WO2005005823A1 - Rotor de panal redondo - Google Patents

Rotor de panal redondo Download PDF

Info

Publication number
WO2005005823A1
WO2005005823A1 PCT/ES2003/000344 ES0300344W WO2005005823A1 WO 2005005823 A1 WO2005005823 A1 WO 2005005823A1 ES 0300344 W ES0300344 W ES 0300344W WO 2005005823 A1 WO2005005823 A1 WO 2005005823A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular
wind
curved
trapezoids
cylinders
Prior art date
Application number
PCT/ES2003/000344
Other languages
English (en)
French (fr)
Inventor
Félix SÁNCHEZ SÁNCHEZ
Original Assignee
Sanchez Sanchez Felix
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanchez Sanchez Felix filed Critical Sanchez Sanchez Felix
Priority to BR0314169-1A priority Critical patent/BR0314169A/pt
Priority to PCT/ES2003/000344 priority patent/WO2005005823A1/es
Priority to JP2005503821A priority patent/JP4461282B2/ja
Priority to CA002499514A priority patent/CA2499514A1/en
Priority to AU2003304328A priority patent/AU2003304328A1/en
Priority to AT03740502T priority patent/ATE329153T1/de
Priority to MXPA05002174A priority patent/MXPA05002174A/es
Priority to US10/535,984 priority patent/US7244103B2/en
Priority to CNB038247054A priority patent/CN100419256C/zh
Priority to PT03740502T priority patent/PT1548277E/pt
Priority to EP03740502A priority patent/EP1548277B9/fr
Priority to ES03740502T priority patent/ES2263006T3/es
Priority to DK03740502T priority patent/DK1548277T3/da
Priority to DE60305951T priority patent/DE60305951T2/de
Priority to MYPI20041481A priority patent/MY138382A/en
Priority to EG2004050245A priority patent/EG23578A/xx
Publication of WO2005005823A1 publication Critical patent/WO2005005823A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H1/00Propulsive elements directly acting on water
    • B63H1/02Propulsive elements directly acting on water of rotary type
    • B63H1/12Propulsive elements directly acting on water of rotary type with rotation axis substantially in propulsive direction
    • B63H1/14Propellers
    • B63H1/16Propellers having a shrouding ring attached to blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/33Shrouds which are part of or which are rotating with the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • round honeycomb rotor for wind turbines and propellers in general that has tubular curved trapezoids has as its object of application, to improve the performance of wind turbines and propellers, by means of total closure of all of the perimeters by the tubular concentric cylinders where the curved pieces mounted on the tubular cylinders are supported forming a round honeycomb constituted by modules by circular curved tubular trapezoids, through which the wind forces all the force, multiplying the number of trapezoids by two or more, in this way and multiplying the surface of the wind friction by twenty or more times, wind turbine rotors take advantage of almost all the force of the wind to have these multiplications both in number of trapezoids, and on the surface of contact of the same with the wind, as for the rotors of propellers in general, equal multiply the number of trapezoids and therefore of the contact surface, at the same time, multiplying the propulsive centrifugal forces that are used almost entirely,
  • wind turbine rotors The technique used in wind turbine rotors is wide and varied with multiple applications and different dimensions. generally of a core to which some blades or blades are attached, usually three; some models have adjustable blades that adapt to the direction of the wind. Wind turbines and propellers in general, currently have their outer perimeters fully open and therefore many of the propulsive centrifugal forces are lost between the blades of the propellers, while conventional wind turbines have as mentioned before, three blades of minimum surface of contact with the wind, which makes the use of wind force is low performance.
  • the tubular circular trapezoidal round trapezoidal rotors of this invention have application for the wind turbines and also for the propellers in general, which are composed of several concentric tubular cylinders that between them, some curved pieces are inserted forming circular tubular trapezoids, that have been designed to solve and improve the performance of wind power, by replacing the blades or blades by curved tubular trapezoids, which multiply the contact surface of the wind by twenty or more wind turbines and propellers, while in turn, in the propellers in general, almost all the centrifugal forces propelled by the revolutions provided by the engine to the propellers are used;
  • these trapezoids are joined between concentric tubular cylinders, thus closing all the perimeters of that have these tubular circular curved trapezoids, giving a round honeycomb shape; in wind turbines, the tubular cylinder with the largest diameter will have an open conical funnel at the entrance to the outside in order to increase the surface of the wind inlet to the rotor, the shape of the curved tubular
  • the larger diameter tubular cylinder will have a funnel at its outlet, which reduces the wind output and is conical trunk shape inwards, in order to reduce the output surface of the wind producing a reaction of it.
  • the curved tubular trapezoids of the propellers in general will have less surface in the entrances and greater in the exits in order to give more air pressure, with this technique and according to the invention will be used almost all, all the forces centrifuges and propellers produced by the force of the engine; in the wind turbines, the same technique will be applied as in the propellers in general, but with the inverted curved trapezoids, that is, they will have greater surface area at the entrances and smaller at the exits, in which said exit reduction produces a small pressure of air, which multiplied by the large surface of the rotor, will produce an important energy and therefore almost all the force of the wind will be used on the wind rotor.
  • the round honeycomb rotor for wind turbines and propellers in general, with circular curved tubular trapezoids, have the advantage of multiplying the number of trapezoids and therefore also multiplying the contact surface or friction of the wind in the curved parts, in the case of the rotor of round windmill of the wind turbine will take advantage of almost all the force of the wind on the rotor that in many cases, will also be multiplied, this is the basis of the patent, counting the closed perimeters of the trapezoids by the concentric tubular cylinders, between these will be alternated among themselves, or optionally centered.
  • the round comb rotors of the wind turbines and propellers in general, will be able to turn in both directions, depending on the position of the curved pieces of the tubular curved circular trapezoids.
  • Figure 1 is a front view of the round honeycomb rotor for wind turbines, in which the different concentric tubular cylinders (1) are shown (four tubular cylinders have been shown in the drawing), which in the larger diameter tubular cylinder It will have a funnel (4), conical trunk figure, open to the outside in order to increase the entrance surface of the wind, these tubular cylinders carry among them the corresponding tubular curved trapezoids (2) (in the drawing twelve / ten / eight / six curved trapezoids have been represented between each hollow of the concentric cylinders beginning with the one with the largest diameter, the trapezoids being alternated from one diameter to the other), forming a round honeycomb, individually composed of circular curved tubular trapezoids (5) finally in the center of this rotor assembly is presented the hub or core (3), on which will couple and fix the axis of the alternator.
  • the hub or core (3) on which will couple and fix the axis of the alternator.
  • FIG. 2 is a front view of the round comb rotor for propellers in general, in which the different concentric tubular cylinders (6) (four in the drawing) can be seen, which in the larger diameter tubular cylinder will carry a funnel (9), of conical trunk figure that reduces the exit of the wind towards its interior, in order to reduce the surface of exit of the wind, providing its reaction, these concentric cylinders, will carry between them the corresponding curved pieces (7) , (in the drawing twelve / ten / eight / six curved pieces have been represented between each hollow of the concentric cylinders, alternated between each other and beginning with the one of greater diameter, forming a round honeycomb of curved tubular trapezoids, from circular trapezoids tubular rounds (10), finally in the center of this rotor assembly is presented the hub or core (8) on which will couple and fix the axis of the alternator.
  • the hub or core (8) on which will couple and fix the axis of the alternator.
  • Figure 3 shows a section of figure 1, showing the sectioned concentric tubular cylinders (1), in the center of which is the cube or core (3), as well as the proportions of width of the trapezoids (2) that will be curved, on the tubular cylinder of greater diameter, at its entrance, we can see the funnel (4), of conical trunk figure, open towards the outside, as well as the constitution of circular curved tubular trapezoids (5), with arrows indicating the wind direction.
  • Figure 4 presents a section of figure 2, where the concentric tubular cylinders (6) can be seen, in whose center figure the hub or core (8), as well as the proportions of width of the trapezoids (7), on the tubular cylinder of greater diameter, the funnel (9), with conical trunk figure towards the interior, which reduces the exit of the wind, as well as the constitution of the circular curved tubular trapezoids (10), with the arrows indicating the direction of the wind.
  • Figure 5 contemplates half of the development of the largest tubular cylinder of the wind turbine, where the curvature of the pieces of the tubular curved circular trapezoids can be seen with the reduction of wind output of the wind turbines according to the direction of the arrow "V" and the direction of rotation according to arrow "R".
  • Figure 6 contemplates the developed half of the greater circular cylinder of the propellers in general, where the pieces of the tubular circular trapezoids with their corresponding curvatures are appreciated, in which the direction of entry of the wind will be according to the arrow "C”, is say, of smaller surface in the entrance and being greater the surface of exit of the wind, with turn according to the arrow "H".
  • the round honeycomb rotor for wind turbines and propellers in general with four or more pieces of tubular curved circular trapezoids consists of a core (3,7) as center of the rotor, concentrically two or more tubular cylinders are mounted (1,5) , and between them are assembled the pieces (2,6), which form the tubular curved circular trapezoids, in the rotor of the wind turbine the tubular cylinder of greater diameter (1), will carry in its entrance a funnel (4), in the form of Tubular cone trunk with exit to the outside, while in the rotor of the propellers in general, the tubular cylinder of greater diameter (5), will carry in its exit a funnel (8), in the form of tubular cone with reduction of interior exit.
  • the rotors for wind turbines will be of varied dimensions and can be defined by the required power, the diameters will be similar to the dimensions of the current wind turbines, the materials used in the construction will be normally metallic, light and resistant to corrosion.
  • the rotors for the propellers in general having smaller dimensions can be used ferrous castings or alloys of lightweight materials of great strength and coated plastics.
  • the curved circular tubular trapezoids (2) of the wind turbines will be mounted in such a way as to reduce the wind output, that is to say with a greater surface of entrances and smaller in the exits, as a consequence of this, having this smaller surface of exit will be produces a small pressure that will be important for the large surface of the rotor, following the "V" direction according to Figure 5.
  • the propeller parts and the tubular curved circular trapezoids (7) will have a smaller surface area at the inlets and a larger area at the outlets, following the "C" direction according to figure 6.
  • the hub or core (3,8) will have coupled the axis of the alternator or motor according to the fixing characteristics of the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sustainable Energy (AREA)
  • Wind Motors (AREA)
  • Hydraulic Turbines (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Centrifugal Separators (AREA)
  • Telephone Function (AREA)
  • Jellies, Jams, And Syrups (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Rotor para molinos eólicos con múltiples conductos de viento separados. El eje del rotor es paralelo a la dirección del viento estando el rotor constituidos por varios cilindros concéntricos con el eje de rotación. Diversas paredes curvadas a modo de nervios radiales unen estos cilindros entre sí, formando a la vez una multitud de conductos independientes para el paso del viento. Los conductos son de tal forma que la dirección del viento cambia entre la entrada y la salida. Dentro de los conductos también cambia la sección de paso y por lo tanto el módulo de la velocidad del viento.

Description

ROTOR DE PANAL REDONDO
OBJETO DE LA INVENCIÓN
El objeto de esta patente de invención tal como indica su titulo, rotor de panal redondo para aerogeneradores y hélices en general que dispone de unos trapecios curvados tubulares, tiene como objeto de aplicación, mejorar los rendimientos de los aerogeneradores y hélices, mediante el cierre total de todos de los perímetros por los cilindros concéntricos tubulares donde se apoyan las piezas curvadas montadas sobre los cilindros tubulares formando un panal redondo constituido por módulos por trapecios circulares curvados tubulares, por los que atraviesa toda la fuerza del viento, multiplicando el número de trapecios por dos o más, de esta forma y multiplicando la superficie del roce del viento por veinte o más veces, en los rotores para aerogeneradores se aprovecha casi toda la fuerza del viento al disponer de estas multiplicaciones tanto en número de trapecios, como en la superficie de contacto de las mismas con el viento, en cuanto a los rotores de hélices en general, igualmente se multiplican el número de trapecios y por tanto de la superficie de contacto, a la vez, que se multiplican las fuerzas centrifugas propulsoras que se aprovechan en casi su totalidad,
ESTADO DE LA TÉCNICA
La técnica que se utiliza en los rotores de los aerogeneradores es amplia y variada de múltiples aplicaciones y diferentes dimensiones, consisten generalmente de un núcleo al que se acoplan unas palas o aspas, habitualmente tres; algunos modelos tienen las palas orientables que se adaptan a la dirección del viento. Los aerogeneradores eólicos y las hélices en general, en la actualidad tienen sus perímetros exteriores totalmente abiertos y por tanto muchas de las fuerzas centrifugas propulsoras se pierden entre las aspas de las hélices, mientras que en los aerogeneradores eólicos convencionales llevan como se ha dicho antes, tres palas de minima superficie de contacto con el viento, lo que hace que el aprovechamiento de la fuerza del viento sea de bajo rendimiento.
DESCRIPCIÓN DEL INVENTO
Los rotores de panal redondo de trapecios circulares curvados tubulares de esta invención, tienen aplicación para los aerogeneradores y también para las hélices en general, que están compuestos de varios cilindros tubulares concéntricos que entre ellos, se insertan unas piezas curvadas formando unos trapecios circulares tubulares, que han sido concebidos, para resolver y mejorar el rendimiento de la fuerza del viento, al sustituir las aspas o palas por unos trapecios curvados tubulares, que hacen multiplicar la superficie de contacto del viento por veinte o más de los aerogeneradores y hélices, mientras que a su vez, en las hélices en general, se aprovechan casi todas las fuerzas centrifugas propulsadas producidas por las revoluciones que proporciona el motor a las hélices; por otra parte, estos trapecios, están unidos entre cilindros tubulares concéntricos, cerrando por tanto todos los perímetros de que disponen estos trapecios curvados circulares tubulares, dando una forma de panal redondo; en los aerogeneradores el cilindro tubular de mayor diámetro llevará en su entrada un embudo abierto tronco cónico hacia el exterior con el objeto de aumentar la superficie de la entrada del viento al rotor, la forma de los trapecios curvados tubulares en estos aerogeneradores, son de una entrada suave reduciéndose en su salida y originando una pequeña presión, que como es natural en todos los rotores eólicos tienen su entrada y salida del viento en la misma dirección, en la Patente objeto de esta invención, no sucede lo mismo, ya que las curvaturas progresivas de los trapecios curvados tubulares, desvian el viento en otra dirección, dando origen a su reducción en su salida, como si de una turbina de viento se tratara, las hélices en general tendrán características semejantes a los rotores eólicos añadiéndose la fuerza centrifuga, y para conseguir una presión idónea en las salidas de los trapecios circulares curvados tubulares en zonas de viento constante, estas salidas deberán ser fijas o calculadas con antelación, y, en zonas de viento variable serán puertas automáticas, estos trapecios circulares tubulares, están compuestos de varios cilindros tubulares concéntricos y entre ellos se insertarán unas piezas curvadas que forman un conjunto de trapecios circulares curvados tubulares dando una forma de panal redondo, origen principal de esta patente; los trapecios curvados tubulares de los aerogeneradores como los de hélice, podrían ser de muchas formas geométricas tales como redondos, tubulares, ovalados o polígonos de tres o más lados tanto regulares como irregulares, o de cualquier otra forma conocida, asi mismo en su interior podrá haber formas rugosas, tronco trapezoides oblicuas o de cualquier otra forma geométrica conocida, con el solo objeto de frenar la fuerza del viento. En el rotor de las hélices en general, el cilindro tubular de mayor diámetro llevará en su salida un embudo, que reduce la salida del viento y es de forma tronco cónico hacia el interior, con el objeto de disminuir la superficie de salida del viento produciendo una reacción del mismo. Los trapecios curvados tubulares de las hélices en general, tendrán menos superficie en las entradas y mayor en las salidas con el objeto de dar más presión de aire, con esta técnica y de acuerdo con la invención se aprovecharán en casi su totalidad, todas las fuerzas centrifugas y propulsoras producidas por la fuerza del motor; en los aerogeneradores, se aplicará la misma técnica que en las hélices en general, pero con los trapecios curvados invertidos, o sea, tendrán mayor superficie en las entradas y menor en las salidas, en cuya dicha reducción de salida se produce una pequeña presión de aire, que multiplicada por la gran superficie del rotor, producirá una energía importante y por tanto se aprovecharán casi toda la fuerza del viento sobre el rotor eólico.
Tanto en los en los rotores de panal redondo de los aerogeneradores, como en las hélices en general, tendrán un número elevado de trapecios circulares curvados tubulares, con una superficie multiplicada por veinte veces o más con respecto a lo convencional, lo que permiten con sus grandes superficies de contacto con el viento, multiplicar la fuerza sobre el rotor eólico al tener todos sus perímetros exteriores cerrados completamente .
El rotor de panal redondo para aerogeneradores y hélices en general, con trapecios circulares curvados tubulares, tienen la ventaja de multiplicar el número de trapecios y por tanto multiplicar también la superficie de contacto o fricción del viento en las piezas curvadas, en el caso del rotor de panal redondo del aerogenerador se aprovecharán la casi totalidad de la fuerza del viento sobre el rotor que en muchos casos, será también multiplicada, esto es el fundamento de la patente, contando con los perímetros cerrados de los trapecios por los cilindros tubulares concéntricos, entre éstos, se pondrán alternados entre si, u optativamente centrados.
Los rotores de panal redondo de los aerogeneradores eólicos y hélices en general, podrán girar en las dos direcciones, dependerán de la posición de las piezas curvadas de los trapecios circulares curvados tubulares.
DESCRIPCIÓN DE LOS DIBUJOS
La figura 1, es una vista de frente del rotor de panal redondo para aerogeneradores, en la que se aprecian los diferentes cilindros tubulares concéntricos (1) (en el dibujo se han representado cuatro cilindros tubulares) , que en el cilindro tubular de mayor diámetro llevará un embudo (4), de figura tronco cónico, abierto al exterior con el objeto de aumentar la superficie de entrada del viento, estos cilindros tubulares llevan entre ellos los correspondientes trapecios curvados tubulares (2) (en el dibujo se han representado doce/diez/ocho/seis trapecios curvados entre cada hueco de los cilindros concéntricos empezando por el de mayor diámetro, estando alternados los trapecios de un diámetro a otro) , formando un panal redondo, compuesto individualmente de trapecios circulares curvados tubulares (5) finalmente en el centro de este conjunto rotor se presenta el cubo o núcleo (3), sobre el que acoplará y fijará el eje del alternador.
La figura 2, es una vista de frente del rotor de panal redondo para hélices en general, en la que se aprecian los diferentes cilindros tubulares concéntricos (6) (cuatro en el dibujo) , que en el cilindro tubular de mayor diámetro llevara un embudo (9), de figura tronco cónico que reduce la salida del viento en dirección hacia su interior, con el objeto de reducir la superficie de salida del viento, proporcionando su reacción, éstos cilindros concéntricos, llevarán entre ellos las correspondientes piezas curvadas (7), (en el dibujo se han representado doce/diez/ocho/seis piezas curvadas entre cada hueco de los cilindros concéntricos, alternados entre si y empezando por el de mayor diámetro, formando un panal redondo de trapecios curvados tubulares, a partir de trapecios circulares redondos tubulares (10), finalmente en el centro de este conjunto rotor se presenta el cubo o núcleo (8) sobre el que acoplará y fijará el eje del alternador.
La figura 3, presenta una sección de la figura 1, donde se aprecia los cilindros tubulares concéntricos (1) seccionados, en cuyo centro figura el cubo o núcleo (3) , asi como las proporciones de anchura de los trapecios (2) que estarán curvadas, sobre el cilindro tubular de mayor diámetro, en su entrada, se aprecia el embudo (4), de figura tronco cónico, abierto hacia el exterior, asi como la constitución de los trapecios circulares curvados tubulares (5) , con las flechas indicando la dirección del viento.
La figura 4, presenta una sección de la figura 2, donde se aprecia los cilindros tubulares concéntricos (6), en cuyo centro figura el cubo o núcleo (8), asi como las proporciones de anchura de los trapecios (7), sobre el cilindro tubular de mayor diámetro, se aprecia en su salida el embudo (9), de figura tronco cónico hacia el interior, que reduce la salida del viento, asi como la constitución de los trapecios circulares curvados tubulares (10), con las flechas indicando la dirección del viento.
La figura 5, contempla la mitad del desarrollo del cilindro tubular mayor del aerogenerador, donde se aprecia la curvatura de las piezas de los trapecios circulares curvados tubulares con la reducción de salida del viento de los aerogeneradores según la dirección de la flecha "V" y la dirección de giro según la flecha "R" .
La figura 6, contempla la mitad desarrollada del cilindro circular mayor de las hélices en general, donde se aprecian las piezas de los trapecios circulares tubulares con sus correspondientes curvaturas, en que la dirección de entrada del viento será según la flecha "C", es decir, de menor superficie en la entrada y siendo mayor la superficie de salida del viento, con giro según la flecha "H".
DESCRIPCIÓN DE UNA REALIZACIÓN PREFERENTE
El rotor de panal redondo para aerogeneradores y hélices en general con cuatro o más piezas de trapecios circulares curvados tubulares, se compone de un núcleo (3,7) como centro del rotor, concéntricamente se montan dos o más cilindros tubulares (1,5), y entre ellos se ensamblan las piezas (2,6), que forman los trapecios circulares curvados tubulares, en el rotor del aerogenerador el cilindro tubular de mayor diámetro (1), llevará en su entrada un embudo (4), en forma de tronco de cono tubular con salida al exterior, mientras que en el rotor de las hélices en general, el cilindro tubular de mayor diámetro (5) , llevará en su salida un embudo (8), en forma de tronco de cono tubular con reducción de salida interior. Todas estas piezas pueden armarse por métodos tradicionales de unión como por ejemplo soldados, remachados o atornillados . Los rotores para aerogeneradores serán de dimensiones variadas pudiendo ser definidos por la potencia requerida, los diámetros serán similares a las dimensiones de los actuales aerogeneradores, los materiales empleados en la construcción serán normalmente metálicos, ligeros y resistentes a la corrosión. En cuanto a los rotores para las hélices en general, al tener unas dimensiones menores pueden emplearse fundiciones férricas o aleaciones de materiales ligeros de gran resistencia y plásticos revestidos . Los trapecios circulares curvados tubulares (2), de los aerogeneradores se montarán de forma que reduzcan la salida del viento, es decir con una mayor superficie de entradas y menor en las salidas, como consecuencia de esto, al tener esta menor superficie de salida se produce una pequeña presión que será importante por la gran superficie del rotor, siguiendo la dirección "V" de acuerdo con la Figura 5.
En el rotor de panal redondo las piezas de hélices y los trapecios (7) circulares curvados tubulares, serán de menor superficie en las entradas y de mayor superficie en las salidas, siguiendo la dirección "C" de acuerdo con la figura 6.
El cubo o núcleo (3,8), llevará acoplado el eje del alternador o motor de acuerdo a las características de fijación de los mismos.
Una vez descrito y presentado el objeto industrial de esta Patente de Invención con amplitud y claridad suficientes para permitir su puesta en explotación, se declara como nuevo y de propia invención haciendo la salvedad de que sus detalles accidentales, tales como forma, tamaño, materiales y procedimientos de fabricación, podrán ser alterados respecto a lo descrito y representado en la presente memoria, siempre dentro de la especialidad inalterable que queda resumido en las siguientes :

Claims

REIVINDICACIONES
1. Rotor de panal redondo para aerogeneradores y hélices de trapecios curvados tubulares, que comprende un conjunto compuesto de piezas (2,7) rodeadas de cilindros tubulares
(1,6) con centro de un núcleo o cubo (3,8), sobre el que se ensambla un alternador o motor y que sustituye a las palas o aspas tradicionales, caracterizado porque todos los perímetros de las piezas (2,7) son de forma trapezoides circulares curvadas tubulares, están cerradas periféricamente por los cilindros tubulares (1,6) concéntricos entre si, formando módulos, alternando o coincidentes la posición de las piezas trapezoides entre los cilindros tubulares concéntricos, formando tubos (5,10) unidos entre si, de forma trapezoide curvados, que en su conjunto hacen un panal redondo, en el centro del rotor se fija el cubo o núcleo (3,8) al que se ensambla el alternador o motor, el número de piezas (2,7) serán de cuatro o más por cada cilindro tubular (1,6) que a su vez éstos, serán de dos o más cilindros tubulares concéntricos, las piezas (2,6) de forma trapezoide circular estarán curvadas, lo que permite en su desarrollo aumente la superficie de contacto con el viento, consiguiendo aprovechar la casi totalidad de la fuerza del viento, el panel redondo de trapecios curvados tubulares, podrá ser de cualquier figura geométrica conocida regular o irregular.
2. Rotor de panal redondo para aerogeneradores y hélices de trapecios curvados tubulares, según la reivindicación
1, caracterizado porque para aplicaciones para aerogeneradores las piezas (2), son de forma trapezoide circular curvadas, que forman tubos (5) , unidos entre si con los cilindros concéntricos (1) y son de entrada suave con reducción en la salida, ya que las curvaturas progresivas de los trapecios (2) , desvian el viento en otra dirección, dando origen a que todas las salidas de viento reducidas de esos trapecios (2) , produzcan una pequeña presión, mientras que el cilindro tubular (1) de mayor diámetro llevará en su entrada un embudo (4), de figura tronco cónico circular con dirección hacia el exterior.
3. Rotor de panal redondo para aerogeneradores y hélices de trapecios curvados tubulares, según las anteriores reivindicaciones, caracterizado porque para aplicaciones de hélices en general, los trapecios (7), forman con los cilindros concéntricos (6), los tubos trapezoides curvados (10), y el conjunto de ellos hacen el panal redondo; los trapecios circulares curvados tubulares (7), son de menor superficie en la entrada y mayor superficie en la salida, al tener los perímetros totalmente cerrados se aprovechan casi todas las fuerzas centrifugas, mientras que el cilindro tubular (6) de mayor diámetro lleva incorporado en su salida un embudo (9) tronco cónico tubular con reducción de salida0
PCT/ES2003/000344 2003-07-09 2003-07-09 Rotor de panal redondo WO2005005823A1 (es)

Priority Applications (16)

Application Number Priority Date Filing Date Title
BR0314169-1A BR0314169A (pt) 2003-07-09 2003-07-09 Rotor de ventoinha de configuração redonda para aerogeradores e hélices de trapézios tubulares curvos
PCT/ES2003/000344 WO2005005823A1 (es) 2003-07-09 2003-07-09 Rotor de panal redondo
JP2005503821A JP4461282B2 (ja) 2003-07-09 2003-07-09 ウインドミルローター
CA002499514A CA2499514A1 (en) 2003-07-09 2003-07-09 Windmill rotor comprising multiple separate wind channels
AU2003304328A AU2003304328A1 (en) 2003-07-09 2003-07-09 Windmill rotor comprising multiple separate wind channels
AT03740502T ATE329153T1 (de) 2003-07-09 2003-07-09 Rotor einer windenergieanlage mit mehreren separaten windkanälen
MXPA05002174A MXPA05002174A (es) 2003-07-09 2003-07-09 Rotor de panal redondo.
US10/535,984 US7244103B2 (en) 2003-07-09 2003-07-09 Windmill rotor comprising multiple separate wind channels
CNB038247054A CN100419256C (zh) 2003-07-09 2003-07-09 圆形蜂窝式转子
PT03740502T PT1548277E (pt) 2003-07-09 2003-07-09 Rotor de gerador eolico com multiplos canais de vento separados
EP03740502A EP1548277B9 (fr) 2003-07-09 2003-07-09 Rotor d'eolienne a multiples conduits de vent separes
ES03740502T ES2263006T3 (es) 2003-07-09 2003-07-09 Rotor de panal redondo.
DK03740502T DK1548277T3 (da) 2003-07-09 2003-07-09 Vindmöllerotor med mange adskilte luftkanaler
DE60305951T DE60305951T2 (de) 2003-07-09 2003-07-09 Rotor einer windenergieanlage mit mehreren separaten windkanälen
MYPI20041481A MY138382A (en) 2003-07-09 2004-04-23 Windmill rotor comprising multiple separate wind channels
EG2004050245A EG23578A (en) 2003-07-09 2004-05-26 Round honey comb rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2003/000344 WO2005005823A1 (es) 2003-07-09 2003-07-09 Rotor de panal redondo

Publications (1)

Publication Number Publication Date
WO2005005823A1 true WO2005005823A1 (es) 2005-01-20

Family

ID=34043156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000344 WO2005005823A1 (es) 2003-07-09 2003-07-09 Rotor de panal redondo

Country Status (16)

Country Link
US (1) US7244103B2 (es)
EP (1) EP1548277B9 (es)
JP (1) JP4461282B2 (es)
CN (1) CN100419256C (es)
AT (1) ATE329153T1 (es)
AU (1) AU2003304328A1 (es)
BR (1) BR0314169A (es)
CA (1) CA2499514A1 (es)
DE (1) DE60305951T2 (es)
DK (1) DK1548277T3 (es)
EG (1) EG23578A (es)
ES (1) ES2263006T3 (es)
MX (1) MXPA05002174A (es)
MY (1) MY138382A (es)
PT (1) PT1548277E (es)
WO (1) WO2005005823A1 (es)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT505351B1 (de) * 2007-04-05 2009-03-15 Hermann Olschnegger Windrad
CA2690740A1 (en) * 2007-06-13 2008-12-24 Skyron Systems, Inc. Wind turbine blade
US20120257971A1 (en) * 2011-04-11 2012-10-11 Scott Schmutzer WindJet ® Turbine Ring
US20120319403A1 (en) * 2011-05-20 2012-12-20 Fosdick George A Wheel Turbine Rotor
CN103375343A (zh) * 2012-04-17 2013-10-30 罗才德 螺旋管道式风力发电机
USD761948S1 (en) * 2013-11-18 2016-07-19 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan
US20170138338A1 (en) * 2015-10-16 2017-05-18 Augustine Chan Turbinator
WO2017065782A1 (en) * 2015-10-16 2017-04-20 Augustine Chan Turbinator
RS20180564A1 (sr) * 2018-05-15 2019-11-29 Samardzija Nikola Multiplikator energije kretanja vazduha

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB213022A (en) * 1923-01-03 1924-03-27 Charles Esmond Nightingale Improvements in windmills and windmotors
US4080100A (en) * 1976-09-28 1978-03-21 Mcneese Walter C Wind motor
DE2909781A1 (de) * 1979-03-13 1980-09-25 Karlheinz Ohlberg Fluegelrotor, insbesondere fuer windmotoren (windkraftwerke) mit in mindestens 2 konzentrisch aufgeteilte kreisringflaechen
US4289450A (en) * 1978-12-05 1981-09-15 Alberto Kling Rotor for operation in a flow medium
JPS5891376A (ja) * 1981-11-25 1983-05-31 Masao Yasugata 風力タ−ビン
US5711653A (en) * 1994-07-31 1998-01-27 Mccabe; Francis J. Air lifted airfoil

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US984599A (en) 1906-02-24 1911-02-21 Stephane Pichault Apparatus for storing and distributing wind-power.
US1232795A (en) * 1913-05-05 1917-07-10 Green Fuel Economizer Company Circular-disk fan.
US1263473A (en) * 1917-09-25 1918-04-23 Gen Electric Elastic-fluid turbine.
US2503072A (en) * 1945-11-15 1950-04-04 Gen Electric Axial flow impeller
GB1002709A (en) 1964-02-03 1965-08-25 Rolls Royce Improvements in or relating to thrust reversers for jet propulsion engines
US3198423A (en) 1964-07-06 1965-08-03 Francis H Clute Helicoid fan
GB1077196A (en) 1966-04-26 1967-07-26 Rolls Royce Air intake duct for a gas turbine engine
US3783814A (en) 1968-01-23 1974-01-08 C Zovko Thrust augmenting expansion engine
DE2951635A1 (de) * 1979-12-21 1981-07-02 Karlheinz Ing.(grad.) 4220 Dinslaken Ohlberg Windkraftwerk, dessen rotor bei sturm selbstaetig aus dem wind pendelt
US5755557A (en) * 1995-08-03 1998-05-26 Valeo Thermique Moteur Axial flow fan
EP0953774A1 (en) 1998-04-01 1999-11-03 Eaton Corporation Fan assembly having increased fan blade area
US6599085B2 (en) 2001-08-31 2003-07-29 Siemens Automotive, Inc. Low tone axial fan structure
GB2382381A (en) * 2001-11-21 2003-05-28 John Freer Green Improvements in wind turbines
US7581381B2 (en) 2002-06-28 2009-09-01 Vtol Technologies Limited Ducted air power plant
CN1842656B (zh) 2004-02-25 2010-05-12 费利克斯·桑切斯·桑切斯 圆形蜂窝转子
MX2007000734A (es) 2004-10-29 2007-03-30 Felix Sanchez Sanchez Propulsor de chorro de aire.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB213022A (en) * 1923-01-03 1924-03-27 Charles Esmond Nightingale Improvements in windmills and windmotors
US4080100A (en) * 1976-09-28 1978-03-21 Mcneese Walter C Wind motor
US4289450A (en) * 1978-12-05 1981-09-15 Alberto Kling Rotor for operation in a flow medium
DE2909781A1 (de) * 1979-03-13 1980-09-25 Karlheinz Ohlberg Fluegelrotor, insbesondere fuer windmotoren (windkraftwerke) mit in mindestens 2 konzentrisch aufgeteilte kreisringflaechen
JPS5891376A (ja) * 1981-11-25 1983-05-31 Masao Yasugata 風力タ−ビン
US5711653A (en) * 1994-07-31 1998-01-27 Mccabe; Francis J. Air lifted airfoil

Also Published As

Publication number Publication date
DE60305951T2 (de) 2007-01-25
BR0314169A (pt) 2005-07-19
MXPA05002174A (es) 2005-05-23
EP1548277B1 (fr) 2006-06-07
ES2263006T3 (es) 2006-12-01
JP2006526100A (ja) 2006-11-16
CN100419256C (zh) 2008-09-17
AU2003304328A1 (en) 2005-01-28
CA2499514A1 (en) 2005-01-20
JP4461282B2 (ja) 2010-05-12
MY138382A (en) 2009-05-29
PT1548277E (pt) 2006-09-29
US7244103B2 (en) 2007-07-17
DE60305951D1 (de) 2006-07-20
EG23578A (en) 2006-08-17
EP1548277A1 (fr) 2005-06-29
EP1548277B9 (fr) 2006-10-11
US20060182632A1 (en) 2006-08-17
DK1548277T3 (da) 2006-10-09
CN1695007A (zh) 2005-11-09
ATE329153T1 (de) 2006-06-15

Similar Documents

Publication Publication Date Title
CN106150696B (zh) 转子叶片与定子导叶之间的浸入芯部流入口
US5263823A (en) Gas turbine engine impeller having an annular collar platform
EP3480432B1 (en) Modified structural truss for airfoils
WO2005005823A1 (es) Rotor de panal redondo
RU2017130693A (ru) Гидроэлектрическая/гидрокинетическая турбина и способы ее создания и использования
ES2354499T3 (es) Turbina de gas con una corona directriz y con un mezclador.
JP2007529662A (ja) タービンおよびそのためのローター
JP2019060345A5 (es)
EP2299058B1 (en) Aerofoil blade or vane and corresponding gas turbine engine
EP3423719A1 (fr) Groupe moto-ventilateur incorporant un circuit hydraulique de refroidissement d'un fluide caloporteur
JP6110868B2 (ja) 移動する流体からエネルギを再生するための装置
KR970001117B1 (ko) 유체에너지 변환장치
CN207673439U (zh) 一种采用3d打印成型的航空发动机
ES2438511T3 (es) Marco delantero para una estructura de inversor de empuje con rejillas de desviación
EP3048255A1 (en) Airfoil support and cooling scheme
ES2701323T3 (es) Etapa de turbomáquina
EP2050930A1 (fr) Aube refroidie de turbomachine
EP2027015A1 (en) Regenerative vacuum generator for aircraft and other vehicles
US9709069B2 (en) Hybrid drive engine
GB2519502A (en) Boundary layer turbine
ES2328432B1 (es) Dispositivo generador de energia a partir de fenomenos naturales.
WO2009101226A1 (es) Pala modular extrudida
WO2023144427A1 (es) Turbina oblonga
US2914297A (en) Rotor construction
CN115135885A (zh) 支撑框架保持臂

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/002174

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: PV2005-142

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2003304328

Country of ref document: AU

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2499514

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003740502

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2005111768

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020057007027

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038247054

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006182632

Country of ref document: US

Ref document number: 10535984

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2333/DELNP/2005

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: PV2005-142

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 2003740502

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 378129

Country of ref document: PL

WWE Wipo information: entry into national phase

Ref document number: 2005503821

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2003740502

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10535984

Country of ref document: US