WO2005001826A1 - Magnetic field generator, magnetooptical information storing system, and magnetooptical information storage device - Google Patents

Magnetic field generator, magnetooptical information storing system, and magnetooptical information storage device Download PDF

Info

Publication number
WO2005001826A1
WO2005001826A1 PCT/JP2003/008140 JP0308140W WO2005001826A1 WO 2005001826 A1 WO2005001826 A1 WO 2005001826A1 JP 0308140 W JP0308140 W JP 0308140W WO 2005001826 A1 WO2005001826 A1 WO 2005001826A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
magnetic field
magneto
recording
medium
Prior art date
Application number
PCT/JP2003/008140
Other languages
French (fr)
Japanese (ja)
Inventor
Tsuyoshi Matsumoto
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/008140 priority Critical patent/WO2005001826A1/en
Publication of WO2005001826A1 publication Critical patent/WO2005001826A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10534Heads for recording by magnetising, demagnetising or transfer of magnetisation, by radiation, e.g. for thermomagnetic recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/10552Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base
    • G11B11/10554Arrangements of transducers relative to each other, e.g. coupled heads, optical and magnetic head on the same base the transducers being disposed on the same side of the carrier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/1055Disposition or mounting of transducers relative to record carriers
    • G11B11/1058Flying heads

Definitions

  • Magnetic field generator magneto-optical information storage system, and magneto-optical information storage device
  • the present invention provides a magnetic field generator that generates a magnetic field, a magneto-optical information storage device that records and reproduces information on a magneto-optical storage medium on which information is recorded at least by receiving light irradiation and application of a magnetic field, and
  • the present invention relates to a magneto-optical information storage system obtained by integrating a plurality of magneto-optical information storage devices.
  • information recording media such as CD, CD-ROM, CD-R, DVD, PD, M ⁇ , and MD have been widely used as large-capacity recording media for storing audio signals and image signals.
  • magneto-optical storage media on which information is recorded at least by receiving light irradiation and application of a magnetic field are attracting attention as high-density recording media on which information can be rewritten.
  • R & D is being actively conducted.
  • research and development of a magneto-optical information storage device for performing high-speed information reproduction and information storage on such a magneto-optical recording medium have been actively performed.
  • An optical modulation method of recording information on a recording medium by optical modulation is employed.
  • an optical system for condensing light on a recording medium and a magnetic field are generated. It is desirable to have a front illumination type configuration in which the coils to be generated are arranged on the same side as viewed from the recording medium. In this configuration, an optical system is arranged on one surface of the glass substrate, and a spiral is arranged on the other surface. It is common to arrange a magnetic coil in the shape of a circle. In order to perform high-speed recording and reproduction by the magnetic field modulation method, it is necessary to switch the direction of the magnetic field applied to the recording film at a high frequency. With the above configuration, it is possible to reduce the power consumption and to reduce the inductance. A magnetic field coil becomes possible, and a magnetic field coil that can be driven at high speed can be realized.
  • FIG. 1 is a schematic diagram showing the structure of a general magnetic field generator of the front illumination type.
  • an optical lens 72 is disposed on an upper surface of a glass substrate 71, and a dielectric layer 73 is provided on a lower surface opposite to the upper surface.
  • a lens 8 for focusing the laser light L toward the optical lens 72 is provided on the magnetic field generator 7, and the laser light L focused by the lens 8 is applied to a glass substrate 7 1
  • the light is further stopped down by an optical lens 72 provided on the upper surface of the magnetic recording medium 9, passes through the glass substrate 71 and the dielectric layer 73, and irradiates the recording layer 91 of the magnetic recording medium 9.
  • a coil is disposed in the dielectric layer 73. This coil is spirally wound in the direction in which the dielectric layer 73 spreads so as to surround the area where the laser light L is transmitted.
  • FIG. 2 is a diagram of the coil included in the magnetic field generator shown in FIG. 1 when viewed from the optical lens side.
  • the coil 74 shown in FIG. 2 has a shape in which the diameter increases gradually from the inner peripheral end 7401 to the outer peripheral end 7402.
  • the spot diameter of the laser beam when passing through the coil 74 is equivalent to the diameter of a circle C1 shown by a solid line.
  • this coil 74 there is a margin for alignment and the like during assembly of the magnetic field generator.
  • an area larger than the circle C1 having a diameter corresponding to the spot diameter of the laser light is secured as a transmission area through which the laser light can pass. That is, an area of a circle C2 indicated by a dotted line obtained by adding a width M as a margin to a circle C1 having a diameter corresponding to the diameter of the laser beam is secured as a transmission area.
  • this coil 74 has a diameter from the inner peripheral end 7401 toward the outer peripheral end 7402.
  • the shape of the area surrounded by the innermost circle does not become circular, but is hatched to the shape of the circle C2, which is a transmission area, as shown in Fig. 2.
  • the shape is obtained by adding the shape of the region S indicated by.
  • the region through which the laser light can pass is too large, and the coil 74 is larger by the extra region S.
  • the diameter of the coil is as small as possible in order to increase the magnetic field generation efficiency.In the coil 74 shown in FIG. 2, the loss in the magnetic field generation efficiency is reduced by the area S indicated by hatching. Will be.
  • the positioning of the optical lens 72 is performed by positioning the optical lens 72. This is done by aligning the optical axis with the center of the coil.
  • the coil 74 shown in FIG. 2 it is difficult to determine the center of the coil, resulting in poor workability.
  • FIG. 3 is a diagram showing a part of a magnetic field generator in which coils wound in a spiral shape are provided in upper and lower layers.
  • the magnetic field generator 7 shown in FIG. 3 has two layers of coils 741 and 742 disposed in a dielectric layer 73. Each of these coils 741 and 742 spirals in a direction in which the dielectric layer 73 spreads so as to surround a region through which the laser beam passes. Each of these coils 741 and 742 has a shape whose diameter gradually increases from the inner peripheral end toward the outer peripheral end, and is represented by a dotted line obtained by adding the width M as a margin to the spot diameter of the laser beam L. The region indicated by is secured as a transmission region through which the laser light can pass. In FIG.
  • the spot diameter of the upper layer (hereinafter, referred to as the second layer) is smaller than that of the lower layer (hereinafter, referred to as the first layer) in FIG.
  • the coil 742 provided in the layer has a smaller transmission area than the coil 741 provided in the first layer.
  • FIG. 4 is a diagram when the coil of the magnetic field generator shown in FIG. 3 is viewed from the optical lens side.
  • the two coils 741 and 42 shown in FIG. 4 are connected to each other at their inner ends 7411 and 7412, forming one conductor.
  • a protective film is provided on the surface of the coil to protect the coil from corrosion and collision with other objects.
  • the transmission area secured in the center of the coil needs to be optically uniform and transparent.
  • FIG. 5 is a schematic diagram showing, in an enlarged manner, a portion of a conventional front-illumination type magnetic field generator provided with coils.
  • the coil 74 must be completely covered with the dielectric layer 73, and therefore, in the magnetic field generator 7 shown in FIG. 5, the coil 74 is located inside the innermost circumferential portion 7400 of the coil 74.
  • the diameter of the innermost circumferential portion 7403 of the coil is larger than the diameter of the protrusion 711 by the amount of the dielectric layer 73 interposed (Fig. 5). (See r in the figure.) The problem is that the efficiency of magnetic field generation decreases.
  • Figure 6 shows an enlarged view of the portion of a conventional magnetic field generator in which a dielectric material is provided by vacuum evaporation to provide uniform optical characteristics of the protective film covering the coil, in which the coil is provided.
  • FIG. 6 shows an enlarged view of the portion of a conventional magnetic field generator in which a dielectric material is provided by vacuum evaporation to provide uniform optical characteristics of the protective film covering the coil, in which the coil is provided.
  • the optically uniform dielectric layer 73 is formed by vacuum evaporation, so that unlike the magnetic field generator shown in FIG. 5, the projections 7 11 made of a glass material are unnecessary.
  • the dielectric layer 73 extends over the entire surface of the glass substrate 71 on which the coil 74 is provided, and the dielectric layer 73 extends to the laser light L transmission region.
  • FIG. 3 when the coils are provided in the upper and lower two layers, first, the coil 71 of the first layer is formed, and then the dielectric is vacuumed on the surface of the coil 741 of the first layer. After being formed by vapor deposition and covering the first layer coil 741 with a dielectric material, the second layer coil 742 is formed on the dielectric layer. In forming the second layer coil 742, first, in order to make the surface of the dielectric layer covering the first layer coil 741 flat, the surface of the dielectric layer is polished. A second layer coil 7 42 is formed.
  • FIG. 7 is a diagram showing a state before polishing the surface of the dielectric layer formed by vacuum deposition
  • FIG. 8 is a diagram showing a state after polishing the surface of the dielectric layer shown in FIG. It is.
  • the dielectric material P is not sufficiently filled between the radially adjacent circumferential portions 7404 of the coil 74, so that a gap g is generated.
  • This gap g extends to a position higher than the surface of the coil 74, and by polishing, the gap g appears on the surface 731a of the dielectric layer 731 as shown in FIG.
  • the opening gl has occurred. If post-processes such as forming a coil of the second layer are performed on the surface 731a of the dielectric layer where the opening g1 is formed, foreign matter enters through the opening g1 to cause a product defect, Alternatively, the opening g1 adversely affects the formation of the coil pattern of the second layer.
  • the interval w between the adjacent orbiting portions is set to about twice the thickness h of the coil 74.
  • the distance w between adjacent orbiting parts can be increased. The larger the coil, the larger the diameter of the coil as it gets closer to the outer periphery, and the lower the efficiency of magnetic field generation.
  • FIG. 9 is a diagram showing a coil on which a thin dielectric film is formed
  • FIG. 10 is an enlarged view of a region surrounded by a chain line in FIG.
  • FIG. 9 shows upper and lower two-layer coils 741, 742.
  • the first-layer coil 741 is formed, and then a thin dielectric is formed so as to cover the coil 741.
  • a film 732 is formed.
  • a coil pattern of the second layer coil 742 is formed between the radially adjacent circulating portions 7414 of the coil 741.
  • the upper and lower two-layer coils 741 and 742 obtained in this way are placed in the hollow b between the radially adjacent circulating portions 7414 of the first-layer coil 741, and a thin dielectric
  • the radially adjacent portion 7 4 2 4 of the coil 7 42 of the second layer via the body membrane 7 32 is located, and the coil 7 4 1 of the first layer 7 Even if it is 42, the diameter can be small.
  • the corners of the depression b of the thin dielectric film 732 become the weakened portions 7321, and the first layer coil 741 and the second layer coil 7 There is a problem that the insulation between the two is easily broken.
  • the coil 74 is not limited to the coils 741, 742 shown in FIG. 9, and when the coil 74 is energized, the coil 74 generates heat. In general, the electrical resistance of a material increases with increasing temperature. For this reason, if the heat generated in the coil 74 is not efficiently radiated, the coil 74 enters a vicious circle in which its own heat consumption increases its power consumption and further increases its calorific value. Although the coil 74 of the magnetic field generator 7 described in FIG.
  • the resin material can be thermally sensitive and can provide the required magnetic field. There is also a problem that it is difficult to flow a current for the purpose.
  • Patent Document 3 (Patent Document 3) ''
  • Patent Document 4 Patent Document 4
  • Patent Document 5 (Patent Document 5)
  • Patent Document 6 (Patent Document 6)
  • the present invention provides a magnetic field generator that efficiently generates a magnetic field, a magneto-optical storage device including the magnetic field generator, and a magneto-optical information storage system including a plurality of the magneto-optical storage devices.
  • the purpose is to do.
  • a first magnetic field generator according to the present invention that achieves the above object has a first conductor whose inner edge is substantially circumscribed along a predetermined shape that is bilaterally symmetric,
  • a second conductor spirally circling the outside of the first conductor in the same direction as the circling direction of the first conductor in the same plane as the plane on which the first conductor circulates;
  • a third conductor that connects a circumferential end of the first conductor and a circumferential start of the second conductor.
  • the inner peripheral shape defined by the first conductor since the inner peripheral shape defined by the first conductor is a symmetrical shape, it does not include an extra area S as shown in FIG.
  • the diameter of the coil composed of the second conductor and the third conductor is reduced, and a magnetic field can be generated efficiently.
  • the diameter of the coil decreases, the inductance of the coil also decreases, and the driving frequency of the magnetic field generator increases. be able to.
  • the inner peripheral shape determined by the first conductor is a symmetrical shape, the center of the first conductor can be easily determined.
  • the first conductor has a predetermined width portion which is circulated from a start end in a circling direction of the first conductor with an inner edge and an outer edge kept at equal intervals, and an outer edge is formed on the inner edge. It is preferable that the widened portion is formed so as to gradually extend outward and extend from the end of the predetermined width portion in the circumferential direction to the end of the first conductor in the circumferential direction.
  • the first conductors are connected by a smooth curve, and the periphery of the first conductors can be easily filled with an insulator or the like, which facilitates manufacturing.
  • the second conductor has a first circling portion circling at an equal interval with the predetermined width portion, and circling at an equal interval with an outer edge of the widening portion. It is also preferable that the second circling portion is alternately provided.
  • the diameter of the second conductor is minimized, a magnetic field can be generated more efficiently, and the driving frequency of the magnetic field generator can be further increased.
  • a second magnetic field generator of the present invention that achieves the above object is a dielectric layer made of alumina,
  • the gap remains closed as long as the tip of the created gap is prevented from appearing on the surface. It was found that there was no problem in this state, and the gap was narrowed to prevent the tip of the void from appearing on the surface.
  • the alumina does not enter between the adjacent circulating portions too much, and a problem occurs in insulation between the adjacent circulating portions. On the other hand, if it exceeds 0.8 times, the tip of the void tends to appear on the surface.
  • the second magnetic field generator of the present invention since the interval between the orbital portions is narrowed, the diameter of the conductor is reduced, and a magnetic field can be generated efficiently.
  • the inductance of the conductor also decreases. Can be increased.
  • the dielectric layer is made of alumina, the heat dissipation is higher than that of the dielectric layer made of a resin material.
  • the conductor has an edge extending in a circumferential direction with a chamfer. It is preferred that it is done.
  • the interval between the orbital portions is narrowed, it is difficult to insert alumina between the orbital portions, but this makes it easier to insert alumina.
  • the dielectric layer is provided on a glass substrate surface
  • the magnetic field generator has an aspect in which an adhesion film for increasing the adhesion between the conductor and the dielectric layer is provided on the surface of the conductor opposite to the glass substrate.
  • an adhesion film for increasing the adhesion between the conductor and the dielectric layer is provided on the surface of the conductor opposite to the glass substrate.
  • the conductor is inclined such that an outer edge thereof is separated from a second peripheral circuit part radially adjacent to the innermost peripheral part of the innermost periphery. It has an end connected to the inner circumference part,
  • the diameter of the magnetic field generator is calculated from the midpoint at the boundary between the innermost circumference part and the end part, which divides the distance between the innermost circumference part and the second circumference part into two equal parts.
  • L be the distance to the center of a circle that is 1.5 times the thickness of the body and touches both the outer edge of its end and the inner edge of its second orbital, and
  • 2 X d> L holds when the distance from to the conductor surface is d. It is also preferable.
  • a first magneto-optical information storage system which achieves the above object, is a disk-shaped optical disk capable of recording and reproducing information, and at least performing information recording by receiving light irradiation and application of a magnetic field.
  • a medium storage unit in which a plurality of magnetic storage media are stored; a recording / reproducing unit for recording and / or reproducing information on / from the magneto-optical storage medium;
  • a plurality of magneto-optical information storage devices each including a medium moving unit that moves a magnetic storage medium, and a blade housing that integrally holds the medium storage unit, the medium moving unit, and the recording / reproducing unit;
  • a control unit that controls recording and / or reproduction of information in each of the plurality of magneto-optical information storage devices mounted on the system housing,
  • the recording / reproducing unit is
  • a first conductor whose inner edge is substantially circumnavigated along a predetermined shape that is symmetrical left and right, and the outside of the first conductor is defined as the circling direction of the first conductor in the same plane as the plane on which the first conductor circulates.
  • a magnetic field generator having a second conductor spirally wound in the same direction, and a third conductor connecting a circumferential end of the first conductor to a circumferential start of the second conductor;
  • a second magneto-optical information storage system which achieves the above object, has a disk-shaped optical system capable of recording and reproducing information, and at least performing information recording by receiving light irradiation and application of a magnetic field.
  • a medium storage unit in which a plurality of magnetic storage media are stored; a recording / reproducing unit for recording and / or reproducing information on / from the magneto-optical storage medium; and a light source between the medium storage unit and the recording / reproducing unit.
  • a plurality of magneto-optical information storage devices each including a moving unit, a blade housing that integrally holds the medium storing unit, the medium moving unit, and the recording / reproducing unit; and the plurality of magneto-optical information storages.
  • a control unit that controls recording and / or reproduction of information in each of the plurality of magneto-optical information storage devices mounted on the system housing,
  • the recording / reproducing unit is
  • the first magneto-optical information storage device of the present invention that achieves the above object has a disk-shaped magneto-optical device capable of recording and reproducing information, and at least performing information recording by receiving light irradiation and application of a magnetic field.
  • a medium storage unit in which a plurality of the magneto-optical storage media are stored
  • a recording / reproducing unit that records and / or reproduces information on the magneto-optical storage medium; a medium moving unit that moves the magneto-optical storage medium between the medium storage unit and the recording / reproducing unit;
  • a blade housing in which the medium storage unit, the medium moving unit, and the recording / reproducing unit are arranged in a line, and the medium housing unit, the medium moving unit, and the recording / reproducing unit are integrally held;
  • a system housing in which a plurality of the information storage devices are mounted, a connection unit for detachably connecting the information storage device,
  • the recording / playback unit A first conductor whose inner edge is substantially circumnavigated along a predetermined shape that is symmetrical left and right, and in the same plane as the plane around which the first conductor circulates, the outside of the first conductor is defined as the circling direction of the first conductor.
  • a magnetic field generator having a second conductor spirally wound in the same direction, and a third conductor connecting a circumferential end of the first conductor to a circumferential start of the second conductor;
  • a second magneto-optical information storage device of the present invention that achieves the above object is a disk-shaped magneto-optical device capable of recording and reproducing information, and at least recording information by receiving light irradiation and application of a magnetic field.
  • a medium storage unit in which a plurality of the magneto-optical storage media are stored
  • a recording / reproducing unit that records and / or reproduces information on the magneto-optical storage medium; a medium moving unit that moves the magneto-optical storage medium between the medium storage unit and the recording / reproducing unit;
  • a blade housing in which the medium storage unit, the medium moving unit, and the recording / reproducing unit are arranged in a line, and the medium housing unit, the medium moving unit, and the recording / reproducing unit are integrally held;
  • a system housing in which a plurality of the information storage devices are mounted, a connection unit for detachably connecting the information storage device,
  • the recording / reproducing unit is
  • magneto-optical information storage system and the magneto-optical information storage device according to the present invention, only the basic form is shown here, but this is simply to avoid duplication.
  • the magneto-optical information storage system and the magneto-optical information storage device described above include not only the above-described basic mode but also various modes corresponding to the above-described modes of the magnetic field generator.
  • a magnetic field generator that efficiently generates a magnetic field
  • a magneto-optical storage device including the magnetic field generator
  • a magneto-optical information storage system including a plurality of the magneto-optical storage devices
  • FIG. 1 is a schematic diagram showing the structure of a general magnetic field generator of the front illumination type.
  • FIG. 2 is a diagram of the coil included in the magnetic field generator shown in FIG. 1 when viewed from the optical lens side.
  • FIG. 3 is a diagram showing a part of a magnetic field generator in which coils wound in a spiral shape are provided in upper and lower layers.
  • FIG. 4 is a diagram when the coil of the magnetic field generator shown in FIG. 3 is viewed from the optical lens side.
  • FIG. 5 is a schematic diagram showing, in an enlarged manner, a portion of a conventional front-illumination type magnetic field generator provided with coils.
  • Fig. 6 is a schematic diagram showing an enlarged view of the part where a coil is installed in a conventional magnetic field generator where a dielectric material is installed by vacuum evaporation to make the optical characteristics of the protective film covering the coil uniform.
  • FIG. 7 is a diagram showing a state before polishing the surface of the dielectric layer formed by vacuum deposition.
  • FIG. 8 is a diagram showing a state after the surface of the dielectric layer shown in FIG. 7 has been polished.
  • FIG. 9 is a diagram showing a coil on which a thin dielectric film is formed.
  • FIG. 10 is an enlarged view of a range surrounded by a chain line in FIG.
  • FIG. 11 is an external view showing each embodiment of the optical information storage system and the optical information storage device of the present invention.
  • FIG. 12 is a diagram showing details of the magazine.
  • FIG. 13 is a diagram illustrating a hardware structure of the blade device.
  • FIG. 14 ⁇ is a functional block diagram illustrating a functional structure of the blade device.
  • FIG. 15 is a diagram showing the structure near the head of the drive.
  • FIG. 16 is a diagram showing a part of the magnetic field generator shown in FIG.
  • FIG. 17 is a diagram showing a state of the finishing processing of the first coil.
  • FIG. 18 is a view showing a state before polishing the surface of the alumina layer formed by vacuum evaporation.
  • FIG. 19 is a view showing a state after polishing the surface of the alumina layer shown in FIG. 18.
  • FIG. 20 is a view showing cracks generated between the orbital portions.
  • FIG. 21 is a diagram showing a coil in which a measure has been taken to prevent the alumina between adjacent orbiting portions from peeling off.
  • FIG. 22 is a diagram of the coil of the magnetic field generator shown in FIG. 16 when viewed from the optical lens side.
  • FIG. 23 is a diagram illustrating the first coil when viewed from the optical lens side.
  • FIG. 24 is a diagram showing how the coil and the optical lens are aligned.
  • FIG. 25 is an enlarged view of the inner peripheral end portion of the first coil shown in FIG. 23 from the optical lens side.
  • FIG. 26 is a diagram when the inner peripheral end portion of the first coil shown in FIG. 23 is sectioned in the direction in which the coil rotates.
  • FIG. 27 is a diagram illustrating a coil whose inner peripheral shape is elliptical.
  • FIG. 28 is a diagram showing a coil whose inner peripheral shape is an ellipse.
  • FIG. 11 is an external view showing each embodiment of the optical information storage system and the optical information storage device of the present invention.
  • FIG. 11 shows a blade device 10 corresponding to one embodiment of the optical information storage device of the present invention using a magneto-optical (MO) disk as an example of the optical storage medium of the present invention
  • An aggregate system 20 corresponding to one embodiment of the optical information storage system of the present invention, in which 10 blade devices 10 are incorporated in the figure, is shown.
  • the housing 11 of the blade unit 10 has a length that is more than three times the diameter of the MO disk, a width slightly larger than the diameter of the M0 disk (height in this figure), and a greater diameter than the diameter of the MO disk.
  • a magazine 12 containing a plurality of MO disks is removably arranged at one end of the housing 11.
  • a plurality of blade devices 10 are mounted in the housing 21 of the collective system 20 so that they can be freely inserted and removed.
  • the magazine 12 of each blade device 10 is equipped with the blade device 10 in the housing of the integrated system 20. It is detachable even when inserted into the body 21.
  • the collective system 20 is also provided with a control device 22 that controls recording and reproduction of information in each of the plurality of blade devices 10.
  • Such a collective system 20 is a compact and large-capacity storage system in which a plurality of blade devices 10 are compactly housed in a housing 21.
  • the capacity can be easily expanded by increasing the number of M ⁇ disks and blade devices 10, and maintenance can be easily performed by attaching / detaching or replacing the magazine 12 or the blade device 10.
  • FIG. 12 is a diagram showing details of the magazine.
  • FIG. 12 a perspective view showing a state in which a plurality of MO disks 13 are stored in the magazine 12 is shown, and the area P 2 surrounded by a chain line is enlarged.
  • a cross-sectional view is shown in part (B) of FIG.
  • a removable FRAM 14 is inserted into the magazine 12, and the terminal 14 a of the FRAM 14 contacts an internal terminal 12 a provided in the magazine 12, and the internal It is electrically connected to the external terminal 12b connected to the terminal 12a.
  • the terminal 1 2b is electrically connected to the internal wiring of the blade device 10 when the magazine 12 is mounted on the blade device 10 shown in FIG. I4 can be read and written.
  • the storage location of each MO disk 13 in the magazine 12 is recorded in the FRAM 14.
  • a MO disk 13 of a type capable of recording information on both front and back surfaces is used, and a recording film is provided on both front and back surfaces of the MO disk 13. Irradiation of light and application of a magnetic field are performed on the recording film on each of the front and back surfaces, as will be described in detail later, and information is recorded and reproduced.
  • Each blade device 10 shown in FIG. 11 has a structure capable of simultaneously accessing the front and back of the MO disk 13.
  • FIG. 13 is a diagram showing a hardware structure of the blade device.
  • the blade device 10 also shown in FIG. 11 includes the above-mentioned magazine 12 and a drive 16 for recording and reproducing information on and from the M ⁇ disk 13 in a housing 11.
  • a changer 15 for moving the MO disk 13 between them is provided between the magazine 12 and the drive 16.
  • the drive 16 corresponds to an example of a recording / reproducing unit according to the present invention
  • the changer 15 corresponds to an example of a medium moving unit according to the present invention.
  • the blade device 10 is a compact device in which the magazine 12, the changer 15, and the drive 16 are housed in the housing 11.
  • the storage capacity can be easily expanded by increasing the number of disks 13.
  • maintenance can be easily performed by attaching and detaching and replacing the magazine 12 and the MO disk 13.
  • One end of the blade device 10 opposite to the magazine 12 is provided with an interface connector 17a for transferring data between the blade device 10 and the outside.
  • the connector 17a is inserted into the housing 21 of the collective system 20 shown in FIG. 1, the connector 17a is joined to the connector of the collective system 20.
  • This connector 17a corresponds to an example of the connecting portion according to the present invention.
  • Changer 15 is a machine that inserts and removes MO disk 13 from magazine 12 It has a function to move the MO disk 13 up and down in the figure, and a function to set the M ⁇ disk 13 into and out of the drive 16.
  • the housing 11 in the present embodiment has a length that is three times or more the length of the M ⁇ disk 13, but the changer 15 and the drive 16 are The M ⁇ disk 13 on 5 and the MO disk 13 loaded in the drive 16 can be arranged in a positional relationship such that they overlap each other.
  • the length of the blade housing according to the present invention is: It is preferable that the diameter is at least 2.5 times the diameter of the optical storage medium.
  • FIG. 14 is a functional block diagram showing the functional structure of the blade device.
  • the blade device 10 includes the magazine 12, the changer 15, and the drive 16, and further includes a control unit 18 that controls the changer 15 and the drive 16, and the blade device 1.
  • a control unit 18 that controls the changer 15 and the drive 16, and the blade device 1.
  • This interface 17 is selected from well-known high-speed serial interfaces such as IEEE 1394, USB, and serial ATA, and the detailed description is omitted. I do.
  • the drive 16 is equipped with a spindle motor 16 1 that holds and rotates the MO disk, and a head 16 2 that irradiates light to the M ⁇ disk to record and reproduce information. Two heads 16 2 are provided for the first side and the second side (front and back) of the MO disk, respectively.
  • Drive 16 also has read / write channels 163 for the first and second sides, respectively, and a first-in first-out (FIFO) memory 1664 that acts as a buffer. I have.
  • designation information for designating an MO disk is input from outside the device via a path (not shown) via the interface 17.
  • the control unit 18 finds the designated MO disk from among a plurality of M ⁇ disks stored in the magazine 12 based on the designated information, and changes the changer 15 Is instructed to set the found M ⁇ disk from magazine 12 to drive 16.
  • the changer 15 takes out the M ⁇ disk specified by the control unit 18 from the magazine 12 and sets it in the drive 16.
  • the control unit 18 determines the M ⁇ disk to be accessed based on the stored information Since it is possible to find a disk, it is possible to quickly start access even when, for example, the magazine 12 is exchanged.
  • the blade device 10 is provided with an access path 19 for directly accessing the FRAM 14 from the outside of the blade device 10 bypassing the control unit 18. Even when the power is turned off, the stored information of FRAM 14 can be externally confirmed through this access path 19.
  • FIG. 15 is a diagram showing the structure near the head of the drive.
  • the drive 16 is provided with two heads 16 2, and FIG. 15 shows a structure near the two heads 16 2. These two heads 16 2 are arranged with a MO disk 13 held and rotated by a spindle motor 16 1 interposed therebetween, and each head 16 2 is fixed to a drive base (not shown). Fixed assembly 32 and a movable assembly (carriage) 31 that can move in the radial direction of the MO disk.
  • the fixed assembly 32 includes a laser diode 321, which is an example of a light source according to the present invention, which generates a laser beam used for reading and writing information, and light reflected by the MO disk 13
  • a laser diode 321 which is an example of a light source according to the present invention, which generates a laser beam used for reading and writing information, and light reflected by the MO disk 13
  • a built-in photodetector 322 that detects a signal corresponding to information stored in the MO disk 13
  • various optical elements are also built in.
  • the moving assembly 31 1 moves in the radial direction of the MO disk 13, irradiates a laser beam to a desired position on the MO disk 13, applies a magnetic field, and is further reflected by the MO disk 13. It has the function of returning light to the fixed assembly 32.
  • the moving assembly 31 includes a carriage base 33, a rising mirror 34 for reflecting laser light, a magnetic field generator 40 having a coil, and a laser beam focused toward the magnetic field generator 40. It has a condenser lens 35 and a lens actuator 36 that moves the condenser lens 35.
  • FIG. 16 is a diagram showing a part of the magnetic field generator shown in FIG.
  • the magnetic field generator 40 shown in FIG. 16 has a glass substrate 41 provided with an optical lens (not shown) on one surface.
  • the surface of the glass substrate 41 opposite to the surface on which the optical lens is provided is a flat surface, and the dielectric layer 43 is formed on the flat surface.
  • the optical lens faces the condenser lens 35 shown in FIG. 15 and the dielectric layer 43 faces the MO disk 13 set in the drive 16 shown in FIG. So the moving assembly is deployed in 31.
  • the laser beam L narrowed down by the condenser lens 35 is further narrowed down by the optical lens provided on the glass substrate 41, passes through the glass substrate 41 and the dielectric layer 43, and is Irradiated on 13.
  • the dielectric layer 43 shown in FIG. 16 is made of alumina having relatively high thermal conductivity, and its thermal conductivity is about 2 OW / mK. Inside this dielectric layer 43, two layers of coils 441 and 442 are provided. Each of these coils 4 41 and 4 42 is spirally wound so as to surround a region through which the laser light L passes.
  • a coil spirally wound in the same plane on the side of the glass substrate 41 is referred to as a first coil 441, and the same coil that is further away from the glass substrate 41 than the first coil 441.
  • the coil that spirals around inside is referred to as a second coil 442.
  • the coils 44 1 and 44 2 are covered with alumina having a higher thermal conductivity than a general resin material, so that the coils 4 4 1 and 4 4 2 The heat generated by the coil is easily dissipated, preventing damage to the coil and making it easy to pass current to obtain the required magnetic field. ⁇
  • the area indicated by the dotted line obtained by adding the width M as a margin to the spot diameter of the laser beam L is the laser beam L.
  • the laser beam L Is secured as a transmissive area through which the light can pass.
  • Alumina exists in the transmission region, and the alumina, that is, the dielectric layer 43 is formed by vacuum evaporation.
  • the optical properties of alumina formed by vacuum evaporation are uniform, and therefore, uniform optical properties are guaranteed even in the transmission region.
  • the innermost circumference of the coil 4 4 1 3, 4 4 2 3 is larger than the coil 74 provided in the magnetic field generator 7 shown in FIG. 5. Can be made smaller, and a magnetic field can be generated efficiently.
  • first coil 4 41 and the second coil 4 42 shown in FIG. 16 First, after forming the first coil 441, an alumina layer made of alumina is formed on the surface of the first coil 441 by vacuum evaporation, and the first coil 441 is covered with alumina. The surface of the layer is flattened by polishing, and then the second coil 442 is formed.
  • FIG. 17 is a diagram showing a state of the finishing processing of the first coil.
  • an electrolytic plating method is used. A region other than the coil portion is covered with a resist on a glass substrate 41 on which a thin electrode film has been formed in advance. The cross section of the resist is formed in a rectangular shape by the photolithography technique at this time. By performing the electroplating in this state, a conductor such as copper is selectively formed in a portion of the electrode film that is not covered with the resist. After the plating, the resist is removed, and the electrode film portion where the conductor is not formed by etching is removed to obtain a coil in which the conductor 4 4 18 with a rectangular cross section shown in Fig. 17 spirals around. . Next, a mask 950 shown in FIG.
  • the edge 4 4 18 b without the mask 950 is cut more than the center where the mask is applied, and extends in the circumferential direction of the conductor 4 18 ⁇ 4 4 18 b is chamfered (See the dotted line in the figure).
  • the dielectric layer is formed by vacuum deposition due to the chamfering of the edges 4 4 18 b extending in the circumferential direction of the conductor 4 4 18, the alumina is used to form a conductor ( It is easy to get in between
  • FIG. 18 is a diagram showing a state before polishing the surface of the alumina layer formed by vacuum evaporation
  • FIG. 19 is a diagram showing a state after polishing the surface of the alumina layer shown in FIG. 18. It is.
  • the alumina A1 is not sufficiently filled between the radially adjacent orbiting portions 4414 of the first coil 441, so that a gap g is generated.
  • the tip of this gap g Even if the surface of the alumina layer 431 is polished at a position lower than the surface 41a of the first coil 441, as shown in FIG. It does not appear on the polished surface 431a, and the gap g remains closed.
  • the interval w between the orbiting portions 4 4 1 1 adjacent in the radial direction is constant, and the interval w is 0 mm of the thickness h of the first coil 4 4 1. . Equivalent to 6 times.
  • the gap w between the radially adjacent circling portions is set to be as wide as possible in order to completely prevent the formation of a gap between the radially adjacent circling portions of the coil.
  • the magnetic field generator according to the present embodiment even if a gap occurs, the gap remains closed as long as the tip of the created gap does not appear on the surface after polishing.
  • the tip of the gap g becomes the surface of the first coil 4 4 1 a It is prevented from extending to a higher position.
  • the interval w is set to 0.6 times the thickness of the coil, but is not limited to this, and may be set to 0.4 times or more and 0.8 times or less. If it is less than 0.4 times, the alumina does not enter too much between the adjacent circulating portions 4 4, and a problem occurs in insulation between the adjacent circulating portions. On the other hand, if it exceeds 0.8 times, the tip of the gap g extends to a position higher than the alumina surface 431a, and an opening occurs after polishing.
  • the interval between the circumferentially adjacent circling portions is constant, and
  • the interval w corresponds to 0.6 times the thickness of the second coil 442.
  • the diameter of the coil is reduced by narrowing the interval between the orbital portions adjacent to each other in the radial direction of the coil, so that the magnetic field is generated efficiently and The inductance is also reduced, and the driving frequency can be increased.
  • the formation of the second coil 442 is performed in the same manner as the formation of the first coil 441.
  • the interval between the orbital portions of the coil that are adjacent in the radial direction is narrower than before.
  • cracks may occur due to the difference in the coefficient of thermal expansion.
  • FIG. 20 is a diagram showing cracks generated between the orbital portions.
  • the distance between the orbital portions 4404' that are adjacent in the radial direction is less than 0.4 times the thickness of the coil 44 '. The smaller this spacing, the thinner the thickness of alumina between adjacent circulating portions 4404 '.
  • the coil 44' When current is applied to generate a magnetic field in the coil 44 ', the coil 44' generates heat and its temperature rises. There is a difference in the coefficient of thermal expansion between the coil 44 'and alumina, and this difference in coefficient of thermal expansion causes a crack f as shown in Fig.
  • the alumina covering the orbital portion 4404 ' may come off and the surface 44'a of the coil may be exposed.
  • the problem of this crack f is a problem that remains even if the distance between the circling parts adjacent in the radial direction is more than 0.4 times the thickness of the coil, and prevents the alumina in the circulating part from peeling off It is preferable to take countermeasures.
  • FIG. 21 is a diagram showing a coil in which measures have been taken to prevent the alumina in the orbiting portion from peeling off.
  • an adhesion film 63 for increasing the adhesion to alumina is formed on the surface 61a of the coil 61 shown in FIG. 21, that is, on the surface on the side opposite to the glass substrate 62.
  • the adhesion film 63 is, for example, a film made of chromium or titanium and having a thickness of about several hundred A. Even if a crack f occurs as shown in FIG. 20, in the magnetic field generator having the adhesion film 63 formed thereon, the alumina covering the coil 61 is tied up by the adhesion film 63 to prevent the alumina from falling off.
  • FIG. 22 is a diagram when the coil of the magnetic field generator shown in FIG. 16 is viewed from the optical lens side.
  • the first coil 441 and the second coil 442 shown in FIG. 22 are connected to each other at portions overlapping each other near the inner peripheral ends 4411 and 4421 to form one conductor.
  • the inner edges 4413a and 4423a of the innermost circumferential portions 4413 and 4423 are formed along the true circle regardless of the first coil 441 or the second coil 442. It is a round of the circle. That is, each of the inner edges 4413a and 4423a is formed by making substantially one round of the predetermined shape along the left-right symmetric predetermined shape. Therefore, each of the innermost circumferential portions 4413 and 4423 corresponds to an example of the first conductor according to the present invention.
  • the description will be focused on the first coil 4 41, but the description here is also applicable to the second coil 4 42.
  • FIG. 23 is a diagram illustrating the first coil when viewed from the optical lens side.
  • the spot diameter of the laser beam when passing through the first coil 4 41 shown in FIG. 23 corresponds to the diameter of the circle C 1 shown by the solid line.
  • an area larger than a circle C1 having a diameter corresponding to the spot diameter of the laser light is secured as a laser light transmission area. That is, an area of a circle C2 indicated by a dotted line obtained by adding a margin to a circle C1 having a diameter corresponding to the diameter of the laser light is secured as a transmission area.
  • the inner edge 4 4 13 a of the innermost peripheral portion 4 4 13 of the first coil 4 41 is formed by substantially making one round of the circle C 2 along the circle C 2 corresponding to this transmission area And its inner edge 4 4 1 3a approaches the circle C 2 to its limit. Therefore, unlike the coil 74 shown in FIG. 2, the first coil 441 shown in FIG. 23 does not include the extra area S shown in FIG. It generates a magnetic field more efficiently than 4. Also, the inductance of the conductor is reduced, the driving frequency of the magnetic field generator 40 in the present embodiment can be increased, and high-speed access to the MO disk is possible. In the first coil 441, shown in Fig. 23, the current is reduced by about 2 to 3% and the power consumption is reduced by about 4 to 6%, depending on the wire width and the number of turns of the coil. The inductance is reduced by about 10%.
  • the inner edge 4 4 13 a of the innermost circumference 4 4 13 is substantially one round of the circle C 2 along the circle C 2, the center of the first coil 4 4 1
  • the optical lens is positioned at the time of assembling the magnetic field generator shown in FIG. 16, it is easy to align the optical axis of the optical lens with the center of the first coil 441, thereby improving workability. Is improved.
  • FIG. 24 is a diagram showing how the coil and the optical lens are aligned.
  • a glass substrate 41 on which a coil 44 is formed is placed between the opposed microscopes 90 1 and 90 2, and an optical lens 4 2 is placed on the glass substrate 41.
  • the microscope 90 1 on the optical lens 42 side detects the position of the optical lens 42
  • the microscope 90 2 on the glass substrate 41 side detects the position of the coil 44.
  • the glass substrate 41 and the optical lens 4 2 are adjusted so that the optical axis of the optical lens 42 matches the center of the coil 44 (see the dashed line in the figure). Is moved (see the arrow in the figure), and after positioning, the optical lens 42 is fixed to the glass substrate 41 using an ultraviolet-curing adhesive or the like.
  • the positioning of the coil and the optical lens is not limited to the method described with reference to FIG. 24, but usually the positioning is often performed based on the shape of the inner circumference of the coil, as shown in FIG. 23.
  • the positioning can be performed easily and accurately. As a result, it is possible to underestimate a margin in consideration of an error in the alignment between the coil and the optical lens, and to reduce the inner diameter of the coil by reducing the margin.
  • the innermost circumference 4 4 13 shown in FIG. 23 has an inner edge 4 4 13 a and an outer edge 4 4 13 b at equal intervals, and the inner edge 4 4 1 1 e to 5 Z Predetermined width part 4 4 1 3-1, which has circulated to a position of about 6 laps, and predetermined width part 4 4 1 3-1, while the outer edge 4 4 13 b gradually expands outward with respect to the inner edge 4 4 13a And a widened portion 4 13-2 circulating from the end in the circumferential direction to the end of the innermost circumferential portion 4 13.
  • the widened portion 4 4 1 3-2 has a circumference of about 1/6.
  • the innermost peripheral portion 4 4 13 is connected by a smooth curve, and the periphery of the innermost peripheral portion 4 4 13 is easily filled with alumina, which facilitates production.
  • the first coil 4 41 shown in FIG. 23 has the innermost peripheral portion 4 4 13 and the innermost peripheral portion 4 4 13 in the same plane as the plane around which the first coil 4 4 Spiral part 4 4 1 5 Spiral part 4 4 1 5 spiraling in the same direction as the innermost part 4 4 13 It consists of a connecting part 4 4 16 connecting the end in the circumferential direction of 4 13 and the start of the spiral in 4 4 15, and the spiral part corresponds to an example of the second conductor according to the present invention.
  • the connection portion 4 4 16 corresponds to an example of the third conductor according to the present invention.
  • the spiral portion 4 4 1 5 is composed of a first orbital portion 4 4 1 5—1 and an outer edge 4 4 1 3—2 of which a predetermined width portion 4 4 1 3—1 is equally spaced and a widened portion 4 4 1 3—2. It has alternately 3-2a and second circulating portions 4 4 1 5-2 which are circulated at equal intervals. In this way, by tracing the shape of the innermost circumferential portion 4 4 13 after the second round, the radial position approaches the point of application of the magnetic field. In this case, the generation efficiency of the magnetic field has been further enhanced.
  • FIG. 25 is an enlarged view of the inner peripheral end of the first coil shown in FIG. 23 from the optical lens side
  • FIG. 26 is an inner peripheral end of the first coil shown in FIG.
  • FIG. 4 is a diagram when an end portion is sectioned in a circumferential direction of the coil.
  • the innermost peripheral portion 4 4 13 is divided into an inner peripheral end 4 4 11 and a peripheral portion connected to the inner peripheral end 4 4 1 1.
  • the inner circumference part 51 will be referred to as the inner circumference part 51, and the circumference part adjacent to the innermost circumference part 51 in the radial direction will be referred to as the second circumference part 52.
  • the inner peripheral end portion 4411 of the first coil is such that an outer edge 4411a is inclined away from the second circular portion 52.
  • the distance between the innermost peripheral portion 51 and the second peripheral portion 52 at the boundary between the innermost peripheral portion 51 and the inner peripheral end portion 4411 is determined. From the midpoint A where the diameter is bisected, the diameter is 1.5 times the thickness h of the first coil 4 41 and the outer edge 4 4 1 1 a of the inner peripheral end 4 4 1 1 a and the second round
  • L be the distance to the center B of the circle C 3 that touches both the inner edge 52 a of the orbiting portion 52 and L, as shown in FIG. 26, from the surface 43 a of the dielectric layer 43. The distance to the surface 4 4 1 a of one coil 4 4 1 is d.
  • a relationship of 2 X d> L is established. If the relationship of 2 X d> L is not established, the tip of the gap g ′ extending between the innermost orbital portion 51 and the second orbital portion 52 is indicated by a one-dot chain line in FIG. And appear on the polished surface of the layer made of alumina, that is, on the surface 43a of the dielectric layer 43, and an opening gl 'occurs.
  • the inside of the gap g ' is in a vacuum state immediately after the formation of the dielectric layer 43, and the gap g' is filled with the abrasive (slurry) and the like at the moment when it appears on the surface by polishing. May be sucked into.
  • Inhaled abrasive can cause corrosion of the coil.
  • a resist is applied on the surface 43a where the opening gl 'is formed and the temperature is raised to dry the applied resist, the air in the gap g' expands and the opening g1 ' Air may blow out and create bubbles in the resist.
  • the exposure of the coil pattern is insufficient when the coil pattern is exposed, resulting in an insufficient amount of exposure.
  • the bubble portion remains as it is, making it impossible to form a proper pattern.
  • the gap g is formed by the dielectric layer 43 being clogged as indicated by the arrow in FIG. 26.
  • the growth of ′ is suppressed, and the gap g ′ does not appear on the surface 43 a of the dielectric layer 43 (see the portion shown by the solid line).
  • FIG. 23 a modified example of the first coil 441 shown in FIG. 23 will be described with reference to FIGS. 27 and 28.
  • FIG. 27 a modified example of the first coil 441 shown in FIG. 23 will be described with reference to FIGS. 27 and 28.
  • FIG. 27 is a diagram illustrating a coil having an elliptical inner peripheral shape
  • FIG. 28 is a diagram illustrating a coil having an elliptical inner peripheral shape.
  • the inner edge 6 4 13 a of the innermost circumferential portion 6 4 13 a is substantially one round of the ellipse along the ellipse.
  • the coil 65 shown in FIG. 28 has an inner edge 6513 a of the innermost peripheral portion 6513 a that extends along an ellipse that is a shape that connects two semicircles by a straight line. It is a round of the circle.
  • the inner peripheral shape of the coil is such an ellipse or an ellipse.
  • the diameter of the coil is made larger than necessary by adjusting the eccentric direction of the laser beam (the direction of the tracking support) to the major axis direction of the inner peripheral shape. It becomes unnecessary.
  • both coils 64 and 65 shown in Fig. 27 and Fig. 28 the inner peripheral shape is symmetrical to the left and right, making it easy to find the center of the coil, and the workability of positioning the coil and optical lens Is improved. Also, these coils 64 and 65, like the first coil 441 shown in FIG. 23, do not include the extra area S shown in FIG. A magnetic field is generated more efficiently than the coil 74. Further, in each of the coils 64, 65, as in the case of the first coil 441, shown in FIG.
  • the innermost orbital portions 641, 13 and 6513 and the spiral portion 64 It has 15 6 5 15 and connecting portions 6 4 16 6 5 16 and is the area indicated by the arrow in the figure among the innermost circumferential portions 6 4 13 3 and 65 13
  • the portion that enters is equivalent to the widened portion 4 4 1 3—2 of the first coil 4 41 shown in FIG. 23, and the portion outside that region is equivalent to the predetermined width portion 4 4 1 3—1.
  • the spiral portions 6415 and 6515 the portion that falls within the region indicated by the arrow in the figure is the second orbital portion 4411 referred to as the first coil 441 shown in FIG. 5-2, and the portion outside the area corresponds to the first orbital section 4 4 15 -1.
  • the magnetic field generator having the upper and lower two-layer coils has been described.
  • the present invention can be applied to a magnetic field generator having a coil or a magnetic field generator having a multilayer coil of three or more layers.
  • the efficiency of generating the magnetic field of the coil can be increased.
  • the inner circumference of the coil when the coil and the optical lens are aligned, it is easy to use the inner circumference of the coil as a reference, thereby improving the accuracy of the alignment and reducing the margin.
  • the inner diameter of the coil can be reduced as much as the margin is reduced, and the magnetic field generation efficiency is further increased.
  • the inductance of the coil is reduced, and the coil can be driven at a higher frequency.
  • the distance between the coil conductors to 0.4 to 0.8 times the thickness of the coil and forming a dielectric layer made of alumina by vacuum deposition, problems such as heat and insulation characteristics may occur. Without this, the diameter of the coil can be made smaller. In this way, the efficiency of generating the magnetic field is increased, and the power consumption is further reduced. In addition, the inductance of the coil is further reduced, and the coil can be driven at a higher frequency.

Abstract

A magnetic field generator for generating a magnetic field, a magnetoopical information storage device for recording information onto and reproducing it from a magnetooptical storage medium that at least records information upon the application of light or magnetic field, and a magnetooptical information storage system that integrates a plurality of magnetoopical information storage devices. The generator comprises a first conductor (4413) that makes almost one round of and along a specified shape having a laterally symmetrical inner edge (4413a), a second conductor (4415) that spirally extends around the outer side of the first conductor (4413) in the same plane as that the first conductor (4413) makes a round and in the same direction as that the first conductor (4413) makes a round, and a third conductor (4416) that connects to the extending-direction end of the first conductor (4413) and to the extending-direction start of the second conductor (4415).

Description

明細書 磁界発生器、 光磁気情報記憶システム、 および光磁気情報記憶装置 技術分野  Description Magnetic field generator, magneto-optical information storage system, and magneto-optical information storage device
本発明は、 磁界を発生させる磁界発生器、 光の照射および磁界の印加を受ける ことによって少なくとも情報記録が行われる光磁気記憶媒体に対し、 情報の記録 および再生を行う光磁気情報記憶装置、 および複数の光磁気情報記憶装置を統合 してなる光磁気情報記憶システムに関する。 背景技術  The present invention provides a magnetic field generator that generates a magnetic field, a magneto-optical information storage device that records and reproduces information on a magneto-optical storage medium on which information is recorded at least by receiving light irradiation and application of a magnetic field, and The present invention relates to a magneto-optical information storage system obtained by integrating a plurality of magneto-optical information storage devices. Background art
従来より、 音声信号や画像信号を記憶する大容量の記録媒体として、 C D , C D— R OM, C D - R, D VD , P D , M〇, MD等といった情報記録媒体が広 く使われている。 特に、 光の照射および磁界の印加を受けることによって少なく とも情報記録が行われる光磁気記憶媒体は、 情報の書き換えが可能な高密度記録 媒体として注目されており、 さらなる高記録密度化などのために盛んに研究開発 が行われている。 また、 そのような光磁気記録媒体に対する情報再生や情報記憶 をより高速に行うための光磁気情報記憶装置の研究開発もさかんに行われている 従来の光磁気情報記憶装置では、 情報に応じた光変調によって記録媒体に情報 を記録する光変調方式が採用されているが、 上述したような高記録密度化に伴い 、 従来の光変調方式に替えて、 情報に応じた磁界変調によって情報を記録する磁 界変調方式を採用する傾向が生じている (例えば、 特許文献 1〜5参照。 ) 。 磁界変調方式を用いた光磁気情報記憶装置は、 記録のためのレーザ光を集光す ることにより記録媒体の記録膜の温度をキューリ一点に近づけ、 その状態で、 コ ィルによって発生させた磁界を記録膜に印加することにより記録膜の磁化方向を 情報に応じた方向に向けて情報を記録する。  Conventionally, information recording media such as CD, CD-ROM, CD-R, DVD, PD, M〇, and MD have been widely used as large-capacity recording media for storing audio signals and image signals. . In particular, magneto-optical storage media on which information is recorded at least by receiving light irradiation and application of a magnetic field are attracting attention as high-density recording media on which information can be rewritten. R & D is being actively conducted. In addition, research and development of a magneto-optical information storage device for performing high-speed information reproduction and information storage on such a magneto-optical recording medium have been actively performed. An optical modulation method of recording information on a recording medium by optical modulation is employed. However, with the increase in recording density as described above, information is recorded by magnetic field modulation according to information instead of the conventional optical modulation method. There has been a tendency to employ a magnetic field modulation method (see, for example, Patent Documents 1 to 5). In the magneto-optical information storage device using the magnetic field modulation method, the temperature of the recording film of the recording medium was brought close to one point by condensing a laser beam for recording, and in that state, the temperature was generated by a coil. By applying a magnetic field to the recording film, information is recorded with the magnetization direction of the recording film oriented in a direction corresponding to the information.
このような磁界変調方式を用いた光磁気情報記憶装置で、 大容量データの記録 や再生を高速に実行するためには、 記録媒体に光を集光する光学系と、 磁界を発 生させるコイルを、 記録媒体から見て同一の側に配置するフロントイルミネーシ ヨンタイプの構成を有することが望ましく、 この構成では、 ガラス基板の一方の 面に光学系が配置され、 他方の面にスパイラル状の磁気コイルが配置されるのが 一般的である。 磁界変調方式で高速に記録と再生を行うためには、 記録膜に印加 する磁界の向きを高い周波数で切り替えることが必要であり、 上記の構成によつ て小型省電力化で低ィンダクタンスの磁界コイルが可能となり、 高速で駆動でき る磁界コイルを実現できる。 In a magneto-optical information storage device using such a magnetic field modulation method, in order to execute high-speed recording and reproduction of large-capacity data, an optical system for condensing light on a recording medium and a magnetic field are generated. It is desirable to have a front illumination type configuration in which the coils to be generated are arranged on the same side as viewed from the recording medium. In this configuration, an optical system is arranged on one surface of the glass substrate, and a spiral is arranged on the other surface. It is common to arrange a magnetic coil in the shape of a circle. In order to perform high-speed recording and reproduction by the magnetic field modulation method, it is necessary to switch the direction of the magnetic field applied to the recording film at a high frequency. With the above configuration, it is possible to reduce the power consumption and to reduce the inductance. A magnetic field coil becomes possible, and a magnetic field coil that can be driven at high speed can be realized.
図 1は、 フロントイルミネーションタイプの一般的な磁界発生器の構造を示す 模式図である。  FIG. 1 is a schematic diagram showing the structure of a general magnetic field generator of the front illumination type.
図 1に示す磁界発生器 7は、 ガラス基板 7 1の上面に光学レンズ 7 2が配置さ れており、 その上面とは反対側の下面には誘電体層 7 3が設けられている。 この 磁界発生器 7の上には、 レーザ光 Lをこの光学レンズ 7 2に向けて集光するレン ズ 8が設けられており、 このレンズ 8により絞られたレーザ光 Lは、 ガラス基板 7 1の上面に設けられた光学レンズ 7 2でさらに絞られ、 ガラス基板 7 1および 誘電体層 7 3を透過して、 磁気記録媒体 9の記録層 9 1に照射される。 誘電体層 7 3の中にはコイルが配置されている。 このコイルは、 レーザ光 Lが透過する領 域を取り囲むように、 誘電体層 7 3が広がる方向にスパイラル状に周回してなる ものである。  In the magnetic field generator 7 shown in FIG. 1, an optical lens 72 is disposed on an upper surface of a glass substrate 71, and a dielectric layer 73 is provided on a lower surface opposite to the upper surface. A lens 8 for focusing the laser light L toward the optical lens 72 is provided on the magnetic field generator 7, and the laser light L focused by the lens 8 is applied to a glass substrate 7 1 The light is further stopped down by an optical lens 72 provided on the upper surface of the magnetic recording medium 9, passes through the glass substrate 71 and the dielectric layer 73, and irradiates the recording layer 91 of the magnetic recording medium 9. A coil is disposed in the dielectric layer 73. This coil is spirally wound in the direction in which the dielectric layer 73 spreads so as to surround the area where the laser light L is transmitted.
図 2は、 図 1に示す磁界発生器が有するコイルを、 光学レンズ側から見たとき の図である。  FIG. 2 is a diagram of the coil included in the magnetic field generator shown in FIG. 1 when viewed from the optical lens side.
図 2に示すコイル 7 4は、 内周端 7 4 0 1から外周端 7 4 0 2に向けて径が次 第に大きくなる形状のものである。 このコイル 7 4を通過する際のレーザ光のス ポット径は、 実線で示す円 C 1の直径に相当するが、 このコイル 7 4では、 磁界 発生器の組立時における位置合わせ等のマ一ジンを考慮して、 レーザ光のスポッ ト径に相当する直径の円 C 1よりも大きな領域がレーザ光が通過する可能性のあ る透過領域として確保されている。 すなわち、 レーザ光の径に相当する直径の円 C 1にマージンとしての幅 Mを加えた点線で示す円 C 2の領域が透過領域として 確保されている。  The coil 74 shown in FIG. 2 has a shape in which the diameter increases gradually from the inner peripheral end 7401 to the outer peripheral end 7402. The spot diameter of the laser beam when passing through the coil 74 is equivalent to the diameter of a circle C1 shown by a solid line. However, in this coil 74, there is a margin for alignment and the like during assembly of the magnetic field generator. In consideration of this, an area larger than the circle C1 having a diameter corresponding to the spot diameter of the laser light is secured as a transmission area through which the laser light can pass. That is, an area of a circle C2 indicated by a dotted line obtained by adding a width M as a margin to a circle C1 having a diameter corresponding to the diameter of the laser beam is secured as a transmission area.
ところで、 このコイル 7 4は、 内周端 7 4 0 1から外周端 7 4 0 2に向けて径 が次第に大きくなる形状のものであるため、 最も内側で周回する部分によって囲 まれた領域の形状は、 円形にはならず、 図 2に示すように、 透過領域である円 C 2の形状にハッチングで示した領域 Sの形状を追加した形状になっている。 すな わち、 図 2に示すコイル 7 4では、 レーザ光を通過させることができる領域が余 分に広く存在し、 コイル 7 4はこの余分な領域 Sの分だけ大きくなつている。 コ ィルは、 磁界の発生効率を高めるため、 可能な限り小径にすることが好ましく、 図 2に示すコイル 7 4では、 ハッチングで示した領域 Sの分だけ磁界の発生効率 で損をしていることになる。 By the way, this coil 74 has a diameter from the inner peripheral end 7401 toward the outer peripheral end 7402. The shape of the area surrounded by the innermost circle does not become circular, but is hatched to the shape of the circle C2, which is a transmission area, as shown in Fig. 2. The shape is obtained by adding the shape of the region S indicated by. In other words, in the coil 74 shown in FIG. 2, the region through which the laser light can pass is too large, and the coil 74 is larger by the extra region S. It is preferable that the diameter of the coil is as small as possible in order to increase the magnetic field generation efficiency.In the coil 74 shown in FIG. 2, the loss in the magnetic field generation efficiency is reduced by the area S indicated by hatching. Will be.
また、 磁界発生器の組立時において、 コイルが形成された図 1に示すガラス基 板 7 1の上面に光学レンズ 7 2を配備する際、 光学レンズ 7 2の位置決めは、 光 学レンズ 7 2の光軸をコイルの中心に合わせることで行われる。 ところが、 図 2 に示すコイル 7 4では、 コイルの中心が割り出しにくく作業性に劣る。  Also, when assembling the magnetic field generator, when disposing the optical lens 72 on the upper surface of the glass substrate 71 on which the coil is formed as shown in FIG. 1, the positioning of the optical lens 72 is performed by positioning the optical lens 72. This is done by aligning the optical axis with the center of the coil. However, in the case of the coil 74 shown in FIG. 2, it is difficult to determine the center of the coil, resulting in poor workability.
続いて、 図 3を用いて、 '図 1に示す磁界発生器とは別の従来の磁界発生器を説 明する。 ここでは、 今まで説明した構成部材と同じ構成部材には今まで用いた符 号と同じ符号を用いて説明する。  Next, a conventional magnetic field generator different from the magnetic field generator shown in FIG. 1 will be described with reference to FIG. Here, the same components as those described so far will be described using the same reference numerals as those used so far.
図 3は、 スパイラル状に周回してなるコイルを上下 2層に設けた磁界発生器の 一部分を示す図である。  FIG. 3 is a diagram showing a part of a magnetic field generator in which coils wound in a spiral shape are provided in upper and lower layers.
図 3に示す磁界発生器 7は、 誘電体層 7 3の中に、 2層のコイル 7 4 1, 7 4 2が配置されている。 これらのコイル 7 4 1, 7 4 2はいずれも、 レーザ光 が 透過する領域を取り囲むように、 誘電体層 7 3が広がる方向にスパイラル状に周 回してなるものである。 また、 これらのコイル 7 4 1, 7 4 2はいずれも、 内周 端から外周端に向けて径が次第に大きくなる形状であり、 レーザ光 Lのスポット 径にマージンとしての幅 Mを加えた点線で示す領域が、 レーザ光が通過する可能 性のある透過領域として確保されている。 レーザ光 Lは、 この図 3では下側の層 (以下、 第 1層と称する) よりも上側の層 (以下、 第 2層と称する) の方がスポ ット径が小さくなるため、 第 2層に設けられたコイル 7 4 2では、 第 1層に設け られたコイル 7 4 1に比べて、 透過領域が小さくてすむ。  The magnetic field generator 7 shown in FIG. 3 has two layers of coils 741 and 742 disposed in a dielectric layer 73. Each of these coils 741 and 742 spirals in a direction in which the dielectric layer 73 spreads so as to surround a region through which the laser beam passes. Each of these coils 741 and 742 has a shape whose diameter gradually increases from the inner peripheral end toward the outer peripheral end, and is represented by a dotted line obtained by adding the width M as a margin to the spot diameter of the laser beam L. The region indicated by is secured as a transmission region through which the laser light can pass. In FIG. 3, the spot diameter of the upper layer (hereinafter, referred to as the second layer) is smaller than that of the lower layer (hereinafter, referred to as the first layer) in FIG. The coil 742 provided in the layer has a smaller transmission area than the coil 741 provided in the first layer.
図 4は、 図 3に示す磁界発生器が有するコイルを、 光学レンズ側から見たとき の図である。 図 4に示す 2つのコイル 7 4 1, 4 2は、 互いの内終端 7 4 1 1, 7 4 1 2 において接続しており、 1本の導体を形成している。 図 3に示す磁界発生器 7の 組立時においても、 光学レンズの位置決めでは、 光学レンズ 7 2の光軸をコイル の中心に合わせることが必要になるが、 図 3に示す磁界発生器 7では、 上下 2層 に設けられたコイル 7 4 1, 7 4 2の透過領域の大きさが互いに異なることから 、 図 3に示すコイルよりも各コイル 7 4 1 , 7 4 2の中心がさらに割り出しにく く大幅に作業性が劣る。 FIG. 4 is a diagram when the coil of the magnetic field generator shown in FIG. 3 is viewed from the optical lens side. The two coils 741 and 42 shown in FIG. 4 are connected to each other at their inner ends 7411 and 7412, forming one conductor. Even when assembling the magnetic field generator 7 shown in FIG. 3, it is necessary to align the optical axis of the optical lens 72 with the center of the coil when positioning the optical lens, but in the magnetic field generator 7 shown in FIG. Since the sizes of the transmission areas of the coils 741, 742 provided in the upper and lower two layers are different from each other, the center of each coil 741, 742 is more difficult to determine than the coil shown in FIG. Significantly lower workability.
ところで、 コイルの表面には、 腐食や他の物との衝突からコイルを保護するた め、 保護膜が設けられている。 また、 コイルの中心部分に確保された透過領域は 、 光学的に均一で透明であることが必要である。  By the way, a protective film is provided on the surface of the coil to protect the coil from corrosion and collision with other objects. In addition, the transmission area secured in the center of the coil needs to be optically uniform and transparent.
図 5は、 フロントイルミネーションタイプの従来の磁界発生器の、 コイルが配 備された部分を拡大して示す模式図である。  FIG. 5 is a schematic diagram showing, in an enlarged manner, a portion of a conventional front-illumination type magnetic field generator provided with coils.
ここでも、 今まで説明した構成部材と同じ構成部材には今まで用いた符号と同 じ符号を用いて説明する。  Here, the same components as those described so far will be described using the same reference numerals as those used up to now.
一般に、 樹脂材料は、 複屈折率をもっており、 光学的には不均一である。 この ため、 コイルを覆う誘電体層 7 3を樹脂材料からなるものにした磁界発生器の中 には、 レーザ光が透過する透過領域に誘電体層 7 3がかからないようにしたもの がある。 図 5に示す磁界発生器 7では、 ガラス材料からなる突部 7 1 1がガラス 基板 7 1に一体的に設けられており、 その突部 7 1 1の周囲に樹脂材料からなる 誘電体層 7 3が設けられている。 誘電体層 7 3の中には、 突部 7 1 1を中心にし てスパイラル状に周回するコイル 7 4が配備されており、 レーザ光 Lの透過領域 がガラス材料からなる突部 7 1 1になるようにしている。 コイル 7 4は誘電体層 7 3によって完全に覆われている必要があり、 このため、 図 5に示す磁界発生器 7では、 コイル 7 4の最内周の周回部分 7 4 0 3より内側にまで誘電体層 7 3が 広がっており、 コイルの最内周の周回部分 7 4 0 3の径は、 突部 7 1 1の径より も誘電体層 7 3が介在している分 (図 5中の r参照) 大きくなり、 磁界の発生効 率が低下してしまうという問題が生じる。  Generally, resin materials have a birefringence and are optically non-uniform. For this reason, some magnetic field generators in which the dielectric layer 73 covering the coil is made of a resin material do not cover the transmission region through which the laser light is transmitted. In the magnetic field generator 7 shown in FIG. 5, a projection 711 made of a glass material is provided integrally with a glass substrate 71, and a dielectric layer 7 made of a resin material is provided around the projection 711. Three are provided. In the dielectric layer 73, there is provided a coil 74 that spirals around the projection 711, and the transmission area of the laser light L is formed by the projection 7111 made of a glass material. I am trying to become. The coil 74 must be completely covered with the dielectric layer 73, and therefore, in the magnetic field generator 7 shown in FIG. 5, the coil 74 is located inside the innermost circumferential portion 7400 of the coil 74. The diameter of the innermost circumferential portion 7403 of the coil is larger than the diameter of the protrusion 711 by the amount of the dielectric layer 73 interposed (Fig. 5). (See r in the figure.) The problem is that the efficiency of magnetic field generation decreases.
図 6は、 コイルを覆う保護膜の光学的特性を均一にするため、 真空蒸着によつ て誘電体材料を配備した従来の磁界発生器の、 コイルが配備された部分を拡大し て示す模式図である。 Figure 6 shows an enlarged view of the portion of a conventional magnetic field generator in which a dielectric material is provided by vacuum evaporation to provide uniform optical characteristics of the protective film covering the coil, in which the coil is provided. FIG.
ここでも、 今まで説明した構成部材と同じ構成部材には今まで用いた符号と同 じ符号を用いて説明する。  Here, the same components as those described so far will be described using the same reference numerals as those used up to now.
この図 6に示す磁界発生器 7では、 真空蒸着によって光学的に均一な誘電体層 7 3が形成されたため、 図 5に示す磁界発生器とは異なりガラス材料からなる突 部 7 1 1が不要になり、 ガラス基板 7 1上のコイル 7 4が配備された面全体にわ たって誘電体層 7 3が広がっており、 レーザ光 Lの透過領域にも誘電体層 7 3が 及んでいる。 こうすることで、 図 5に示す磁界発生器で生じた問題は解決され、 コイルの最内周の周回部分 7 4 0 3の径を小さくすることができる。  In the magnetic field generator 7 shown in FIG. 6, the optically uniform dielectric layer 73 is formed by vacuum evaporation, so that unlike the magnetic field generator shown in FIG. 5, the projections 7 11 made of a glass material are unnecessary. The dielectric layer 73 extends over the entire surface of the glass substrate 71 on which the coil 74 is provided, and the dielectric layer 73 extends to the laser light L transmission region. By doing so, the problem caused by the magnetic field generator shown in FIG. 5 is solved, and the diameter of the innermost circumferential portion 7403 of the coil can be reduced.
ところで、 図 3に示すようにコイルを上下 2層に設ける場合には、 まず、 第 1 層のコイル 7 1を形成した後、 その第 1層のコイル 7 4 1の表面に誘電体を真 空蒸着により形成し第 1層のコイル 7 4 1を誘電体材料で覆ったうえで、 その誘 電体層の上に第 2層のコイル 7 4 2を形成する。 第 2層のコイル 7 4 2を形成す るにあたっては、 まず、 第 1層のコイル 7 4 1を覆う誘電体層の表面を平坦にす るため、 その誘電体層の表面を研磨してから第 2層のコイル 7 4 2を形成する。 図 7は、 真空蒸着によって形成された誘電体層の表面を研磨する前の状態を示 す図であり、 図 8は、 図 7に示す誘電体層の表面を研磨した後の状態を示す図で ある。  By the way, as shown in FIG. 3, when the coils are provided in the upper and lower two layers, first, the coil 71 of the first layer is formed, and then the dielectric is vacuumed on the surface of the coil 741 of the first layer. After being formed by vapor deposition and covering the first layer coil 741 with a dielectric material, the second layer coil 742 is formed on the dielectric layer. In forming the second layer coil 742, first, in order to make the surface of the dielectric layer covering the first layer coil 741 flat, the surface of the dielectric layer is polished. A second layer coil 7 42 is formed. FIG. 7 is a diagram showing a state before polishing the surface of the dielectric layer formed by vacuum deposition, and FIG. 8 is a diagram showing a state after polishing the surface of the dielectric layer shown in FIG. It is.
図 7では、 コイル 7 4の、 半径方向に隣り合う周回部分 7 4 0 4の間に誘電体 材料 Pが十分に充填されず空隙 gが生じている。 この空隙 gは、 コイル 7 4の表 面よりも高い位置まで延びており、 研磨することで、 その空隙 gが、 図 8に示す ように誘電体層 7 3 1の表面 7 3 1 aに表れ、 開口 g lが生じている。 この開口 g 1が生じた誘電体層の表面 7 3 1 aに、 第 2層のコイルを形成する等の後工程 の処理を行うと、 この開口 g 1から異物が入り込み製品不良になったり、 あるい はこの開口 g 1が第 2層のコイルパターンの形成に悪影響を及ぼしたりする。 コイル 7 4の、 半径方向に隣り合う周回部分の間に、 空隙が生じることを防止 するためには、 隣り合う周回部分の間に誘電体材料が入り込みやすくすればよい 。 図 6に示す磁界発生器 7では、 隣り合う周回部分の間隔 wを、 コイル 7 4の厚 み hの 2倍程度にしている。 ところが、 隣り合う周回部分の間隔 wを大きくとれ ばとるほど、 コイルは外周部分になるにつれて径が大きくなり、 磁界の発生効率 が低下してしまう。 In FIG. 7, the dielectric material P is not sufficiently filled between the radially adjacent circumferential portions 7404 of the coil 74, so that a gap g is generated. This gap g extends to a position higher than the surface of the coil 74, and by polishing, the gap g appears on the surface 731a of the dielectric layer 731 as shown in FIG. The opening gl has occurred. If post-processes such as forming a coil of the second layer are performed on the surface 731a of the dielectric layer where the opening g1 is formed, foreign matter enters through the opening g1 to cause a product defect, Alternatively, the opening g1 adversely affects the formation of the coil pattern of the second layer. In order to prevent a void from being formed between the radially adjacent circling portions of the coil 74, it is sufficient to make it easier for the dielectric material to enter between the adjacent circling portions. In the magnetic field generator 7 shown in FIG. 6, the interval w between the adjacent orbiting portions is set to about twice the thickness h of the coil 74. However, the distance w between adjacent orbiting parts can be increased. The larger the coil, the larger the diameter of the coil as it gets closer to the outer periphery, and the lower the efficiency of magnetic field generation.
また、 コイルの径を小さくする技術の一つとして、 コイルに薄く誘電体膜を形 成する技術が提案されている (例えば、 特許文献 6参照) 。  Also, as one of the techniques for reducing the diameter of the coil, a technique for forming a thin dielectric film on the coil has been proposed (for example, see Patent Document 6).
図 9は、 薄い誘電体膜が形成されたコイルを示す図であり、 図 1 0は、 図 9の 中で 1点鎖線により囲まれた範囲の拡大図である。  FIG. 9 is a diagram showing a coil on which a thin dielectric film is formed, and FIG. 10 is an enlarged view of a region surrounded by a chain line in FIG.
ここでも、 今まで説明した構成部材と同じ構成部材には今まで用いた符号と同 じ符号を用いて説明する。  Here, the same components as those described so far will be described using the same reference numerals as those used up to now.
図 9には、 上下 2層のコイル 7 4 1, 7 4 2が示されている。 この図 9に示す 上下 2層のコイル 7 4 1 , 7 4 2を形成するには、 まず、 第 1層のコイル 7 4 1 を形成した後、 そのコイル 7 4 1を覆うように薄い誘電体膜 7 3 2を形成する。 次いで、 そのコイル 7 4 1の、 半径方向に隣り合う周回部分 7 4 1 4の間に、 第 2層のコイル 7 4 2のコイルパターンを形成する。 こうして得られた上下 2層の コイル 7 4 1, 7 4 2は、 第 1層のコイル 7 4 1の、 半径方向に隣り合う周回部 分 7 4 1 4の間である窪み bに、 薄い誘電体膜 7 3 2を介して第 2層のコイル 7 4 2の、 半径方向に隣り合う周回部分 7 4 2 4が位置し、 第 1層のコイル 7 4 1 にしても第 2層のコイル 7 4 2にしても小さな径にすることができる。 ところが 、 図 1 0に示すように、 薄い誘電体膜 7 3 2の、 窪み bの角の部分が、 脆弱部 7 3 2 1となり、 第 1層のコイル 7 4 1と第 2層のコイル 7 4 2の間の絶縁が壌れ やすいという問題がある。  FIG. 9 shows upper and lower two-layer coils 741, 742. In order to form the upper and lower two-layer coils 741 and 742 shown in FIG. 9, first, the first-layer coil 741 is formed, and then a thin dielectric is formed so as to cover the coil 741. A film 732 is formed. Next, a coil pattern of the second layer coil 742 is formed between the radially adjacent circulating portions 7414 of the coil 741. The upper and lower two-layer coils 741 and 742 obtained in this way are placed in the hollow b between the radially adjacent circulating portions 7414 of the first-layer coil 741, and a thin dielectric The radially adjacent portion 7 4 2 4 of the coil 7 42 of the second layer via the body membrane 7 32 is located, and the coil 7 4 1 of the first layer 7 Even if it is 42, the diameter can be small. However, as shown in FIG. 10, the corners of the depression b of the thin dielectric film 732 become the weakened portions 7321, and the first layer coil 741 and the second layer coil 7 There is a problem that the insulation between the two is easily broken.
さらに、 図 9に示すコイル 7 4 1, 7 4 2に限ったことではなく、 コイル 7 4 に通電を行うとコイル 7 4は発熱する。 一般に、 物質の電気抵抗は温度の上昇に 伴って高くなる。 このため、 コイル 7 4で発生した熱が効率よく放熱されないと 、 コイル 7 4は、 自身の発熱によって自身の消費電力が高まり、 さらに発熱量が 増大してしまうという悪循環に陥る。 図 5で説明した磁界発生器 7のコイル 7 4 は樹脂材料によって覆われているが、 樹脂材料の熱伝導率はさほど良くないこと から、'コイル 7 4で発生した熱は放熱されにくく、 コイル 7 4の温度が加速度的 に上昇し、 コイル 7 4が所定の強さの磁界を発生する前に破損してしまうことが ある。 加えて、 樹脂材料は熱的に影響を受けやすいこともあり、 必要な磁界を得 るための電流を流すのが困難であるという問題もある。 Furthermore, the coil 74 is not limited to the coils 741, 742 shown in FIG. 9, and when the coil 74 is energized, the coil 74 generates heat. In general, the electrical resistance of a material increases with increasing temperature. For this reason, if the heat generated in the coil 74 is not efficiently radiated, the coil 74 enters a vicious circle in which its own heat consumption increases its power consumption and further increases its calorific value. Although the coil 74 of the magnetic field generator 7 described in FIG. 5 is covered with a resin material, since the thermal conductivity of the resin material is not so good, the heat generated by the coil 74 is hardly radiated, and The temperature of 74 may rise at an accelerating rate, and the coil 74 may be broken before generating a magnetic field of a predetermined strength. In addition, the resin material can be thermally sensitive and can provide the required magnetic field. There is also a problem that it is difficult to flow a current for the purpose.
(特許文献 1 )  (Patent Document 1)
特開 2002— 203302号公報  JP 2002-203302 A
(特許文献 2 )  (Patent Document 2)
特開昭 63 -259814号公報  JP-A-63-259814
(特許文献 3 ) '  (Patent Document 3) ''
特開平 3— 276410号公報  JP-A-3-276410
(特許文献 4)  (Patent Document 4)
特開平 5— 242430号公報  Japanese Patent Application Laid-Open No. 5-242430
(特許文献 5 )  (Patent Document 5)
特開平 7— 302409号公報  JP-A-7-302409
(特許文献 6 )  (Patent Document 6)
特開 2001— 185419号公報 発明の開示  JP 2001-185419A DISCLOSURE OF THE INVENTION
本発明は、 上記事情に鑑み、 磁界を効率よく発生する磁界発生器、 その磁界発 生器を備えた光磁気記憶装置、 およびその光磁気記憶装置を複数備えた光磁気情 報記憶システムを提供することを目的とする。  In view of the above circumstances, the present invention provides a magnetic field generator that efficiently generates a magnetic field, a magneto-optical storage device including the magnetic field generator, and a magneto-optical information storage system including a plurality of the magneto-optical storage devices. The purpose is to do.
上記目的を達成する本発明の第 1の磁界発生器は、 内縁が左右対称の所定形状 に沿ってその形状を略 1周した第 1導体と、  A first magnetic field generator according to the present invention that achieves the above object has a first conductor whose inner edge is substantially circumscribed along a predetermined shape that is bilaterally symmetric,
上記第 1導体が周回した平面と同一平面内で、 その第 1導体の外側をその第 1 導体の周回方向と同じ方向にスパイラル状に周回した第 2導体と、  A second conductor spirally circling the outside of the first conductor in the same direction as the circling direction of the first conductor in the same plane as the plane on which the first conductor circulates;
上記第 1導体の周回方向の終端と上記第 2導体の周回方向の始端とを結ぶ第 3 導体とを備えたことを特徴とする。  A third conductor that connects a circumferential end of the first conductor and a circumferential start of the second conductor.
本発明の第 1の磁界発生器によれば、 上記第 1導体によって定まる内周形状が 左右対称の形状であるため、 図 2に示すような余分な領域 Sを含まず、 上記第 1 導体、 上記第 2導体、 および上記第 3導体からなるコイルの径が小さくなり、 磁 界を効率よく発生することができる。 また、 コイルの径が小さくなることにより 、 コイルのインダクタンスも小さくなり、 この磁界発生器の駆動周波数を高める ことができる。 さらに、 上記第 1導体によって定まる内周形状が左右対称の形状 であることにより、 上記第 1導体の中心を割り出しやすい。 According to the first magnetic field generator of the present invention, since the inner peripheral shape defined by the first conductor is a symmetrical shape, it does not include an extra area S as shown in FIG. The diameter of the coil composed of the second conductor and the third conductor is reduced, and a magnetic field can be generated efficiently. In addition, as the diameter of the coil decreases, the inductance of the coil also decreases, and the driving frequency of the magnetic field generator increases. be able to. Further, since the inner peripheral shape determined by the first conductor is a symmetrical shape, the center of the first conductor can be easily determined.
また、 本発明の第 1の磁界発生器において、 上記第 1導体が、 内縁と外縁が等 間隔を保ってこの第 1導体の周回方向始端から周回した所定幅部、 および内縁に 対して外縁が外に漸次膨らみながらその所定幅部の周回方向終端からこの第 1導 体の周回方向終端まで周回した拡幅部からなる態様であることが好ましい。  Further, in the first magnetic field generator of the present invention, the first conductor has a predetermined width portion which is circulated from a start end in a circling direction of the first conductor with an inner edge and an outer edge kept at equal intervals, and an outer edge is formed on the inner edge. It is preferable that the widened portion is formed so as to gradually extend outward and extend from the end of the predetermined width portion in the circumferential direction to the end of the first conductor in the circumferential direction.
この態様では、 上記第 1導体がなめらなか曲線でつながれたものとなり、 上記 第 1導体の周囲に絶縁物等を詰めやすく、 製造が容易になる。  In this embodiment, the first conductors are connected by a smooth curve, and the periphery of the first conductors can be easily filled with an insulator or the like, which facilitates manufacturing.
また、 本発明の第 1の磁界発生器において、 上記第 2導体が、 上記所定幅部と 等間隔を保って周回した第 1周回部と、 上記拡幅部の外縁と等間隔を保って周回 した第 2周回部とを交互に有するものであることも好ましい。  Further, in the first magnetic field generator of the present invention, the second conductor has a first circling portion circling at an equal interval with the predetermined width portion, and circling at an equal interval with an outer edge of the widening portion. It is also preferable that the second circling portion is alternately provided.
こうすることにより、 上記第 2導体の径が最小のものとなり、 磁界をより効率 よく発生することができるとともに、 この磁界発生器の駆動周波数をより高める ことができる。  By doing so, the diameter of the second conductor is minimized, a magnetic field can be generated more efficiently, and the driving frequency of the magnetic field generator can be further increased.
上記目的を達成する本発明の第 2の磁界発生器は、 アルミナからなる誘電体層 と、  A second magnetic field generator of the present invention that achieves the above object is a dielectric layer made of alumina,
上記誘電体層内部の同一平面内でスパイラル状に周回した導体とを備え、 上記導体は、 半径方向に隣り合う周回部分の間隔が一定のものであって、 その 間隔がその導体の厚さの 0 . 4倍以上 0 . 8倍以下であることを特徴とする。 本発明の第 2の磁界発生器では、 半径方向に隣り合う周回部分の間に空隙が生 じても、 その生じた空隙の先端が表面に表れることさえ防止すれば、 空隙は閉じ たままの状態であり何ら問題は生じないことを見出し、 あえて上記間隔を狭くす ることで、 そ.の空隙の先端が表面に表れることを防止している。 ここで、 上記間 隔が上記導体の厚さの 0 . 4倍未満であると、 アルミナが、 隣り合う周回部分の 間にあまりにも入らず、 隣り合う周回部分間の絶縁に問題が生じる。 一方、 0 . 8倍を超えると、 空隙の先端が表面に表れやすくなる。 このように、 本発明の第 2の磁界発生器によれば、 上記周回部分の間隔が狭められていることから、 上記 導体の径が小さくなり、 磁界を効率よく発生することができる。 また、 導体の径 が小さくなることにより、 導体のインダクタンスも小さくなり、 この磁界発生器 の駆動周波数を高めることができる。 また、 上記誘電体層がアルミナからなるも のであるため、 樹脂材料からなる誘電体層よりも放熱性が高く、 この点からも、 樹脂材料からなる誘電体層を備えた磁界発生器よりも大きな磁界を発生すること ができるとともに、 上記誘電体層の光学的性質を均一なものにすることができる また、 本発明の第 2の磁界発生器において、 上記導体は、 周回方向に延びる縁 が面取りされたものであることが好ましい。 A conductor spirally circulating in the same plane inside the dielectric layer, wherein the conductor has a constant interval between adjacent radiating portions in the radial direction, and the interval is equal to the thickness of the conductor. It is characterized by being 0.4 times or more and 0.8 times or less. In the second magnetic field generator of the present invention, even if a gap is formed between the orbital portions adjacent in the radial direction, the gap remains closed as long as the tip of the created gap is prevented from appearing on the surface. It was found that there was no problem in this state, and the gap was narrowed to prevent the tip of the void from appearing on the surface. Here, if the interval is less than 0.4 times the thickness of the conductor, the alumina does not enter between the adjacent circulating portions too much, and a problem occurs in insulation between the adjacent circulating portions. On the other hand, if it exceeds 0.8 times, the tip of the void tends to appear on the surface. As described above, according to the second magnetic field generator of the present invention, since the interval between the orbital portions is narrowed, the diameter of the conductor is reduced, and a magnetic field can be generated efficiently. In addition, as the diameter of the conductor decreases, the inductance of the conductor also decreases. Can be increased. In addition, since the dielectric layer is made of alumina, the heat dissipation is higher than that of the dielectric layer made of a resin material. In this respect, it is larger than that of the magnetic field generator having the dielectric layer made of the resin material. A magnetic field can be generated, and the optical properties of the dielectric layer can be uniform. In the second magnetic field generator of the present invention, the conductor has an edge extending in a circumferential direction with a chamfer. It is preferred that it is done.
本発明の第 2の磁界発生器では、 上記周回部分の間隔が狭められたものである ことから、 上記周回部分の間にアルミナを入れ込みにくいが、 こうすることで、 アルミナが入れ込みやすくなる。  In the second magnetic field generator of the present invention, since the interval between the orbital portions is narrowed, it is difficult to insert alumina between the orbital portions, but this makes it easier to insert alumina.
また、 本発明の第 2の磁界発生器において、 上記誘電体層は、 ガラス基材表面 に設けられたものであり、  Further, in the second magnetic field generator of the present invention, the dielectric layer is provided on a glass substrate surface,
この磁界発生器は、 上記導体の、 上記ガラス基材とは反対側の表面に、 その導 体と上記誘電体層との密着を高める密着膜を備えた態様であることも好ましい。 上記導体の熱膨張率とアルミナの熱膨張率には差があり、 上記導体に通電する ことで上記導体が発熱し温度が上昇すると、 この熱膨張率の差により、 上記周回 部分の間のアルミナに亀裂が生じ、 上記周回部分を覆うアルミナが剥がれ落ちて しまうことがある。 この亀裂は、 上記周回部分の間隔が狭まければ狭いほど、 そ の間のアルミナの厚さが薄くなることから生じやすい。 この態様では、 仮に亀裂 が生じても、 上記密着膜によって、 上記周回部分のアルミナが剥がれ落ちること を防止することができる。  It is also preferable that the magnetic field generator has an aspect in which an adhesion film for increasing the adhesion between the conductor and the dielectric layer is provided on the surface of the conductor opposite to the glass substrate. There is a difference between the coefficient of thermal expansion of the conductor and the coefficient of thermal expansion of alumina. When the conductor is energized, the conductor generates heat and the temperature rises. Cracks may occur, and the alumina covering the orbital portion may come off. This crack is more likely to occur because the narrower the space between the orbital portions, the thinner the alumina between them. In this aspect, even if cracks occur, the adhesive film can prevent the alumina in the orbital portion from peeling off.
また、 本発明の第 2の磁界発生器において、 上記導体は、 外側の縁が最内周の 最内周周回部分と半径方向に隣り合う第 2周周回部分から離れるように傾斜した 、 その最内周周回部分につながる端部を有するものであって、  Further, in the second magnetic field generator of the present invention, the conductor is inclined such that an outer edge thereof is separated from a second peripheral circuit part radially adjacent to the innermost peripheral part of the innermost periphery. It has an end connected to the inner circumference part,
この磁界発生器が、 上記最内周周回部分と上記端部との境における、 その最内 周周回部分と上記第 2周周回部分との間隔を二等分する中点から、 直径がその導 体の厚さの 1 . 5倍であってその端部の外側の縁およびその第 2周周回部分の内 側の縁の双方に接する円の中心までの距離を Lとし、 上記誘電体層表面からその 導体表面までの距離を dとした場合に、 2 X d > Lの関係が成立するものである ことも好ましい。 The diameter of the magnetic field generator is calculated from the midpoint at the boundary between the innermost circumference part and the end part, which divides the distance between the innermost circumference part and the second circumference part into two equal parts. Let L be the distance to the center of a circle that is 1.5 times the thickness of the body and touches both the outer edge of its end and the inner edge of its second orbital, and The relationship 2 X d> L holds when the distance from to the conductor surface is d. It is also preferable.
こうすることで、 上記端部と上記第 2周周回部分との間にアルミナが詰め込ま れ易くなり、 空隙が表れることをより確実に防止することができる。'  This makes it easier for alumina to be packed between the end portion and the second orbital portion, thereby more reliably preventing the appearance of voids. '
上記目的を達成する本発明の第 1の光磁気情報記憶システムは、 情報の記録お よび再生が可能な、 光の照射および磁界の印加を受けることよって少なくとも情 報記録が行われるディスク状の光磁気記憶媒体が複数格納された媒体格納部と、 上記光磁気記憶媒体に対して情報の記録及び又は再生を行う記録再生部と、 上記 媒体格納部と上記記録再生部との相互間で上記光磁気記憶媒体を移動させる媒体 移動部と、 上記媒体格納部、 上記媒体移動部、 および上記記録再生部を一体に保 持するブレード筐体とをそれぞれが備えた複数の光磁気情報記憶装置と、 上記複数の光磁気情報記憶装置が実装されるとともに、 それら複数の光磁気情 報記憶装置を着脱自在に保持するシステム筐体と、  A first magneto-optical information storage system according to the present invention, which achieves the above object, is a disk-shaped optical disk capable of recording and reproducing information, and at least performing information recording by receiving light irradiation and application of a magnetic field. A medium storage unit in which a plurality of magnetic storage media are stored; a recording / reproducing unit for recording and / or reproducing information on / from the magneto-optical storage medium; A plurality of magneto-optical information storage devices each including a medium moving unit that moves a magnetic storage medium, and a blade housing that integrally holds the medium storage unit, the medium moving unit, and the recording / reproducing unit; A system housing on which the plurality of magneto-optical information storage devices are mounted and which detachably holds the plurality of magneto-optical information storage devices;
上記システム筐体に実装された複数の光磁気情報記憶装置それぞれにおける情 報の記録及び又は再生を統括する統括部とを備え、  A control unit that controls recording and / or reproduction of information in each of the plurality of magneto-optical information storage devices mounted on the system housing,
上記記録再生部が、  The recording / reproducing unit is
内縁が左右対称の所定形状に沿ってその形状を略 1周した第 1導体、 その第 1 導体が周回した平面と同一平面内で、 その第 1導体の外側をその第 1導体の周回 方向と同じ方向にスパイラル状に周回した第 2導体、 およびその第 1導体の周回 方向の終端と上記第 2導体の周回方向の始端とを結ぶ第 3導体を有する磁界発生 器と、  A first conductor whose inner edge is substantially circumnavigated along a predetermined shape that is symmetrical left and right, and the outside of the first conductor is defined as the circling direction of the first conductor in the same plane as the plane on which the first conductor circulates. A magnetic field generator having a second conductor spirally wound in the same direction, and a third conductor connecting a circumferential end of the first conductor to a circumferential start of the second conductor;
光を発する光源とを備え、  With a light source that emits light,
上記光磁気記憶媒体に、 上記磁界発生器によって発生させた磁界を印加すると ともに上記光源から発せられた光を照射することで、 その光磁気記憶媒体に情報 記録を行うものであることを特徴とする。  By applying a magnetic field generated by the magnetic field generator to the magneto-optical storage medium and irradiating light emitted from the light source, information is recorded on the magneto-optical storage medium. I do.
上記目的を達成する本発明の第 2の光磁気情報記憶システムは、 情報の記録お よび再生が可能な、 光の照射および磁界の印加を受けることよって少なくとも情 報記録が行われるディスク状の光磁気記憶媒体が複数格納された媒体格納部と、 上記光磁気記憶媒体に対して情報の記録及び又は再生を行う記録再生部と、 上記 媒体格納部と上記記録再生部との相互間で上記光磁気記憶媒体を移動させる媒体 移動部と、 上記媒体格納部、 上記媒体移動部、 および上記記録再生部を一体に保 持するブレード筐体とをそれぞれが備えた複数の光磁気情報記憶装置と、 上記複数の光磁気情報記憶装置が実装されるとともに、 それら複数の光磁気情 報記憶装置を着脱自在に保持するシステム筐体と、 A second magneto-optical information storage system according to the present invention, which achieves the above object, has a disk-shaped optical system capable of recording and reproducing information, and at least performing information recording by receiving light irradiation and application of a magnetic field. A medium storage unit in which a plurality of magnetic storage media are stored; a recording / reproducing unit for recording and / or reproducing information on / from the magneto-optical storage medium; and a light source between the medium storage unit and the recording / reproducing unit. Medium for moving magnetic storage medium A plurality of magneto-optical information storage devices each including a moving unit, a blade housing that integrally holds the medium storing unit, the medium moving unit, and the recording / reproducing unit; and the plurality of magneto-optical information storages. A system housing on which the device is mounted and which detachably holds the plurality of magneto-optical information storage devices;
上記システム筐体に実装された複数の光磁気情報記憶装置それぞれにおける情 報の記録及び又は再生を統括する統括部とを備え、  A control unit that controls recording and / or reproduction of information in each of the plurality of magneto-optical information storage devices mounted on the system housing,
上記記録再生部が、  The recording / reproducing unit is
アルミナからなる誘電体層と、 その誘電体層内部の同一平面内でスパイラル状 に周回した導体とを備え、 その導体は、 半径方向に隣り合う周回部分の間隔が一 定のものであって、 その間隔がその導体の厚さの 0 . 4倍以上 0 . 8倍以下であ る磁界発生器と、  A dielectric layer made of alumina, and a conductor spirally wrapped in the same plane inside the dielectric layer, wherein the conductor has a constant distance between adjacent radiating portions in the radial direction, A magnetic field generator whose spacing is at least 0.4 times and at most 0.8 times the thickness of the conductor;
光を発する光源とを備え、  With a light source that emits light,
上記光磁気記憶媒体に、 上記磁界発生器によって発生させた磁界を印加すると ともに上記光源から発せられた光を照射することで、 その光磁気記憶媒体に情報 記録を行うものであることを特徴とする。  By applying a magnetic field generated by the magnetic field generator to the magneto-optical storage medium and irradiating light emitted from the light source, information is recorded on the magneto-optical storage medium. I do.
上記目的を達成する本発明の第 1の光磁気情報記憶装置は、 情報の記録および 再生が可能な、 光の照射および磁界の印加を受けることよって少なくとも情報記 録が行われるディスク状の光磁気記憶媒体に対して情報の記録及び又は再生を行 う光磁気情報記憶装置であつて、  The first magneto-optical information storage device of the present invention that achieves the above object has a disk-shaped magneto-optical device capable of recording and reproducing information, and at least performing information recording by receiving light irradiation and application of a magnetic field. A magneto-optical information storage device for recording and / or reproducing information to and from a storage medium,
上記光磁気記憶媒体が複数格納された媒体格納部と、  A medium storage unit in which a plurality of the magneto-optical storage media are stored,
上記光磁気記憶媒体に対して情報の記録及び又は再生を行う記録再生部と、 上記媒体格納部と上記記録再生部との相互間で上記光磁気記憶媒体を移動させ る媒体移動部と、  A recording / reproducing unit that records and / or reproduces information on the magneto-optical storage medium; a medium moving unit that moves the magneto-optical storage medium between the medium storage unit and the recording / reproducing unit;
上記媒体格納部、 上記媒体移動部、 および上記記録再生部が内部に一列に配置 され、 それら媒体格納部、 媒体移動部、 および記録再生部を一体に保持するブレ ード筐体と、  A blade housing in which the medium storage unit, the medium moving unit, and the recording / reproducing unit are arranged in a line, and the medium housing unit, the medium moving unit, and the recording / reproducing unit are integrally held;
この情報記憶装置が複数実装されるシステム筐体に、 この情報記憶装置を着脱 自在に接続する接続部とを備え、  A system housing in which a plurality of the information storage devices are mounted, a connection unit for detachably connecting the information storage device,
上記記録再生部が、 内縁が左右対称の所定形状に沿つてその形状を略 1周した第 1導体、 その第 1 導体が周回した平面と同一平面内で、 その第 1導体の外側をその第 1導体の周回 方向と同じ方向にスパイラル状に周回した第 2導体、 およびその第 1導体の周回 方向の終端と上記第 2導体の周回方向の始端とを結ぶ第 3導体を有する磁界発生 器と、. The recording / playback unit, A first conductor whose inner edge is substantially circumnavigated along a predetermined shape that is symmetrical left and right, and in the same plane as the plane around which the first conductor circulates, the outside of the first conductor is defined as the circling direction of the first conductor. A magnetic field generator having a second conductor spirally wound in the same direction, and a third conductor connecting a circumferential end of the first conductor to a circumferential start of the second conductor;
光を発する光源とを備え、  With a light source that emits light,
上記光磁気記憶媒体に、 上記磁界発生器によって発生させた磁界を印加すると ともに上記光源から発せられた光を照射することで、 その光磁気記憶媒体に情報 記録を行うものであることを特徴とする。  By applying a magnetic field generated by the magnetic field generator to the magneto-optical storage medium and irradiating light emitted from the light source, information is recorded on the magneto-optical storage medium. I do.
上記目的を達成する本発明の第 2の光磁気情報記憶装置は、 情報の記録および 再生が可能な、 光の照射および磁界の印加を受けることよって少なくとも情報記 録が行われるディスク状の光磁気記憶媒体に対して情報の記録及び又は再生を行 う光磁気情報記憶装置であって、  A second magneto-optical information storage device of the present invention that achieves the above object is a disk-shaped magneto-optical device capable of recording and reproducing information, and at least recording information by receiving light irradiation and application of a magnetic field. A magneto-optical information storage device for recording and / or reproducing information on and from a storage medium,
上記光磁気記憶媒体が複数格納された媒体格納部と、  A medium storage unit in which a plurality of the magneto-optical storage media are stored,
上記光磁気記憶媒体に対して情報の記録及び又は再生を行う記録再生部と、 上記媒体格納部と上記記録再生部との相互間で上記光磁気記憶媒体を移動させ る媒体移動部と、  A recording / reproducing unit that records and / or reproduces information on the magneto-optical storage medium; a medium moving unit that moves the magneto-optical storage medium between the medium storage unit and the recording / reproducing unit;
上記媒体格納部、 上記媒体移動部、 および上記記録再生部が内部に一列に配置 され、 それら媒体格納部、 媒体移動部、 および記録再生部を一体に保持するブレ ード筐体と、  A blade housing in which the medium storage unit, the medium moving unit, and the recording / reproducing unit are arranged in a line, and the medium housing unit, the medium moving unit, and the recording / reproducing unit are integrally held;
この情報記憶装置が複数実装されるシステム筐体に、 この情報記憶装置を着脱 自在に接続する接続部とを備え、  A system housing in which a plurality of the information storage devices are mounted, a connection unit for detachably connecting the information storage device,
上記記録再生部が、  The recording / reproducing unit is
アルミナからなる誘電体層と、 その誘電体層内部の同一平面内でスパイラル状 に周回した導体とを備え、 その導体は、 半径方向に隣り合う周回部分の間隔が一 定のものであって、 その間隔がその導体の厚さの 0 . 4倍以上 0 . 8倍以下であ る磁界発生器と、  A dielectric layer made of alumina, and a conductor spirally wrapped in the same plane inside the dielectric layer, wherein the conductor has a constant distance between adjacent radiating portions in the radial direction, A magnetic field generator whose spacing is at least 0.4 times and at most 0.8 times the thickness of the conductor;
光を発する光源とを備え、  With a light source that emits light,
上記光磁気記憶媒体に、 上記磁界発生器によって発生させた磁界を印加す.ると ともに上記光源から発せられた光を照射することで、 その光磁気記憶媒体に情報 記録を行うものであることを特徴とする。 When a magnetic field generated by the magnetic field generator is applied to the magneto-optical storage medium, Both are characterized in that information is recorded on the magneto-optical storage medium by irradiating the light emitted from the light source.
なお、 本発明にいう光磁気情報記憶システムおよび光磁気情報記憶装置のいず れについても、 ここではその基本形態のみを示すのにとどめるが、 これは単に重 複を避けるためであり、 本発明にいう光磁気情報記憶システムおよび光磁気情報 記憶装置には、 上記の基本形態のみではなく、 前述した磁界発生器の各態様に対 応する各種の態様が含まれる。  It is to be noted that, for each of the magneto-optical information storage system and the magneto-optical information storage device according to the present invention, only the basic form is shown here, but this is simply to avoid duplication. The magneto-optical information storage system and the magneto-optical information storage device described above include not only the above-described basic mode but also various modes corresponding to the above-described modes of the magnetic field generator.
以上、 説明したように、 本発明によれば、 磁界を効率よく発生する磁界発生器 、 その磁界発生器を備えた光磁気記憶装置、 およびその光磁気記憶装置を複数備 えた光磁気情報記憶システムを提供することができる。 図面の簡単な説明  As described above, according to the present invention, a magnetic field generator that efficiently generates a magnetic field, a magneto-optical storage device including the magnetic field generator, and a magneto-optical information storage system including a plurality of the magneto-optical storage devices Can be provided. Brief Description of Drawings
図 1は、 フロントイルミネーションタイプの一般的な磁界発生器の構造を示す 模式図である。  FIG. 1 is a schematic diagram showing the structure of a general magnetic field generator of the front illumination type.
図 2は、 図 1に示す磁界発生器が有するコイルを、 光学レンズ側から見たとき の図である。  FIG. 2 is a diagram of the coil included in the magnetic field generator shown in FIG. 1 when viewed from the optical lens side.
図 3は、 スパイラル状に周回してなるコイルを上下 2層に設けた磁界発生器の 一部分を示す図である。  FIG. 3 is a diagram showing a part of a magnetic field generator in which coils wound in a spiral shape are provided in upper and lower layers.
図 4は、 図 3に示す磁界発生器が有するコイルを、 光学レンズ側から見たとき の図である。  FIG. 4 is a diagram when the coil of the magnetic field generator shown in FIG. 3 is viewed from the optical lens side.
図 5は、 フロントイルミネーションタイプの従来の磁界発生器の、 コイルが配 備された部分を拡大して示す模式図である。  FIG. 5 is a schematic diagram showing, in an enlarged manner, a portion of a conventional front-illumination type magnetic field generator provided with coils.
図 6は、 コイルを覆う保護膜の光学的特性を均一にするため、 真空蒸着によつ て誘電体材料を配備した従来の磁界発生器の、 コイルが配備された部分を拡大し て示す模式図である。  Fig. 6 is a schematic diagram showing an enlarged view of the part where a coil is installed in a conventional magnetic field generator where a dielectric material is installed by vacuum evaporation to make the optical characteristics of the protective film covering the coil uniform. FIG.
図 7は、 真空蒸着によって形成された誘電体層の表面を研磨する前の状態を示 す図である。  FIG. 7 is a diagram showing a state before polishing the surface of the dielectric layer formed by vacuum deposition.
図 8は、 図 7に示す誘電体層の表面を研磨した後の状態を示す図である。 図 9は、 薄い誘電体膜が形成されたコイルを示す図である。 図 1 0は、 図 9の中で 1点鎖線により囲まれた範囲の拡大図である。 FIG. 8 is a diagram showing a state after the surface of the dielectric layer shown in FIG. 7 has been polished. FIG. 9 is a diagram showing a coil on which a thin dielectric film is formed. FIG. 10 is an enlarged view of a range surrounded by a chain line in FIG.
図 1 1は、 本発明の光情報記憶システムおよび光情報記憶装置の各実施形態を 示す外観図である。  FIG. 11 is an external view showing each embodiment of the optical information storage system and the optical information storage device of the present invention.
図 1 2は、 マガジンの詳細を示す図である。  FIG. 12 is a diagram showing details of the magazine.
図 1 3は、 ブレード装置のハードウェア構造を表す図である。  FIG. 13 is a diagram illustrating a hardware structure of the blade device.
図 1 4·は、 ブレード装置の機能構造を表す機能ブロック図である。  FIG. 14 · is a functional block diagram illustrating a functional structure of the blade device.
図 1 5は、 ドライブのヘッド近辺の構造を表す図である。  FIG. 15 is a diagram showing the structure near the head of the drive.
図 1 6は、 図 1 5に示す磁界発生器の一部分を示す図である。  FIG. 16 is a diagram showing a part of the magnetic field generator shown in FIG.
図 1 7は、 第 1コイルの仕上げ処理の様子を示す図である。  FIG. 17 is a diagram showing a state of the finishing processing of the first coil.
図 1 8は、 真空蒸着によって形成されたアルミナ層の表面を研磨する前の状態 を示す図である。  FIG. 18 is a view showing a state before polishing the surface of the alumina layer formed by vacuum evaporation.
図 1 9は、 図 1 8に示すアルミナ層の表面を研磨した後の状態を示す図である 図 2 0は、 周回部分の間に生じた亀裂を示す図である。  FIG. 19 is a view showing a state after polishing the surface of the alumina layer shown in FIG. 18. FIG. 20 is a view showing cracks generated between the orbital portions.
図 2 1は、 隣り合う周回部分の間のアルミナがはがれ落ちてしまうことを防止 する対策を施したコイルを示す図である。  FIG. 21 is a diagram showing a coil in which a measure has been taken to prevent the alumina between adjacent orbiting portions from peeling off.
図 2 2は、 図 1 6に示す磁界発生器が有するコイルを、 光学レンズ側から見た ときの図である。  FIG. 22 is a diagram of the coil of the magnetic field generator shown in FIG. 16 when viewed from the optical lens side.
図 2 3は、 光学レンズ側から見たときの第 1コイルを示す図である。  FIG. 23 is a diagram illustrating the first coil when viewed from the optical lens side.
図 2 4は、 コイルと光学レンズの位置合わせの様子を示す図である。  FIG. 24 is a diagram showing how the coil and the optical lens are aligned.
図 2 5は、 図 2 3に示す第 1コイルの内周端部分を光学レンズ側から拡大して 見たときの図である。  FIG. 25 is an enlarged view of the inner peripheral end portion of the first coil shown in FIG. 23 from the optical lens side.
図 2 6は、 図 2 3に示す第 1コイルの内周端部分をコイルの周回方向に断面し たときの図である。  FIG. 26 is a diagram when the inner peripheral end portion of the first coil shown in FIG. 23 is sectioned in the direction in which the coil rotates.
図 2 7は、 内周形状が楕円のコイルを示す図である。  FIG. 27 is a diagram illustrating a coil whose inner peripheral shape is elliptical.
図 2 8は、 内周形状が長円のコイルを示す図である。 発明を実施するための最良の形態  FIG. 28 is a diagram showing a coil whose inner peripheral shape is an ellipse. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態について説明する。 なお、 以下の説明では、 「情報」 と 「データ」 とを区別せずに用いる場合がある。 Hereinafter, embodiments of the present invention will be described. In the following explanation, "information" And "data" are sometimes used without distinction.
図 1 1は、 本発明の光情報記憶システムおよび光情報記憶装置の各実施形態を 示す外観図である。  FIG. 11 is an external view showing each embodiment of the optical information storage system and the optical information storage device of the present invention.
この図 1 1には、 本発明にいう光記憶媒体に一例として光磁気 (MO) デイス クを用いる、 本発明の光情報記憶装置の一実施形態に相当するブレード装置 1 0 と、 複数 (この図では 1 0台) のブレード装置 1 0が組み込まれた、 本発明の光 情報記憶システムの一実施形態に相当する集合システム 2 0が示されている。 ブレード装置 1 0の筐体 1 1は、 MOディスクの直径の 3倍を越す長さと、 M 0ディスクの直径よりもやや大きい幅 (この図では高さ) と、 MOディスクの直 径よりも大幅に小さい厚み (この図では幅) とを有しており、 この筐体 1 1の一 端には、 MOディスクが複数枚格納されたマガジン 1 2が着脱自在に配置されて いる。  FIG. 11 shows a blade device 10 corresponding to one embodiment of the optical information storage device of the present invention using a magneto-optical (MO) disk as an example of the optical storage medium of the present invention, An aggregate system 20 corresponding to one embodiment of the optical information storage system of the present invention, in which 10 blade devices 10 are incorporated in the figure, is shown. The housing 11 of the blade unit 10 has a length that is more than three times the diameter of the MO disk, a width slightly larger than the diameter of the M0 disk (height in this figure), and a greater diameter than the diameter of the MO disk. In this case, a magazine 12 containing a plurality of MO disks is removably arranged at one end of the housing 11.
集合システム 2 0の筐体 2 1には、 複数のブレード装置 1 0が抜き差し自在に 実装されており、 各ブレード装置 1 0のマガジン 1 2は、 ブレード装置 1 0が集 合システム 2 0の筐体 2 1に差し込まれた状態でも着脱自在となっている。 また 、 集合システム 2 0には、 複数のブレード装置 1 0それぞれにおける情報の記録 及び再生を統括する制御装置 2 2も備えられている。  A plurality of blade devices 10 are mounted in the housing 21 of the collective system 20 so that they can be freely inserted and removed.The magazine 12 of each blade device 10 is equipped with the blade device 10 in the housing of the integrated system 20. It is detachable even when inserted into the body 21. In addition, the collective system 20 is also provided with a control device 22 that controls recording and reproduction of information in each of the plurality of blade devices 10.
このような集合システム 2 0は、 筐体 2 1に複数のブレード装置 1 0がコンパ クトに収まっており、 コンパクトで大容量の記憶システムとなっている。 また、 M〇ディスクやブレ一ド装置 1 0を増やすことによって容易に容量を拡張するこ とができ、 マガジン 1 2やブレード装置 1 0の着脱や交換によってメンテナンス を容易に行うこともできる。  Such a collective system 20 is a compact and large-capacity storage system in which a plurality of blade devices 10 are compactly housed in a housing 21. In addition, the capacity can be easily expanded by increasing the number of M〇 disks and blade devices 10, and maintenance can be easily performed by attaching / detaching or replacing the magazine 12 or the blade device 10.
図 1 2は、 マガジンの詳細を示す図である。  FIG. 12 is a diagram showing details of the magazine.
この図 1 2のパート (A) には、 マガジン 1 2内に複数の MOディスク 1 3が 格納されている状態を表す透視図が示されており、 一点鎖線で囲まれた範囲 P 2 の拡大断面図が図 1 0のパート (B ) に示されている。  In part (A) of FIG. 12, a perspective view showing a state in which a plurality of MO disks 13 are stored in the magazine 12 is shown, and the area P 2 surrounded by a chain line is enlarged. A cross-sectional view is shown in part (B) of FIG.
マガジン 1 2内には、 着脱自在な F R AM 1 4が挿入されており、 この F R A M l 4の端子 1 4 aは、 マガジン 1 2内に設けられた内部端子 1 2 aと接触し、 その内部端子 1 2 aと繋がった外部端子 1 2 bと電気的に接続される。 この外部 端子 1 2 bは、 図 1 1に示すブレード装置 1 0にマガジン 1 2が装着される際に 、 ブレード装置 1 0の内部配線と電気的に接続され、 これにより、 ブレード装置 1 0による F R AM I 4の読み書きが可能となる。 A removable FRAM 14 is inserted into the magazine 12, and the terminal 14 a of the FRAM 14 contacts an internal terminal 12 a provided in the magazine 12, and the internal It is electrically connected to the external terminal 12b connected to the terminal 12a. This outside The terminal 1 2b is electrically connected to the internal wiring of the blade device 10 when the magazine 12 is mounted on the blade device 10 shown in FIG. I4 can be read and written.
F R AM 1 4には、 マガジン 1 2内における各 MOディスク 1 3の格納位置等 が記録される。  The storage location of each MO disk 13 in the magazine 12 is recorded in the FRAM 14.
本実施形態では、 表裏両面に情報を記録することができるタイプの MOディス ク 1 3が用いられており、 MOディスク 1 3の表裏両面に記録膜が設けられてい る。 表裏両面それぞれの記録膜には、 後で詳述するように光の照射と磁界の印加 が行われ、 情報の記録や再生が行われる。 図 1 1に示す各ブレード装置 1 0は、 M Oディスク 1 3の表裏に同時にアクセスを行うことができる構造になっている 図 1 3は、 ブレード装置のハードウエア構造を表す図である。  In the present embodiment, a MO disk 13 of a type capable of recording information on both front and back surfaces is used, and a recording film is provided on both front and back surfaces of the MO disk 13. Irradiation of light and application of a magnetic field are performed on the recording film on each of the front and back surfaces, as will be described in detail later, and information is recorded and reproduced. Each blade device 10 shown in FIG. 11 has a structure capable of simultaneously accessing the front and back of the MO disk 13. FIG. 13 is a diagram showing a hardware structure of the blade device.
図 1 1にも示したブレード装置 1 0は、 筐体 1 1内に、 上述したマガジン 1 2 と、 M〇ディスク 1 3に対して情報記録及び情報再生を行うドライブ 1 6とを備 えており、 マガジン 1 2とドライブ 1 6との間には、 それらの相互間で MOディ スク 1 3を移動させるチェンジャ 1 5が配備されている。 ドライブ 1 6は、 本発 明にいう記録再生部の一例に相当し、 チェンジャ 1 5は、 本発明にいう媒体移動 部の一例に相当する。  The blade device 10 also shown in FIG. 11 includes the above-mentioned magazine 12 and a drive 16 for recording and reproducing information on and from the M〇 disk 13 in a housing 11. A changer 15 for moving the MO disk 13 between them is provided between the magazine 12 and the drive 16. The drive 16 corresponds to an example of a recording / reproducing unit according to the present invention, and the changer 15 corresponds to an example of a medium moving unit according to the present invention.
このように、 ブレード装置 1 0は、 マガジン 1 2とチェンジャ 1 5とドライブ 1 6とを筐体 1 1内にコンパクトに納めたものであり、 マガジン 1 2内に空きが ある範囲では、 M〇ディスク 1 3を増やすことによって容易に記憶容量を拡張す ることができる。 また、 マガジン 1 2や MOディスク 1 3の着脱や交換によって メンテナンスを容易に行うこともできる。  As described above, the blade device 10 is a compact device in which the magazine 12, the changer 15, and the drive 16 are housed in the housing 11. The storage capacity can be easily expanded by increasing the number of disks 13. In addition, maintenance can be easily performed by attaching and detaching and replacing the magazine 12 and the MO disk 13.
ブレード装置 1 0の、 マガジン 1 2とは逆の一端には、 ブレード装置 1 0と外 部とのデータ移送を担うインターフェースのコネクタ 1 7 aが備えられており、 ブレード装置 1 0が、 図 1 1に示す集合システム 2 0の筐体 2 1に差し込まれる と、 このコネクタ 1 7 aは集合システム 2 0側のコネクタと接合する。 このコネ クタ 1 7 aは本発明にいう接続部の一例に相当する。  One end of the blade device 10 opposite to the magazine 12 is provided with an interface connector 17a for transferring data between the blade device 10 and the outside. When the connector 17a is inserted into the housing 21 of the collective system 20 shown in FIG. 1, the connector 17a is joined to the connector of the collective system 20. This connector 17a corresponds to an example of the connecting portion according to the present invention.
チェンジャ 1 5は、 MOディスク 1 3をマガジン 1 2に対して抜き差しする機 能、 MOディスク 1 3を図の上下方向に移動させる機能、 および M〇ディスク 1 3を、 ドライブ 1 6にセッ卜したりドライブ 1 6から取り出す機能を有する。 なお、 図 1 1で説明したように、 本実施形態における筐体 1 1は、 M〇デイス ク 1 3の 3倍以上の長さを有するが、 チェンジャ 1 5とドライブ 1 6は、 チェン ジャ 1 5上の M〇ディスク 1 3とドライブ 1 6に装填された MOディスク 1 3と が互いに重なりを生じるような位置関係に配置することができ、 本発明にいうブ レード筐体の長さは、 光記憶媒体の直径の 2 . 5倍以上であることが好適である 図 1 4は、 ブレード装置の機能構造を表す機能ブロック図である。 Changer 15 is a machine that inserts and removes MO disk 13 from magazine 12 It has a function to move the MO disk 13 up and down in the figure, and a function to set the M〇 disk 13 into and out of the drive 16. As described with reference to FIG. 11, the housing 11 in the present embodiment has a length that is three times or more the length of the M〇 disk 13, but the changer 15 and the drive 16 are The M〇 disk 13 on 5 and the MO disk 13 loaded in the drive 16 can be arranged in a positional relationship such that they overlap each other.The length of the blade housing according to the present invention is: It is preferable that the diameter is at least 2.5 times the diameter of the optical storage medium. FIG. 14 is a functional block diagram showing the functional structure of the blade device.
上述したように、 ブレード装置 1 0は、 マガジン 1 2とチェンジャ 1 5とドラ イブ 1 6とを備えており、 更に、 チェンジャ 1 5やドライブ 1 6を制御する制御 部 1 8と、 ブレード装置 1 0と外部とのデータ移送を担うインターフェース 1 7 も備えられている。 このインタ一フエ一ス 1 7は、 I E E E 1 3 9 4、 U S B、 シリアル A T Aなどといつた周知の高速なシリアル系ィンターフェースのなかか ら選択されたものであり、 詳細については説明を省略する。  As described above, the blade device 10 includes the magazine 12, the changer 15, and the drive 16, and further includes a control unit 18 that controls the changer 15 and the drive 16, and the blade device 1. There is also an interface 17 for data transfer between 0 and the outside world. This interface 17 is selected from well-known high-speed serial interfaces such as IEEE 1394, USB, and serial ATA, and the detailed description is omitted. I do.
ドライブ 1 6には、 MOディスクを保持して回転させるスピンドルモータ 1 6 1と、 M〇ディスクに対して光を照射して情報の記録や再生を行うへッド 1 6 2 が備えられており、 ヘッド 1 6 2は、 MOディスクの第 1面と第 2面 (表裏面) それぞれ用に 2つ備えられている。 また、 ドライブ 1 6には、 第 1面と第 2面そ れぞれ用のリ一ドライトチャネル 1 6 3と、 バッファとして機能するファースト イン 'ファーストアウト (F I F O) メモリ 1 6 4も備えられている。  The drive 16 is equipped with a spindle motor 16 1 that holds and rotates the MO disk, and a head 16 2 that irradiates light to the M〇 disk to record and reproduce information. Two heads 16 2 are provided for the first side and the second side (front and back) of the MO disk, respectively. Drive 16 also has read / write channels 163 for the first and second sides, respectively, and a first-in first-out (FIFO) memory 1664 that acts as a buffer. I have.
制御部 1 8には、 インタ一フェース 1 7を介して、 図示を省略した経路によつ て装置外から、 MOディスクを指定する指定情報が入力される。 制御部 1 8は、 指定情報が入力されると、 その指定情報に基づいて、 マガジン 1 2内に格納され ている複数の M〇ディスクの中から指定された MOディスクを見つけ出し、 チェ ンジャ 1 5に対して、 その見つけた M〇ディスクをマガジン 1 2からドライブ 1 6にセットすることを指示する。 チェンジャ 1 5は、 制御部 1 8から指示された M〇ディスクをマガジン 1 2から取り出してドライブ 1 6にセッ卜する。 つまり 、 制御部 1 8は、 F R AM I 4の格納情報に基づいてアクセス対象の M〇ディス クを見つけることができるので、 例えばマガジン 1 2を交換した場合などであつ ても迅速にアクセスを開始することができる。 To the control unit 18, designation information for designating an MO disk is input from outside the device via a path (not shown) via the interface 17. When the designated information is input, the control unit 18 finds the designated MO disk from among a plurality of M〇 disks stored in the magazine 12 based on the designated information, and changes the changer 15 Is instructed to set the found M〇 disk from magazine 12 to drive 16. The changer 15 takes out the M〇 disk specified by the control unit 18 from the magazine 12 and sets it in the drive 16. In other words, the control unit 18 determines the M〇 disk to be accessed based on the stored information Since it is possible to find a disk, it is possible to quickly start access even when, for example, the magazine 12 is exchanged.
ブレード装置 1 0には、 ブレード装置 1 0外から F RAM 1 4に、 制御部 1 8 を迂回して直接にアクセスするためのアクセス経路 1 9が設けられており、 ブレ ード装置 1 0の電源が切れている場合であっても、 このアクセス経路 1 9を介し て F R AM 1 4の格納情報を外部から確認することができる。  The blade device 10 is provided with an access path 19 for directly accessing the FRAM 14 from the outside of the blade device 10 bypassing the control unit 18. Even when the power is turned off, the stored information of FRAM 14 can be externally confirmed through this access path 19.
図 1 5は、 ドライブのヘッド近辺の構造を表す図である。  FIG. 15 is a diagram showing the structure near the head of the drive.
ドライブ 1 6には、 2つのヘッド 1 6 2が備えられており、 この図 1 5には、 それら 2つのへッド 1 6 2近辺の構造が示されている。 これら 2つのへッド 1 6 2は、 スピンドルモータ 1 6 1によって保持されて回転される MOディスク 1 3 を挟んで配置されており、 各ヘッド 1 6 2は、 不図示のドライブベースに固定さ れた固定アセンブリ 3 2と、 MOディスクの半径方向に移動自在な移動ァセンブ リ (キャリッジ) 3 1とで構成されている。  The drive 16 is provided with two heads 16 2, and FIG. 15 shows a structure near the two heads 16 2. These two heads 16 2 are arranged with a MO disk 13 held and rotated by a spindle motor 16 1 interposed therebetween, and each head 16 2 is fixed to a drive base (not shown). Fixed assembly 32 and a movable assembly (carriage) 31 that can move in the radial direction of the MO disk.
固定アセンブリ 3 2には、 情報の読み書きに用いられるレーザ光を発生する、 本発明にいう光源の一例であるレ一ザダイオード 3 2 1や、 MOディスク 1 3で 反射した光に含まれている、 MOディスク 1 3に記憶されている情報に応じた信 号を検出する光検出器 3 2 2が内蔵されている他、 各種の光学素子なども内蔵さ れている。  The fixed assembly 32 includes a laser diode 321, which is an example of a light source according to the present invention, which generates a laser beam used for reading and writing information, and light reflected by the MO disk 13 In addition to a built-in photodetector 322 that detects a signal corresponding to information stored in the MO disk 13, various optical elements are also built in.
移動アセンブリ 3 1は、 MOディスク 1 3の半径方向に移動することで、 MO ディスク 1 3の所望の位置にレーザ光を照射した上で磁界を印加し、 さらに、 M Oディスク 1 3によって反射された光を固定アセンブリ 3 2へと返す機能を有す る。 この移動アセンブリ 3 1は、 キャリッジベース 3 3、 レ一ザ光を反射する立 ち上げミラー 3 4、 コイルを備えた磁界発生器 4 0、 レーザ光を磁界発生器 4 0 に向けて集光する集光レンズ 3 5、 および集光レンズ 3 5を動かすレンズァクチ ユエ一夕 3 6を備えている。  The moving assembly 31 1 moves in the radial direction of the MO disk 13, irradiates a laser beam to a desired position on the MO disk 13, applies a magnetic field, and is further reflected by the MO disk 13. It has the function of returning light to the fixed assembly 32. The moving assembly 31 includes a carriage base 33, a rising mirror 34 for reflecting laser light, a magnetic field generator 40 having a coil, and a laser beam focused toward the magnetic field generator 40. It has a condenser lens 35 and a lens actuator 36 that moves the condenser lens 35.
図 1 6は、 図 1 5に示す磁界発生器の一部分を示す図である。  FIG. 16 is a diagram showing a part of the magnetic field generator shown in FIG.
図 1 6に示す磁界発生器 4 0は、 一方の面に光学レンズ (不図示) が配備され たガラス基板 4 1を有する。 このガラス基板 4 1の、 光学レンズが配備された面 とは反対側の面は平坦な面であり、 この平坦な面に誘電体層 4 3が形成されてい る。 磁界発生器 4 0は、 光学レンズが図 1 5に示す集光レンズ 3 5に対向すると ともに誘電体層 4 3が図 1 5に示すドライブ 1 6にセッ卜された MOディスク 1 3に対向するように移動アセンブリ 3 1に配備されている。 集光レンズ 3 5によ つて絞られたレ一ザ光 Lは、 ガラス基板 4 1に設けられた光学レンズでさらに絞 られ、 ガラス基板 4 1および誘電体層 4 3を透過して、 MOディスク 1 3に照射 される。 The magnetic field generator 40 shown in FIG. 16 has a glass substrate 41 provided with an optical lens (not shown) on one surface. The surface of the glass substrate 41 opposite to the surface on which the optical lens is provided is a flat surface, and the dielectric layer 43 is formed on the flat surface. The In the magnetic field generator 40, the optical lens faces the condenser lens 35 shown in FIG. 15 and the dielectric layer 43 faces the MO disk 13 set in the drive 16 shown in FIG. So the moving assembly is deployed in 31. The laser beam L narrowed down by the condenser lens 35 is further narrowed down by the optical lens provided on the glass substrate 41, passes through the glass substrate 41 and the dielectric layer 43, and is Irradiated on 13.
図 1 6に示す誘電体層 4 3は、 比較的熱伝導率の高いアルミナからなるもので あり、 その熱伝導率は 2 O W/mK前後である。 この誘電体層 4 3の内部には、 2層のコイル 4 4 1 , 4 4 2が配備されている。 これらのコイル 4 4 1, 4 4 2 はいずれも、 レーザ光 Lが透過する領域を取り囲むようにスパイラル状に周回し てなるものである。 ここでは、 ガラス基板 4 1側の同一平面内でスパイラル状に 周回してなるコイルを第 1コイル 4 4 1と称し、 その第 1コイル 4 4 1よりもガ ラス基板 4 1から離れた同一平面内でスパイラル状に周回してなるコイルを第 2 コイル 4 4 2と称することにする。 この図 1 6に示す磁界発生器 4 0では、 一般 的な樹脂材料に比べて熱伝導率が高いアルミナによってコイル 4 4 1 , 4 4 2を 覆っているため、 コイル 4 4 1 , 4 4 2で発生した熱は放熱されやすく、 コイル の破損が防止されるとともに必要な磁界を得るための電流を流すことが容易であ る。 ·  The dielectric layer 43 shown in FIG. 16 is made of alumina having relatively high thermal conductivity, and its thermal conductivity is about 2 OW / mK. Inside this dielectric layer 43, two layers of coils 441 and 442 are provided. Each of these coils 4 41 and 4 42 is spirally wound so as to surround a region through which the laser light L passes. Here, a coil spirally wound in the same plane on the side of the glass substrate 41 is referred to as a first coil 441, and the same coil that is further away from the glass substrate 41 than the first coil 441. The coil that spirals around inside is referred to as a second coil 442. In the magnetic field generator 40 shown in FIG. 16, the coils 44 1 and 44 2 are covered with alumina having a higher thermal conductivity than a general resin material, so that the coils 4 4 1 and 4 4 2 The heat generated by the coil is easily dissipated, preventing damage to the coil and making it easy to pass current to obtain the required magnetic field. ·
また、 これらのコイル 4 4 1, 4 4 2のいずれにおいても、 レーザ光 Lのスポ ット径 (実線 S P参照) にマージンとしての幅 Mを加えた点線で示す領域が、 レ 一ザ光 Lが通過する可能性のある透過領域として確保されている。 この透過領域 にはアルミナが存在するが、 このアルミナ、 すなわち誘電体層 4 3は、 真空蒸着 によって形成されたものである。 真空蒸着によって形成されたアルミナの光学的 性質は均一であり、 したがって、 透過領域においても均一な光学的性質が保証さ れ、 図 5に示す磁界発生器 7とは異なりガラス材料からなる突部 7 1 1が不要に なる。 この結果、 図 1 6に示す磁界発生器 4 0では、 図 5に示す磁界発生器 7に 備えられたコイル 7 4よりも、 コイルの最内周の周回部分 4 4 1 3, 4 4 2 3の 径を小さくすることができ、 磁界を効率よく発生することができる。  In each of these coils 4 41 and 4 42, the area indicated by the dotted line obtained by adding the width M as a margin to the spot diameter of the laser beam L (see the solid line SP) is the laser beam L. Is secured as a transmissive area through which the light can pass. Alumina exists in the transmission region, and the alumina, that is, the dielectric layer 43 is formed by vacuum evaporation. The optical properties of alumina formed by vacuum evaporation are uniform, and therefore, uniform optical properties are guaranteed even in the transmission region. Unlike the magnetic field generator 7 shown in FIG. 1 1 becomes unnecessary. As a result, in the magnetic field generator 40 shown in FIG. 16, the innermost circumference of the coil 4 4 1 3, 4 4 2 3 is larger than the coil 74 provided in the magnetic field generator 7 shown in FIG. 5. Can be made smaller, and a magnetic field can be generated efficiently.
この図 1 6に示す第 1コイル 4 4 1と第 2コイル 4 4 2の形成にあたっては、 まず、 第 1コイル 4 4 1を形成後、 その第 1コイル 4 4 1の表面にアルミナから なるアルミナ層を真空蒸着により形成し第 1コイル 4 4 1をアルミナで覆ったう えで、 そのアルミナ層の表面を研磨することで平坦にし、 その後、 第 2コイル 4 4 2を形成する。 In forming the first coil 4 41 and the second coil 4 42 shown in FIG. 16, First, after forming the first coil 441, an alumina layer made of alumina is formed on the surface of the first coil 441 by vacuum evaporation, and the first coil 441 is covered with alumina. The surface of the layer is flattened by polishing, and then the second coil 442 is formed.
まず、 図 1 7を用いて、 第 1コイル 4 4 1の形成について説明する。  First, the formation of the first coil 441 will be described with reference to FIG.
図 1 7は、 第 1コイルの仕上げ処理の様子を示す図である。  FIG. 17 is a diagram showing a state of the finishing processing of the first coil.
コイルの導体部分 4 4 1 8の形成にあたっては、 電解メツキの手法を用いて行 う。 あらかじめ薄い電極膜を形成したガラス基板 4 1上にレジストを用いてコィ ル部分以外の領域を覆う。 このときのフォトリソグラフィの技術によってレジス トの断面を矩形状に形成する。 この状態で電解メツキを行うことで、 レジストで 覆われていない電極膜の部分に選択的に銅等の導体が形成される。 メツキの後に レジストを除去し、 エッチングで導体が形成されていない電極膜部分を除去する ことで、 図 1 7に示す矩形状断面の導体 4 4 1 8がスパイラル状に周回してなる コイルを得る。 次に、 その導体 4 4 1 8の表面 4 4 1 8 aにレジスト等で図 1 7 に示すマスク 9 5 0を施す。 このマスク 9 5 0は、 導体 4 4 1 8の幅方向中央部 に施し、 導体 4 4 1 8の周回方向に延びる縁 4 4 1 8 bにまでかからないように する。 続いて、 イオンミリング等の装置を用いて、 導体の表面 4 4 1 8 aを軽く 削る。 こうすることで、 マスク 9 5 0がかかっていない縁 4 4 1 8 bが、 マスク が施された中央部より多く削られ、 導体 4 1 8の周回方向に延びる緣 4 4 1 8 bが面取りされる (図中の点線参照) 。 導体 4 4 1 8の周回方向に延びる縁 4 4 1 8 bが面取りされたことで、 真空蒸着によって誘電体層を形成する際、 アルミ ナが、 第 1コイルの、 半径方向に隣り合う導体 (周回部分) の間に入りこみやす い。  In forming the conductor portion 4 4 18 of the coil, an electrolytic plating method is used. A region other than the coil portion is covered with a resist on a glass substrate 41 on which a thin electrode film has been formed in advance. The cross section of the resist is formed in a rectangular shape by the photolithography technique at this time. By performing the electroplating in this state, a conductor such as copper is selectively formed in a portion of the electrode film that is not covered with the resist. After the plating, the resist is removed, and the electrode film portion where the conductor is not formed by etching is removed to obtain a coil in which the conductor 4 4 18 with a rectangular cross section shown in Fig. 17 spirals around. . Next, a mask 950 shown in FIG. 17 is applied to the surface 4418a of the conductor 4418 with a resist or the like. The mask 950 is applied to the center of the conductor 418 in the width direction so as not to reach the edge 418 b extending in the circumferential direction of the conductor 418. Subsequently, using a device such as ion milling, the surface 418 a of the conductor is lightly shaved. In this way, the edge 4 4 18 b without the mask 950 is cut more than the center where the mask is applied, and extends in the circumferential direction of the conductor 4 18 緣 4 4 18 b is chamfered (See the dotted line in the figure). When the dielectric layer is formed by vacuum deposition due to the chamfering of the edges 4 4 18 b extending in the circumferential direction of the conductor 4 4 18, the alumina is used to form a conductor ( It is easy to get in between
次に、 アルミナ層の形成について説明する。  Next, formation of the alumina layer will be described.
図 1 8は、 真空蒸着によって形成されたアルミナ層の表面を研磨する前の状態 を示す図であり、 図 1 9は、 図 1 8に示すアルミナ層の表面を研磨した後の状態 を示す図である。  FIG. 18 is a diagram showing a state before polishing the surface of the alumina layer formed by vacuum evaporation, and FIG. 19 is a diagram showing a state after polishing the surface of the alumina layer shown in FIG. 18. It is.
図 1 8では、 第 1コイル 4 4 1の、 半径方向に隣り合う周回部分 4 4 1 4の間 にアルミナ A 1が十分に充填されず空隙 gが生じている。 この空隙 gの先端は、 第 1コイル 4 4 1の表面 4 1 aよりも低い位置にあり、 アルミナ層 4 3 1の表 面を研磨しても、 図 1 9に示すように、 その空隙 gの先端が、 アルミナ層の研磨 後の表面 4 3 1 aに表れることはなく、 空隙 gは閉じたままの状態である。 In FIG. 18, the alumina A1 is not sufficiently filled between the radially adjacent orbiting portions 4414 of the first coil 441, so that a gap g is generated. The tip of this gap g Even if the surface of the alumina layer 431 is polished at a position lower than the surface 41a of the first coil 441, as shown in FIG. It does not appear on the polished surface 431a, and the gap g remains closed.
このようにして形成された第 1コイル 4 4 1は、 半径方向に隣り合う周回部分 4 4 1 1の間隔 wが一定であり、 その間隔 wは第 1コイル 4 4 1の厚さ hの 0 . 6倍に相当する。 従来の磁界発生器では、 コイルの、 半径方向に隣り合う周回部 分の間に、 空隙が生じることを完全に防止するため、 半径方向に隣り合う周回部 分の間隔 wをなるベく広くとっていたが、 本実施形態における磁界発生器では、 空隙が生じても、 その生じた空隙の先端が研磨後の表面に表れることさえ防止す れば、 空隙は閉じたままの状態であり、 異物が入り込んだり、 第 2コイルのパ夕 ーン形成に悪影響を及ぼしたりすることはないことを見出し、 あえてその間隔 w を狭くすることで、 空隙 gの先端が第 1コイルの表面 4 4 1 aよりも高い位置ま で延びることを防止している。 ここでは、 その間隔 wを、 コイルの厚さの 0 . 6 倍にしたが、 これに限らず 0 . 4倍以上 0 . 8倍以下にすればよい。 0 . 4倍未 満であると、 アルミナが、 隣り合う周回部分 4 4 1 4の間にあまりにも入らず、 隣り合う周回部分間の絶縁に問題が生じる。 一方、 0 . 8倍を超えると、 空隙 g の先端がアルミナの表面 4 3 1 aよりも高い位置まで延びてしまい、 研磨後に開 口が生じてしまう。 以上の説明は、 第 1コイル 4 4 1についての説明であるが、 第 2コイル 4 4 2についても第 1コイル 4 4 1と同様、 半径方向に隣り合う周回 部分の間隔が一定であり、 その間隔 wは第 2コイル 4 4 2の厚さの 0 . 6倍に相 当する。 このように、 本実施形態における磁界発生器では、 各コイルの、 半径方 向に隣り合う周回部分の間隔を狭くしたことにより、 コイルの径が小さくなり、 磁界を効率よく発生するとともに、 コイルのインダクタンスも小さくなり、 駆動 周波数を高めることができる。 なお、 第 2コイル 4 4 2の形成も、 第 1コイル 4 4 1の形成と同じようにして行われる。  In the first coil 4 41 formed in this way, the interval w between the orbiting portions 4 4 1 1 adjacent in the radial direction is constant, and the interval w is 0 mm of the thickness h of the first coil 4 4 1. . Equivalent to 6 times. In a conventional magnetic field generator, the gap w between the radially adjacent circling portions is set to be as wide as possible in order to completely prevent the formation of a gap between the radially adjacent circling portions of the coil. However, in the magnetic field generator according to the present embodiment, even if a gap occurs, the gap remains closed as long as the tip of the created gap does not appear on the surface after polishing. Does not penetrate or adversely affect the pattern formation of the second coil, and by daringly narrowing the interval w, the tip of the gap g becomes the surface of the first coil 4 4 1 a It is prevented from extending to a higher position. Here, the interval w is set to 0.6 times the thickness of the coil, but is not limited to this, and may be set to 0.4 times or more and 0.8 times or less. If it is less than 0.4 times, the alumina does not enter too much between the adjacent circulating portions 4 4, and a problem occurs in insulation between the adjacent circulating portions. On the other hand, if it exceeds 0.8 times, the tip of the gap g extends to a position higher than the alumina surface 431a, and an opening occurs after polishing. The above description is for the first coil 4 41, but for the second coil 4 42, as in the case of the first coil 4 41, the interval between the circumferentially adjacent circling portions is constant, and The interval w corresponds to 0.6 times the thickness of the second coil 442. As described above, in the magnetic field generator according to the present embodiment, the diameter of the coil is reduced by narrowing the interval between the orbital portions adjacent to each other in the radial direction of the coil, so that the magnetic field is generated efficiently and The inductance is also reduced, and the driving frequency can be increased. The formation of the second coil 442 is performed in the same manner as the formation of the first coil 441.
以上説明したように、 本実施形態における磁界発生器では、 コイルの、 半径方 向に隣り合う周回部分の間隔を、 従来よりも狭くした。 ところが、 この間隔を狭 くすればするほど、 熱膨張率の違いによる亀裂の発生が懸念される。  As described above, in the magnetic field generator according to the present embodiment, the interval between the orbital portions of the coil that are adjacent in the radial direction is narrower than before. However, as the distance is reduced, cracks may occur due to the difference in the coefficient of thermal expansion.
図 2 0は、 周回部分の間に生じた亀裂を示す図である。 図 20に示すコイル 44' では、 半径方向に隣り合う周回部分 4404' の間 隔が、 コイル 44' の厚さの 0. 4倍未満である。 この間隔が狭くなればなるほ ど、 隣り合う周回部分 4404' の間のアルミナの厚さは薄くなる。 コイル 44 ' に磁界を発生させるため通電を行うとコイル 44' は発熱し温度が上昇する。 コイル 44' とアルミナの熱膨張率には差があり、 この熱膨張率の差によって、 隣り合う周回部分 4404' の間のアルミナに、 図 20に示すような亀裂 fが生 じ、 最悪の場合には、 周回部分 4404' を覆うアルミナがはがれ落ち、 コイル の表面 44' aが剥き出しになることがある。 この亀裂 f の問題は、 半径方向に 隣り合う周回部分の間隔を、 コイルの厚さの 0. 4倍以上にしても依然として残 る問題であり、 周回部分のアルミナがはがれ落ちてしまうことを防止する対策を 講じておくことが好ましい。 FIG. 20 is a diagram showing cracks generated between the orbital portions. In the coil 44 'shown in FIG. 20, the distance between the orbital portions 4404' that are adjacent in the radial direction is less than 0.4 times the thickness of the coil 44 '. The smaller this spacing, the thinner the thickness of alumina between adjacent circulating portions 4404 '. When current is applied to generate a magnetic field in the coil 44 ', the coil 44' generates heat and its temperature rises. There is a difference in the coefficient of thermal expansion between the coil 44 'and alumina, and this difference in coefficient of thermal expansion causes a crack f as shown in Fig. 20 in the alumina between the adjacent orbiting parts 4404', and in the worst case In this case, the alumina covering the orbital portion 4404 'may come off and the surface 44'a of the coil may be exposed. The problem of this crack f is a problem that remains even if the distance between the circling parts adjacent in the radial direction is more than 0.4 times the thickness of the coil, and prevents the alumina in the circulating part from peeling off It is preferable to take countermeasures.
図 21は、 周回部分のアルミナがはがれ落ちてしまうことを防止する対策を施 したコイルを示す図である。  FIG. 21 is a diagram showing a coil in which measures have been taken to prevent the alumina in the orbiting portion from peeling off.
図 21に示すコイル 61の表面 61 a、 すなわち、 ガラス基板 62とは反対側 の表面には、 アルミナとの密着力を高める密着膜 63が形成されている。 この密 着膜 63としては、 例えばクロムやチタンからなる厚さ数百 A程度の膜があげら れる。 仮に、 図 20に示すような亀裂 fが生じても、 この密着膜 63が形成され た磁界発生器では、 コイル 61を覆うアルミナが、 密着膜 63によってつなぎ止 められ、 脱落が防止される。  On the surface 61a of the coil 61 shown in FIG. 21, that is, on the surface on the side opposite to the glass substrate 62, an adhesion film 63 for increasing the adhesion to alumina is formed. The adhesion film 63 is, for example, a film made of chromium or titanium and having a thickness of about several hundred A. Even if a crack f occurs as shown in FIG. 20, in the magnetic field generator having the adhesion film 63 formed thereon, the alumina covering the coil 61 is tied up by the adhesion film 63 to prevent the alumina from falling off.
図 22は、 図 16に示す磁界発生器が有するコイルを、 光学レンズ側から見た ときの図である。  FIG. 22 is a diagram when the coil of the magnetic field generator shown in FIG. 16 is viewed from the optical lens side.
図 22に示す第 1コイル 441および第 2コイル 442は、 互いの内周端部 4 41 1, 4421付近において互いに重なり合った部分で接続しており、 1本の 導体を形成している。 図 22に示すように、 第 1コイル 441にあっても、 第 2 コイル 442にあっても、 最内周の周回部分 4413, 4423の内縁 4413 a, 4423 aは、 真円に沿ってその真円を略 1周したものである。 すなわち、 各内縁 4413 a, 4423 aは、 左右対称の所定形状に沿ってその所定形状を 略 1周したものである。 したがって、 これら最内周の周回部分 4413, 442 3それぞれが、 本発明にいう第 1導体の一例に相当する。 以下、 第 1コイル 4 4 1に絞って説明を行うが、 ここでの説明は第 2コイル 4 4 2にも当てはまる説明である。 The first coil 441 and the second coil 442 shown in FIG. 22 are connected to each other at portions overlapping each other near the inner peripheral ends 4411 and 4421 to form one conductor. As shown in FIG. 22, the inner edges 4413a and 4423a of the innermost circumferential portions 4413 and 4423 are formed along the true circle regardless of the first coil 441 or the second coil 442. It is a round of the circle. That is, each of the inner edges 4413a and 4423a is formed by making substantially one round of the predetermined shape along the left-right symmetric predetermined shape. Therefore, each of the innermost circumferential portions 4413 and 4423 corresponds to an example of the first conductor according to the present invention. Hereinafter, the description will be focused on the first coil 4 41, but the description here is also applicable to the second coil 4 42.
図 2 3は、 光学レンズ側から見たときの第 1コイルを示す図である。  FIG. 23 is a diagram illustrating the first coil when viewed from the optical lens side.
図 2 3に示す第 1コイル 4 4 1を通過する際のレ一ザ光のスポット径は、 実線 で示す円 C 1の直径に相当するが、 この第 1コイル 4 4 1では、 磁界発生器の組 立時における位置合わせ等のマージンを考慮して、 レーザ光のスポット径に相当 する直径の円 C 1よりも大きな領域がレーザ光の透過領域として確保されている 。 すなわち、 レ一ザ光の径に相当する直径の円 C 1にマージンを加えた点線で示 す円 C 2の領域が透過領域として確保されている。 この第 1コイル 4 4 1の、 最 内周の周回部分 4 4 1 3の内縁 4 4 1 3 aは、 この透過領域に相当する円 C 2に 沿ってその円 C 2を略 1周したものであって、 その内縁 4 4 1 3 aは、 円 C 2に 限界まで接近している。 したがって、 図 2 3に示す第 1コイル 4 4 1は、 図 2に 示すコイル 7 4とは異なり、 透過領域に図 2に示す余分な領域 Sが含まれておら ず、 図 2に示すコイル 7 4に比べ、 磁界を効率よく発生する。 また、 導体のイン ダクタンスも小さくなり、 本実施形態における磁界発生器 4 0の駆動周波数を高 めることができ、 MOディスクに対して高速なアクセスが可能になる。 図 2 3に 示す第 1コイル 4 4 1では、 コイルの線幅や巻き数にも依存するが、 電流が 2〜 3 %程度削減され、 消費電力では 4〜6 %程度の軽減になる。 また、 インダクタ ンスは 1 0 %程度小さくなる。  The spot diameter of the laser beam when passing through the first coil 4 41 shown in FIG. 23 corresponds to the diameter of the circle C 1 shown by the solid line. In consideration of a margin for alignment and the like at the time of assembling, an area larger than a circle C1 having a diameter corresponding to the spot diameter of the laser light is secured as a laser light transmission area. That is, an area of a circle C2 indicated by a dotted line obtained by adding a margin to a circle C1 having a diameter corresponding to the diameter of the laser light is secured as a transmission area. The inner edge 4 4 13 a of the innermost peripheral portion 4 4 13 of the first coil 4 41 is formed by substantially making one round of the circle C 2 along the circle C 2 corresponding to this transmission area And its inner edge 4 4 1 3a approaches the circle C 2 to its limit. Therefore, unlike the coil 74 shown in FIG. 2, the first coil 441 shown in FIG. 23 does not include the extra area S shown in FIG. It generates a magnetic field more efficiently than 4. Also, the inductance of the conductor is reduced, the driving frequency of the magnetic field generator 40 in the present embodiment can be increased, and high-speed access to the MO disk is possible. In the first coil 441, shown in Fig. 23, the current is reduced by about 2 to 3% and the power consumption is reduced by about 4 to 6%, depending on the wire width and the number of turns of the coil. The inductance is reduced by about 10%.
さらに、 最内周の周回部分 4 4 1 3の内縁 4 4 1 3 aが、 円 C 2に沿ってその 円 C 2を略 1周したものであることから、 第 1コイル 4 4 1の中心を割り出しや すく、 図 1 6に示す磁界発生器の組立時において行われる光学レンズの位置決め の際、 光学レンズの光軸を第 1コイル 4 4 1の中心に合わせることが容易になり 、 作業性が向上する。  Furthermore, since the inner edge 4 4 13 a of the innermost circumference 4 4 13 is substantially one round of the circle C 2 along the circle C 2, the center of the first coil 4 4 1 When the optical lens is positioned at the time of assembling the magnetic field generator shown in FIG. 16, it is easy to align the optical axis of the optical lens with the center of the first coil 441, thereby improving workability. Is improved.
図 2 4は、 コイルと光学レンズの位置合わせの様子を示す図である。  FIG. 24 is a diagram showing how the coil and the optical lens are aligned.
コイルと光学レンズの位置合わせでは、 対向する顕微鏡 9 0 1, 9 0 2の間に 、 コイル 4 4が形成されたガラス基板 4 1を配置し、 そのガラス基板 4 1の上に 光学レンズ 4 2を載せる。 光学レンズ 4 2側の顕微鏡 9 0 1では、 光学レンズ 4 2の位置を検出し、,,ガラス基板 4 1側の顕微鏡 9 0 2では、 コイル 4 4の位置を 検出する。 そして、 それぞれ検出された位置をもとに、 光学レンズ 4 2の光軸と 、 コイル 4 4の中心とが合致するよう (図中の 1点鎖線参照) 、 ガラス基板 4 1 と光学レンズ 4 2を移動させ (図中の矢印参照) 、 位置決め後に紫外線硬化型の 接着剤等を用いてガラス基板 4 1に光学レンズ 4 2を固定する。 コイルと光学レ ンズの位置合わせは、 この図 2 4を用いて説明した方法に限られないが、 通常、 コイルの内周の形状に基づいて位置合わせを行うことが多く、 図 2 3に示す第 1 コイル 4 4 1にあっては、 内周の形状が左右対称の形状であるため、 位置合わせ を容易にしかも正確に行うことができる。 これによつて、 コイルと光学レンズの 位置合わせの誤差を見込んだマージンを少なく見積もることができ、 コイルの内 径をマ一ジンを減らした分小さくすることができる。 In positioning the coil and the optical lens, a glass substrate 41 on which a coil 44 is formed is placed between the opposed microscopes 90 1 and 90 2, and an optical lens 4 2 is placed on the glass substrate 41. Put. The microscope 90 1 on the optical lens 42 side detects the position of the optical lens 42, and the microscope 90 2 on the glass substrate 41 side detects the position of the coil 44. To detect. Then, based on the detected positions, the glass substrate 41 and the optical lens 4 2 are adjusted so that the optical axis of the optical lens 42 matches the center of the coil 44 (see the dashed line in the figure). Is moved (see the arrow in the figure), and after positioning, the optical lens 42 is fixed to the glass substrate 41 using an ultraviolet-curing adhesive or the like. The positioning of the coil and the optical lens is not limited to the method described with reference to FIG. 24, but usually the positioning is often performed based on the shape of the inner circumference of the coil, as shown in FIG. 23. In the first coil 441, since the shape of the inner periphery is symmetrical, the positioning can be performed easily and accurately. As a result, it is possible to underestimate a margin in consideration of an error in the alignment between the coil and the optical lens, and to reduce the inner diameter of the coil by reducing the margin.
さらに、 図 2 3に示す最内周の周回部分 4 4 1 3は、 内縁 4 4 1 3 aと外縁 4 4 1 3 bが等間隔を保って、 内周端 4 4 1 1 eから 5 Z 6周程度の位置まで周回 した所定幅部 4 4 1 3—1と、 内縁 4 4 1 3 aに対して外縁 4 4 1 3 bが外に漸 次膨らみながら所定幅部 4 4 1 3—1の周回方向終端からこの最内周の周回部分 4 1 3の終端まで周回した拡幅部 4 1 3— 2からなるものである。 この拡幅 部 4 4 1 3— 2は 1 / 6周程度周回したものである。 最内周の周回部分 4 4 1 3 は、 なめらなか曲線でつながれたものであり、 最内周の周回部分 4 4 1 3の周囲 にアルミナを充填しやすく、 製造が容易になる。  In addition, the innermost circumference 4 4 13 shown in FIG. 23 has an inner edge 4 4 13 a and an outer edge 4 4 13 b at equal intervals, and the inner edge 4 4 1 1 e to 5 Z Predetermined width part 4 4 1 3-1, which has circulated to a position of about 6 laps, and predetermined width part 4 4 1 3-1, while the outer edge 4 4 13 b gradually expands outward with respect to the inner edge 4 4 13a And a widened portion 4 13-2 circulating from the end in the circumferential direction to the end of the innermost circumferential portion 4 13. The widened portion 4 4 1 3-2 has a circumference of about 1/6. The innermost peripheral portion 4 4 13 is connected by a smooth curve, and the periphery of the innermost peripheral portion 4 4 13 is easily filled with alumina, which facilitates production.
また、 図 2 3に示す第 1コイル 4 4 1は、 最内周の周回部分 4 4 1 3と、 最内 周の周回部分 4 4 1 3が周回した平面と同一平面内で、 その最内周の周回部分 4 4 1 3の外側をその最内周の周回部分 4 4 1 3の周回方向と同じ方向にスパイラ ル状に周回したスパイラル部分 4 4 1 5と、 最内周の周回部分 4 4 1 3の周回方 向終端とスパイラル部分 4 4 1 5の周回方向始端とを結ぶ連結部分 4 4 1 6とか らなるものであり、 スパイラル部分が本発明にいう第 2導体の一例に相当し、 連 結部分 4 4 1 6が本発明にいう第 3導体の一例に相当する。 スパイラル部分 4 4 1 5は、 所定幅部 4 4 1 3— 1と等間隔を保って周回した第 1周回部 4 4 1 5— 1と、 拡幅部 4 4 1 3— 2の外縁 4 4 1 3— 2 aと等間隔を保って周回した第 2 周回部 4 4 1 5— 2とを交互に有するものである。 このように、 2周目以降も最 内周の周回部分 4 4 1 3の形状をなぞることで、 半径位置が磁界の作用点に近づ き、 磁界の発生効率がさらに高められている。 The first coil 4 41 shown in FIG. 23 has the innermost peripheral portion 4 4 13 and the innermost peripheral portion 4 4 13 in the same plane as the plane around which the first coil 4 4 Spiral part 4 4 1 5 Spiral part 4 4 1 5 spiraling in the same direction as the innermost part 4 4 13 It consists of a connecting part 4 4 16 connecting the end in the circumferential direction of 4 13 and the start of the spiral in 4 4 15, and the spiral part corresponds to an example of the second conductor according to the present invention. The connection portion 4 4 16 corresponds to an example of the third conductor according to the present invention. The spiral portion 4 4 1 5 is composed of a first orbital portion 4 4 1 5—1 and an outer edge 4 4 1 3—2 of which a predetermined width portion 4 4 1 3—1 is equally spaced and a widened portion 4 4 1 3—2. It has alternately 3-2a and second circulating portions 4 4 1 5-2 which are circulated at equal intervals. In this way, by tracing the shape of the innermost circumferential portion 4 4 13 after the second round, the radial position approaches the point of application of the magnetic field. In this case, the generation efficiency of the magnetic field has been further enhanced.
図 2 5は、 図 2 3に示す第 1コイルの内周端部分を光学レンズ側から拡大して 見たときの図であり、 図 2 6は、 図 2 3に示す第 1コイルの内周端部分をコイル の周回方向に断面したときの図である。  FIG. 25 is an enlarged view of the inner peripheral end of the first coil shown in FIG. 23 from the optical lens side, and FIG. 26 is an inner peripheral end of the first coil shown in FIG. FIG. 4 is a diagram when an end portion is sectioned in a circumferential direction of the coil.
ここでの説明では、 最内周の周回部分 4 4 1 3を、 内周端部 4 4 1 1と、 その 内周端部 4 4 1 1につながる周回部分とに分け、 その周回部分を最内周周回部分 5 1と称することにするとともに、 最内周周回部分 5 1と半径方向に隣り合う周 回部分を第 2周周回部分 5 2と称することにする。  In the explanation here, the innermost peripheral portion 4 4 13 is divided into an inner peripheral end 4 4 11 and a peripheral portion connected to the inner peripheral end 4 4 1 1. The inner circumference part 51 will be referred to as the inner circumference part 51, and the circumference part adjacent to the innermost circumference part 51 in the radial direction will be referred to as the second circumference part 52.
第 1コイルの内周端部 4 4 1 1は、 外側の縁 4 4 1 1 aが、 第 2周周回部分 5 2から離れるように傾斜したものである。  The inner peripheral end portion 4411 of the first coil is such that an outer edge 4411a is inclined away from the second circular portion 52.
ここで、 図 2 5に示すごとく、 最内周周回部分 5 1と内周端部 4 4 1 1との境 における、 最内周周回部分 5 1と第 2周周回部分 5 2との間隔を二等分する中点 Aから、 直径が第 1コイル 4 4 1の厚さ hの 1 . 5倍であって内周端部 4 4 1 1 の外側の縁 4 4 1 1 aおよび第 2周周回部分 5 2の内側の縁 5 2 aの双方に接す る円 C 3の中心 Bまでの距離を Lとし、 図 2 6に示すごとく、 誘電体層 4 3の表 面 4 3 aから第 1コイル 4 4 1の表面 4 4 1 aまでの距離を dとする。  Here, as shown in FIG. 25, the distance between the innermost peripheral portion 51 and the second peripheral portion 52 at the boundary between the innermost peripheral portion 51 and the inner peripheral end portion 4411 is determined. From the midpoint A where the diameter is bisected, the diameter is 1.5 times the thickness h of the first coil 4 41 and the outer edge 4 4 1 1 a of the inner peripheral end 4 4 1 1 a and the second round Let L be the distance to the center B of the circle C 3 that touches both the inner edge 52 a of the orbiting portion 52 and L, as shown in FIG. 26, from the surface 43 a of the dielectric layer 43. The distance to the surface 4 4 1 a of one coil 4 4 1 is d.
本実施形態の第 1コイル 4 4 1では、 2 X d > Lの関係が成立している。 この 2 X d > Lの関係が不成立であると、 最内周周回部分 5 1と第 2周周回部分 5 2 との間に延在する空隙 g ' の先端が、 図 2 6に 1点鎖線で示すように延び、 アル ミナからなる層の研磨後の表面、 すなわち誘電体層 4 3の表面 4 3 aに表れ、 開 口 g l ' が生じてしまう。 空隙 g ' 内は、 誘電体層 4 3を形成した直後は真空状 態になっており、 その空隙 g ' が、 研磨加工によって表面に表れた瞬間に研磨材 (スラリー) などが空隙 g ' 内に吸い込まれることがある。 吸い込まれた研磨剤 はコイルを腐食させる要因になることがある。 また、 開口 g l ' が生じた表面 4 3 aの上に、 レジストを塗布し、 塗布したレジストを乾燥するために温度を上げ ると、 空隙 g ' 内にある空気が膨張し開口 g 1 ' から空気が吹き出してレジスト に泡を作ってしまうことがある。 泡ができた部分では、 コイルパターンの露光を 行う際に焦点が合わず露光量不足となり、 これを現像すると泡の部位がそのまま 残ってしまい、 まともなパターンを形成することが不可能になる。 しかしながら 、 本実施形態の第 1コイル 4 4 1では、 2 X d〉Lの関係が成立しているため、 誘電体層 4 3が、 図 2 6中の矢印で示すように詰まることで、 空隙 g ' の成長が 抑えられ、 空隙 g ' が誘電体層 4 3の表面 4 3 aに表れない (実線で示した部分 参照) 。 In the first coil 4 41 of the present embodiment, a relationship of 2 X d> L is established. If the relationship of 2 X d> L is not established, the tip of the gap g ′ extending between the innermost orbital portion 51 and the second orbital portion 52 is indicated by a one-dot chain line in FIG. And appear on the polished surface of the layer made of alumina, that is, on the surface 43a of the dielectric layer 43, and an opening gl 'occurs. The inside of the gap g 'is in a vacuum state immediately after the formation of the dielectric layer 43, and the gap g' is filled with the abrasive (slurry) and the like at the moment when it appears on the surface by polishing. May be sucked into. Inhaled abrasive can cause corrosion of the coil. Also, when a resist is applied on the surface 43a where the opening gl 'is formed and the temperature is raised to dry the applied resist, the air in the gap g' expands and the opening g1 ' Air may blow out and create bubbles in the resist. In the area where bubbles are formed, the exposure of the coil pattern is insufficient when the coil pattern is exposed, resulting in an insufficient amount of exposure. When this is developed, the bubble portion remains as it is, making it impossible to form a proper pattern. However However, in the first coil 4 41 of the present embodiment, since the relationship of 2 X d> L holds, the gap g is formed by the dielectric layer 43 being clogged as indicated by the arrow in FIG. 26. The growth of ′ is suppressed, and the gap g ′ does not appear on the surface 43 a of the dielectric layer 43 (see the portion shown by the solid line).
続いて、 図 2 3に示す第 1コイル 4 4 1の変形例について図 2 7および図 2 8 を用いて説明する。  Subsequently, a modified example of the first coil 441 shown in FIG. 23 will be described with reference to FIGS. 27 and 28. FIG.
図 2 7は、 内周形状が楕円のコイルを示す図であり、 図 2 8は、 内周形状が長 円のコイルを示す図である。  FIG. 27 is a diagram illustrating a coil having an elliptical inner peripheral shape, and FIG. 28 is a diagram illustrating a coil having an elliptical inner peripheral shape.
図 2 7に示すコイル 6 4は、 最内周の周回部分 6 4 1 3の内縁 6 4 1 3 aが、 楕円に沿ってその楕円を略 1周したものである。 また、 図 2 8に示すコイル 6 5 は、 最内周の周回部分 6 5 1 3の内縁 6 5 1 3 aが、 2つの半円を直線で結んだ 形状である長円に沿ってその長円を略 1周したものである。 M〇ディスクに対す るトラッキングのサ一ポの為にレーザ光の通過位置を偏心させる場合には、 コィ ルの内周形状を、 このような楕円や長円にすることが好ましい。 なお、 楕円や長 円の内周形状のコイルでは、 その内周形状の長径方向に、 レーザ光の偏心方向 ( トラッキングサ一ポの方向) を合わせることで、 必要以上にコイルの径を大きく することが不要になる。  In the coil 64 shown in FIG. 27, the inner edge 6 4 13 a of the innermost circumferential portion 6 4 13 a is substantially one round of the ellipse along the ellipse. In addition, the coil 65 shown in FIG. 28 has an inner edge 6513 a of the innermost peripheral portion 6513 a that extends along an ellipse that is a shape that connects two semicircles by a straight line. It is a round of the circle. When the passing position of the laser beam is decentered for the purpose of tracking the M〇 disk, it is preferable that the inner peripheral shape of the coil is such an ellipse or an ellipse. In the case of an elliptical or elliptical inner peripheral coil, the diameter of the coil is made larger than necessary by adjusting the eccentric direction of the laser beam (the direction of the tracking support) to the major axis direction of the inner peripheral shape. It becomes unnecessary.
図 2 7及び図 2 8に示すいずれのコイル 6 4, 6 5においても、 内周形状が左 右対称の形状であり、 コイルの中心を割り出しやすく、 コイルと光学レンズの位 置合わせの作業性が向上する。 また、 これらのコイル 6 4, 6 5も、 図 2 3に示 す第 1コイル 4 4 1と同じく、 透過領域に図 2に示す余分な領域 Sが含まれてお らず、 図 2に示すコイル 7 4に比べて、 磁界を効率よく発生する。 さらに、 いず れのコイル 6 4, 6 5においても、 図 2 3に示す第 1コイル 4 4 1と同じく、 最 内周の周回部分 6 4 1 3 , 6 5 1 3と、 スパイラル部分 6 4 1 5, 6 5 1 5と、 連結部分 6 4 1 6 , 6 5 1 6とを有し、 最内周の周回部分 6 4 1 3 , 6 5 1 3の うち、 図中の矢印で示す領域に入る部分が、 図 2 3に示す第 1コイル 4 4 1にい う拡幅部 4 4 1 3— 2に相当し、 その領域から外れた部分が所定幅部 4 4 1 3— 1に相当する。 また、 スパイラル部分 6 4 1 5 , 6 5 1 5のうち、 図中の矢印で 示す領域に入る部分が、 図 2 3に示す第 1コイル 4 4 1にいう第 2周回部 4 4 1 5— 2に相当し、 その領域から外れた部分が第 1周回部 4 4 1 5—1に相当する なお、 ここでは、 上下 2層のコイルを有する磁界発生器について説明したが、 単層のコイルを有する磁界発生器であっても、 あるいは、 3層以上の多層のコィ ルを有する磁界発生器であっても、 本発明を適用することができる。 In both coils 64 and 65 shown in Fig. 27 and Fig. 28, the inner peripheral shape is symmetrical to the left and right, making it easy to find the center of the coil, and the workability of positioning the coil and optical lens Is improved. Also, these coils 64 and 65, like the first coil 441 shown in FIG. 23, do not include the extra area S shown in FIG. A magnetic field is generated more efficiently than the coil 74. Further, in each of the coils 64, 65, as in the case of the first coil 441, shown in FIG. 23, the innermost orbital portions 641, 13 and 6513 and the spiral portion 64 It has 15 6 5 15 and connecting portions 6 4 16 6 5 16 and is the area indicated by the arrow in the figure among the innermost circumferential portions 6 4 13 3 and 65 13 The portion that enters is equivalent to the widened portion 4 4 1 3—2 of the first coil 4 41 shown in FIG. 23, and the portion outside that region is equivalent to the predetermined width portion 4 4 1 3—1. . Further, of the spiral portions 6415 and 6515, the portion that falls within the region indicated by the arrow in the figure is the second orbital portion 4411 referred to as the first coil 441 shown in FIG. 5-2, and the portion outside the area corresponds to the first orbital section 4 4 15 -1. In this case, the magnetic field generator having the upper and lower two-layer coils has been described. The present invention can be applied to a magnetic field generator having a coil or a magnetic field generator having a multilayer coil of three or more layers.
以上説明したように、 コイルの内周形状を左右対称の形状にすることで、 コィ ルの磁界の発生効率を高くすることができる。 また、 コイルと光学レンズの位置 合わせを行う際に、 コイルの内周を基準とすることが容易になり、 それによつて 位置合わせの精度が向上し、 マージンを減らすことができる。 その結果、 マージ ンを減らした分、 コイルの内径を小さくすることができ、 さらに磁界の発生効率 が高まる。 また、 コイルのインダク夕ンスも小さくなり、 より高周波でのコイル の駆動が可能になる。  As described above, by making the inner peripheral shape of the coil symmetrical, the efficiency of generating the magnetic field of the coil can be increased. In addition, when the coil and the optical lens are aligned, it is easy to use the inner circumference of the coil as a reference, thereby improving the accuracy of the alignment and reducing the margin. As a result, the inner diameter of the coil can be reduced as much as the margin is reduced, and the magnetic field generation efficiency is further increased. Also, the inductance of the coil is reduced, and the coil can be driven at a higher frequency.
また、 コイルの導体の間隔を、 コイルの厚みの 0 . 4倍以上 0 . 8倍以下にし 、 アルミナからなる誘電体層を真空蒸着によって形成することで、 熱、 絶縁特性 等の問題の発生を伴わずにコイルの径をより小さくすることができる。 こうする ことで、 磁界の発生効率はより高まり、 消費電力がさらに低減される。 また、 コ ィルのインダクタンスもさらに小さくなり、 より高い周波数でコイルを駆動する ことができる。  In addition, by setting the distance between the coil conductors to 0.4 to 0.8 times the thickness of the coil and forming a dielectric layer made of alumina by vacuum deposition, problems such as heat and insulation characteristics may occur. Without this, the diameter of the coil can be made smaller. In this way, the efficiency of generating the magnetic field is increased, and the power consumption is further reduced. In addition, the inductance of the coil is further reduced, and the coil can be driven at a higher frequency.

Claims

請求の範囲 The scope of the claims
1 . 内縁が左右対称の所定形状に沿って該形状を略 1周した第 1導体と、 前記第 1導体が周回した平面と同一平面内で、 該第 1導体の外側を該第 1導体 の周回方向と同じ方向にスパイラル状に周回した第 2導体と、 1. A first conductor having an inner edge substantially circling the shape along a predetermined shape symmetrical to the left and right, and an outside of the first conductor in the same plane as a plane around which the first conductor circulates. A second conductor spirally circling in the same direction as the circling direction;
前記第 1導体の周回方向の終端と前記第 2導体の周回方向の始端とを結ぶ第 3 導体とを備えたことを特徴とする磁界発生器。  A magnetic field generator comprising: a third conductor connecting a circumferential end of the first conductor and a circumferential start of the second conductor.
2 . 前記第 1導体が、 内縁と外縁が等間隔を保ってこの第 1導体の周回方向始 端から周回した所定幅部、 および内縁に対して外縁が外に漸次膨らみながら該所 定幅部の周回方向終端からこの第 1導体の周回方向終端まで周回した拡幅部から なるものであることを特徴とする請求項 1記載の磁界発生器。  2. The first conductor has a predetermined width portion that is circulated from the start end in the circling direction of the first conductor with the inner edge and the outer edge kept at equal intervals, and the predetermined width portion where the outer edge gradually expands outward with respect to the inner edge. 2. The magnetic field generator according to claim 1, wherein the magnetic field generator comprises a widened portion which extends from a circumferential end of the first conductor to a circumferential end of the first conductor.
3 . 前記第 2導体が、 前記所定幅部と等間隔を保って周回した第 1周回部と、 前記拡幅部の外縁と等間隔を保って周回した第 2周回部とを交互に有するもので あることを特徴とする請求項 1記載の磁界発生器。  3. The second conductor alternately has a first circling portion circling at an equal interval with the predetermined width portion and a second circling portion circling at an equal interval with the outer edge of the widened portion. 2. The magnetic field generator according to claim 1, wherein:
4 . アルミナからなる誘電体層と、  4. a dielectric layer made of alumina;
前記誘電体層内部の同一平面内でスパイラル状に周回した導体とを備え、 前記導体は、 半径方向に隣り合う周回部分の間隔が一定のものであって、 該間 隔が該導体の厚さの 0 . 4倍以上 0 . 8倍以下であることを特徴とする磁界発生  A conductor spirally circling in the same plane inside the dielectric layer, wherein the conductor has a constant distance between adjacent radiating portions in the radial direction, and the distance is a thickness of the conductor. Magnetic field generation characterized by being 0.4 times or more and 0.8 times or less of
5 . 前記導体は、 周回方向に延びる縁が面取りされたものであることを特徴と する請求項 4記載の磁界発生器。 5. The magnetic field generator according to claim 4, wherein the conductor has a beveled edge extending in a circumferential direction.
6 . 前記誘電体層は、 ガラス基材表面に設けられたものであり、  6. The dielectric layer is provided on a glass substrate surface,
この磁界発生器は、 前記導体の、 前記ガラス基材とは反対側の表面に、 該導体 と前記誘電体層との密着を高める密着膜を備えたものであることを特徵とする請 求項 4記載の磁界発生器。  The claim is characterized in that the magnetic field generator is provided with an adhesion film for increasing the adhesion between the conductor and the dielectric layer on a surface of the conductor opposite to the glass substrate. 4. Magnetic field generator according to 4.
7 . 前記導体は、 外側の縁が最内周の最内周周回部分と半径方向に隣り合う第 2周周回部分から離れるように傾斜した、 該最内周周回部分につながる端部を有 するものであって、  7. The conductor has an end that is inclined such that an outer edge is separated from a second circumferential part radially adjacent to the innermost circumferential part of the innermost circumference and that is connected to the innermost circumferential part. Thing,
この磁界発生器が、 前記最内周周回部分と前記端部との境における、 該最内周 周回部分と前記第 2周周回部分との間隔を二等分する中点から、 直径が該導体の 厚さの 1 . 5倍であって該端部の外側の縁および該第 2周周回部分の内側の縁の 双方に接する円の中心までの距離を Lとし、 前記誘電体層表面から該導体表面ま での距離を dとした場合に、 2 X d > Lの関係が成立するものであることを特徴 とする請求項 4記載の磁界発生器。 The magnetic field generator may be configured such that the innermost circumference at a boundary between the innermost circumference portion and the end portion is From the midpoint that bisects the distance between the circling portion and the second circling portion, the outer edge of the end is 1.5 times the thickness of the conductor and the outer rim of the end and the second circulating portion. When the distance from the center of the circle tangent to both inner edges of the conductor is L and the distance from the surface of the dielectric layer to the surface of the conductor is d, the relationship 2 X d> L holds. 5. The magnetic field generator according to claim 4, wherein:
8 . 情報の記録および再生が可能な、 光の照射および磁界の印加を受けること よって少なくとも情報記録が行われるディスク状の光磁気記憶媒体が複数格納さ れた媒体格納部と、 前記光磁気記憶媒体に対して情報の記録及び又は再生を行う 記録再生部と、 前記媒体格納部と前記記録再生部との相互間で前記光磁気記憶媒 体を移動させる媒体移動部と、 前記媒体格納部、 前記媒体移動部、 および前記記 録再生部を一体に保持するブレード筐体とをそれぞれが備えた複数の光磁気情報 記憶装置と、  8. A medium storage unit that stores a plurality of disk-shaped magneto-optical storage media capable of recording and reproducing information and at least recording information by receiving light irradiation and a magnetic field, and the magneto-optical storage. A recording / reproducing unit for recording and / or reproducing information on / from a medium; a medium moving unit for moving the magneto-optical storage medium between the medium storing unit and the recording / reproducing unit; A plurality of magneto-optical information storage devices each including the medium moving unit and a blade housing integrally holding the recording / reproducing unit;
前記複数の光磁気情報記憶装置が実装されるとともに、 それら複数の光磁気情 報記憶装置を着脱自在に保持するシステム筐体と、  A system housing on which the plurality of magneto-optical information storage devices are mounted and which detachably holds the plurality of magneto-optical information storage devices;
前記システム筐体に実装された複数の光磁気情報記憶装置それぞれにおける情 報の記録及び又は再生を統括する統括部とを備え、  A control unit that controls recording and / or reproduction of information in each of the plurality of magneto-optical information storage devices mounted on the system housing;
前記記録再生部が、  The recording and playback unit,
内縁が左右対称の所定形状に沿って該形状を略 1周した第 1導体、 該第 1導体 が周回した平面と同一平面内で、 該第 1導体の外側を該第 1導体の周回方向と同 じ方向にスパイラル状に周回した第 2導体、 および該第 1導体の周回方向の終端 と前記第 2導体の周回方向の始端とを結ぶ第 3導体を有する磁界発生器と、 光を発する光源とを備え、  A first conductor whose inner edge is substantially wrapped around the shape along a predetermined shape symmetrical to the left and right, in the same plane as the plane around which the first conductor wrapped, A magnetic field generator having a second conductor spirally wound in the same direction, a third conductor connecting a circumferential end of the first conductor and a circumferential start of the second conductor, and a light source for emitting light With
前記光磁気記憶媒体に、 前記磁界発生器によって発生させた磁界を印加すると ともに前記光源から発せられた光を照射することで、 該光磁気記憶媒体に情報記 録を行うものであることを特徴とする光磁気情報記憶システム。  Information is recorded on the magneto-optical storage medium by applying a magnetic field generated by the magnetic field generator to the magneto-optical storage medium and irradiating light emitted from the light source. Magneto-optical information storage system.
9 . 情報の記録および再生が可能な、 光の照射および磁界の印加を受けること よって少なくとも情報記録が行われるディスク状の光磁気記憶媒体が複数格納さ れた媒体格納部と、 前記光磁気記憶媒体に対して情報の記録及び又は再生を行う 記録再生部と、 前記媒体格納部と前記記録再生部との相互間で前記光磁気記憶媒 体を移動させる媒体移動部と、 前記媒体格納部、 前記媒体移動部、 および前記記 録再生部を一体に保持するブレード筐体とをそれぞれが備えた複数の光磁気情報 記憶装置と、 9. A medium storage unit that stores a plurality of disk-shaped magneto-optical storage media capable of recording and reproducing information and at least recording information by receiving light irradiation and a magnetic field, and the magneto-optical storage. A recording / reproducing unit for recording and / or reproducing information on / from a medium; and the magneto-optical storage medium between the medium storage unit and the recording / reproducing unit. A plurality of magneto-optical information storage devices each including a medium moving unit that moves a body, and a blade housing that integrally holds the medium storing unit, the medium moving unit, and the recording and reproducing unit;
前記複数の光磁気情報記憶装置が実装されるとともに、 それら複数の光磁気情 報記憶装置を着脱自在に保持するシステム筐体と、  A system housing on which the plurality of magneto-optical information storage devices are mounted and which detachably holds the plurality of magneto-optical information storage devices;
前記システム筐体に実装された複数の光磁気情報記憶装置それぞれにおける情 報の記録及び又は再生を統括する統括部とを備え、  A control unit that controls recording and / or reproduction of information in each of the plurality of magneto-optical information storage devices mounted on the system housing;
前記記録再生部が、  The recording and playback unit,
アルミナからなる誘電体層と、 該誘電体層内部の同一平面内でスパイラル状に 周回した導体とを備え、 該導体は、 半径方向に隣り合う周回部分の間隔が一定の ものであって、 該間隔が該導体の厚さの 0 . 4倍以上 0 . 8倍以下である磁界発 生器と、  A dielectric layer made of alumina; and a conductor spirally circulating in the same plane inside the dielectric layer, wherein the conductor has a constant interval between circling portions adjacent in the radial direction. A magnetic field generator having an interval of 0.4 to 0.8 times the thickness of the conductor;
光を発する光源とを備え、  With a light source that emits light,
前記光磁気記憶媒体に、 前記磁界発生器によって発生させた磁界を印加すると ともに前記光源から発せられた光を照射することで、 該光磁気記憶媒体に情報記 録を行うものであることを特徴とする光磁気情報記憶システム。  Information is recorded on the magneto-optical storage medium by applying a magnetic field generated by the magnetic field generator to the magneto-optical storage medium and irradiating light emitted from the light source. Magneto-optical information storage system.
1 0 . 情報の記録および再生が可能な、 光の照射および磁界の印加を受ける ことよって少なくとも情報記録が行われるディスク状の光磁気記憶媒体に対して 情報の記録及び又は再生を行う光磁気情報記憶装置であって、  10. Magneto-optical information that records and / or reproduces information on a disk-shaped magneto-optical storage medium on which information recording can be performed at least by receiving light irradiation and a magnetic field capable of recording and reproducing information A storage device,
前記光磁気記憶媒体が複数格納された媒体格納部と、  A medium storage unit in which a plurality of the magneto-optical storage media are stored,
前記光磁気記憶媒体に対して情報の記録及び又は再生を行う記録再生部と、 前記媒体格納部と前記記録再生部との相互間で前記光磁気記憶媒体を移動させ る媒体移動部と、  A recording / reproducing unit that records and / or reproduces information with respect to the magneto-optical storage medium; a medium moving unit that moves the magneto-optical storage medium between the medium storage unit and the recording / reproducing unit;
前記媒体格納部、 前記媒体移動部、 および前記記録再生部が内部に一列に配置 され、 それら媒体格納部、 媒体移動部、 および記録再生部を一体に保持するブレ ード筐体と、  A blade housing in which the medium storage unit, the medium moving unit, and the recording / reproducing unit are arranged in a line, and the medium housing unit, the medium moving unit, and the recording / reproducing unit are integrally held;
この情報記憶装置が複数実装されるシステム筐体に、 この情報記憶装置を着脱 自在に接続する接続部とを備え、  A system housing in which a plurality of the information storage devices are mounted, a connection unit for detachably connecting the information storage device,
前記記録再生部が、 内縁が左右対称の所定形状に沿つて該形状を略 1周した^ 1導体、 該第 1導体 が周回した平面と同一平面内で、 該第 1導体の外側を該第 1導体の周回方向と同 じ方向にスパイラル状に周回した第 2導体、 および該第 1導体の周回方向の終端 と前記第 2導体の周回方向の始端とを結ぶ第 3導体を有する磁界発生器と、 光を発する光源とを備え、 The recording / reproducing unit, ^ 1 conductor whose inner edge is substantially circumnavigated along a predetermined shape symmetrical to the left and right, in the same plane as the plane around which the first conductor circulates, the outside of the first conductor and the circling direction of the first conductor A magnetic field generator having a second conductor spirally wound in the same direction, a third conductor connecting a circumferential end of the first conductor and a circumferential start of the second conductor, and a light source for emitting light With
前記光磁気記憶媒体に、 前記磁界発生器によって発生させた磁界を印加すると ともに前記光源から発せられた光を照射することで、 該光磁気記憶媒体に情報記 録を行うものであることを特徴とする光磁気情報記憶装置。  Information is recorded on the magneto-optical storage medium by applying a magnetic field generated by the magnetic field generator to the magneto-optical storage medium and irradiating light emitted from the light source. Magneto-optical information storage device.
1 1 . 情報の記録および再生が可能な、 光の照射および磁界の印加を受ける ことよつて少なくとも情報記録が行われるディスク状の光磁気記憶媒体に対して 情報の記録及び又は再生を行う光磁気情報記憶装置であつて、  1 1. Magneto-optics for recording and / or reproducing information on a disk-shaped magneto-optical storage medium on which information can be recorded and reproduced by at least information recording by receiving light irradiation and magnetic field application An information storage device,
前記光磁気記憶媒体が複数格納された媒体格納部と、  A medium storage unit in which a plurality of the magneto-optical storage media are stored,
前記光磁気記憶媒体に対して情報の記録及び又は再生を行う記録再生部と、 前記媒体格納部と前記記録再生部との相互間で前記光磁気記憶媒体を移動させ る媒体移動部と、  A recording / reproducing unit that records and / or reproduces information with respect to the magneto-optical storage medium; a medium moving unit that moves the magneto-optical storage medium between the medium storage unit and the recording / reproducing unit;
前記媒体格納部、 前記媒体移動部、 および前記記録再生部が内部に一列に配置 され、 それら媒体格納部、 媒体移動部、 および記録再生部を一体に保持するブレ ード筐体と、  A blade housing in which the medium storage unit, the medium moving unit, and the recording / reproducing unit are arranged in a line, and the medium housing unit, the medium moving unit, and the recording / reproducing unit are integrally held;
この情報記憶装置が複数実装されるシステム筐体に、 この情報記憶装置を着脱 自在に接続する接続部とを備え、  A system housing in which a plurality of the information storage devices are mounted, a connection unit for detachably connecting the information storage device,
前記記録再生部が、  The recording and playback unit,
アルミナからなる誘電体層と、 該誘電体層内部の同一平面内でスパイラル状に 周回した導体とを備え、 該導体は、 半径方向に隣り合う周回部分の間隔が一定の ものであって、 該間隔が該導体の厚さの 0 . 4倍以上 0 . 8倍以下である磁界発 生器と、  A dielectric layer made of alumina; and a conductor spirally circulating in the same plane inside the dielectric layer, wherein the conductor has a constant interval between circling portions adjacent in the radial direction. A magnetic field generator having an interval of 0.4 to 0.8 times the thickness of the conductor;
光を発する光源とを備え、  With a light source that emits light,
前記光磁気記憶媒体に、 前記磁界発生器によって発生させた磁界を印加すると ともに前記光源から発せられた光を照射することで、 該光磁気記憶媒体に情報記 録を行うものであることを特徴とする光磁気情報記憶装置。  Information is recorded on the magneto-optical storage medium by applying a magnetic field generated by the magnetic field generator to the magneto-optical storage medium and irradiating light emitted from the light source. Magneto-optical information storage device.
PCT/JP2003/008140 2003-06-26 2003-06-26 Magnetic field generator, magnetooptical information storing system, and magnetooptical information storage device WO2005001826A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008140 WO2005001826A1 (en) 2003-06-26 2003-06-26 Magnetic field generator, magnetooptical information storing system, and magnetooptical information storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/008140 WO2005001826A1 (en) 2003-06-26 2003-06-26 Magnetic field generator, magnetooptical information storing system, and magnetooptical information storage device

Publications (1)

Publication Number Publication Date
WO2005001826A1 true WO2005001826A1 (en) 2005-01-06

Family

ID=33549045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008140 WO2005001826A1 (en) 2003-06-26 2003-06-26 Magnetic field generator, magnetooptical information storing system, and magnetooptical information storage device

Country Status (1)

Country Link
WO (1) WO2005001826A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215456A (en) * 1988-07-01 1990-01-19 Pioneer Electron Corp Magazine type compact disk player
JPH06180931A (en) * 1992-12-14 1994-06-28 Clarion Co Ltd Recording medium player
JPH11316986A (en) * 1998-05-08 1999-11-16 Sony Corp Optical head and magneto-optical disk device
JP2002083453A (en) * 2000-09-07 2002-03-22 Fujitsu Ltd Method for manufacturing magneto-optical head and coil for magneto-optical head

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0215456A (en) * 1988-07-01 1990-01-19 Pioneer Electron Corp Magazine type compact disk player
JPH06180931A (en) * 1992-12-14 1994-06-28 Clarion Co Ltd Recording medium player
JPH11316986A (en) * 1998-05-08 1999-11-16 Sony Corp Optical head and magneto-optical disk device
JP2002083453A (en) * 2000-09-07 2002-03-22 Fujitsu Ltd Method for manufacturing magneto-optical head and coil for magneto-optical head

Similar Documents

Publication Publication Date Title
KR20050054990A (en) High track density super resolution mo-rom medium
JP2001023260A (en) Magnetic head for modulation of magnetic field, magneto- optical device, optical pickup device and optical disk device
JP4117293B2 (en) Device for scanning and cleaning information carriers
JP4002084B2 (en) Magneto-optical head and magneto-optical recording apparatus using the same
WO2005001826A1 (en) Magnetic field generator, magnetooptical information storing system, and magnetooptical information storage device
JP2000123435A (en) Photo-magnetic-optical head, its manufacturing method and recording and reproducing device provided with the head
JP3104201B2 (en) Optical recording medium
US7583171B2 (en) Magnetic field generator, photomagnetic information storing system, and photomagnetic information storing apparatus
JP2003317305A (en) Optical pickup device and optical disk device
WO2004097823A1 (en) Magnetic field generator, magneto-optical information storage system, and magneto-optical information storage device
JP2000149312A (en) Optical disk device and method of mounting optical lens
EP1528550B1 (en) Magnetic field generator and magneto-optical information storage device
JP4368542B2 (en) Optical pickup and optical disc apparatus including the same
JP4097597B2 (en) Magneto-optical recording medium device
WO2004107336A1 (en) Magneto-optical head and magneto-optical storage device
KR100704819B1 (en) Magnetic field generator and magneto-optical information storage device
JP3919171B2 (en) Objective lens driving device and optical pickup device including the same
JP3762366B2 (en) Magneto-optical head and magneto-optical recording apparatus
JP2005322414A (en) Optical recording reproducing apparatus
JPH10312576A (en) Disk apparatus
JPH097206A (en) Optical head device
JP2005011400A (en) Magnetic field generator and magneto-optical memory device
JPH08255316A (en) Information recording medium
JPH11120642A (en) Optical element for magneto-optical recording and recording and/or reproducing device
JP2000215539A (en) Optical device, recording and/or regenerating device, and manufacture of the optical device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP