WO2005006426A1 - High-pressure heat treatment apparatus - Google Patents

High-pressure heat treatment apparatus Download PDF

Info

Publication number
WO2005006426A1
WO2005006426A1 PCT/JP2004/009844 JP2004009844W WO2005006426A1 WO 2005006426 A1 WO2005006426 A1 WO 2005006426A1 JP 2004009844 W JP2004009844 W JP 2004009844W WO 2005006426 A1 WO2005006426 A1 WO 2005006426A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
chamber
heat treatment
load lock
valve
Prior art date
Application number
PCT/JP2004/009844
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Nakao
Nobuaki Takahashi
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2005006426A1 publication Critical patent/WO2005006426A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45557Pulsed pressure or control pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67201Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the load-lock chamber

Definitions

  • the present invention relates to a high-pressure heat treatment apparatus for heat-treating an object to be processed one by one in a high-pressure atmosphere.
  • a conventional device of this type is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-69120.
  • a batch-type high-pressure oxidation furnace includes a furnace tube that is supplied with oxygen and hydrogen gas from one end side, surrounds the outer periphery of the furnace tube, has a built-in heater for heating the wafer, and has a high-pressure nitrogen gas.
  • the chamber is configured to include a chamber for taking in and taking out a wafer from the atmosphere (a wafer loading chamber, a pressure increasing chamber, and a pressure reducing chamber).
  • a single-wafer high-pressure oxidation furnace is provided around a core tube provided in a pressurized tank, a wafer holder provided in the core tube for horizontally holding a wafer, and the core tube. It is configured with an infrared lamp.
  • One end of each of the core tube and the pressurized tank is open to the atmosphere side, and each is closed with a core tube cap and a pressurized tank cap.
  • any of the above-mentioned high-pressure oxidation furnaces since the wafer is subjected to thermal oxidation treatment in a high-pressure atmosphere to form an oxide film on the wafer surface, the oxidation temperature can be lowered as compared with a normal thermal oxidation apparatus. In addition, it is possible to form an oxide film in a short time.
  • the single-wafer type high-pressure oxidation furnace is a single-wafer type and is suitable for heat treatment of large-diameter wafers. Pressure and pressure in the pressurized tank, and opening and closing of the core tube cap and pressurized tank cap. These operations take a lot of time, resulting in low throughput. Although an infrared lamp is used to shorten the heating time, the infrared lamp is provided in the pressurized tank, so that the infrared lamp may be damaged under high pressure.
  • the present invention has been made in view of the above circumstances, and includes a step-up / down operation and a discharge of a processing object in a load lock chamber during heat treatment of the processing object in a high-pressure processing chamber constantly maintained at a high pressure. It is an object of the present invention to provide a high-pressure heat treatment apparatus capable of performing an insertion operation, rapidly heat-treating a large-diameter workpiece under high pressure, and improving throughput. Means for solving the problem
  • a high-pressure heat treatment apparatus for achieving the above object
  • a high-pressure processing chamber that accommodates the object to be processed and performs a predetermined heat treatment under a high-pressure atmosphere; a transfer chamber that is connected to the high-pressure processing chamber through a shielding door and is maintained at or near the pressure in the high-pressure processing chamber;
  • load lock chamber One end of the load lock chamber is connected to the transfer chamber via the first gate valve, and the other end is open to the atmosphere via the second gate valve.
  • a load lock chamber that is pressurizable
  • the transfer chamber is provided with a transfer mechanism for transferring an object to be processed between the load lock chamber and the high-pressure processing chamber.
  • the transport mechanism may transport the object under high pressure.
  • the shielding door may be a heat shielding door that shields heat radiation from the high-pressure processing chamber to the transfer chamber.
  • the first gate valve closes the valve by seating a valve body on a valve seat arranged on the load lock chamber side.
  • the second gate valve may have a structure in which a valve is seated on a valve seat arranged on the atmosphere side to close the valve.
  • Two load lock chambers may be connected to the transfer chamber, at least one of which is provided with a mechanism for cooling the object to be processed after the heat treatment.
  • a high-pressure processing chamber that accommodates one workpiece and performs a predetermined heat treatment under a high-pressure atmosphere is connected to the high-pressure processing chamber via a shielding door,
  • a transfer chamber maintained at substantially the same pressure as the pressure in the high-pressure processing chamber, one end of which is connected to the transfer chamber via a first gate vanoleb and the other end is open to the atmosphere via a second gate vanoleb.
  • a load lock chamber capable of raising and lowering the pressure for loading and unloading the workpiece; and a transport mechanism for transporting the workpiece between the load lock chamber and the high-pressure processing chamber is provided in the transport chamber.
  • the load lock chamber can be used to raise and lower the pressure and to take in and out the object to be processed. Can be rapidly heat-treated under high pressure, Improve the put.
  • a heat-shielding door that does not need to be a highly airtight gate valve is sufficient as a shielding door that separates the high-pressure processing chamber and the transfer chamber. .
  • the structure can be simplified and the cost of the apparatus can be reduced, and the heat influence from the radiant heat from the high-pressure processing chamber to the transfer chamber can be prevented.
  • the first gate valve has a structure in which the valve body is seated on a valve seat arranged on the load lock chamber side to close the valve, a pressure difference between the transfer chamber side and the load lock chamber side is used. Thus, the airtight state at the time of valve closing can be easily maintained.
  • the second gate valve Since the second gate valve has a structure in which the valve element is seated on a valve seat arranged on the atmosphere side to close the valve, the second gate valve is closed by utilizing a pressure difference between the load lock chamber side and the atmosphere side. The airtight state at the time of the valve can be easily maintained.
  • Two load lock chambers are connected to the transfer chamber, one of which is a cooling chamber provided with a cooling mechanism for cooling the object to be processed after the heat treatment.
  • Body transport Operation and transport of the processed workpiece are performed in parallel or simultaneously, improving through-process and processing without the need for a dedicated cooling chamber that requires special occupied space.
  • the high-temperature object to be processed can be cooled during the transfer process, so that the structure can be simplified and the apparatus cost can be reduced.
  • FIG. 1 is a plan view schematically showing a high-pressure heat treatment apparatus according to an embodiment of the present invention.
  • FIG. 2 is an enlarged longitudinal sectional view of a main part of the high-pressure heat treatment apparatus shown in FIG. 1.
  • FIG. 1 is a plan view schematically showing a high-pressure heat treatment apparatus according to an embodiment of the present invention
  • FIG. 2 is an enlarged vertical sectional view of a main part of the high-pressure heat treatment apparatus shown in FIG.
  • the high-pressure heat treatment apparatus 1 shown in FIGS. 1 and 2 performs a predetermined heat treatment on an object to be processed such as a semiconductor wafer W in a high-pressure atmosphere.
  • the high-pressure heat treatment apparatus 1 includes a high-pressure processing chamber 10, a shielding door 20, a transfer chamber 30, and a load lock chamber 60.
  • the high-pressure processing chamber 10 stores one wafer W horizontally and performs a predetermined heat treatment, for example, a thermal oxidation process under a high-pressure atmosphere.
  • the transfer chamber 30 is connected to the high-pressure processing chamber 10 via the shielding door 20 and is maintained at the same pressure or the same pressure as the pressure in the high-pressure processing chamber 10.
  • One end of the load lock chamber 60 is connected to the transfer chamber 30 via the first gate vane lev 40, and the other end is opened to the atmosphere side through the second gate valve 50 to allow the wafer W to be taken in and out. Buck-boost possible It is.
  • a transfer mechanism 35 for transferring a wafer between the load lock chamber 60 and the high-pressure processing chamber 10 is provided.
  • the high-pressure processing chamber 10 includes a reaction tube 11, a heater 12, and a pressure vessel 13.
  • the reaction tube 11 is a flat box-shaped reaction tube made of quartz that can accommodate a wafer having a large diameter, for example, a diameter of 300 mm.
  • the heaters 12 are arranged at the upper and lower portions outside the reaction tube 11, and heat the wafer W from both upper and lower surfaces to a predetermined temperature, for example, about 800-1100 ° C.
  • the pressure vessel 13 accommodates the heater 12 and the reaction tube 11, and maintains the internal space at substantially the same or the same high pressure as the inside of the reaction tube 11 so that the reaction tube 11 is not damaged by a pressure difference between the inside and outside.
  • a plurality of, for example, three support pins 14 for mounting the wafer W are provided in the reaction tube 11.
  • an opening 11a for taking in and out the wafer W is provided.
  • an inert gas such as nitrogen N2 gas whose pressure has been adjusted from a gas cylinder via a pressure adjusting means (regulator) is supplied into the reaction tube, and a predetermined high pressure such as 2-10 kg / g
  • An exhaust pipe 16 for exhausting the processing gas is further connected to the other end of the reaction pipe 11.
  • the heater 12 has a metal case 12a capable of accommodating the reaction tube 11, and is provided with planar heating portions 17a and 17b made of a resistance heating element in the upper and lower portions of the case 12a. It has been done. It is preferable that a soaking material 18 is disposed between the heating sections 17a and 17b and the reaction tube 11.
  • the pressure vessel 13 is made of metal, has an opening 13a corresponding to the opening 11a of the reaction tube 11, and adjusts the pressure from a gas cylinder via a regulator in order to maintain the inside at a predetermined high pressure. Introduced inert gas such as nitrogen N2 gas is introduced. A gas introduction pipe (not shown) for that purpose is connected.
  • the reaction tube 11 and the pressure vessel 13 can be communicated with each other by a communication tube having an on-off valve in order to maintain the same pressure.
  • the high-pressure processing chamber 10 is connected to one end of the transfer chamber 30 via a shielding door 20.
  • Two load lock chambers 60 and 61 are connected to the other end of the transfer chamber 30.
  • the load lock chambers 60 and 61 have gate valves 40 and 41, respectively.
  • the gate valves 40 and 41 perform an operation of transporting an unprocessed wafer and an operation of transporting a processed wafer in parallel or simultaneously. .
  • Sloop It is preferable that a plurality of, for example, two load lock chambers 60, 60 are connected to the transfer chamber 30 via the first gate vanes 40, 40, respectively, in order to improve the cost.
  • One end of the transfer chamber 30 is provided with an opening 31 communicating with the opening 13a of the pressure vessel 13 of the high-pressure processing chamber 10 via the shielding door 20, and the other end of the transfer chamber 30 is provided with a first gate valve 40, Two openings 32, 32 communicating with the openings 61 at one end of the load lock chambers 60, 60 via 40 are provided.
  • the other end of each load lock chamber 60 is provided with an opening 62 communicating with the atmosphere through the second gate valve 50.
  • a gas supply pipe for supplying an inert gas, for example, nitrogen N2 gas, whose pressure has been adjusted from a gas cylinder via a regulator to the transfer chamber and maintaining the transfer chamber at substantially the same pressure as the high-pressure processing chamber. are connected (not shown).
  • the transfer mechanism 35 provided in the transfer chamber 30 has a flat U-shaped holding portion 36 for holding the wafer W horizontally, and is capable of horizontal rotation, expansion and contraction in the horizontal direction, and movement in the vertical direction. It consists of an arm mechanism.
  • the shielding door 20 that separates the high-pressure processing chamber 10 and the transfer chamber 30 does not need to be a highly airtight and gate vanolev.
  • a heat shielding door that blocks high-temperature radiant heat (radiant heat) from inside the high-pressure processing chamber 10 into the transfer chamber 30 is preferable.
  • the gate vanoleb is provided with an airtight material such as an o-ring between the valve element and the valve seat, whereas the heat shield door is not provided with an O-ring, so that the structure can be simplified and the equipment cost can be reduced.
  • the illustrated shield door (heat shield door) 20 is closed (closed) by seating a valve body (door body) 22 on a valve seat 21 on the transfer chamber side, and moving the valve body 22 to the high pressure processing chamber 10 side. Force to retract further and open the valve The valve is seated on the valve seat of the high-pressure processing chamber 10 and closed, and the valve 22 is moved to the transfer chamber 30 and retracted further downward. It may be open.
  • the reaction tube 11 or the pressure vessel 13 which is the high-pressure processing chamber 10 and the transfer chamber 30 may be made to be able to communicate with each other by a communication pipe having an on-off valve so as to have the same pressure.
  • an inert gas for example, nitrogen N2 gas, whose pressure has been adjusted from a gas cylinder via a regulator to the load lock chamber 60, is supplied into the load lock chamber to increase the pressure in the load lock chamber to substantially the same pressure as in the transfer chamber.
  • a gas supply pipe is connected to an exhaust pipe that exhausts inert gas in the load lock chamber and reduces the pressure in the load lock chamber to atmospheric pressure (not shown). .
  • the load lock chamber 60 communicates and opens to the atmosphere side, the pressure is reduced to substantially the same pressure (atmospheric pressure) as the atmosphere side, and when the load lock chamber 60 communicates and opens to the transfer chamber side, the pressure is increased to substantially the same pressure (high pressure) as the transfer chamber side.
  • there is a pressure difference between the transfer chamber and the load lock chamber, or between the load lock chamber and the atmosphere so a ring is required to ensure airtightness.
  • a first gate valve 40 and a second gate valve 50 are used.
  • the first gate vanoleb 40 is connected to a valve seat 41 arranged on the load lock chamber 60 side via a ring 43.
  • the valve body 42 is seated and the valve is closed.
  • the second gate vanoleb 50 has a structure in which a valve body 52 is seated on a valve seat 51 disposed on the atmosphere side via a ring 53 to close the valve. More specifically, the first gate valve 40 opens the valve body 41 by moving the valve body 41 to the transfer chamber 30 side and retracting it further downward, and the second gate valve 50 opens the valve body 51 to the load lock chamber. The valve is moved to the 60 side and retracted further downward to open the valve.
  • the transfer chamber 30 and the load lock chamber 60 may be able to communicate with each other by a communication pipe having an on-off valve in order to make the same pressure.
  • a plurality of, for example, three support pins 63 for horizontally supporting the wafer W are provided in the load lock chamber 60.
  • One of the chambers 60 is preferably a cooling chamber 65 having a water-cooled or air-cooled cooling mechanism for cooling the wafer after the heat treatment.
  • a lid is detachably attached to a wafer outlet of the cassette body. It may be a cassette with a closed lid.
  • the atmosphere-side transfer mechanism 80 is provided with a transfer arm 81 that is horizontally movable along the parallel direction of the cassette mounting tables 75 and is capable of horizontal turning, expansion and contraction in the horizontal direction, and upward and downward movement.
  • the pressure of the high-pressure processing chamber 10, the transfer chamber 30, and the cooling chamber 65 is increased to a predetermined pressure, and the load lock of the other one is not the cooling chamber 65.
  • the pressure in chamber 60 has been reduced to atmospheric pressure.
  • the second gate valve 50 of the low-pressure load lock chamber 60 is opened, and the unprocessed wafer W is taken out of the cassette 70 on the cassette mounting table 75 by the atmosphere-side transfer mechanism 80, and is carried into the low-pressure load lock chamber 60.
  • the second gate valve 50 of the low-pressure load lock chamber 60 is closed to increase the pressure inside the load lock chamber 60 to a predetermined pressure
  • the first gate vanoleb 40 and the shielding door 20 are opened, and the transfer chamber is opened.
  • the unprocessed wafer W is transferred from the load lock chamber 60 to the reaction tube 11 of the high-pressure processing chamber 10 by the transfer mechanism 35 in 30.
  • the first gate valve 40 and the shielding door 20 are closed, and the unprocessed wafer W is subjected to a predetermined heat treatment, for example, a thermal oxidation process in the high-pressure processing chamber 10.
  • the shield door 20 and the first gate valve 40 of the cooling load lock chamber 65 are opened, and the high-temperature processed wafer W is transferred from the reaction tube 11 into the cooling chamber 65.
  • the first gate vanoleb 40 of the cooling chamber 65 is closed, the pressure of the cooling chamber 65 is reduced to the atmospheric pressure, and the processed wafer W is cooled in the cooling chamber 65.
  • the next unprocessed wafer W is taken out of the cassette 70 in the same manner as described above, loaded into the reaction tube 11 via the load lock chamber 60 and the transfer chamber 30, and subjected to a predetermined heat treatment.
  • the second gate valve 50 of the cooling chamber 65 is opened, and the processed wafer W is taken out of the cooling chamber 65 by the atmosphere-side transfer mechanism 80 and placed in a cassette. Insert it into the cassette 70 on the table 75. In this way, the wafers can be sequentially and successively subjected to thermal oxidation treatment under a high-pressure atmosphere.
  • the high-pressure treatment chamber 10 that accommodates one wafer W and performs a predetermined heat treatment under a high-pressure atmosphere, and shields the high-pressure treatment chamber 10
  • a transfer chamber 30 connected via a door 20 and maintained at substantially the same or the same pressure as the pressure in the high-pressure processing chamber 10, and one end connected to the transfer chamber 30 via a first gate vanoleb 40 And the other end is opened to the atmosphere side through the second gate vanoleb 50, and the wafer W is taken in and out.
  • the transfer chamber 30 is provided with a transfer mechanism 35 for transferring the wafer W between the load lock chamber 60 and the high-pressure processing chamber 10 in a high-pressure atmosphere.
  • the load lock chamber 60 can perform the pressure raising / lowering operation and the loading / unloading operation of the wafer, and can quickly move a large-diameter wafer under high pressure.
  • the heat treatment can be performed quickly, and the throughput can be improved.
  • the shielding door 20 that separates the high-pressure processing chamber 10 and the transfer chamber 30 has a highly airtight gate.
  • a heat shield door that suffices to be a valve is sufficient.
  • the structure can be simplified and the cost of the apparatus can be reduced, and the heat effect from the radiant heat from the inside of the high-pressure processing chamber 10 to the inside of the transfer chamber 30 can be prevented.
  • the first gate valve 40 has a structure in which the valve body 42 is seated on the valve seat 41 disposed on the load lock chamber 60 side and the valve is closed, the first gate valve 40 is provided between the transfer chamber 30 side and the load lock chamber 60 side. It is possible to easily maintain the airtight state when the valve is closed by utilizing the pressure difference.
  • the second gate vanoleb 50 has a structure in which the valve body 52 is seated on the valve seat 51 disposed on the atmosphere side to close the valve, the pressure difference between the load lock chamber 60 side and the atmosphere side is reduced.
  • the airtight state at the time of closing the valve can be easily maintained by using the valve.
  • two load lock chambers 60 are connected to the transfer chamber 30, and one of the two lock lock chambers 60 is provided with a cooling mechanism for cooling the wafer W after the heat treatment.
  • the transfer operation of the processed wafer W can be performed in parallel or simultaneously to improve the throughput and to process without requiring a special cooling chamber that requires a special occupied space.
  • the already heated high-temperature wafer W can be cooled during the transfer process, so that the structure can be simplified and the equipment cost can be reduced.
  • the present invention can be applied to a thermal CVD process, a thermal diffusion process, and the like under a high pressure, in addition to the thermal oxidation process under a high pressure.
  • an LCD substrate, a glass substrate, or the like can be applied in addition to the semiconductor wafer.
  • the high-pressure heat treatment apparatus can be used in, for example, heat treatment of a semiconductor wafer or the like, and can use a heat treatment step in which an improvement in throughput is desired.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A high-pressure heat treatment apparatus whose throughput is increased by enabling pressure increasing/decreasing operation and loading/unloading operation of a body to be treated to be made in a load-lock chamber while the body is being heat-treated in a high-pressure treatment chamber always maintained at a high pressure, and enabling the body to be treated having a large diameter to be quickly heat-treated under high pressure. A high-pressure heat treatment apparatus has a high-pressure treatment chamber (10) receiving a sheet of a body (W) to be treated and applying predetermined heat treatment to the body under a high-pressure environment; a transportation chamber (30) connected to the high-pressure treatment chamber (10) through a shield door (20) and maintained at a pressure substantially the same as a pressure in the high-pressure treatment chamber (10); and a load-lock chamber (60) for loading and unloading the body (W) and whose inside pressure can be increased and decreased, one end of which chamber being connected to the transportation chamber (30) through a first gate valve (40), the other end being connected to the atmosphere side through a second gate valve (50). In the transportation chamber (30) is provided a transportation mechanism (35) for transporting the body (W) between the load-lock chamber (60) and the high-pressure treatment chamber (10).

Description

技術分野  Technical field
[0001] 本発明は、被処理体を一枚ずつ高圧雰囲気下で熱処理するための高圧熱処理装 置に関する。  The present invention relates to a high-pressure heat treatment apparatus for heat-treating an object to be processed one by one in a high-pressure atmosphere.
背景技術  Background art
[0002] 従来のこの種の装置としては、例えば特開平 3-69120号公報に記載されているバ 明  [0002] A conventional device of this type is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-69120.
ツチ式の高圧酸化炉ゃ特開平 5-74757号公報に記載されている枚葉式の高圧酸 田  Tsuchi-type high-pressure oxidation furnace—Single-wafer-type high-pressure oxidizer described in Japanese Patent Application Laid-Open No. 5-74757.
化炉が知られている。  Gasification furnaces are known.
[0003] バッチ式の高圧酸化炉は、一端側より酸素及び水素ガスを供給される炉心管を抱 合し、この炉心管の外周囲を囲みウェハを加熱するヒータを内蔵すると共に窒素ガス で高圧状態にされた高圧容器と、この高圧容器の他端に第 1の遮蔽扉を介して取付 けられてレ、ると共に前記高圧容器の圧力に維持するようにガス導入口を持つ予備室 と、この予備室内に位置されると共に複数枚のウェハを搭載したボートを炉心管内に 取入れたり、取出したりするボートローダと、前記予備室の他端に第 2の遮蔽扉を介 して接続されると共にウェハを大気より取入れ取出す室(ウェハ装填室、昇圧室及び 減圧室)とを備えて構成されてレ、る。  [0003] A batch-type high-pressure oxidation furnace includes a furnace tube that is supplied with oxygen and hydrogen gas from one end side, surrounds the outer periphery of the furnace tube, has a built-in heater for heating the wafer, and has a high-pressure nitrogen gas. A high-pressure vessel in a state, a pre-chamber attached to the other end of the high-pressure vessel via a first shielding door, and having a gas inlet so as to maintain the pressure of the high-pressure vessel, A boat loader that is located in the spare chamber and takes in and out a boat loaded with a plurality of wafers into and out of the furnace tube, and is connected to the other end of the spare chamber via a second shielding door; The chamber is configured to include a chamber for taking in and taking out a wafer from the atmosphere (a wafer loading chamber, a pressure increasing chamber, and a pressure reducing chamber).
[0004] 一方、枚葉式の高圧酸化炉は、加圧タンク内に設けられた炉心管と、この炉心管内 に設けられウェハを水平に保持するウェハホルダと、前記炉心管の周囲に設けられ た赤外線ランプとを備えて構成されてレ、る。炉心管と加圧タンクはそれぞれの一端が 大気側に開口され、それぞれが炉心管キャップと加圧タンクキャップで閉塞されるよう になっている。  [0004] On the other hand, a single-wafer high-pressure oxidation furnace is provided around a core tube provided in a pressurized tank, a wafer holder provided in the core tube for horizontally holding a wafer, and the core tube. It is configured with an infrared lamp. One end of each of the core tube and the pressurized tank is open to the atmosphere side, and each is closed with a core tube cap and a pressurized tank cap.
[0005] 前記いずれの高圧酸化炉も、高圧雰囲気中でウェハに熱酸化処理を施してウェハ 面に酸化膜を形成するすため、通常の熱酸化装置に比べて酸化温度を低くすること ができ、し力も、短時間で酸化膜を形成することが可能である。  [0005] In any of the above-mentioned high-pressure oxidation furnaces, since the wafer is subjected to thermal oxidation treatment in a high-pressure atmosphere to form an oxide film on the wafer surface, the oxidation temperature can be lowered as compared with a normal thermal oxidation apparatus. In addition, it is possible to form an oxide film in a short time.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0006] し力しながら、バッチ式の高圧酸化炉においては、複数枚のウェハを一度にボート に搭載して熱処理する構造上、大口径例えば直径 300mmのウェハを熱処理すること は難しい。特に、予備室にウェハ装填室、昇圧室及び減圧室を接続する構造である ため、構造の煩雑化及び装置の大型化を招くとレ、う問題点がある。 Problems the invention is trying to solve [0006] However, in a batch-type high-pressure oxidation furnace, it is difficult to heat-treat a large-diameter wafer, for example, a 300-mm-diameter wafer, because a plurality of wafers are mounted on a boat at one time and heat-treated. In particular, since the wafer loading chamber, the boosting chamber, and the decompression chamber are connected to the spare chamber, there is a problem that the structure becomes complicated and the apparatus becomes large.
[0007] 枚葉式の高圧酸化炉においては、枚葉式であるため、大口径のウェハの熱処理に は適するが、ロードロック室を備えていないため、ウェハの搬入搬出の度に炉心管及 び加圧タンク内の昇降圧操作及び炉心管キャップと加圧タンクキャップの開け閉めを 行わなければならず、これらの操作に多くの時間がかかり、スループットが低レ、。また 、昇温時間を短縮するために赤外線ランプが用いられているが、加圧タンク内に赤外 線ランプが設けられているため、赤外線ランプが高圧力下で破損する恐れがある。  [0007] The single-wafer type high-pressure oxidation furnace is a single-wafer type and is suitable for heat treatment of large-diameter wafers. Pressure and pressure in the pressurized tank, and opening and closing of the core tube cap and pressurized tank cap. These operations take a lot of time, resulting in low throughput. Although an infrared lamp is used to shorten the heating time, the infrared lamp is provided in the pressurized tank, so that the infrared lamp may be damaged under high pressure.
[0008] 本発明は、上記事情を考慮してなされたものであり、常時高圧に維持された高圧処 理室で被処理体の熱処理中にロードロック室で昇降圧操作及び被処理体の出し入 れ操作を行うことができると共に、大口径の被処理体を高圧下で迅速に熱処理するこ とができ、スループットの向上が図れる高圧熱処理装置を提供することを目的とする。 課題を解決するための手段  [0008] The present invention has been made in view of the above circumstances, and includes a step-up / down operation and a discharge of a processing object in a load lock chamber during heat treatment of the processing object in a high-pressure processing chamber constantly maintained at a high pressure. It is an object of the present invention to provide a high-pressure heat treatment apparatus capable of performing an insertion operation, rapidly heat-treating a large-diameter workpiece under high pressure, and improving throughput. Means for solving the problem
[0009] 上記目的を達成するための本発明に従った高圧熱処理装置は、 [0009] A high-pressure heat treatment apparatus according to the present invention for achieving the above object,
被処理体を収容して高圧雰囲気下で所定の熱処理を施す高圧処理室; 遮蔽扉を介して高圧処理室に連結され、高圧処理室内の圧力に近レ、圧力に維持 された搬送室;及び  A high-pressure processing chamber that accommodates the object to be processed and performs a predetermined heat treatment under a high-pressure atmosphere; a transfer chamber that is connected to the high-pressure processing chamber through a shielding door and is maintained at or near the pressure in the high-pressure processing chamber;
ロードロック室であり、その一端が第 1のゲートバルブを介して搬送室に連結され、 他端が第 2のゲートバルブを介して大気側に開口され、被処理体を出し入れするた めに昇降圧可能であるロードロック室;  One end of the load lock chamber is connected to the transfer chamber via the first gate valve, and the other end is open to the atmosphere via the second gate valve. A load lock chamber that is pressurizable;
を備え、  With
搬送室内にはロードロック室と高圧処理室との間で被処理体を搬送する搬送機構 が設けられてレ、ることを特徴とする。  The transfer chamber is provided with a transfer mechanism for transferring an object to be processed between the load lock chamber and the high-pressure processing chamber.
[0010] 搬送機構は被処理体を高圧下で搬送するようにしてもよい。 [0010] The transport mechanism may transport the object under high pressure.
[0011] 遮蔽扉は、高圧処理室から搬送室への熱放射を遮蔽する遮熱扉であってもよい。 [0011] The shielding door may be a heat shielding door that shields heat radiation from the high-pressure processing chamber to the transfer chamber.
[0012] 第 1のゲートバルブは、ロードロック室側に配置した弁座に弁体を着座させて閉弁 する構造としてもよレ、。 [0012] The first gate valve closes the valve by seating a valve body on a valve seat arranged on the load lock chamber side. The structure to do.
[0013] 第 2のゲートバルブは、大気側に配置した弁座に弁体を着座させて閉弁する構造と してもよい。  [0013] The second gate valve may have a structure in which a valve is seated on a valve seat arranged on the atmosphere side to close the valve.
[0014] ロードロック室は、搬送室に 2つ連結され、そのうち少なくとも 1つが熱処理後の被処 理体を冷却する機構を備えてレヽてもよレヽ。  [0014] Two load lock chambers may be connected to the transfer chamber, at least one of which is provided with a mechanism for cooling the object to be processed after the heat treatment.
発明の効果  The invention's effect
[0015] 本発明の高圧熱処理装置によれば、一枚の被処理体を収容して高圧雰囲気下で 所定の熱処理を施す高圧処理室と、該高圧処理室に遮蔽扉を介して連結され、高 圧処理室内の圧力と略同一の圧力に維持された搬送室と、該搬送室に一端が第 1 のゲートバノレブを介して連結されると共に他端が第 2のゲートバノレブを介して大気側 に開口され、被処理体を出し入れするための昇降圧可能なロードロック室とを備え、 前記搬送室内にはロードロック室と高圧処理室との間で被処理体を搬送する搬送機 構が設けられてレ、るため、常時高圧に維持された高圧処理室で被処理体の熱処理 中にロードロック室で昇降圧操作及び被処理体の出し入れ操作を行うことができると 共に、大口径の被処理体を高圧下で迅速に熱処理することができ、スループットの向 上が図れる。  [0015] According to the high-pressure heat treatment apparatus of the present invention, a high-pressure processing chamber that accommodates one workpiece and performs a predetermined heat treatment under a high-pressure atmosphere is connected to the high-pressure processing chamber via a shielding door, A transfer chamber maintained at substantially the same pressure as the pressure in the high-pressure processing chamber, one end of which is connected to the transfer chamber via a first gate vanoleb and the other end is open to the atmosphere via a second gate vanoleb. A load lock chamber capable of raising and lowering the pressure for loading and unloading the workpiece; and a transport mechanism for transporting the workpiece between the load lock chamber and the high-pressure processing chamber is provided in the transport chamber. Therefore, during the heat treatment of the object to be processed in the high-pressure processing chamber, which is always maintained at a high pressure, the load lock chamber can be used to raise and lower the pressure and to take in and out the object to be processed. Can be rapidly heat-treated under high pressure, Improve the put.
[0016] 高圧処理室と搬送室とは略同じ圧力に維持されているため、高圧処理室と搬送室 を仕切る遮蔽扉としては、気密性の高いゲートバルブである必要はなぐ熱遮蔽扉で 足りる。熱遮蔽扉とすることにより、構造の簡素化及び装置コストの低減が図れると共 に高圧処理室内から搬送室内への放射熱による熱影響を防止することができる。  [0016] Since the high-pressure processing chamber and the transfer chamber are maintained at substantially the same pressure, a heat-shielding door that does not need to be a highly airtight gate valve is sufficient as a shielding door that separates the high-pressure processing chamber and the transfer chamber. . By using the heat shield door, the structure can be simplified and the cost of the apparatus can be reduced, and the heat influence from the radiant heat from the high-pressure processing chamber to the transfer chamber can be prevented.
[0017] 第 1のゲートバルブが、ロードロック室側に配置した弁座に弁体を着座させて閉弁 する構造とされていることにより、搬送室側とロードロック室側の圧力差を利用して閉 弁時の気密状態を容易に維持することができる。  [0017] Since the first gate valve has a structure in which the valve body is seated on a valve seat arranged on the load lock chamber side to close the valve, a pressure difference between the transfer chamber side and the load lock chamber side is used. Thus, the airtight state at the time of valve closing can be easily maintained.
[0018] 第 2のゲートバルブが、大気側に配置した弁座に弁体を着座させて閉弁する構造と されていることにより、ロードロック室側と大気側の圧力差を利用して閉弁時の気密状 態を容易に維持することができる。  [0018] Since the second gate valve has a structure in which the valve element is seated on a valve seat arranged on the atmosphere side to close the valve, the second gate valve is closed by utilizing a pressure difference between the load lock chamber side and the atmosphere side. The airtight state at the time of the valve can be easily maintained.
[0019] ロードロック室が前記搬送室に 2つ連結され、その 1つが熱処理後の被処理体を冷 却する冷却機構を備えた冷却室とされてレ、ることにより、未処理の被処理体の搬送操 作と処理済の被処理体の搬送操作とを並列的または同時的に行って、スルー: の向上が図れると共に、特別な占有スペースを必要とする専用のクーリングチャンバ を必要とすることなく処理済みの高温の被処理体を搬送過程で冷却することができ、 構造の簡素化及び装置コストの低減が図れる。 [0019] Two load lock chambers are connected to the transfer chamber, one of which is a cooling chamber provided with a cooling mechanism for cooling the object to be processed after the heat treatment. Body transport Operation and transport of the processed workpiece are performed in parallel or simultaneously, improving through-process and processing without the need for a dedicated cooling chamber that requires special occupied space. The high-temperature object to be processed can be cooled during the transfer process, so that the structure can be simplified and the apparatus cost can be reduced.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の実施例に従った高圧熱処理装置を概略的に示す平面図である。  FIG. 1 is a plan view schematically showing a high-pressure heat treatment apparatus according to an embodiment of the present invention.
[図 2]図 1に示した高圧熱処理装置の要部拡大縦断面図である。  FIG. 2 is an enlarged longitudinal sectional view of a main part of the high-pressure heat treatment apparatus shown in FIG. 1.
符号の説明  Explanation of symbols
[0021] 1 高圧熱処理装置 [0021] 1 High-pressure heat treatment equipment
10 高圧処理室  10 High-pressure processing chamber
20 遮蔽扉  20 Shield door
30 搬送室  30 Transfer room
35 搬送機構  35 Transport mechanism
40 第 1のゲートバルブ  40 1st gate valve
50 第 2のゲートバルブ  50 Second gate valve
60 ロードロック室 65冷却室  60 Load lock chamber 65 Cooling chamber
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下に、本発明を実施するための最良の形態について、添付図面を基に詳述する 。図 1は本発明の実施の形態である高圧熱処理装置を概略的に示す平面図、図 2は 図 1に示した高圧熱処理装置の要部拡大縦断面図である。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a plan view schematically showing a high-pressure heat treatment apparatus according to an embodiment of the present invention, and FIG. 2 is an enlarged vertical sectional view of a main part of the high-pressure heat treatment apparatus shown in FIG.
[0023] 図 1及び図 2に示す高圧熱処理装置 1が、半導体ウェハ Wなどの被処理体に対し て、高圧雰囲気下で所定の熱処理を施す。この高圧熱処理装置 1は、高圧処理室 1 0,遮蔽扉 20,搬送室 30及びロードロック室 60を備えている。高圧処理室 10は、一 枚のウェハ Wを水平に収容して、高圧雰囲気下で所定の熱処理例えば熱酸化処理 を施す。搬送室 30は、遮蔽扉 20を介して高圧処理室 10に連結され、高圧処理室 1 0内の圧力と略同一の圧力または同一圧力に維持される。ロードロック室 60の一端 は、第 1のゲートバノレブ 40を介して搬送室 30に連結されると共に、他端は第 2のグー トバルブ 50を介して大気側に開口され、ウェハ Wを出し入れするために昇降圧可能 である。搬送室 30内には、ロードロック室 60と高圧処理室 10との間でウェハを搬送 する搬送機構 35が設けられてレ、る。 The high-pressure heat treatment apparatus 1 shown in FIGS. 1 and 2 performs a predetermined heat treatment on an object to be processed such as a semiconductor wafer W in a high-pressure atmosphere. The high-pressure heat treatment apparatus 1 includes a high-pressure processing chamber 10, a shielding door 20, a transfer chamber 30, and a load lock chamber 60. The high-pressure processing chamber 10 stores one wafer W horizontally and performs a predetermined heat treatment, for example, a thermal oxidation process under a high-pressure atmosphere. The transfer chamber 30 is connected to the high-pressure processing chamber 10 via the shielding door 20 and is maintained at the same pressure or the same pressure as the pressure in the high-pressure processing chamber 10. One end of the load lock chamber 60 is connected to the transfer chamber 30 via the first gate vane lev 40, and the other end is opened to the atmosphere side through the second gate valve 50 to allow the wafer W to be taken in and out. Buck-boost possible It is. In the transfer chamber 30, a transfer mechanism 35 for transferring a wafer between the load lock chamber 60 and the high-pressure processing chamber 10 is provided.
[0024] 前記高圧処理室 10は、反応管 11、ヒータ 12及び圧力容器 13から構成されている 。反応管 11は、大口径例えば直径 300mmのウェハを収容可能な石英製の扁平箱 型の反応管である。ヒータ 12は、この反応管 11外部の上部と下部に配置され、ゥェ ハ Wを上下両面から所定の温度例えば 800-1100°C程度に加熱する。圧力容器 1 3は、ヒータ 12及び反応管 11を収容し、反応管 11が内外の圧力差で破損しないよう に内部空間を反応管 11内の圧力とほぼ同じまたは同一の高圧に維持する。反応管 11内にはウェハ Wを載置するための複数例えば 3本の支持ピン 14が設けられてレ、 る。 The high-pressure processing chamber 10 includes a reaction tube 11, a heater 12, and a pressure vessel 13. The reaction tube 11 is a flat box-shaped reaction tube made of quartz that can accommodate a wafer having a large diameter, for example, a diameter of 300 mm. The heaters 12 are arranged at the upper and lower portions outside the reaction tube 11, and heat the wafer W from both upper and lower surfaces to a predetermined temperature, for example, about 800-1100 ° C. The pressure vessel 13 accommodates the heater 12 and the reaction tube 11, and maintains the internal space at substantially the same or the same high pressure as the inside of the reaction tube 11 so that the reaction tube 11 is not damaged by a pressure difference between the inside and outside. A plurality of, for example, three support pins 14 for mounting the wafer W are provided in the reaction tube 11.
[0025] 反応管 11の一端部には、ウェハ Wを出し入れする開口部 11aが設けられる。反応 管 11の他端部には、ガスボンベから圧力調整手段(レギユレータ)を介して圧力調整 された不活性ガス例えば窒素 N2ガスを反応管内に供給して反応管内を所定の高圧 例えば 2-10Kg/cm2程度に維持すると共に、処理ガス例えば酸素〇2ガスや水蒸 気 H20を所定の流量で供給するガス供給管 15が接続されてレ、る。反応管 11の他 端部にはさらに、処理ガスを排気するための排気管 16が接続されてレ、る。  [0025] At one end of the reaction tube 11, an opening 11a for taking in and out the wafer W is provided. At the other end of the reaction tube 11, an inert gas such as nitrogen N2 gas whose pressure has been adjusted from a gas cylinder via a pressure adjusting means (regulator) is supplied into the reaction tube, and a predetermined high pressure such as 2-10 kg / g A gas supply pipe 15 for supplying a processing gas, for example, oxygen dioxide gas or water vapor H20 at a predetermined flow rate, while maintaining the pressure at about cm2, is connected. An exhaust pipe 16 for exhausting the processing gas is further connected to the other end of the reaction pipe 11.
[0026] 前記ヒータ 12は、反応管 11を収容可能である金属製のケース 12aを有し、このケー ス 12a内の上部と下部に抵抗発熱体からなる面状の加熱部 17a, 17bが設けられて いる。加熱部 17a, 17bと反応管 11の間には均熱材 18が配置されていることが好まし レ、。圧力容器 13は金属製であり、反応管 11の開口部 11aと対応する開口部 13aが設 けられていると共に、内部を所定の高圧に維持するためにガスボンベからレギユレ一 タを介して圧力調整された不活性ガス例えば窒素 N2ガスを導入する。そのためのガ ス導入管(図示せず)が接続されている。反応管 11と圧力容器 13とは、同一圧力に するために、開閉弁を有する連通管により連通可能とされてレ、てもよレ、。  [0026] The heater 12 has a metal case 12a capable of accommodating the reaction tube 11, and is provided with planar heating portions 17a and 17b made of a resistance heating element in the upper and lower portions of the case 12a. It has been done. It is preferable that a soaking material 18 is disposed between the heating sections 17a and 17b and the reaction tube 11. The pressure vessel 13 is made of metal, has an opening 13a corresponding to the opening 11a of the reaction tube 11, and adjusts the pressure from a gas cylinder via a regulator in order to maintain the inside at a predetermined high pressure. Introduced inert gas such as nitrogen N2 gas is introduced. A gas introduction pipe (not shown) for that purpose is connected. The reaction tube 11 and the pressure vessel 13 can be communicated with each other by a communication tube having an on-off valve in order to maintain the same pressure.
[0027] 搬送室 30の一端には、高圧処理室 10が遮蔽扉 20を介して連結される。搬送室 30 の他端には、 2つのロードロック室 60、 61が連結されている。ロードロック室 60、 61は それぞれ、ゲートバルブ 40, 41を有し、各ゲートバルブ 40, 41は、未処理のウェハ の搬送操作と処理済のウェハの搬送操作とを並列的または同時的に行う。スループ ットの向上を図るために複数例えば 2つのロードロック室 60, 60がそれぞれ第 1のゲ 一トバノレブ 40, 40を介して搬送室 30に連結されていることが好ましい。搬送室 30の 一端には遮蔽扉 20を介して高圧処理室 10の圧力容器 13の開口部 13aと連通する 開口部 31が設けられ、搬送室 30の他端には第 1のゲートバルブ 40, 40を介して各 ロードロック室 60, 60の一端の開口部 61と連通する 2つの開口部 32, 32が設けられ ている。各ロードロック室 60の他端は第 2のゲートバルブ 50を介して大気側と連通す る開口部 62が設けられてレ、る。 The high-pressure processing chamber 10 is connected to one end of the transfer chamber 30 via a shielding door 20. Two load lock chambers 60 and 61 are connected to the other end of the transfer chamber 30. The load lock chambers 60 and 61 have gate valves 40 and 41, respectively. The gate valves 40 and 41 perform an operation of transporting an unprocessed wafer and an operation of transporting a processed wafer in parallel or simultaneously. . Sloop It is preferable that a plurality of, for example, two load lock chambers 60, 60 are connected to the transfer chamber 30 via the first gate vanes 40, 40, respectively, in order to improve the cost. One end of the transfer chamber 30 is provided with an opening 31 communicating with the opening 13a of the pressure vessel 13 of the high-pressure processing chamber 10 via the shielding door 20, and the other end of the transfer chamber 30 is provided with a first gate valve 40, Two openings 32, 32 communicating with the openings 61 at one end of the load lock chambers 60, 60 via 40 are provided. The other end of each load lock chamber 60 is provided with an opening 62 communicating with the atmosphere through the second gate valve 50.
[0028] 搬送室 30にはガスボンベからレギユレータを介して圧力調整された不活性ガス例 えば窒素 N2ガスを搬送室内に供給して搬送室内を高圧処理室内と略同じ圧力に維 持するガス供給管が接続されている(図示省略)。搬送室 30内に設けられた搬送機 構 35は、ウェハ Wを水平に保持する平面 U字状の保持部 36を有し、水平旋回、水 平方向への伸縮及び上下方向の移動が可能なアーム機構からなっている。  [0028] In the transfer chamber 30, a gas supply pipe for supplying an inert gas, for example, nitrogen N2 gas, whose pressure has been adjusted from a gas cylinder via a regulator to the transfer chamber and maintaining the transfer chamber at substantially the same pressure as the high-pressure processing chamber. Are connected (not shown). The transfer mechanism 35 provided in the transfer chamber 30 has a flat U-shaped holding portion 36 for holding the wafer W horizontally, and is capable of horizontal rotation, expansion and contraction in the horizontal direction, and movement in the vertical direction. It consists of an arm mechanism.
[0029] 高圧処理室 10と搬送室 30とは略同じ圧力に維持されているため、高圧処理室 10 と搬送室 30を仕切る遮蔽扉 20としては、気密性の高レ、ゲートバノレブである必要はな ぐ高圧処理室 10内から搬送室 30内への高温の放射熱 (輻射熱)を遮断する熱遮 蔽扉が好ましい。ゲートバノレブは弁体と弁座の問に気密材例えば〇リングを備えてい るのに対し、熱遮蔽扉は Oリングを備えていないので、構造の簡素化及び装置コスト の低減が図れる。図示の遮蔽扉 (熱遮蔽扉) 20は、搬送室側の弁座 21に弁体 (扉体 ) 22を着座させて閉鎖(閉弁)し、弁体 22を高圧処理室 10側に移動させ更に下方に 退避させて開弁するようになっている力 高圧処理室 10側の弁座に弁体を着座させ て閉鎖し、弁体 22を搬送室 30側に移動させ更に下方に退避させて開弁するように なっていてもよレ、。高圧処理室 10である反応管 11または圧力容器 13と搬送室 30と は、同一圧力にするために、開閉弁を有する連通管により連通可能とされていてもよ レ、。  [0029] Since the high-pressure processing chamber 10 and the transfer chamber 30 are maintained at substantially the same pressure, the shielding door 20 that separates the high-pressure processing chamber 10 and the transfer chamber 30 does not need to be a highly airtight and gate vanolev. A heat shielding door that blocks high-temperature radiant heat (radiant heat) from inside the high-pressure processing chamber 10 into the transfer chamber 30 is preferable. The gate vanoleb is provided with an airtight material such as an o-ring between the valve element and the valve seat, whereas the heat shield door is not provided with an O-ring, so that the structure can be simplified and the equipment cost can be reduced. The illustrated shield door (heat shield door) 20 is closed (closed) by seating a valve body (door body) 22 on a valve seat 21 on the transfer chamber side, and moving the valve body 22 to the high pressure processing chamber 10 side. Force to retract further and open the valve The valve is seated on the valve seat of the high-pressure processing chamber 10 and closed, and the valve 22 is moved to the transfer chamber 30 and retracted further downward. It may be open. The reaction tube 11 or the pressure vessel 13 which is the high-pressure processing chamber 10 and the transfer chamber 30 may be made to be able to communicate with each other by a communication pipe having an on-off valve so as to have the same pressure.
[0030] 一方、ロードロック室 60にはガスボンベからレギユレータを介して圧力調整された不 活性ガス例えば窒素 N2ガスをロードロック室内に供給してロードロック室内を搬送室 内と略同じ圧力に昇圧するガス供給管と、ロードロック室内の不活性ガスを排気して ロードロック室内の圧力を大気圧に降圧する排気管とが接続されている(図示省略) 。ロードロック室 60は、大気側に連通開放されるときには大気側と略同じ圧力(大気 圧)に降圧され、搬送室側に連通開放されるときには搬送室側と略同じ圧力(高圧) に昇圧される。いずれの場合にも、搬送室とロードロック室との間、又はロードロック室 と大気側との間には、いずれかに圧力差が生じるので、気密性を確保するための〇リ ングを有する第 1のゲートバルブ 40及び第 2のゲートバルブ 50が用いられている。 On the other hand, an inert gas, for example, nitrogen N2 gas, whose pressure has been adjusted from a gas cylinder via a regulator to the load lock chamber 60, is supplied into the load lock chamber to increase the pressure in the load lock chamber to substantially the same pressure as in the transfer chamber. A gas supply pipe is connected to an exhaust pipe that exhausts inert gas in the load lock chamber and reduces the pressure in the load lock chamber to atmospheric pressure (not shown). . When the load lock chamber 60 communicates and opens to the atmosphere side, the pressure is reduced to substantially the same pressure (atmospheric pressure) as the atmosphere side, and when the load lock chamber 60 communicates and opens to the transfer chamber side, the pressure is increased to substantially the same pressure (high pressure) as the transfer chamber side. You. In any case, there is a pressure difference between the transfer chamber and the load lock chamber, or between the load lock chamber and the atmosphere, so a ring is required to ensure airtightness. A first gate valve 40 and a second gate valve 50 are used.
[0031] その圧力差を利用して閉弁時の気密状態を容易に維持するために、第 1のゲート バノレブ 40は、ロードロック室 60側に配置した弁座 41に〇リング 43を介して、弁体 42 を着座させて閉弁する構造とされている。第 2のゲートバノレブ 50は、大気側に配置し た弁座 51に〇リング 53を介して弁体 52を着座させて閉弁する構造とされている。更 に詳しく説明すると、第 1のゲートバルブ 40は、弁体 41を搬送室 30側に移動させ更 に下方に退避させて開弁し、第 2のゲートバルブ 50は弁体 51をロードロック室 60側 に移動させ更に下方に退避させて開弁するようになっている。搬送室 30とロードロッ ク室 60とは、同一圧力にするために、開閉弁を有する連通管により連通可能とされて いてもよい。 In order to easily maintain the airtight state at the time of closing the valve by using the pressure difference, the first gate vanoleb 40 is connected to a valve seat 41 arranged on the load lock chamber 60 side via a ring 43. The valve body 42 is seated and the valve is closed. The second gate vanoleb 50 has a structure in which a valve body 52 is seated on a valve seat 51 disposed on the atmosphere side via a ring 53 to close the valve. More specifically, the first gate valve 40 opens the valve body 41 by moving the valve body 41 to the transfer chamber 30 side and retracting it further downward, and the second gate valve 50 opens the valve body 51 to the load lock chamber. The valve is moved to the 60 side and retracted further downward to open the valve. The transfer chamber 30 and the load lock chamber 60 may be able to communicate with each other by a communication pipe having an on-off valve in order to make the same pressure.
[0032] ロードロック室 60内には、ウェハ Wを水平に支持する複数例えば 3本の支持ピン 63 が設けられている。特別な占有スペースを必要とする専用のクーリングチャンバを必 要とすることなく処理済みの高温のウェハを搬送過程で冷却し、構造の簡素化及び 装置コストの低減を図るために、 2つのロードロック室 60, 60のうちの 1つは、熱処理 後のウェハを冷却する水冷式または空冷式の冷却機構を備えた冷却室 65とされて レ、ることが好ましい。  A plurality of, for example, three support pins 63 for horizontally supporting the wafer W are provided in the load lock chamber 60. Two load locks to cool processed high-temperature wafers during the transfer process without the need for a dedicated cooling chamber that requires a special occupied space, simplifying the structure and reducing equipment costs One of the chambers 60 is preferably a cooling chamber 65 having a water-cooled or air-cooled cooling mechanism for cooling the wafer after the heat treatment.
[0033] 高圧熱処理装置 1の大気側には複数例えば 25枚程度のウェハを上下方向に所定 間隔で収容した運搬容器であるカセット (キャリアともいう) 70を載置するカセット載置 台 75が図示例では並列に 2つ設置されている。これらカセット載置台 75とロードロッ ク室 60との間には、カセット 70とロードロック室 60との間でウェハ Wを一枚ずつ搬送 する大気側搬送機構 80が設けられている。カセット 70は、搬送ロボットまたは作業員 によりカセット載置台 75上に搬送載置され、また、カセット載置台 75上から搬出され るようになっている。  [0033] On the atmospheric side of the high-pressure heat treatment apparatus 1, a cassette mounting table 75 for mounting a cassette (also referred to as a carrier) 70 as a transport container accommodating a plurality of, for example, about 25 wafers at predetermined intervals in the vertical direction. In the example shown, two are installed in parallel. Between the cassette mounting table 75 and the load lock chamber 60, an atmosphere-side transfer mechanism 80 for transferring the wafers W one by one between the cassette 70 and the load lock chamber 60 is provided. The cassette 70 is transported and mounted on the cassette mounting table 75 by a transfer robot or an operator, and is unloaded from the cassette mounting table 75.
[0034] カセット 70としては、カセット本体におけるウェハ取出口に蓋を着脱可能に取付け た蓋付きカセットであっても良い。大気側搬送機構 80は、カセット載置台 75の並列 方向に沿って水平移動可能であり、且つ水平旋回、水平方向への伸縮及び上下方 向の移動が可能である搬送アーム 81を備えている。 [0034] As the cassette 70, a lid is detachably attached to a wafer outlet of the cassette body. It may be a cassette with a closed lid. The atmosphere-side transfer mechanism 80 is provided with a transfer arm 81 that is horizontally movable along the parallel direction of the cassette mounting tables 75 and is capable of horizontal turning, expansion and contraction in the horizontal direction, and upward and downward movement.
[0035] 以上の構成からなる高圧熱処理装置 1においては、初期状態として、高圧処理室 1 0、搬送室 30及び冷却室 65が所定の圧力に昇圧されており、冷却室 65でない方の ロードロック室 60の圧力が大気圧に降圧されている。この低圧ロードロック室 60の第 2のゲートバルブ 50を開き、大気側搬送機構 80によりカセット載置台 75上のカセット 70から未処理ウェハ Wを取り出して、低圧ロードロック室 60に搬入する。  In the high-pressure heat treatment apparatus 1 having the above configuration, as an initial state, the pressure of the high-pressure processing chamber 10, the transfer chamber 30, and the cooling chamber 65 is increased to a predetermined pressure, and the load lock of the other one is not the cooling chamber 65. The pressure in chamber 60 has been reduced to atmospheric pressure. The second gate valve 50 of the low-pressure load lock chamber 60 is opened, and the unprocessed wafer W is taken out of the cassette 70 on the cassette mounting table 75 by the atmosphere-side transfer mechanism 80, and is carried into the low-pressure load lock chamber 60.
[0036] 次いで、この低圧ロードロック室 60の第 2のゲートバルブ 50を閉じてロードロック室 60内を所定の圧力に昇圧させた後、第 1のゲートバノレブ 40及び遮蔽扉 20を開き、 搬送室 30内の搬送機構 35によりロードロック室 60から高圧処理室 10の反応管 11内 へと未処理ウェハ Wを搬送する。その後、第 1のゲートバルブ 40及び遮蔽扉 20を閉 じ、高圧処理室 10内で、未処理ウェハ Wに所定の熱処理例えば熱酸化処理を施す 。所定の熱処理時間経過後に、遮蔽扉 20及び冷却ロードロック室 65の第 1のゲート バルブ 40を開き、反応管 11から冷却室 65内に高温の処理済ウェハ Wを搬送した後 、遮蔽扉 20及び冷却室 65の第 1のゲートバノレブ 40を閉じ、冷却室 65を大気圧に降 圧して該冷却室 65で処理済ウェハ Wの冷却を行う。  Next, after the second gate valve 50 of the low-pressure load lock chamber 60 is closed to increase the pressure inside the load lock chamber 60 to a predetermined pressure, the first gate vanoleb 40 and the shielding door 20 are opened, and the transfer chamber is opened. The unprocessed wafer W is transferred from the load lock chamber 60 to the reaction tube 11 of the high-pressure processing chamber 10 by the transfer mechanism 35 in 30. After that, the first gate valve 40 and the shielding door 20 are closed, and the unprocessed wafer W is subjected to a predetermined heat treatment, for example, a thermal oxidation process in the high-pressure processing chamber 10. After a predetermined heat treatment time has elapsed, the shield door 20 and the first gate valve 40 of the cooling load lock chamber 65 are opened, and the high-temperature processed wafer W is transferred from the reaction tube 11 into the cooling chamber 65. The first gate vanoleb 40 of the cooling chamber 65 is closed, the pressure of the cooling chamber 65 is reduced to the atmospheric pressure, and the processed wafer W is cooled in the cooling chamber 65.
[0037] この冷却中に、次の未処理ウェハ Wを上述と同様にカセット 70から取り出し、ロード ロック室 60、搬送室 30を経由して反応管 11内に搬入し、所定の熱処理を行う。一方 、この熱処理中に、冷却室 65での冷却が終了すると、冷却室 65の第 2のゲートバル ブ 50を開き、大気側搬送機構 80により冷却室 65内から処理済ウェハ Wを取り出して カセット載置台 75上のカセット 70内に揷し込む。このようにしてウェハを一枚ずつ順 次連続的に高圧雰囲気下で熱酸化処理することができる。  During this cooling, the next unprocessed wafer W is taken out of the cassette 70 in the same manner as described above, loaded into the reaction tube 11 via the load lock chamber 60 and the transfer chamber 30, and subjected to a predetermined heat treatment. On the other hand, when the cooling in the cooling chamber 65 is completed during the heat treatment, the second gate valve 50 of the cooling chamber 65 is opened, and the processed wafer W is taken out of the cooling chamber 65 by the atmosphere-side transfer mechanism 80 and placed in a cassette. Insert it into the cassette 70 on the table 75. In this way, the wafers can be sequentially and successively subjected to thermal oxidation treatment under a high-pressure atmosphere.
[0038] 本発明の実施例に従った高圧熱処理装置 1によれば、一枚のウェハ Wを収容して 高圧雰囲気下で所定の熱処理を施す高圧処理室 10と、該高圧処理室 10に遮蔽扉 20を介して連結され、高圧処理室 10内の圧力と略同一または同一の圧力に維持さ れた搬送室 30と、該搬送室 30に一端が第 1のゲートバノレブ 40を介して連結されると 共に他端が第 2のゲートバノレブ 50を介して大気側に開口され、ウェハ Wを出し入れ するための昇降圧可能なロードロック室 60とを備え、搬送室 30内にはロードロック室 60と高圧処理室 10との間でウェハ Wを高圧雰囲気中で搬送する搬送機構 35が設 けられているため、常時高圧に維持された高圧処理室 10でウェハ Wの熱処理中に ロードロック室 60で昇降圧操作及びウェハの出し入れ操作を行うことができると共に 、大口径のウェハを高圧下で迅速に熱処理することができ、スループットの向上が図 れる。 According to the high-pressure heat treatment apparatus 1 according to the embodiment of the present invention, the high-pressure treatment chamber 10 that accommodates one wafer W and performs a predetermined heat treatment under a high-pressure atmosphere, and shields the high-pressure treatment chamber 10 A transfer chamber 30 connected via a door 20 and maintained at substantially the same or the same pressure as the pressure in the high-pressure processing chamber 10, and one end connected to the transfer chamber 30 via a first gate vanoleb 40 And the other end is opened to the atmosphere side through the second gate vanoleb 50, and the wafer W is taken in and out. The transfer chamber 30 is provided with a transfer mechanism 35 for transferring the wafer W between the load lock chamber 60 and the high-pressure processing chamber 10 in a high-pressure atmosphere. As a result, during the heat treatment of the wafer W in the high-pressure processing chamber 10 constantly maintained at a high pressure, the load lock chamber 60 can perform the pressure raising / lowering operation and the loading / unloading operation of the wafer, and can quickly move a large-diameter wafer under high pressure. The heat treatment can be performed quickly, and the throughput can be improved.
[0039] 高圧処理室 10と搬送室 30とは略同じ圧力または同一圧力に維持されているため、 高圧処理室 10と搬送室 30との間を仕切る遮蔽扉 20としては、気密性の高いゲート バルブである必要はなぐ熱遮蔽扉で足りる。熱遮蔽扉とすることにより、構造の簡素 化及び装置コストの低減が図れると共に高圧処理室 10内から搬送室 30内への放射 熱による熱影響を防止することができる。第 1のゲートバルブ 40が、ロードロック室 60 側に配置した弁座 41に弁体 42を着座させて閉弁する構造とされていることにより、搬 送室 30側とロードロック室 60側の圧力差を利用して閉弁時の気密状態を容易に維 持することカゝできる。  Since the high-pressure processing chamber 10 and the transfer chamber 30 are maintained at substantially the same pressure or the same pressure, the shielding door 20 that separates the high-pressure processing chamber 10 and the transfer chamber 30 has a highly airtight gate. A heat shield door that suffices to be a valve is sufficient. By using the heat shield door, the structure can be simplified and the cost of the apparatus can be reduced, and the heat effect from the radiant heat from the inside of the high-pressure processing chamber 10 to the inside of the transfer chamber 30 can be prevented. Since the first gate valve 40 has a structure in which the valve body 42 is seated on the valve seat 41 disposed on the load lock chamber 60 side and the valve is closed, the first gate valve 40 is provided between the transfer chamber 30 side and the load lock chamber 60 side. It is possible to easily maintain the airtight state when the valve is closed by utilizing the pressure difference.
[0040] また、第 2のゲートバノレブ 50が、大気側に配置した弁座 51に弁体 52を着座させて 閉弁する構造とされていることにより、ロードロック室 60側と大気側の圧力差を利用し て閉弁時の気密状態を容易に維持することができる。更に、 2つのロードロック室 60 が搬送室 30に連結され、その 1つが熱処理後のウェハ Wを冷却する冷却機構を備 えた冷却室 65とされていることにより、未処理のウェハ Wの搬送操作と処理済のゥェ ハ Wの搬送操作とを並列的または同時的に行って、スループットの向上が図れると 共に、特別な占有スペースを必要とする専用のクーリングチャンバを必要とすることな く処理済みの高温のウェハ Wを搬送過程中で冷却することができ、構造の簡素化及 び装置コストの低減が図れる。  [0040] Further, since the second gate vanoleb 50 has a structure in which the valve body 52 is seated on the valve seat 51 disposed on the atmosphere side to close the valve, the pressure difference between the load lock chamber 60 side and the atmosphere side is reduced. The airtight state at the time of closing the valve can be easily maintained by using the valve. Further, two load lock chambers 60 are connected to the transfer chamber 30, and one of the two lock lock chambers 60 is provided with a cooling mechanism for cooling the wafer W after the heat treatment. And the transfer operation of the processed wafer W can be performed in parallel or simultaneously to improve the throughput and to process without requiring a special cooling chamber that requires a special occupied space. The already heated high-temperature wafer W can be cooled during the transfer process, so that the structure can be simplified and the equipment cost can be reduced.
[0041] 以上、本発明の実施例を図面により詳述してきたが、本発明は本実施例に限定さ れるものではなぐ本発明の要旨を逸脱しない範囲での種々の設計変更等が可能で ある。例えば、本発明は、高圧下での熱酸化処理以外に、高圧下での熱 CVD処理 や熱拡散処理等にも適用可能である。また、被処理体としては、半導体ウェハ以外 に、 LCD基板、ガラス基板等も適用可能である。 産業上の利用可能性 Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention is not limited to the embodiments, and various design changes and the like can be made without departing from the gist of the present invention. is there. For example, the present invention can be applied to a thermal CVD process, a thermal diffusion process, and the like under a high pressure, in addition to the thermal oxidation process under a high pressure. Further, as the object to be processed, an LCD substrate, a glass substrate, or the like can be applied in addition to the semiconductor wafer. Industrial applicability
以上のように、本発明に従った高圧熱処理装置は、例えば半導体ウェハ等の熱処 理において用いることができ、スループットを向上が望まれる熱処理工程利用可能で める。  As described above, the high-pressure heat treatment apparatus according to the present invention can be used in, for example, heat treatment of a semiconductor wafer or the like, and can use a heat treatment step in which an improvement in throughput is desired.

Claims

請求の範囲 The scope of the claims
[1] 高圧熱処理装置であって:  [1] high pressure heat treatment equipment,
被処理体を収容して高圧雰囲気下で所定の熱処理を施す高圧処理室; 遮蔽扉を介して該高圧処理室に連結され、高圧処理室内の圧力に近レ、圧力に維 持された搬送室;及び  A high-pressure processing chamber that accommodates the object to be processed and performs a predetermined heat treatment under a high-pressure atmosphere; a transfer chamber that is connected to the high-pressure processing chamber through a shielding door and that is maintained at or near the pressure in the high-pressure processing chamber ;as well as
ロードロック室であり、その一端が第 1のゲートバルブを介して前記搬送室に連結さ れ、他端が第 2のゲートバノレブを介して大気側に開口され、被処理体を出し入れする ために昇降圧可能であるロードロック室;  A load lock chamber, one end of which is connected to the transfer chamber via a first gate valve, and the other end is opened to the atmosphere side via a second gate vanoleb, and is moved up and down to take in and out the object to be processed. A load lock chamber that is pressurizable;
を備え、  With
前記搬送室内にはロードロック室と高圧処理室との間で被処理体を搬送する搬送 機構が設けられていることを特徴とする高圧熱処理装置。  A high-pressure heat treatment apparatus characterized in that a transfer mechanism for transferring an object to be processed between the load lock chamber and the high-pressure processing chamber is provided in the transfer chamber.
[2] 前記搬送機構は被処理体を高圧下で搬送することを特徴とする請求項 1に記載の [2] The method according to claim 1, wherein the transport mechanism transports the object under high pressure.
[3] 前記遮蔽扉は、高圧処理室から搬送室への熱放射を遮蔽する遮熱扉であることを 特徴とする請求項 1に記載の高圧熱処理装置。 3. The high-pressure heat treatment apparatus according to claim 1, wherein the shield door is a heat shield door that shields heat radiation from the high-pressure processing chamber to the transfer chamber.
[4] 前記第 1のゲートバルブは、ロードロック室側に配置した弁座に弁体を着座させて 閉弁する構造であることを特徴とする請求項 1に記載の高圧熱処理装置。  4. The high-pressure heat treatment apparatus according to claim 1, wherein the first gate valve has a structure in which a valve is seated on a valve seat disposed on a load lock chamber side to close the valve.
[5] 前記第 2のゲートバルブは、大気側に配置した弁座に弁体を着座させて閉弁する 構造であることを特徴とする請求項 1に記載の高圧熱処理装置。  5. The high-pressure heat treatment apparatus according to claim 1, wherein the second gate valve has a structure in which a valve is seated on a valve seat arranged on the atmosphere side to close the valve.
[6] 前記ロードロック室は、前記搬送室に 2つ連結され、そのうち少なくとも 1つが熱処 理後の被処理体を冷却する機構を備えてレ、ることを特徴とする請求項 1に記載の高 圧熱処理装置。  6. The load lock chamber according to claim 1, wherein two of the load lock chambers are connected to the transfer chamber, and at least one of the load lock chambers has a mechanism for cooling the object to be processed after the heat treatment. High pressure heat treatment equipment.
PCT/JP2004/009844 2003-07-09 2004-07-09 High-pressure heat treatment apparatus WO2005006426A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003272539A JP3609077B1 (en) 2003-07-09 2003-07-09 High pressure heat treatment equipment
JP2003-272539 2003-07-09

Publications (1)

Publication Number Publication Date
WO2005006426A1 true WO2005006426A1 (en) 2005-01-20

Family

ID=34055980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/009844 WO2005006426A1 (en) 2003-07-09 2004-07-09 High-pressure heat treatment apparatus

Country Status (3)

Country Link
JP (1) JP3609077B1 (en)
TW (1) TWI262536B (en)
WO (1) WO2005006426A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008109504A2 (en) * 2007-03-06 2008-09-12 Tokyo Electron Limited Processing system and method for performing high throughput non-plasma processing
CN100426454C (en) * 2005-03-30 2008-10-15 东京毅力科创株式会社 Load fixing device, processing system and method
JP2018006513A (en) * 2016-06-30 2018-01-11 株式会社Screenホールディングス Heat treatment method and thermal treatment equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070187386A1 (en) * 2006-02-10 2007-08-16 Poongsan Microtec Corporation Methods and apparatuses for high pressure gas annealing
JP7017284B1 (en) * 2021-11-16 2022-02-08 株式会社Foreground Outdoor outlet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159968U (en) * 1978-04-28 1979-11-08
JPS60165729A (en) * 1984-02-08 1985-08-28 Toshiba Corp Semiconductor high pressure oxidizing apparatus
JPH01300527A (en) * 1988-05-30 1989-12-05 Tel Sagami Ltd Oxidizing method
JPH02271529A (en) * 1989-02-15 1990-11-06 Atomel Prod Corp Method and apparatus for treatment of semiconductor wafer
JPH0319252A (en) * 1989-05-19 1991-01-28 Applied Materials Inc Multistage vacuum separation type treater, multistage vacuum type semiconductor-wafer treater and device and method of transferring workpiece
JPH0369120A (en) * 1989-08-08 1991-03-25 Nec Yamagata Ltd High-pressure oxidation furnace
JPH0574757A (en) * 1991-09-13 1993-03-26 Nec Yamagata Ltd High pressure oxidation furnace for semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54159968U (en) * 1978-04-28 1979-11-08
JPS60165729A (en) * 1984-02-08 1985-08-28 Toshiba Corp Semiconductor high pressure oxidizing apparatus
JPH01300527A (en) * 1988-05-30 1989-12-05 Tel Sagami Ltd Oxidizing method
JPH02271529A (en) * 1989-02-15 1990-11-06 Atomel Prod Corp Method and apparatus for treatment of semiconductor wafer
JPH0319252A (en) * 1989-05-19 1991-01-28 Applied Materials Inc Multistage vacuum separation type treater, multistage vacuum type semiconductor-wafer treater and device and method of transferring workpiece
JPH0369120A (en) * 1989-08-08 1991-03-25 Nec Yamagata Ltd High-pressure oxidation furnace
JPH0574757A (en) * 1991-09-13 1993-03-26 Nec Yamagata Ltd High pressure oxidation furnace for semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426454C (en) * 2005-03-30 2008-10-15 东京毅力科创株式会社 Load fixing device, processing system and method
WO2008109504A2 (en) * 2007-03-06 2008-09-12 Tokyo Electron Limited Processing system and method for performing high throughput non-plasma processing
WO2008109504A3 (en) * 2007-03-06 2008-12-18 Tokyo Electron Ltd Processing system and method for performing high throughput non-plasma processing
JP2018006513A (en) * 2016-06-30 2018-01-11 株式会社Screenホールディングス Heat treatment method and thermal treatment equipment
US10580667B2 (en) 2016-06-30 2020-03-03 SCREEN Holdings Co., Ltd. Light-irradiation heat treatment method and heat treatment apparatus

Also Published As

Publication number Publication date
JP2005033086A (en) 2005-02-03
TW200522134A (en) 2005-07-01
JP3609077B1 (en) 2005-01-12
TWI262536B (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP4860167B2 (en) Load lock device, processing system, and processing method
US7198447B2 (en) Semiconductor device producing apparatus and producing method of semiconductor device
TW379359B (en) Dual vertical thermal processing furnace
JP6339057B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, and program
JPH05218176A (en) Heat treatment and transfer of article to be treated
JP2008539564A (en) Substrate processing platform that enables processing in different environments
WO2006043509A1 (en) Vertical heat treatment apparatus and method for operating same
US20040200244A1 (en) Remote plasma enhanced cleaning apparatus
JPH09260364A (en) Thermal treatment method and thermal treatment equipment
JP4927623B2 (en) Method of boosting load lock device
JP5036172B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
JPH02138728A (en) Heat treatment process and apparatus therefor
WO2005006426A1 (en) High-pressure heat treatment apparatus
KR102651431B1 (en) Film formation method and film formation equipment
JP3451137B2 (en) Substrate heat treatment equipment
TW201729338A (en) Substrate processing apparatus and manufacturing method of semiconductor device
US9105672B2 (en) Heat treatment apparatus
JP2005277049A (en) System and method for heat treatment
JP3970184B2 (en) Processing equipment
JP2744933B2 (en) Vertical processing equipment and processing equipment
JP2005123284A (en) Semiconductor manufacturing device
JPH0737827A (en) Heat treatment device
JPS612330A (en) Processing equipment
JP2005032994A (en) Substrate processing device
JPH05299369A (en) Heat-treating device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase