corresponding mobile radio terminal and transmits from a base station The despreading means for detecting the common signal and the individual signal for each of the plurality of transmission paths, and the estimated value and its conjugate complex that estimated the characteristics of each transmission path from the common signal obtained by the despreading means. By using the transmission path estimation means to be obtained and the conjugate complex of the estimated value obtained by the transmission path estimation means, the synchronous detection and diversity combining are respectively performed for the individual signals of the corresponding transmission paths. Detection means for performing the detection, coefficient calculation means for obtaining a normalization coefficient of the amplitude from the estimated value of each transmission path obtained by the transmission path estimation means, and the detection result of each transmission path obtained by the detection means. Combining means for combining and normalizing means for normalizing the amplitude by multiplying the combined result of the combining means by a normalization coefficient are provided.
[0030]
Further, the present invention according to claim 2 performs wireless communication by a CDMA system, and controls common signals transmitted to a plurality of mobile wireless terminals to be transmitted from a base station with a predetermined transmission power. For individual signals individually transmitted to a specific mobile radio terminal, in a mobile radio terminal used in a mobile communication system that controls transmission power for each corresponding mobile radio terminal and transmits from a base station, for a plurality of transmission paths, Despreading means for detecting a common signal and an individual signal, and a transmission path estimation means for determining an estimated value and its conjugate complex from each common signal obtained by the despreading means, Detection means for performing weighting of synchronous detection and diversity combining on individual signals of the corresponding transmission path using the conjugate complex of the estimated value obtained by the transmission path estimation means The coefficient calculation means for obtaining the amplitude normalization coefficient from the estimated value of each transmission line obtained by the transmission line estimation means, and the detection result of each transmission line obtained by the detection means are multiplied by the normalization coefficient, respectively. Thus, a normalizing unit for normalizing the amplitude and a combining unit for combining the normalization results of the transmission paths obtained by the normalizing unit are provided.
[0031]
In the mobile radio terminal having the above-described configuration, an estimated value obtained by estimating the characteristics of the transmission path and its conjugate complex are obtained from the common signal, and synchronous detection and diversity combining of individual signals are weighted based on this conjugate complex, and The synthesized result is normalized by the amplitude normalization coefficient obtained based on the estimated value.
[0032]
Therefore, according to the mobile radio terminal having the above configuration, since the synchronous detection and amplitude normalization of the individual signals are performed based on the common signal that is less affected by noise and interference, a combined result with high signal amplitude reliability is obtained. Even if the transmission power control method for the common signal and the individual signal is different, the influence of the transmission path estimation error due to interference and noise is small, and the reliability of the amplitude of the combined output can be improved.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
In the following description, a 3GPP (3rd Generation Partnership Project) W-CDMA FDD system will be described as an example.
[0034]
That is, a code division multiple access (CDMA) system is used as a radio access system, and a common pilot signal CPICH that is common to mobile stations and an individual signal DPCH that is individually transmitted to each mobile station are transmitted from the base station. Yes. A dedicated pilot is included in the dedicated signal DPCH.
[0035]
The base station transmits the common pilot signal CPICH with a constant transmission power as long as the system operation does not change, and the transmission power is controlled at a period of 10 milliseconds or 15 milliseconds for the individual signal DPCH to optimize the reception power at the mobile station. It has become.
[0036]
Further, in this system, error correction coding with a coding rate of 1 to 3 to 1/2 is performed on information transmitted on the individual signal DPCH, and the time length of the coding block is 10 milliseconds to 80 milliseconds. Set to range.
[0037]
Therefore, since the transmission power control period is shorter than the coding block time length, the ratio of the power of the dedicated channel and the power of the common channel varies within one coding block.
[0038]
FIG. 1 shows a configuration of a reception system of a mobile radio terminal according to an embodiment of the present invention.
The RF signal received from the base station is received by the RF unit 1, where it is frequency converted into a baseband signal, A / D converted, and output to the despreading unit 2.
[0039]
The despreading unit 2 detects n transmission lines p1 to pn by despreading the digital signal obtained by the RF unit 1 using a spreading code, and the transmission lines p1 to pn have been described above. The common pilot signal CPICH and the individual signal DPCH are obtained, and these received signals are output to the RAKE combining unit 3.
[0040]
The RAKE combining unit 3 realizes reception diversity by performing RAKE combining of the reception signals of the transmission paths p1 to pn. The synthesis result obtained here is output to the decoding unit 4.
The decoding unit 4 decodes the synthesis result, and performs soft decision decoding of the error correction code based on the amplitude of the synthesis result.
[0041]
Next, the RAKE combining unit 3 described above will be described with reference to FIG.
The RAKE combining unit 3 includes pilot signal receivers 11 to 1n, complex multipliers 21 to 2n, a combining unit 30, a normalization coefficient calculation unit 40, and a normalization unit 50.
[0042]
The pilot signal receiver 11 obtains the transmission path estimation value h1 (t) and the conjugate complex h1 * (t) from the common pilot signal CPICH of the transmission path p1. Similarly, the pilot signal receivers 12 to 1n respectively transmit the channel estimation values h2 (t) to hn (t) and the conjugate complex h2 * (t) to hn * (from the common pilot signal CPICH of the transmission channels p2 to pn. t).
[0043]
The complex multiplier 21 multiplies the individual signal DPCH of the transmission path p1 by the conjugate complex h1 * (t) of the transmission path estimation value obtained by the pilot signal receiver 11, and weights synchronous detection and maximum ratio synthesis. And output to the synthesizing unit 30. The weighting coefficient at this time is represented by | h1 (t) |.
[0044]
Similarly, the complex multipliers 22 to 2n respectively have conjugate complex h2 * (t) to hn * of the transmission path estimation values obtained by the pilot signal receivers 12 to 1n for the individual signals DPCH of the transmission paths p2 to pn, respectively. Multiply (t) to perform weighting for synchronous detection and maximum ratio combining, and output to combining section 30. The weighting coefficients at this time are represented by | h2 (t) | ˜ | hn (t) |.
[0045]
The normalization coefficient computing unit 40 obtains a normalization coefficient a related to the amplitude based on the transmission path estimation values h1 (t) to hn (t) obtained by the pilot signal receivers 11 to 1n. The normalization coefficient a is the reciprocal of the sum of the squares of the amplitude weights of each password as shown in the following equation.
[Expression 1]
Figure 0004588931
[0046]
The combining unit 30 performs diversity combining on the outputs of the complex multipliers 21 to 2n, and outputs the combined result to the normalizing unit 50.
The normalization unit 50 performs normalization by multiplying the output of the synthesis unit 30 by the normalization coefficient a obtained by the normalization coefficient calculation unit 40.
[0047]
As described above, in the mobile radio terminal having the above configuration, the RAKE combining unit 3 estimates the phase and amplitude of each transmission path based on the common pilot signal CPICH that is less affected by noise and interference, and based on this estimation result. The plurality of transmission lines p1 to pn are diversity-combined.
[0048]
Therefore, according to the mobile radio terminal having the above configuration, even if the transmission power control methods for the common pilot signal CPICH and the individual signal DPCH are different, the transmission path estimation error due to interference and noise is small, and the amplitude reliability of the RAKE composite output is reliable Can increase the sex.
[0049]
The present invention is not limited to the above embodiment.
For example, in the above embodiment, the normalization unit 50 performs normalization by multiplying the output of the synthesis unit 30 by the normalization coefficient a obtained by the normalization coefficient calculation unit 40. Since multiplication of transmission path estimation values is linear processing, the same result can be obtained by multiplying the signal of each path before RAKE combining or the transmission path estimation value of each path by a normalization coefficient a. It is done.
[0050]
In addition, since the normalization coefficient a is obtained from the transmission path estimation value of each path, the amount of calculation can be reduced by making the normalization coefficient a constant during a period in which the transmission path can be regarded as constant. .
[0051]
Furthermore, in the above embodiment, the individual signals after weight normalization and after RAKE combining are subjected to normalization processing of transmission path estimation values, and therefore have equal gain weights between symbols in the code block. Therefore, as shown in FIG. 3, the square circuit 60 squares the output of the normalization unit 50 to obtain the maximum ratio weight of the individual signal.
[0052]
The individual signal after weight normalization and RAKE synthesis is squared to widen the dynamic range. When the SIR is small, the original weight needs to be multiplied by the signal amplitude, so that the weight error increases.
[0053]
Considering these, when the dynamic range of the decoding unit 4 is narrow or when the required SIR is small, an equal gain weight is selected between symbols in the code block, while when the dynamic range of the decoding unit 4 is wide or required When the SIR is large, excellent reception characteristics can be obtained by selecting the maximum ratio weight between symbols in the code block.
[0054]
In the above-described embodiment, the weighting factors of the transmission lines p1 to pn are set to the amplitudes | h1 (t) | to | hn (t) | of the transmission line estimation values. It can be applied even when taking
At this time, if the weighting coefficients of the transmission lines p1 to pn are w1 (t) to wn (t), the normalization coefficient is expressed by the following equation.
[Expression 2]
Figure 0004588931
[0055]
In addition, it goes without saying that the present invention can be similarly implemented even if various modifications are made without departing from the gist of the present invention.
[0056]
【The invention's effect】
As described above, an estimated value obtained by estimating the characteristics of the transmission path and its conjugate complex are obtained from the common signal, and synchronous detection and diversity combining of individual signals are weighted based on the conjugate complex, and the estimated value The synthesized result is normalized by the amplitude normalization coefficient obtained based on the above.
[0057]
Therefore, according to the present invention, since the synchronous detection of individual signals and the normalization of amplitude are performed based on a common signal with less influence of noise and interference, a synthesis result with high reliability of signal amplitude can be obtained, Even when the transmission power control methods for the common signal and the individual signal are different, it is possible to provide a mobile radio terminal that is less affected by the transmission path estimation error due to interference and noise and can improve the reliability of the combined output amplitude.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram showing the configuration of an embodiment of a reception system of a mobile radio terminal according to the present invention.
2 is a circuit block diagram showing a configuration of a RAKE combining unit of the mobile radio terminal shown in FIG. 1;
FIG. 3 is a circuit block diagram showing a configuration of a modification of the RAKE combining unit of the mobile radio terminal shown in FIG. 1;
FIG. 4 is a circuit block diagram showing a configuration of a RAKE combining unit of a conventional mobile radio terminal.
FIG. 5 is a waveform diagram showing how reception amplitudes of a common pilot signal and individual channel signals fluctuate in a variable transmission path.
FIG. 6 is a circuit block diagram showing a configuration of a RAKE combining unit of a conventional mobile radio terminal.
FIG. 7 is a circuit block diagram showing a configuration of a RAKE combining unit of a conventional mobile radio terminal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... RF part 2 ... Despreading part 3 ... RAKE combining part 4 ... Decoding parts 11-1n ... Pilot signal receivers 21-2n ... Complex multiplier 30 ... Synthesis part 40 ... Normalization coefficient calculating part 50 ... Normalizing part 60 ... Square circuit

Claims (5)

CDMA(Code Division Multiple Access)方式により無線通信を行うもので、複数の移動無線端末に宛てて送信する共通信号については所定の送信電力で基地局から送信するように制御し、特定の移動無線端末に個別に送信する個別信号については、対応する移動無線端末毎に送信電力を制御して基地局から送信する移動通信システムで用いられる移動無線端末において、
複数の伝送路について、それぞれ前記共通信号と前記個別信号とを検出する逆拡散手段と、
この逆拡散手段にて求めた前記共通信号から、各伝送路の特性を推定した推定値とその共役複素とを求める伝送路推定手段と、
この伝送路推定手段にて求めた推定値の共役複素を用いて、対応する伝送路の個別信号に対して、それぞれ同期検波とダイバーシチ合成の重み付けを行う検波手段と、
前記伝送路推定手段にて求めた各伝送路の推定値から、振幅の正規化係数を求める係数演算手段と、
前記検波手段にて得た各伝送路の検波結果を合成する合成手段と、
この合成手段の合成結果に、前記正規化係数を乗算して振幅の正規化を行う正規化手段とを具備することを特徴とする移動無線端末。
A wireless communication is performed by a CDMA (Code Division Multiple Access) system, and a common signal transmitted to a plurality of mobile wireless terminals is controlled to be transmitted from a base station with a predetermined transmission power, and a specific mobile wireless terminal For individual signals transmitted individually, in mobile radio terminals used in mobile communication systems that control transmission power for each corresponding mobile radio terminal and transmit from the base station,
Despreading means for detecting the common signal and the individual signal, respectively, for a plurality of transmission lines;
Transmission path estimation means for obtaining an estimated value and its conjugate complex estimated from the common signal obtained by the despreading means,
Using the conjugate complex of the estimated value obtained by this transmission path estimation means, for each individual signal of the corresponding transmission path, detection means for weighting synchronous detection and diversity combining,
From the estimated value of each transmission path obtained by the transmission path estimation means, coefficient calculation means for obtaining a normalization coefficient of amplitude,
Combining means for combining the detection results of the respective transmission lines obtained by the detecting means;
A mobile radio terminal comprising: normalization means for normalizing amplitude by multiplying the result of synthesis by the synthesis means by the normalization coefficient.
CDMA(Code Division Multiple Access)方式により無線通信を行うもので、複数の移動無線端末に宛てて送信する共通信号については所定の送信電力で基地局から送信するように制御し、特定の移動無線端末に個別に送信する個別信号については、対応する移動無線端末毎に送信電力を制御して基地局から送信する移動通信システムで用いられる移動無線端末において、
複数の伝送路について、それぞれ前記共通信号と前記個別信号とを検出する逆拡散手段と、
この逆拡散手段にて求めた前記共通信号から、各伝送路の特性を推定した推定値とその共役複素とを求める伝送路推定手段と、
前記伝送路推定手段にて求めた推定値の共役複素を用いて、対応する伝送路の個別信号に対して、それぞれ同期検波とダイバーシチ合成の重み付けを行う検波手段と、
この伝送路推定手段にて求めた各伝送路の推定値から、振幅の正規化係数を求める係数演算手段と、
前記検波手段にて求めた各伝送路の検波結果に、それぞれ前記正規化係数を乗算して、振幅の正規化を行う正規化手段と、
この正規化手段にて得た各伝送路の正規化結果を合成する合成手段とを具備することを特徴とする移動無線端末。
A wireless communication is performed by a CDMA (Code Division Multiple Access) system, and a common signal transmitted to a plurality of mobile wireless terminals is controlled to be transmitted from a base station with a predetermined transmission power, and a specific mobile wireless terminal For individual signals transmitted individually, in mobile radio terminals used in mobile communication systems that control transmission power for each corresponding mobile radio terminal and transmit from the base station,
Despreading means for detecting the common signal and the individual signal, respectively, for a plurality of transmission lines;
Transmission path estimation means for obtaining an estimated value and its conjugate complex estimated from the common signal obtained by the despreading means,
Using the conjugate complex of the estimated value obtained by the transmission path estimation means, detection means for performing weighting of synchronous detection and diversity combining for the individual signals of the corresponding transmission paths,
From the estimated value of each transmission path determined by this transmission path estimation means, coefficient calculation means for obtaining a normalization coefficient of amplitude,
Normalization means for normalizing the amplitude by multiplying the detection result of each transmission path obtained by the detection means by the normalization coefficient, respectively.
A mobile radio terminal comprising: combining means for combining the normalized results of the respective transmission paths obtained by the normalizing means.
前記係数演算手段は、前記伝送路推定手段にて求めた各伝送路の推定値から、共通信号のシンボル毎に振幅の正規化係数を求めることを特徴とする請求項1または請求項2に記載の移動無線端末。3. The coefficient calculating means obtains an amplitude normalization coefficient for each symbol of a common signal from an estimated value of each transmission line obtained by the transmission line estimating means. Mobile radio terminals. 前記合成手段の合成結果を2乗する手段を備えることを特徴とする請求項1乃至請求項3のいずれかに記載の移動無線端末。The mobile radio terminal according to any one of claims 1 to 3, further comprising means for squaring the combined result of the combining means. 前記正規化手段は、前記伝送路推定手段にて求めた各伝送路の推定値に対して、正規化係数を乗算することを特徴とする請求項1または請求項2に記載の移動無線端末。3. The mobile radio terminal according to claim 1, wherein the normalizing unit multiplies the estimated value of each transmission path obtained by the transmission path estimating unit by a normalization coefficient.
JP2001204992A 2001-07-05 2001-07-05 Mobile radio terminal Expired - Fee Related JP4588931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204992A JP4588931B2 (en) 2001-07-05 2001-07-05 Mobile radio terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204992A JP4588931B2 (en) 2001-07-05 2001-07-05 Mobile radio terminal

Publications (2)

Publication Number Publication Date
JP2003018081A JP2003018081A (en) 2003-01-17
JP4588931B2 true JP4588931B2 (en) 2010-12-01

Family

ID=19041379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204992A Expired - Fee Related JP4588931B2 (en) 2001-07-05 2001-07-05 Mobile radio terminal

Country Status (1)

Country Link
JP (1) JP4588931B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006595A1 (en) * 2003-07-14 2005-01-20 Matsushita Electric Industrial Co., Ltd. Radio reception method and communication terminal device
US8526963B2 (en) 2003-10-30 2013-09-03 Qualcomm Incorporated Restrictive reuse for a wireless communication system
US9585023B2 (en) 2003-10-30 2017-02-28 Qualcomm Incorporated Layered reuse for a wireless communication system
EP1727292A4 (en) 2004-02-27 2010-04-21 Nec Corp Cdma receiving apparatus and method
US8059589B2 (en) 2004-06-09 2011-11-15 Qualcomm Incorporated Dynamic restrictive reuse scheduler
US7680475B2 (en) 2004-06-09 2010-03-16 Qualcomm Incorporated Dynamic ASBR scheduler
US8032145B2 (en) 2004-07-23 2011-10-04 Qualcomm Incorporated Restrictive reuse set management algorithm for equal grade of service on FL transmission
US7548752B2 (en) 2004-12-22 2009-06-16 Qualcomm Incorporated Feedback to support restrictive reuse
JP2009060177A (en) * 2007-08-29 2009-03-19 Kyocera Corp Radio communication device and radio reception method
US9383994B2 (en) 2011-02-15 2016-07-05 Nec Corporation Co-processor for complex arithmetic processing, and processor system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098770A (en) * 1995-06-22 1997-01-10 Matsushita Electric Ind Co Ltd Cdma radio multiplex sender and cdma radio multiplex transmitter
JP2000004212A (en) * 1998-06-12 2000-01-07 Matsushita Electric Ind Co Ltd Line estimating device and radio communication device
JP2000151465A (en) * 1998-11-11 2000-05-30 Matsushita Electric Ind Co Ltd Radio communication equipment and radio communication method
JP2001036442A (en) * 1999-07-15 2001-02-09 Toshiba Corp Radio communication system, radio transmitter and radio receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH098770A (en) * 1995-06-22 1997-01-10 Matsushita Electric Ind Co Ltd Cdma radio multiplex sender and cdma radio multiplex transmitter
JP2000004212A (en) * 1998-06-12 2000-01-07 Matsushita Electric Ind Co Ltd Line estimating device and radio communication device
JP2000151465A (en) * 1998-11-11 2000-05-30 Matsushita Electric Ind Co Ltd Radio communication equipment and radio communication method
JP2001036442A (en) * 1999-07-15 2001-02-09 Toshiba Corp Radio communication system, radio transmitter and radio receiver

Also Published As

Publication number Publication date
JP2003018081A (en) 2003-01-17

Similar Documents

Publication Publication Date Title
JP4197482B2 (en) Base station transmission method, base station transmission apparatus, and communication terminal
CN100450115C (en) Method and apparatus for estimation of phase offset between communication channels
JP4594822B2 (en) Reception apparatus and communication control method in mobile communication system
EP1845634B1 (en) Method and system for diversity processing including using dedicated pilot method for closed loop
JP4873190B2 (en) Channel quality measurement method in closed loop transmit diversity communication system
EP1449313A1 (en) Method for determining a gain offset between transmission channels
US20060251152A1 (en) Method and apparatus for estimating signal-to-noise ratio based on dedicated physical channel pilot symbols
WO2001067627A1 (en) Cdma receiver and searcher of the cdma receiver
JP3228405B2 (en) Receiver of direct spread CDMA transmission system
US8379690B2 (en) Wireless receiver, wireless communication system, and wireless communication method
JP4588931B2 (en) Mobile radio terminal
US20010053178A1 (en) CDMA receiving apparatus
JP3676986B2 (en) Radio receiving apparatus and radio receiving method
US6404757B1 (en) Reception method and apparatus in CDMA system
JPWO2004004163A1 (en) Mobile station apparatus and amplitude reference determination method
JP3628247B2 (en) Signal demodulation method and receiving apparatus
US20080031390A1 (en) Antenna diversity receiver
JP3300324B2 (en) Signal to noise interference power ratio estimator
US20050036538A1 (en) Method and apparatus for calculation of correction factors for path weights in a rake receiver
KR101232132B1 (en) Apparatus and method for receiving signal of acquiring antenna diversity in a ofdm system
JP2008512921A (en) Wireless communication apparatus having multi-antenna and method thereof
JP2001168780A (en) Diversity reception device
JP4672047B2 (en) Communication method for communication terminal and communication terminal
JP2001024553A (en) Interference canceller system for cdma receiver
JP2003324367A (en) Apparatus and method for radio reception

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

LAPS Cancellation because of no payment of annual fees