JPH01300527A - Oxidizing method - Google Patents

Oxidizing method

Info

Publication number
JPH01300527A
JPH01300527A JP13030488A JP13030488A JPH01300527A JP H01300527 A JPH01300527 A JP H01300527A JP 13030488 A JP13030488 A JP 13030488A JP 13030488 A JP13030488 A JP 13030488A JP H01300527 A JPH01300527 A JP H01300527A
Authority
JP
Japan
Prior art keywords
furnace
pressure
oxide film
wafer
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13030488A
Other languages
Japanese (ja)
Inventor
Katsumi Kidoguchi
木戸口 克己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Sagami Ltd
Original Assignee
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Sagami Ltd filed Critical Tokyo Electron Sagami Ltd
Priority to JP13030488A priority Critical patent/JPH01300527A/en
Publication of JPH01300527A publication Critical patent/JPH01300527A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a homogeneous thin oxide film onto the surface of a body to be treated by bringing the inside of a furnace to an oxidizing atmosphere, inserting a wafer into the furnace from an anteroom and accurately setting the treating period of film formation. CONSTITUTION:A furnace 21 oxidizing and treating bodies to be treated 36 and anterooms 22, 23, which are connected and mounted to the furnace 21 and pressure of which is elevated to the pressure of the furnace, are installed. The inside of the furnace is brought to an oxidizing atmosphere and the bodies to be treated 36 are inserted into the furnace 21 from the anterooms 22, 23 and oxidized on oxidizing treatment. Accordingly, a temperature is not disturbed by the variation of pressure, and the bodies to be treated are oxidized and treated at stable pressure and temperature, thus forming a homogeneous thin oxide film onto the surfaces of the bodies to be treated.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は酸化方法に関する。[Detailed description of the invention] [Object of the invention] (Industrial application field) The present invention relates to an oxidation method.

(従来の技術) 従来より半導体のウエノ・の表面に酸化膜を形成する方
法として加圧酸化方法が採用されている。
(Prior Art) A pressure oxidation method has conventionally been used as a method for forming an oxide film on the surface of a semiconductor.

これは、ウェハを8気圧程度の加圧宸化雰囲気の中に置
いて900℃程度の温度で加熱して表面を加熱する方法
であり、酸化速度と圧力とが比例することから常圧下の
酸化に比べてウェハの表面の酸化速度が速く酸化膜の形
成を短時間で行なえるという利点がある。
This is a method in which the wafer is placed in a pressurized atmosphere of about 8 atmospheres and heated to a temperature of about 900°C to heat the surface.Since the oxidation rate and pressure are proportional, oxidation under normal pressure It has the advantage that the oxidation rate of the wafer surface is faster than that of the wafer, and the oxide film can be formed in a short time.

しかして、この加圧酸化方法においてウェハに酸化膜を
形成する処理は第3図で示すシーケンスで行なって込る
。第3図において、p線およびt線は処理を行なう炉の
内部における圧力と温度の変化を示している。炉の内部
にウェハを配置して、ステップ1で炉の内部に酸素を供
給して炉内部の圧力を上昇させるとともに、炉に設けた
ヒータで炉の内部の温度を上昇させる。次いで、ステッ
プ2で炉内部の圧力が所定の高さ、例えば8気圧まで上
昇して安定し、さらにステラf3で炉内部の温度が所定
の高さ、例えば900℃で安定する。
In this pressure oxidation method, the process of forming an oxide film on the wafer is carried out in the sequence shown in FIG. In FIG. 3, p-lines and t-lines indicate changes in pressure and temperature inside the processing furnace. A wafer is placed inside a furnace, and in step 1, oxygen is supplied to the inside of the furnace to increase the pressure inside the furnace, and the temperature inside the furnace is raised using a heater provided in the furnace. Next, in step 2, the pressure inside the furnace rises to a predetermined level, for example 8 atmospheres, and becomes stable, and further, in Stella f3, the temperature inside the furnace stabilizes at a predetermined level, for example 900°C.

その後、ステップ4で炉内部の酸素を外部に排出すると
ともに、ヒータによる加熱を停止する。これらの各ステ
ップ1 、2 、 、?および4毎にウェハの各表面を
酸化して酸化膜を形成する。この説明は乾式による加圧
酸化であるが、湿式の場合には、酸素とともに水素を炉
の内部に供給する。
Thereafter, in step 4, the oxygen inside the furnace is exhausted to the outside, and heating by the heater is stopped. Each of these steps 1, 2, ? And every fourth step, each surface of the wafer is oxidized to form an oxide film. This explanation refers to dry pressurized oxidation, but in the case of wet oxidation, hydrogen is supplied together with oxygen to the inside of the furnace.

(発明が解決しようとする課題) しかしながら、このようなシーケンスによりウェハを加
圧酸化させて酸化膜を形成する方法では、最も重要な事
項である酸化膜の品質および厚さの面で次に述べる問題
がある。上記のシーケンスによりウェハの表面に形成さ
れる酸化膜の成長過程を見ると、第4図で示すようにス
テップ1では炉の内部の圧力を上昇させるために酸素を
多量に供給するので、炉内部の温度の上昇線が乱れてウ
ェハ11の表面には粗い酸化膜12が形成される。ステ
ラf2では炉内部の圧力は安定するが、温度は未だ安定
せずに所定高さの値の前後で不安定な状態にあるために
、やはシ粗い酸化a13が形成される。そして、ステッ
プ3で炉内部の圧力および温度が安定するので、均質な
酸化膜14が形成される。さらに、ステラf4ではステ
ップ1と逆の状態で多量の酸素が炉から排出するので、
やはり粗い酸化膜15が形成される。このように上記の
シーケンスによると、ステップ1.2および4で粗い酸
化膜が形成され、均質な膜がステップ3のみでしか得ら
れないために、全体としてウェハの表面に均質で良好な
酸化膜が形成することが困難である。
(Problem to be Solved by the Invention) However, in the method of forming an oxide film by pressure-oxidizing the wafer through such a sequence, the most important issues are the quality and thickness of the oxide film, which will be described below. There's a problem. Looking at the growth process of the oxide film formed on the surface of the wafer through the above sequence, as shown in Figure 4, in step 1, a large amount of oxygen is supplied to increase the pressure inside the furnace. The temperature increase line is disturbed, and a rough oxide film 12 is formed on the surface of the wafer 11. In Stella f2, the pressure inside the furnace is stabilized, but the temperature is not yet stable and is in an unstable state around a predetermined height value, so that coarse oxide a13 is formed. Then, in step 3, the pressure and temperature inside the furnace are stabilized, so that a homogeneous oxide film 14 is formed. Furthermore, in Stella F4, a large amount of oxygen is discharged from the furnace in the opposite situation to step 1, so
A rough oxide film 15 is still formed. According to the above sequence, a rough oxide film is formed in steps 1.2 and 4, and a homogeneous film is obtained only in step 3, so that a uniform and good oxide film is formed on the wafer surface as a whole. is difficult to form.

また、上記シーケンスでは、炉の内部に酸素を供給して
ウェハの酸化処理を行ない、その後で酸素がスを炉から
排出するまでの間に各ステッf1〜4毎に夫々ウェハの
表面に酸化膜が形成されて酸化膜が順次成長するので、
結果としてウエノ・の表面に形成される酸化膜の膜厚さ
が1oooo〜20000 Kなり、それ以下の膜厚、
例えば1000^の酸化膜を得ることが困難となってい
る。しかし、最近ではウェハの表面に形成する酸化膜と
して100OX程度の薄い膜が要求されるようになって
きており、加圧酸化方法においてもこのような薄い酸化
膜を形成できるようにすることが必要となってきている
In the above sequence, oxygen is supplied into the furnace to perform oxidation treatment on the wafer, and then an oxide film is formed on the surface of the wafer at each step f1 to f4 until the oxygen gas is discharged from the furnace. is formed and the oxide film grows sequentially,
As a result, the thickness of the oxide film formed on the surface of Ueno is between 1000K and 20000K, and the film thickness below that is
For example, it is difficult to obtain an oxide film with a thickness of 1000^. However, recently, there has been a demand for a thin oxide film of about 100 OX to be formed on the surface of a wafer, and it is necessary to be able to form such a thin oxide film using the pressure oxidation method as well. It is becoming.

本発明は前記事情に基づいてなされたもので、被処理体
の表面に均質で薄い酸化膜を形成できる酸化方法を提供
することを目的とする。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide an oxidation method capable of forming a homogeneous and thin oxide film on the surface of an object to be processed.

[発明の構成コ (課題を解決するための手段) 前記目的を達成する念めに本発明の酸化方法は、被処理
体を酸化処理する炉と、この炉に接続して設けられ炉の
圧力の高さに上昇される準備室とを設けた装置で酸化処
理するに際して、炉内の酸化雰囲気処した後に、準備室
から被処理体を炉に挿入して酸化することを特徴とする
ものである。
[Configuration of the Invention (Means for Solving the Problems) In order to achieve the above object, the oxidation method of the present invention includes a furnace for oxidizing an object to be treated, and a furnace connected to the furnace to reduce the pressure of the furnace. When performing oxidation treatment using an apparatus equipped with a preparation chamber that is raised to a height of be.

(作用) 炉内を酸化雰囲気にした後忙、準備室からウェハを炉内
に挿入するので、成膜の処理期間を正確に設定できるよ
うにし几ことを特徴とする。
(Function) Since the wafer is inserted into the furnace from the preparation room after the furnace has been made into an oxidizing atmosphere, the process period for film formation can be accurately set.

(実施例) 以下本発明方法を半導体ウェハの高圧酸化方法に適用し
た実施例を第1図に参照して説明する。
(Example) An example in which the method of the present invention is applied to a high-pressure oxidation method for semiconductor wafers will be described below with reference to FIG.

まず装置を説明する。この実施例は横形炉21のウェハ
の出入口両方の端部に準備室22.23を接続したもの
である。
First, the device will be explained. In this embodiment, preparation chambers 22 and 23 are connected to both ends of the wafer entrance and exit of the horizontal furnace 21.

水平に配設した炉21#i高圧に耐える円筒状圧力容器
となっており、内部に円筒状電気ヒータ24が装備され
ている。石英で形成された反応管25は炉21内の上記
ヒータ24内部に水平にして挿入配置されている。反応
管25Fi被処理体であるウェハ36を所定の間隔に載
せたボート37を収容するもので、両端開口から出入れ
するようになっており、両端開口はウェハ36挿入後に
蓋26.26で閉塞される。また、反応管25には外部
から酸素ガス管27および水素ガス管28が接続され、
さらに炉2111Cは窒素ガス管29が接続されている
The horizontally arranged furnace 21 #i is a cylindrical pressure vessel that can withstand high pressure, and is equipped with a cylindrical electric heater 24 inside. A reaction tube 25 made of quartz is inserted horizontally into the heater 24 in the furnace 21 . The reaction tube 25Fi accommodates a boat 37 on which wafers 36, which are objects to be processed, are placed at predetermined intervals, and is accessed through openings at both ends, which are closed with lids 26 and 26 after the wafers 36 are inserted. be done. Further, an oxygen gas pipe 27 and a hydrogen gas pipe 28 are connected to the reaction tube 25 from the outside.
Further, a nitrogen gas pipe 29 is connected to the furnace 2111C.

炉1の両方の端壁には夫々連通口30 、30が形成さ
れ、炉21の両端部に設けた準備室22゜23と炉2ノ
とが連通口30.30を介して連通している。連通口3
0.30は外部から自動的に制御される蓋、91 、3
1で閉塞される。準備室22.23Fi圧力容器であシ
、ボート37の出入れ口32.32を有している。ボー
ト37の出入れロ32.3211−1自動的に制御され
る蓋33゜33により閉塞される。また、準備室22,
23KFi酸素ガス供給管34.34と排気管35゜3
5が接続されている。
Communication ports 30 and 30 are formed in both end walls of the furnace 1, respectively, and the preparation chambers 22 and 23 provided at both ends of the furnace 21 communicate with the furnace 2 through the communication ports 30 and 30. . Communication port 3
0.30 is a lid automatically controlled from the outside, 91, 3
1 is occluded. The preparation room 22.23 is a pressure vessel and has an access port 32.32 for the boat 37. Access to and from the boat 37 32.3211-1 is closed by an automatically controlled lid 33°33. In addition, the preparation room 22,
23KFi oxygen gas supply pipe 34.34 and exhaust pipe 35°3
5 is connected.

このように構成した加圧酸化装置くよりウエノ〜を加圧
酸化する場合について説明する。
A case in which Ueno is oxidized under pressure using the pressure oxidation apparatus configured as described above will be described.

まず炉21に設けた反応管25の両熱開口を蓋26.2
6で閉じて、反応管25の内部にガス管27を通して酸
素(02)ガスを送込み圧力を加圧酸化処理に必要な高
さ例えば8気圧まで上昇させる。1.た、電気ヒータ2
4で反応管25を加熱して内部の温度を加圧酸化処理に
必要な高さまで上昇させる。なお、ガス管29を通して
炉1の内部に窒素(N2)ガスを送込んで圧力を高め1
反応管25の内外の圧力のバランスを保持する。一方1
例えば準備室22の出入れ口、? 2 yk閉じていた
蓋33を開き、複数のウエノ・36を立てた状態で載せ
念じる。排気v35から準備室22の内部から空気を吸
引排気し、代シにガス管34f通して準備室22の内部
に酸素ガスを送込んで準備室22の内この段階ではウェ
ハ36の表面は酸化されない。
First, both heat openings of the reaction tube 25 provided in the furnace 21 are connected to the lid 26.
6, and oxygen (02) gas is fed into the reaction tube 25 through the gas tube 27 to raise the pressure to a level required for pressure oxidation treatment, for example, 8 atmospheres. 1. Electric heater 2
In step 4, the reaction tube 25 is heated to raise the internal temperature to a level required for the pressure oxidation treatment. Note that nitrogen (N2) gas is fed into the furnace 1 through the gas pipe 29 to increase the pressure.
The pressure balance inside and outside the reaction tube 25 is maintained. On the other hand 1
For example, the entrance to the preparation room 22? 2. Open the lid 33 that was previously closed and place multiple ueno 36 in an upright position. Air is sucked and exhausted from the inside of the preparation chamber 22 through the exhaust v35, and oxygen gas is sent into the preparation chamber 22 through the gas pipe 34f, so that the surface of the wafer 36 in the preparation chamber 22 is not oxidized at this stage. .

この状態で炉21の一方の端部の開口30を閉じていた
蓋3ノを開き、さらに反応管25の一方の端部を閉じて
いた蓋26を外して、ボート37をtH=、。
In this state, the lid 3 that had closed the opening 30 at one end of the furnace 21 was opened, and the lid 26 that had closed one end of the reaction tube 25 was removed, and the boat 37 was opened.

26を閉じる。ボート37に載せられ几ウェハ ′−!
゛36は反応管25の内部において加圧酸化雰囲気(8
気圧、900℃)に配置されて酸化処理され、ウェハ3
6の表面に酸化膜が形成される。この場合、ウェハ36
は予じめ8気圧に昇圧してbる準備室22から予じめ加
圧酸化雰囲気となっている反応管25に移動して、安定
した圧力と温度の下で直ちに第2図で示すようにウェハ
36の表面に均質な酸化膜38を形成することができる
。そして、所定厚さ例えば100OXの酸化膜を形成す
るに必要な時間を経過した後、蓋26および蓋3ノを開
きウェハ36′fL−反応管25から準備室22に移し
、再び蓋26および蓋3ノを閉じる。
Close 26. The wafers are loaded onto boat 37!
36 is a pressurized oxidizing atmosphere (8
The wafer 3
An oxide film is formed on the surface of 6. In this case, the wafer 36
The mixture is transferred from the preparation chamber 22, which has been pressurized to 8 atmospheres in advance, to the reaction tube 25, which has a pressurized oxidizing atmosphere, and immediately under stable pressure and temperature as shown in Figure 2. A homogeneous oxide film 38 can be formed on the surface of the wafer 36. After the time required to form an oxide film of a predetermined thickness, for example, 100OX, the lid 26 and the lid 3 are opened and the wafer 36'fL-reaction tube 25 is transferred to the preparation chamber 22, and the lid 26 and the lid 3 are removed again. Close 3.

この場合、準備室22は8気圧の状態にあり、ウェハ2
6の表面は酸化されない。さらに、蓋33を開いてウニ
/・36を準備室22の外方に取出す。
In this case, the preparation chamber 22 is at a pressure of 8 atmospheres, and the wafer 2
The surface of No. 6 is not oxidized. Furthermore, the lid 33 is opened and the sea urchin 36 is taken out of the preparation chamber 22.

従って、圧力の昇降による温度の乱れがなくウェハ36
の表面に均質で薄込酸化膜を形成できる。
Therefore, the temperature of the wafer 36 is not disturbed due to the rise and fall of pressure.
A homogeneous and thin oxide film can be formed on the surface.

ま九、常時酸素ガスの出入れを行なうのは準備室22の
みで、反応管25には初めに酸素ガスを入れるだけであ
るから、酸素ガスの使用が経済的である。準備室22で
は大気と置換して酸素ガスを送込むので、炉1への大気
の巻込みを防止できる。
(9) The use of oxygen gas is economical because only the preparation chamber 22 is used to constantly take in and out oxygen gas, and oxygen gas is only initially introduced into the reaction tube 25. Since oxygen gas is sent into the preparation chamber 22 to replace the atmosphere, it is possible to prevent the atmosphere from entering the furnace 1.

一方の準備室22を使用してウェハ36の加圧酸化処理
を行なっている間に他方の準備室23を使用して他のウ
ェハ36の加圧酸化処理の準備を行なうことによシ、加
圧酸化処理を連続して能率良く行なうことができる。
By using one preparation chamber 22 to perform pressure oxidation treatment on a wafer 36, and using the other preparation chamber 23 to prepare another wafer 36 for pressure oxidation treatment, Pressure oxidation treatment can be carried out continuously and efficiently.

さらに、酸化処理を1回行なう毎に、反応管内の圧力を
昇降圧しなくてもすむので、ガスの消費量が少ないうえ
に、7″ロセス間の短縮ができる。
Furthermore, since there is no need to increase or decrease the pressure in the reaction tube each time the oxidation treatment is performed, gas consumption is small and the 7'' process interval can be shortened.

また、連続運転が可能になり、反応管内が常に大気と分
離されるので汚染が少なA、。
In addition, continuous operation is possible, and the inside of the reaction tube is always separated from the atmosphere, resulting in less pollution.

前述した実施例で(・ゴ乾式の加圧酸化処理につい送込
むことにより湿式の加圧酸化処理を行なうことができる
In the above-mentioned embodiment, a wet pressure oxidation treatment can be performed by feeding the sample to the dry pressure oxidation treatment.

ウェハは立てた状態で加圧酸化処理するだけでなく、炉
21の部分縦形炉にしてウエノ・水平に並べて処理を行
なうことができる。
The wafers can not only be subjected to pressure oxidation treatment in an upright state, but also can be treated in the partially vertical furnace of the furnace 21, in which the wafers are lined up horizontally.

[発明の効果コ 以上説明し几ように本発明の酸化方法によれば、圧力の
昇降による温度の乱れがなく、安定した圧力および温度
の下で被処理体に酸化処理を施すので、被処理体の表面
に均質で薄い酸化膜を形成することができる。
[Effects of the Invention] As explained above, according to the oxidation method of the present invention, the oxidation treatment is performed on the object to be treated under stable pressure and temperature without any disturbance in temperature due to rise and fall of pressure. A thin, homogeneous oxide film can be formed on the surface of the body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例に使用するウェハ高圧酸
化装置を示す断面図、第2図は本発明同実施例において
形成したウェハの酸化膜を示す断面図、第3図は従来の
加圧酸化処理の行程を示す説明図、第4図は従来の加圧
酸化処理により形成したウェハの酸化膜を示す断面図で
ある。 21・・・炉、22.23・・・準準室、25・・・反
応管、36・・・ウェハ。 出願人代理人  弁理士 鈴 江 武 音第2日
FIG. 1 is a cross-sectional view showing a wafer high-pressure oxidation apparatus used in an embodiment of the method of the present invention, FIG. 2 is a cross-sectional view showing an oxide film on a wafer formed in the same embodiment of the present invention, and FIG. FIG. 4 is an explanatory diagram showing the process of pressure oxidation treatment, and FIG. 4 is a cross-sectional view showing an oxide film on a wafer formed by conventional pressure oxidation treatment. 21...Furnace, 22.23...Semi-semi-chamber, 25...Reaction tube, 36...Wafer. Applicant's agent Patent attorney Takeshi Suzue 2nd day

Claims (1)

【特許請求の範囲】[Claims]  被処理体を酸化処理する炉と、この炉に接続して設け
られ前記炉の圧力の高さに上昇される準備室とを設けた
装置で酸化処理するに際し、上記炉内を酸化雰囲気にし
た後、前記準備室から被処理体を前記炉に挿入して酸化
することを特徴とする酸化方法。
When performing oxidation treatment using a device that includes a furnace for oxidizing the object to be treated and a preparation chamber connected to the furnace and raised to the pressure level of the furnace, the inside of the furnace is made into an oxidizing atmosphere. An oxidation method characterized in that the object to be processed is then inserted into the furnace from the preparation chamber and oxidized.
JP13030488A 1988-05-30 1988-05-30 Oxidizing method Pending JPH01300527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13030488A JPH01300527A (en) 1988-05-30 1988-05-30 Oxidizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13030488A JPH01300527A (en) 1988-05-30 1988-05-30 Oxidizing method

Publications (1)

Publication Number Publication Date
JPH01300527A true JPH01300527A (en) 1989-12-05

Family

ID=15031117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13030488A Pending JPH01300527A (en) 1988-05-30 1988-05-30 Oxidizing method

Country Status (1)

Country Link
JP (1) JPH01300527A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006426A1 (en) * 2003-07-09 2005-01-20 Tokyo Electron Limited High-pressure heat treatment apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221107A (en) * 1986-03-24 1987-09-29 Hitachi Ltd Treating apparatus
JPS6325922A (en) * 1986-07-17 1988-02-03 Sumitomo Metal Ind Ltd Plasma device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62221107A (en) * 1986-03-24 1987-09-29 Hitachi Ltd Treating apparatus
JPS6325922A (en) * 1986-07-17 1988-02-03 Sumitomo Metal Ind Ltd Plasma device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005006426A1 (en) * 2003-07-09 2005-01-20 Tokyo Electron Limited High-pressure heat treatment apparatus

Similar Documents

Publication Publication Date Title
KR100814594B1 (en) System and method for heat treating semiconductor
TW440955B (en) Oxidation treatment method and apparatus
KR100854543B1 (en) Oxide film forming method
JPH01300527A (en) Oxidizing method
KR100251134B1 (en) Method for manufacturing semiconductor device
JP3794243B2 (en) Oxidation processing method and apparatus
US2124573A (en) Enveloping atmosphere control
JPH0517879Y2 (en)
JP2688653B2 (en) Semiconductor pressure oxidation method
JPS62140413A (en) Vertical type diffusion equipment
JPH07161674A (en) Device and method for processing semiconductor wafer
JPH09283750A (en) Method of forming very thin gate oxide film
JPH0369120A (en) High-pressure oxidation furnace
de Araujo et al. Selective Oxidation Using Ultrathin Nitrogen‐Rich Silicon Surface Layers Grown by Rapid Thermal Processing
JPH02148841A (en) Apparatus for manufacturing semiconductor device
JPS60211913A (en) Processing device
KR100538270B1 (en) Diffusion Process Equipment for Semiconductor Device Manufacturing
JPS6218039A (en) Oxidizing device for semiconductor wafer
JP3516635B2 (en) Heat treatment equipment
JPS6333826A (en) Low pressure oxidizing apparatus
JPH04165621A (en) Method and apparatus for forming oxide film
JPS62122123A (en) Vertical type thermal treatment equipment
JPH05343335A (en) Formation of silicon nitride film
JP2746639B2 (en) Wafer pretreatment method for pyro-oxidation and phosphorus diffusion
JPS62249423A (en) Processing apparatus