WO2005000122A1 - X-ray ct device - Google Patents

X-ray ct device Download PDF

Info

Publication number
WO2005000122A1
WO2005000122A1 PCT/JP2004/008900 JP2004008900W WO2005000122A1 WO 2005000122 A1 WO2005000122 A1 WO 2005000122A1 JP 2004008900 W JP2004008900 W JP 2004008900W WO 2005000122 A1 WO2005000122 A1 WO 2005000122A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
reliability
specific phase
subject
tomographic image
Prior art date
Application number
PCT/JP2004/008900
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroto Kokubun
Osamu Miyazaki
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Publication of WO2005000122A1 publication Critical patent/WO2005000122A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]

Definitions

  • the present invention relates to an X-ray CT apparatus suitable for imaging a target part that moves periodically in a predetermined phase.
  • An X-ray CT apparatus transmits an X-ray from an X-ray source toward a subject while rotating an X-ray source and an X-ray detector, which are arranged to face each other around the subject in a circumferential direction.
  • An X-ray detector that emits radiation and has a plurality of detection elements arranged in an arc shape facing the X-ray source detects an attenuated X-ray dose that has passed through the subject, and an image based on the detected attenuation data.
  • Patent Document 1 JP-A-2002-330961
  • FIGS. Figure 8 shows an example of correctly creating a tomographic image at a heartbeat phase of 70% during a heartbeat cycle. Time is plotted on the horizontal axis, and ECG information and projection data collected during imaging are shown side by side. The projection data extraction range is determined based on the R-wave position, and the projection data necessary for image reconstruction is extracted. By performing an image reconstruction operation on the extracted projection data, a tomographic image at a heartbeat phase of 70% can be created.
  • Figure 9 shows a comparison between the case where the ECG information is normal and the case where an abnormality has occurred.
  • the noises 61 and 62 may be erroneously recognized as R waves.
  • the signal strength of the R wave 53 is weak as shown in FIG. 9C
  • the signal may not be recognized as the R wave.
  • non-R-waves 61 and 62 may be detected as R-waves, or detection of R-waves 53 may be missed.
  • it becomes impossible to accurately extract projection data of the heartbeat phase and as a result, it becomes impossible to obtain an appropriate tomographic image.
  • the projection data used to create the tomographic image includes projection data corresponding to a phase different from the target phase.
  • the operator himself looks at the tomographic image and judges the appearance of the image.
  • the operator directly looks at the electrocardiographic information so as to avoid erroneous recognition of noise, a weak R wave, or the like when grasping the electrocardiographic information, and judges that the electrocardiographic information is noise and not an R wave. It takes time.
  • judgment requires visual observation by the operator, and is burdensome for the operator, and it is difficult to reduce oversight of noise and weak R waves.
  • an object of the present invention is to provide an X-ray CT apparatus capable of displaying the reliability of a tomographic image at a target heartbeat phase. Disclosure of the invention
  • an X-ray source that emits X-rays and is arranged to face each other with a subject interposed therebetween, and attenuated through the subject.
  • An X-ray detector for detecting an X-ray dose, means for sequentially rotating and moving the irradiation and detection directions of the X-ray source and the X-ray detector substantially on the circumference of the subject, and the inside of the subject.
  • a periodic motion measuring means for measuring a periodic motion of a part which performs a periodic motion, and a means for storing the measurement time of the periodic motion, the detection time of the X-ray dose, and the detection data of the X-ray dose in association with each other.
  • FIG. 1 is a block diagram showing an overall configuration of an X-ray CT apparatus according to the present invention.
  • FIG. 2 is a flowchart showing a procedure from completion of measurement to display of an image.
  • FIG. 3 is a diagram showing a dropout in an R-wave position.
  • FIG. 4 is an example of a list of each tomographic image displayed on the display device.
  • FIG. 5 is an example of a tomographic image display screen displayed on the display device.
  • FIG. 6 is a flowchart showing a procedure for increasing the reliability of a tomographic image while re-specifying an R-wave position specifying parameter.
  • FIG. 7 is a diagram showing re-specification of an R-wave position.
  • FIG. 8 is a view showing a method of extracting projection data using electrocardiographic information.
  • FIG. 9 is a diagram showing an abnormal example of electrocardiographic information.
  • FIG. 1A is a block diagram showing the overall configuration of an X-ray CT apparatus according to one embodiment of the present invention.
  • the X-ray CT device creates a scanner gantry unit 2 that irradiates and detects X-rays, and creates projection data to be used for reconstruction calculation from the measurement data detected by the scanner gantry unit 2 and converts the projection data into a CT image signal.
  • An image processing device 7 for processing and a display device 5 for outputting a CT image are provided.
  • the scanner gantry unit 2 includes a rotating disk 8 driven by a rotation driving device 10 controlled by a measurement control device 11, an X-ray tube 1 mounted on the rotating disk 8, and an X-ray tube 1 attached to the rotating disk 8.
  • the X-ray intensity generated from the X-ray tube 1 is controlled by a measurement control device 11, which is controlled by a computer 12 having an input device 13.
  • the image processing device 7 is connected to the electrocardiograph 6 for acquiring an electrocardiographic waveform of the subject, and further connected to a storage medium 14 for storing the processing results of the image processing device 7.
  • the image processing device 7 is configured to have various functions.
  • the R-wave position specifying means 7a which specifies the R-wave position (unit: time) using the R-wave position specifying parameter, from the electrocardiographic information collected at the same time as the imaging, is obtained by the R-wave position specifying means 7a
  • Projection data extraction means 7b for extracting projection data necessary for image reconstruction at a desired heartbeat phase and slice position based on the R-wave position obtained, and image reconstruction from the projection data extracted by the projection data extraction means 7b.
  • Image reconstruction means 7c for creating a tomographic image according to the configuration
  • reliability calculating means 7d for calculating the reliability of the tomographic image created by the tomographic image creating means 7c, a plurality of tomographic images and names of the tomographic images
  • a reliability group selection means 7e for selecting a combination of a number and a reliability into a plurality of groups using the reliability as a reference value, and a parameter for updating the R-wave position identification parameter for better R-wave position identification.
  • the X-rays are set by the collimator 9.
  • the irradiated X-ray irradiation field is detected by the X-ray detector 4.
  • X-rays are measured using the X-ray detector 4 while changing the direction in which the subject is irradiated with X-rays.
  • the measurement data thus detected is once transferred to the storage medium 14 and stored.
  • electrocardiographic information of the subject is also measured by the electrocardiograph 6, and is once transferred to the storage medium 14 and stored.
  • step 1 the electrocardiographic information obtained simultaneously with the X-ray measurement is read into the image processing device 7.
  • step 2 the input device 13 inputs, for example, an initial value of a threshold value of the wave height as the R wave position specifying parameter.
  • step 3 the R-wave position specifying means 7a specifies the position (time) of the R-wave of the electrocardiographic information using the R-wave position specifying parameter input in step 2.
  • step 4 parameters required for image creation are input from the input device 13.
  • the heartbeat phase is, for example, 70% of the R-wave interval
  • the slice position is, for example, the center of the heart.
  • step 5 the projection data forming means 7b uses the position of the R wave specified in step 3 and the parameters necessary for image re-creation input in step 4 to obtain an image from the X-ray measurement data.
  • the projection data necessary for image reconstruction of the target heartbeat phase and slice position is formed.
  • step 6 the image reconstruction means 7c performs an image reconstruction operation at a desired heartbeat phase and a desired slice position based on the projection data formed in step 5. Further, the tomographic image obtained as a result is stored in the storage medium 14. At the same time, the image name of each tomographic image is also stored in the storage medium 14.
  • the reliability calculating means 7d calculates the reliability of the tomographic image obtained in step 6.
  • the reliability is determined, for example, by calculating the difference between the average heart cycle Re of the subject measured before imaging and the R-wave cycle Ra at the time of measurement of each tomographic image (the ratio is different).
  • the R-wave period Ra is the R-wave interval substantially at the center on the time axis of the data for reconstruction. For example, as shown in Fig. 3, if the R-wave period Ra at the time of measurement of each tomographic image is significantly different from the average heartbeat period Re of the subject, it is not possible to identify a certain R-wave.
  • the noise is erroneously determined to be an R-wave, a tomographic image of a desired heartbeat phase is obtained, and the possibility is high.
  • the reliability is low. Specifically, the reliability is calculated using a calculation formula such as Equation (1) so that the higher the reliability, the higher the numerical value.
  • the value is 100 when the reliability is the highest (when Ra and Re are equal).
  • the reliability group selection means 7e classifies the tomographic images based on the reliability obtained in step 7. For example, A rank, B rank, and C rank are ranked in descending order of reliability. Which rank is assigned to which range of reliability may be arbitrarily determined.
  • step 9 a list of each tomographic image is displayed on the display device 5 as a list.
  • Figure 4 shows an example.
  • FIG. 4 shows, from left to right, image number No, image name name, shooting position, heartbeat phase, reliability, reliability group, group icon, and the like.
  • the tomographic image numbers are shown in order from the top.
  • the group icons and the darkness of the black in each column are displayed as ancillary information so that the operator can easily understand the reliability grouping.
  • the density of the ink the color or the density may be applied.
  • step 10 the operator can select a desired tomographic image with a cursor and click on the series of tomographic images of FIG. 4 displayed as a list in step 9, thereby displaying the tomographic image on the display device 5. it can.
  • the above series of operations is performed by the computer 12.
  • FIG. 5 shows No. 2 of FIG. 4 as an example.
  • Fig. 5 it is attached to the X-ray CT image 71 displayed in the center, the reliability is placed at the position 72, the reliability group is placed at the position 73, the group icon is placed at the position 74, and recalculation is performed if necessary.
  • the execute button 75 can also be displayed.
  • the R-wave position identification parameter is updated by the parameter updating means 7f, thereby increasing the reliability. Work to obtain a high-quality image. Therefore, the flowchart of FIG. 6 is executed.
  • step 11 when the reliability of the tomographic image at a certain slice position calculated in step 7 is low, for example, when the reliability of the image in FIG. 4 is low, the corresponding image is selected with the cursor on the list in FIG. In this state, select the recalculation execution button 75. Then, recalculation of the selected image with low reliability is started.
  • step 12 the operator inputs recalculation allowable parameters.
  • the recalculation allowable parameter gives a calculation index when recalculating the image selected in step 11.
  • P the target value of reliability
  • N the maximum number of calculation operations as the index to determine.
  • step 13 the R-wave position is re-specified by changing the R-wave position specifying parameter.
  • the R-wave position specifying parameter is the peak value of the R-wave, and if the peak value exceeds an arbitrary threshold Th, the R-wave is determined to be an R-wave.
  • the average cardiac cycle of the subject measured before imaging is Re
  • the cardiac cycle at the time of image measurement is Ra
  • the difference between the ratio of the two and 1 is also calculated.
  • the threshold value Th of the R wave height can be updated using the following equation (2).
  • Th Th + B * (1— Ra / Re) (2)
  • Equation 2 gives a new peak height threshold (Th) by subtracting the ratio of Ra and Re from 1 with respect to the previous peak height threshold Th n and further multiplying B by a weighting factor.
  • Equation 2 since the cardiac cycle is longer than the average value when collecting the measurement data, when it is considered that the R wave may have been overlooked, the pulse height threshold Th is lowered, and when the measurement data is collected, the cardiac cycle is increased by the average value. Since it is shorter, when it is considered that noise was picked up by mistake, an operation such as raising the peak height threshold Th can be performed.
  • the R-wave identification is repeatedly performed using a value obtained by sequentially reducing the re-specification threshold to an initial value, for example, 10%. ⁇ Adopt a method.
  • a change in the pulse height threshold Th performed in step 13 determines whether the specific position of the R wave has changed, for example, the force when the previous time was performed in step 3, for example. If yes, go to step 15 with Yes; if no, go back to step 13 with No.
  • step 15 the same steps as the creation of the projection data in step 5, the image reconstruction of the tomographic image in step 6, and the calculation of the reliability in step 7 are executed again.
  • step 16 it is determined whether or not the obtained image satisfies the allowable condition obtained in step 12. Specifically, if the reliability has reached the target value P, or if the number of calculation operations has exceeded the maximum value N, proceed to step 17 with Yes. Return to step 13 with No. When returning to step 13, the wave height threshold Th is raised and lowered again to try to change the specific position of the R wave.
  • step 17 the reliability is grouped in step 8, the tomographic image list is displayed in step 9, and the tomographic image is displayed in step 10 again.
  • step 11 the number of images for which recalculation is specified in step 11 may not be one. For example, it is also possible to collectively recalculate C groups with low reliability.
  • the reliability may not be improved so easily and may be executed indefinitely.
  • this may be the case where the cardiac cycle fluctuates due to the subject's arrhythmia, the case where the R-wave signal is completely missing, or the case where noise very similar to the R-wave signal is mixed.
  • the maximum value N of the number of calculation operations can be set in step 12. In other words, it is possible to stop the calculation when the number of times that the reliability does not improve even if it is calculated further. Steps 11 to 17 are also performed by the computer 12.
  • the R-wave position of the electrocardiographic information force read at the same time as the X-ray measurement is specified, and the heartbeat phase is determined based on the specified R-wave position.
  • a plurality of images are obtained, and the R-wave position is repeatedly specified while changing the R-wave position specifying parameter used for the R-wave specifying process, for example, the threshold value Th of the R-wave height. Then, the image is obtained repeatedly, so that the target value with reliability can be achieved.
  • the optimal R-wave position identification parameter at each measurement point without having to visually judge whether or not the appropriate reconstruction has been performed. Accuracy increases, and reliability of each tomographic image also increases.
  • FIG. 3 in Example 1 above shows that the R-wave 53 with the subject could not be identified as in FIG. 9 (c).
  • this example shows how to deal with the case where the corresponding projection data is missed.
  • FIG. This relates to the case where an R wave is erroneously detected.
  • the second embodiment uses the same apparatus configuration and the same processing as in the first embodiment unless otherwise specified. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals.
  • step 2 in FIG. 2 and equation 2 are used instead of equation 1 in the reliability calculation means 7d in FIG. 1B.
  • the noise 61 is mistaken for the R wave, and the interval between the R wave 51 and the noise 61 is recognized as the R wave period Ra at the time of measuring each tomographic image.
  • the R-wave period Ra at the time of measurement is smaller than the average heartbeat period Re of the subject measured before the imaging.
  • Equation 3 below.
  • an electrocardiograph or the like picks up electromagnetic waves or the like from peripheral devices.
  • V When noise is generated. Even when there is noise due to the arrhythmia of the subject, Proper projection data can be collected without dropping the R-wave and used for image reconstruction, and the reliability of using the reconstructed image for diagnosis can be further improved.
  • the third embodiment uses the same apparatus configuration and the same processing as in the first embodiment unless otherwise specified. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals.
  • Step 11 when the reliability of the tomographic image at a certain slice position calculated in Step 7 is low, for example, when the reliability of the image in FIG. 5 is low, FIG.
  • the recalculation execution button 75 was selected to recalculate the image.
  • a group having low reliability and a group having low reliability instead of an image is collectively selected.
  • the system is configured so that those in the C group with low reliability are collectively selected and recalculated.
  • selecting a group for example, if the part of the reliability C is selected from the reliability groups in FIG. 4, the group with C is selected all at once. Then, by pressing the recalculation execution button, the one with reliability C is continuously recalculated.
  • Images having the same reliability group often have similar R-wave determination values shown in Fig. 7. For this reason, for the images belonging to the same group, the number of repetitions of the loop for re-specifying the R wave position between steps 13 and 14 can be almost the same in many cases.
  • the present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist of the present invention.
  • the X-ray CT apparatus is not limited to a method in which an X-ray source and an X-ray detector are mechanically rotated to face each other. You can switch to X-ray irradiation from a point and use the X-ray method!
  • the X-ray detector is not limited to one having a single detector row in the body axis direction of the subject, but also includes one having a plurality of detector rows.
  • the reliability is a numerical value obtained by determining how much the average heart cycle of the subject matches the R-wave cycle at the time of tomographic image measurement.
  • Equation 3 the force using Equation 2 as an update equation for the R-wave position identification parameter.
  • the present invention is not limited to these.
  • Embodiment 13 is a method in which an ECG gate or a retroactive image to be reconstructed after imaging is considered.
  • Example 13 is not limited to this.
  • the present invention is also useful in an ECG trigger or a prospective case, for example, when extending the time between X-ray irradiation and measurement.
  • the ECG gate or retroactive and the ECG trigger or prospective will be described.
  • the feature of the ECG trigger or prospective is that only the data necessary for image reconstruction with less exposure is collected. is there.
  • 70% of the position when the interval between two adjacent R waves hereinafter referred to as the heartbeat cycle
  • the time of 7 seconds is determined as the scan start timing, and the gantry is rotated in synchronization with this R-wave, and X-rays are emitted at the view angle required for image reconstruction to project projection data.
  • a target tomographic image can be created. As a result, the occurrence of a situation in which the shooting is redone is reduced.
  • the present invention is particularly suitable for a case where projection data is acquired in combination with electrocardiographic information, such as an ECG gate or a retrospective. Furthermore, it is suitable for long-time imaging even in the case of ECG trigger or prospective, or when the projection data can be used in combination with ECG information.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pulmonology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

An X-ray CT device which collects the electrocardiographic information of a subject obtained by an electrocardiogram concurrently with the detection of an X-ray dose, calculates the point in time of a specific pulse rate phase to be image processed based on an R wave position in the electrocardiographic information, and re-constructs an image using the detection data about an X-ray dose at that point in time to capture and display the tomographic image of the subject, wherein reliability indicating whether the point in time of the specific pulse rate phase gives a targeted phase or not is calculated by a reliability calculating means to be able to display it on a display unit along with a tomographic image.

Description

明 細 書  Specification
X線 CT装置  X-ray CT device
技術分野  Technical field
[0001] 本発明は、周期的に運動をする対象部位の所定位相における撮像に好適な X線 CT装置に関する。  The present invention relates to an X-ray CT apparatus suitable for imaging a target part that moves periodically in a predetermined phase.
背景技術  Background art
[0002] X線 CT装置は、被検体を中心にして対向して配置された X線源と X線検出器を円周 方向に回転させながら、 X線源から X線を被検体に向かって放射し、前記 X線源と対 向して円弧状に複数の検出素子を配置させた X線検出器によって、被検体を透過し て減弱した X線量を検出し、その検出した減弱データより画像再構成演算を行って、 被検体の体軸とほぼ垂直な断面の断層像を得るものである。  [0002] An X-ray CT apparatus transmits an X-ray from an X-ray source toward a subject while rotating an X-ray source and an X-ray detector, which are arranged to face each other around the subject in a circumferential direction. An X-ray detector that emits radiation and has a plurality of detection elements arranged in an arc shape facing the X-ray source detects an attenuated X-ray dose that has passed through the subject, and an image based on the detected attenuation data. By performing a reconstruction operation, a tomographic image of a cross section substantially perpendicular to the body axis of the subject is obtained.
[0003] 特許文献 1:特開 2002— 330961号公報  [0003] Patent Document 1: JP-A-2002-330961
[0004] 特許文献 1に開示の心電同期撮影によれば、このような X線 CT装置を用い、上記検 出器としてマルチスライス型 X線検出器を使用しながら、上記回転をさせながら被検 体を搭載したテーブルを回転軸方向に送り出すことによって螺旋軌道スキャンをして いる。この時、 1回転のスキャンの間に所定のスライス位置の X線透過のデータ(以下 計測データと称す)を複数回計測することが可能となる。こうして収集した計測データ から目的断層像の再構成に必要な投影データを選択抽出して心電同期再構成に供 することで、所定の心拍位相における心臓の断層像の再構成を可能としている。  [0004] According to the electrocardiographic synchronized radiography disclosed in Patent Document 1, such an X-ray CT apparatus is used, and a multi-slice X-ray detector is used as the detector, and the subject is rotated while being rotated. Spiral trajectory scanning is performed by sending the table on which the specimen is mounted in the direction of the rotation axis. At this time, data of X-ray transmission at a predetermined slice position (hereinafter referred to as measurement data) can be measured a plurality of times during one rotation scan. By selectively extracting the projection data necessary for reconstruction of the target tomographic image from the measurement data collected in this way and providing it for ECG-gated reconstruction, it is possible to reconstruct a tomographic image of the heart at a predetermined heartbeat phase.
[0005] し力しながら、上記の心電同期撮影および再構成では、次のような問題が生じるこ とがある。それは、投影データに対応する心電情報として主に利用される心電波形の R波が正しく検出できないことに伴う問題であった。この問題を図 8および図 9を用い 説明する。図 8は、心拍周期中の心拍位相 70%での断層像を正しく作成している例で ある。横軸に時間を取り、撮影中に収集される心電情報と投影データを並べて示した 。 R波位置を基準に投影データの抽出範囲を決定し、画像再構成に必要な投影デー タを抽出していく。この抽出された投影データを画像再構成演算することによって心 拍位相 70%における断層像を作成することができる。 [0006] しかし、心電情報にノイズが混入する場合や、 R波が何らかの原因で小さ力つた場 合等には、 R波を正確に特定できないことがある。図 9は心電情報が正常な場合とに 異常が発生した例を比較して示している。例えば、心電情報にノイズが混入し、図 9 ( b)のようになった場合、ノイズ 61と 62を R波として誤認する恐れがある。また、図 9 (c)の ように R波 53の信号強度が微弱であった場合、信号が R波として認識できな 、おそれ がある。これらのような場合、 R波でないもの 61, 62を R波として検出してしまったり、 R 波 53の検出を逃してしまったりする場合がある。こうなると、正確な心拍位相の投影デ ータの抽出ができなくなり、ひいては、適切な断層像を得ることができなくなる。 [0005] However, in the above-described ECG-gated imaging and reconstruction, the following problem may occur. The problem was that the R wave of the electrocardiographic waveform mainly used as electrocardiographic information corresponding to the projection data could not be correctly detected. This problem will be described with reference to FIGS. Figure 8 shows an example of correctly creating a tomographic image at a heartbeat phase of 70% during a heartbeat cycle. Time is plotted on the horizontal axis, and ECG information and projection data collected during imaging are shown side by side. The projection data extraction range is determined based on the R-wave position, and the projection data necessary for image reconstruction is extracted. By performing an image reconstruction operation on the extracted projection data, a tomographic image at a heartbeat phase of 70% can be created. [0006] However, when noise is mixed in the electrocardiogram information, or when the R wave is weakened for some reason, the R wave may not be accurately specified. Figure 9 shows a comparison between the case where the ECG information is normal and the case where an abnormality has occurred. For example, if noise is mixed in the electrocardiogram information and becomes as shown in FIG. 9B, the noises 61 and 62 may be erroneously recognized as R waves. Further, when the signal strength of the R wave 53 is weak as shown in FIG. 9C, the signal may not be recognized as the R wave. In such a case, non-R-waves 61 and 62 may be detected as R-waves, or detection of R-waves 53 may be missed. In such a case, it becomes impossible to accurately extract projection data of the heartbeat phase, and as a result, it becomes impossible to obtain an appropriate tomographic image.
[0007] このような不適切な断層像が完成した場合、その断層像の作成に使用した投影デ ータの中に目的位相とは異なった位相に対応する投影データを含んでいるカゝ否かを 知るには、操作者自身が断層像を目視して画像の様子力も判断している。あるいは、 上記心電情報の把握に際してノイズや微弱 R波等を誤認しな ヽように、操作者は心 電情報を直接目視して、これはノイズであるから R波でな 、と判断する等の手間をか けている。しかし、このような判断には、操作者の目視を要求し、操作者にとって負担 となるとともに、ノイズや微弱 R波の見落としを減らすことは困難である。  [0007] When such an inappropriate tomographic image is completed, the projection data used to create the tomographic image includes projection data corresponding to a phase different from the target phase. To know this, the operator himself looks at the tomographic image and judges the appearance of the image. Alternatively, the operator directly looks at the electrocardiographic information so as to avoid erroneous recognition of noise, a weak R wave, or the like when grasping the electrocardiographic information, and judges that the electrocardiographic information is noise and not an R wave. It takes time. However, such judgment requires visual observation by the operator, and is burdensome for the operator, and it is difficult to reduce oversight of noise and weak R waves.
[0008] そこで、本発明の目的は、目的とする心拍位相における断層像の信頼度を表示可 能な X線 CT装置を提供することにある。 発明の開示  [0008] Therefore, an object of the present invention is to provide an X-ray CT apparatus capable of displaying the reliability of a tomographic image at a target heartbeat phase. Disclosure of the invention
[0009] 上記目的を達成するために、本発明によれば、被検体を間に挟んで対向して配置 された、 X線を放射する X線源と、前記被検体を透過して減弱した X線量を検出する X 線検出器と、前記 X線源と前記 X線検出器の照射および検出方向を前記被検体周 囲の略円周上で順次に回転移動させる手段と、前記被検体内にある周期的な運動 をする部位の周期的運動を計測する周期運動計測手段と、前記周期的運動の計測 時点と前記 X線量の検出時点と前記 X線量の検出データを対応させて記憶する手段 と、前記周期運動計測手段で得られた前記被検体の周期的運動計測時点をもとに、 前記周期的運動の第 1の特定位相の時点を特定する手段と、前記第 1の特定位相の 時点をもとに、第 2の特定位相の時点を設定する手段と、該第 2の特定位相の時点に おける前記 X線量の検出データを用い画像再構成を行って、前記回転移動面に沿 つた被検体の断層像を得る手段と、を備えた X線 CT装置にぉ 、て、 [0009] In order to achieve the above object, according to the present invention, an X-ray source that emits X-rays and is arranged to face each other with a subject interposed therebetween, and attenuated through the subject. An X-ray detector for detecting an X-ray dose, means for sequentially rotating and moving the irradiation and detection directions of the X-ray source and the X-ray detector substantially on the circumference of the subject, and the inside of the subject. A periodic motion measuring means for measuring a periodic motion of a part which performs a periodic motion, and a means for storing the measurement time of the periodic motion, the detection time of the X-ray dose, and the detection data of the X-ray dose in association with each other. Means for specifying a time point of a first specific phase of the periodic motion based on a time point of the periodic motion measurement of the subject obtained by the periodic motion measuring means; and Means for setting a time point of the second specific phase based on the time point; Means for performing image reconstruction using the detection data of the X-ray dose in the X-ray CT apparatus and obtaining a tomographic image of the subject along the rotationally moving surface.
前記断層像を得るために用いた前記第 2の特定位相の時点に関連する信頼度を計 算する手段と、該信頼度を断層像とともに表示する表示手段と、をさらに備えたことを 特徴とする X線 CT装置が提供される。 図面の簡単な説明  Means for calculating a reliability related to the time point of the second specific phase used to obtain the tomographic image, and display means for displaying the reliability together with the tomographic image. X-ray CT apparatus is provided. Brief Description of Drawings
[0010] [図 1]本発明における X線 CT装置の全体構成を示すブロック図である。 FIG. 1 is a block diagram showing an overall configuration of an X-ray CT apparatus according to the present invention.
[図 2]計測終了後、画像表示までの手順を示すフローチャートである。  FIG. 2 is a flowchart showing a procedure from completion of measurement to display of an image.
[図 3]R波位置の中抜けを示す図である。  FIG. 3 is a diagram showing a dropout in an R-wave position.
[図 4]表示装置で表示される各断層像の一覧リストの一例である。  FIG. 4 is an example of a list of each tomographic image displayed on the display device.
[図 5]表示装置で表示される断層像表示画面の一例である。  FIG. 5 is an example of a tomographic image display screen displayed on the display device.
[図 6]R波位置特定パラメータを再特定しながら断層像の信頼度を高める手順を示す フローチャートである。  FIG. 6 is a flowchart showing a procedure for increasing the reliability of a tomographic image while re-specifying an R-wave position specifying parameter.
[図 7]R波位置の再特定を示す図である。  FIG. 7 is a diagram showing re-specification of an R-wave position.
[図 8]心電情報を用いた投影データの抽出方法を示す図。  FIG. 8 is a view showing a method of extracting projection data using electrocardiographic information.
[図 9]心電情報の異常例を示す図である。  FIG. 9 is a diagram showing an abnormal example of electrocardiographic information.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、添付図面に従って、本発明に係る X線 CT装置の好ましい実施の形態につい て説明する。 Hereinafter, preferred embodiments of the X-ray CT apparatus according to the present invention will be described with reference to the accompanying drawings.
[0012] 実施例 1 Example 1
図 1 (a)は、本発明の一実施形態における X線 CT装置の全体構成を示すブロック図 である。 X線 CT装置は、 X線の照射および検出を行うスキャナガントリ部 2と、このスキ ャナガントリ部 2で検出された計測データから再構成演算に供する投影データを作成 して投影データを CT画像信号に処理する画像処理装置 7と、 CT画像を出力する表 示装置 5を備えている。スキャナガントリ部 2は、測定制御装置 11によって制御される 回転駆動装置 10によって回転駆動される回転円盤 8と、この回転円盤 8に搭載された X線管 1と、この X線管 1に取り付けられて X線束の方向と大きさを制御するコリメータ 9 と、回転円盤 8に搭載された X線検出器 4とを備えている。また、 X線管 1から発生する X線強度は測定制御装置 11によって制御され、この測定制御装置 11は入力装置 13 を有するコンピュータ 12によって制御される。一方、画像処理装置 7は被検者の心電 波形を取得するために心電計 6に接続され、更に画像処理装置 7の処理結果を保存 する記憶媒体 14に接続されて ヽる。 FIG. 1A is a block diagram showing the overall configuration of an X-ray CT apparatus according to one embodiment of the present invention. The X-ray CT device creates a scanner gantry unit 2 that irradiates and detects X-rays, and creates projection data to be used for reconstruction calculation from the measurement data detected by the scanner gantry unit 2 and converts the projection data into a CT image signal. An image processing device 7 for processing and a display device 5 for outputting a CT image are provided. The scanner gantry unit 2 includes a rotating disk 8 driven by a rotation driving device 10 controlled by a measurement control device 11, an X-ray tube 1 mounted on the rotating disk 8, and an X-ray tube 1 attached to the rotating disk 8. Collimator to control the direction and size of X-ray flux 9 And an X-ray detector 4 mounted on a rotating disk 8. The X-ray intensity generated from the X-ray tube 1 is controlled by a measurement control device 11, which is controlled by a computer 12 having an input device 13. On the other hand, the image processing device 7 is connected to the electrocardiograph 6 for acquiring an electrocardiographic waveform of the subject, and further connected to a storage medium 14 for storing the processing results of the image processing device 7.
[0013] 図 1 (b)を参照して、図 1 (a)の画像処理装置 7の詳細を説明する。画像処理装置 7 は、種々の機能を有するように構成されている。撮影と同時に収集された心電情報か ら、 R波位置の特定パラメータを用いて R波位置(単位:時間)を特定する R波位置特 定手段 7aと、 R波位置特定手段 7aで得られた R波位置を基に、所望の心拍位相、スラ イス位置での画像再構成に必要な投影データを抽出する投影データ抽出手段 7bと、 投影データ抽出手段 7bで抽出された投影データから画像再構成によって断層像を 作成する画像再構成手段 7cと、断層像作成手段 7cによって作成された断層像の信 頼度を算出する信頼度算出手段 7dと、複数の断層像とそれらの断層像の名前あるい は番号と信頼度の組合せを、信頼度を参照値として複数のグループに選別する信頼 度グループ選別手段 7eと、より良 ヽ R波位置特定のために R波位置特定パラメータを 更新するパラメータ更新手段 7f等とを有して 、る。  With reference to FIG. 1B, details of the image processing device 7 of FIG. 1A will be described. The image processing device 7 is configured to have various functions. The R-wave position specifying means 7a, which specifies the R-wave position (unit: time) using the R-wave position specifying parameter, from the electrocardiographic information collected at the same time as the imaging, is obtained by the R-wave position specifying means 7a Projection data extraction means 7b for extracting projection data necessary for image reconstruction at a desired heartbeat phase and slice position based on the R-wave position obtained, and image reconstruction from the projection data extracted by the projection data extraction means 7b. Image reconstruction means 7c for creating a tomographic image according to the configuration, reliability calculating means 7d for calculating the reliability of the tomographic image created by the tomographic image creating means 7c, a plurality of tomographic images and names of the tomographic images Alternatively, a reliability group selection means 7e for selecting a combination of a number and a reliability into a plurality of groups using the reliability as a reference value, and a parameter for updating the R-wave position identification parameter for better R-wave position identification. Update means 7f etc. Te, Ru.
[0014] 図 1 (a)のように被検者テーブル 3に被検者を寝力せた状態で、 X線管 1から X線が 照射されると、この X線はコリメータ 9によって設定された X線照射野へ照射され、 X線 検出器 4によって検出される。この際、回転円盤 8を被検者の周りに回転させることに より、被検者に対し X線を照射する方向を変えながら X線検出器 4を用 、て X線を計測 する。このように検出した計測データは、一度記憶媒体 14に転送され記憶される。同 時に心電計 6により被検者の心電情報も計測され、一度記憶媒体 14に転送され記憶 される。  When X-rays are emitted from the X-ray tube 1 with the subject lying on the subject table 3 as shown in FIG. 1 (a), the X-rays are set by the collimator 9. The irradiated X-ray irradiation field is detected by the X-ray detector 4. At this time, by rotating the rotating disk 8 around the subject, X-rays are measured using the X-ray detector 4 while changing the direction in which the subject is irradiated with X-rays. The measurement data thus detected is once transferred to the storage medium 14 and stored. At the same time, electrocardiographic information of the subject is also measured by the electrocardiograph 6, and is once transferred to the storage medium 14 and stored.
[0015] 次に、 X線を計測及び心電情報を同時に計測、収集、記憶後、どのようにして画像 再構成等をして、さらに画像再構成して得た断層像の信頼度を算出して表示装置 5 へ表示するかの手順を、図 2のフローチャートを用いて説明する。  [0015] Next, after measuring, collecting, and storing X-rays and electrocardiographic information at the same time, how to perform image reconstruction and the like, and calculate the reliability of a tomographic image obtained by image reconstruction. The procedure for displaying the data on the display device 5 will be described with reference to the flowchart of FIG.
[0016] ステップ 1では、 X線計測と同時に得られた心電情報を画像処理装置 7に読み込む [0017] ステップ 2では、入力装置 13より、 R波位置特定パラメータとして、例えば、波高の閾 値の初期値を入力する。 [0016] In step 1, the electrocardiographic information obtained simultaneously with the X-ray measurement is read into the image processing device 7. In step 2, the input device 13 inputs, for example, an initial value of a threshold value of the wave height as the R wave position specifying parameter.
[0018] ステップ 3では、 R波位置特定手段 7aは、ステップ 2で入力された R波位置特定パラメ ータを用い、心電情報の R波の位置(時間)を特定する。  In step 3, the R-wave position specifying means 7a specifies the position (time) of the R-wave of the electrocardiographic information using the R-wave position specifying parameter input in step 2.
[0019] ステップ 4では、入力装置 13より、画像作成に必要なパラメータを入力する。なお、こ こでは、心拍位相が例えば R波間隔の 70%であり、スライス位置が例えば心臓中央部 等であるとして説明する。  In step 4, parameters required for image creation are input from the input device 13. Here, it is assumed that the heartbeat phase is, for example, 70% of the R-wave interval, and the slice position is, for example, the center of the heart.
[0020] ステップ 5では、投影データ形成手段 7bは、ステップ 3で特定された R波の位置と、ス テツプ 4で入力された画像再作成に必要なパラメータを用いて、 X線計測データより目 的とする心拍位相とスライス位置の画像再構成に必要な投影データを形成する。  [0020] In step 5, the projection data forming means 7b uses the position of the R wave specified in step 3 and the parameters necessary for image re-creation input in step 4 to obtain an image from the X-ray measurement data. The projection data necessary for image reconstruction of the target heartbeat phase and slice position is formed.
[0021] ステップ 6では、画像再構成手段 7cは、ステップ 5で形成された投影データをもとに、 所望の心拍位相と所望のスライス位置における画像再構成演算を行う。さらに、この 結果として得られた断層像を記憶媒体 14に記憶させる。これと同時に各断層像の画 像名も記憶媒体 14に記憶させる。  In step 6, the image reconstruction means 7c performs an image reconstruction operation at a desired heartbeat phase and a desired slice position based on the projection data formed in step 5. Further, the tomographic image obtained as a result is stored in the storage medium 14. At the same time, the image name of each tomographic image is also stored in the storage medium 14.
[0022] ステップ 7では、信頼度算出手段 7dは、ステップ 6にお 、て得られた断層像の信頼 度を算出する。信頼度は、例えば、撮影前に測定された被検者の平均心拍周期 Reと 各断層像の計測時における R波周期 Raとの違 、(差ある 、は比)を求める。ここで 、う R波周期 Raは、再構成用のデータの時間軸上のほぼ中心にある R波間隔である。例 えば、図 3に示すように、被検者の平均心拍周期 Reに対して、各断層像の計測時の R 波周期 Raが大きく異なっていれば、ある R波の特定ができずに漏れてしまった力、あ るいは実際には R波ではな 、ノイズを R波であると誤判断してしま 、所望の心拍位相 の断層像が得られて 、な 、可能性が高 、 (つまり信頼度が低 、)と判断する。具体的 に信頼度の算出は、信頼度が高い方が高い数値になるように、例えば式(1)のような 計算式を用いる。  In step 7, the reliability calculating means 7d calculates the reliability of the tomographic image obtained in step 6. The reliability is determined, for example, by calculating the difference between the average heart cycle Re of the subject measured before imaging and the R-wave cycle Ra at the time of measurement of each tomographic image (the ratio is different). Here, the R-wave period Ra is the R-wave interval substantially at the center on the time axis of the data for reconstruction. For example, as shown in Fig. 3, if the R-wave period Ra at the time of measurement of each tomographic image is significantly different from the average heartbeat period Re of the subject, it is not possible to identify a certain R-wave. If the force that has been applied, or the noise is not actually an R-wave, the noise is erroneously determined to be an R-wave, a tomographic image of a desired heartbeat phase is obtained, and the possibility is high. The reliability is low. Specifically, the reliability is calculated using a calculation formula such as Equation (1) so that the higher the reliability, the higher the numerical value.
信頼度 = (Re/Ra) X 100 ただし、 Ra>Re (1)  Reliability = (Re / Ra) x 100 where Ra> Re (1)
[0023] このような計算式を使えば、信頼度が最も高い時 (Raと Reが等しい時)、 100となる。  Using such a calculation formula, the value is 100 when the reliability is the highest (when Ra and Re are equal).
Raと Re間の差が大きくなり信頼度が低くなると、 100から次第に低い数値になる。算出 された信頼度は、対応する断層像とともに記憶媒体 14に記憶される。 [0024] ステップ 8では、信頼度グループ選別手段 7eが、ステップ 7で得られた信頼度を元に 断層像のグループ分けをする。例えば、信頼度の高い方から Aランク、 Bランク、 Cラン クとする。信頼度のどの範囲にどのランクを割り当てるかは任意に決定してよい。 As the difference between Ra and Re increases and the reliability decreases, the number gradually decreases from 100. The calculated reliability is stored in the storage medium 14 together with the corresponding tomographic image. [0024] In step 8, the reliability group selection means 7e classifies the tomographic images based on the reliability obtained in step 7. For example, A rank, B rank, and C rank are ranked in descending order of reliability. Which rank is assigned to which range of reliability may be arbitrarily determined.
[0025] ステップ 9では、各断層像の一覧をリストとして表示装置 5上に表示する。その例を 図 4に示す。図 4は左カゝら順に、画像番号である No、画像名である名前、撮影位置、 心拍位相、信頼度、信頼度グループ、グループアイコン等が示されている。そして、 上カゝら順に断層像番号が示されている。なお、図 4では、グループアイコンや、各欄 の墨の濃さは、信頼度グループ分けを操作者にとってよりわ力りやすいように、付帯 して表示させたものであり、実際の画面上では墨の濃さに代えて、色やその濃さを当 てはめても良い。また、右下には最演算実行ボタン 75が配置される力 これについて はステップ 11のところで説明する。  In step 9, a list of each tomographic image is displayed on the display device 5 as a list. Figure 4 shows an example. FIG. 4 shows, from left to right, image number No, image name name, shooting position, heartbeat phase, reliability, reliability group, group icon, and the like. Then, the tomographic image numbers are shown in order from the top. Note that in FIG. 4, the group icons and the darkness of the black in each column are displayed as ancillary information so that the operator can easily understand the reliability grouping. Instead of the density of the ink, the color or the density may be applied. In addition, a force at which the most calculation execution button 75 is arranged at the lower right, which will be described in step 11.
[0026] ステップ 10では、ステップ 9でリストとして表示された図 4の一連の断層像について、 操作者が所望の断層像をカーソルで選択してクリックすることによって、表示装置 5へ 表示することができる。なお、以上一連の動作は、コンピュータ 12によって行われる。  In step 10, the operator can select a desired tomographic image with a cursor and click on the series of tomographic images of FIG. 4 displayed as a list in step 9, thereby displaying the tomographic image on the display device 5. it can. The above series of operations is performed by the computer 12.
[0027] 図 5は、一例として、図 4の No.2を表示したものである。図 5では、中央に表示した X 線 CT画像 71に付帯させて、 72の位置に信頼度を、 73の位置に信頼度グループを、 74の位置にグループアイコンを、また必要に応じて再演算実行ボタン 75も表示するこ とがでさる。  FIG. 5 shows No. 2 of FIG. 4 as an example. In Fig. 5, it is attached to the X-ray CT image 71 displayed in the center, the reliability is placed at the position 72, the reliability group is placed at the position 73, the group icon is placed at the position 74, and recalculation is performed if necessary. The execute button 75 can also be displayed.
[0028] 本実施例では更に、図 2のフローのステップ 7で算出した断層像の信頼度が低い場 合、ノ ラメータ更新手段 7fにより R波位置特定パラメータを更新することにより、より信 頼度の高い画像を得るように動作する。そのため図 6のフローチャートを実行する。  In this embodiment, when the reliability of the tomographic image calculated in step 7 of the flow in FIG. 2 is low, the R-wave position identification parameter is updated by the parameter updating means 7f, thereby increasing the reliability. Work to obtain a high-quality image. Therefore, the flowchart of FIG. 6 is executed.
[0029] 以下、図 6を参照して、その手順を説明する。ステップ 11では、ステップ 7で算出され たあるスライス位置の断層像の信頼度が低 、とき、例えば図 4の画像の信頼度が低 、 とき、該当する画像を図 4のリスト上カーソルで選択した状態で再演算実行ボタン 75を 選択する。すると、選択した信頼度の低い画像の再演算が開始される。  Hereinafter, the procedure will be described with reference to FIG. In step 11, when the reliability of the tomographic image at a certain slice position calculated in step 7 is low, for example, when the reliability of the image in FIG. 4 is low, the corresponding image is selected with the cursor on the list in FIG. In this state, select the recalculation execution button 75. Then, recalculation of the selected image with low reliability is started.
[0030] ステップ 12では、再演算許容パラメータを操作者が入力する。再演算許容パラメ一 タは、ステップ 11で選択された画像を再演算する際に、計算の指標を与えるものであ る。ここでは、信頼度がどの程度高ければ R波が正しく検出されていると判断するかを 決める指標として、信頼度の目標値を P、そして計算演算回数の最大回数を Nとする 。下記計算ステップにおいて、信頼度が目標値 P、計算演算回数が最大値 Nに達した 時に、計算をストップする。これらのパラメータは使用経験が重なれば、経験的に最 適化可能である。 In step 12, the operator inputs recalculation allowable parameters. The recalculation allowable parameter gives a calculation index when recalculating the image selected in step 11. Here, how high the reliability should be to judge that the R wave is correctly detected Let P be the target value of reliability and N be the maximum number of calculation operations as the index to determine. In the following calculation steps, when the reliability reaches the target value P and the number of calculation operations reaches the maximum value N, the calculation is stopped. These parameters can be optimized empirically with repeated use experience.
[0031] ステップ 13では、 R波位置特定パラメータを変化させて、 R波位置の再特定を行う。 R 波再特定の際の演算の例を、図 3と 7を用い説明する。図 3では、 R波位置特定パラメ ータを R波の波高値とし、波高値が任意の閾値 Thを上回れば R波として判定する例を 示す。ここで、撮影前に測定された被検者の平均心拍周期を Re、画像計測時におけ る心拍周期を Raとし、両者の比の 1との差力も信頼度を求める。この場合、 R波の波高 の閾値 Thは、次式 2を用いて更新可能である。  In step 13, the R-wave position is re-specified by changing the R-wave position specifying parameter. An example of the calculation at the time of re-specifying the R wave will be described with reference to FIGS. FIG. 3 shows an example in which the R-wave position specifying parameter is the peak value of the R-wave, and if the peak value exceeds an arbitrary threshold Th, the R-wave is determined to be an R-wave. Here, the average cardiac cycle of the subject measured before imaging is Re, and the cardiac cycle at the time of image measurement is Ra, and the difference between the ratio of the two and 1 is also calculated. In this case, the threshold value Th of the R wave height can be updated using the following equation (2).
Th =Th +B* (1— Ra/Re) (2)  Th = Th + B * (1— Ra / Re) (2)
n+l n  n + l n
[0032] 式 2は、前回の波高閾値 Thnに対して、 Raと Reの比を 1から引き、さらに Bを重み係数 として掛けたものをカ卩えることにより新 、波高閾値 (Th )を計算すると!/、うものであ [0032] Equation 2 gives a new peak height threshold (Th) by subtracting the ratio of Ra and Re from 1 with respect to the previous peak height threshold Th n and further multiplying B by a weighting factor. When you calculate! /
n+l  n + l
る。式 2によれば、計測データ収集時に心拍周期が平均値より長いので、 R波を見落 としたのではないかと考えられる時には、波高閾値 Thを下げる、また計測データ収集 時に心拍周期が平均値より短いので、ノイズを誤って拾ったのではないかと考えられ る時には、波高閾値 Thを上げるといった操作を行うことができる。  The According to Equation 2, since the cardiac cycle is longer than the average value when collecting the measurement data, when it is considered that the R wave may have been overlooked, the pulse height threshold Th is lowered, and when the measurement data is collected, the cardiac cycle is increased by the average value. Since it is shorter, when it is considered that noise was picked up by mistake, an operation such as raising the peak height threshold Th can be performed.
[0033] また、 R波再特定の他の例としては、再特定の閾値を初期値に対して任意の割合、 例えば 10%を順次減じた値を用いて R波の特定を繰り返し行うと ヽぅ方法を採用する ことちでさる。 As another example of the R-wave re-identification, the R-wave identification is repeatedly performed using a value obtained by sequentially reducing the re-specification threshold to an initial value, for example, 10%.ぅ Adopt a method.
[0034] ステップ 14では、ステップ 13で行った波高閾値 Thの変更により、 R波の特定位置が 、前回例えばステップ 3で行った時力も変化した力否力判定する。変化していれば Yesでステップ 15へ、変化して 、なければ Noで再度ステップ 13へ戻る。  In step 14, a change in the pulse height threshold Th performed in step 13 determines whether the specific position of the R wave has changed, for example, the force when the previous time was performed in step 3, for example. If yes, go to step 15 with Yes; if no, go back to step 13 with No.
[0035] ステップ 15では、ステップ 5の投影データの作成、ステップ 6の断層像の画像再構成 、ステップ 7の信頼度の計算と同様のステップを再度実行する。  In step 15, the same steps as the creation of the projection data in step 5, the image reconstruction of the tomographic image in step 6, and the calculation of the reliability in step 7 are executed again.
[0036] ステップ 16では、得られた画像がステップ 12で求められた許容条件を満たすかを判 定する。具体的に、信頼度が目標値 Pに達していた場合、あるいは計算演算回数が 最大値 Nを超えてしまった場合には Yesでステップ 17へ、未だ計算の必要がある場合 には Noでステップ 13へ戻る。ステップ 13へ戻った場合は、波高閾値 Thを再度上下さ せて R波の特定位置の変化を試みる。 In step 16, it is determined whether or not the obtained image satisfies the allowable condition obtained in step 12. Specifically, if the reliability has reached the target value P, or if the number of calculation operations has exceeded the maximum value N, proceed to step 17 with Yes. Return to step 13 with No. When returning to step 13, the wave height threshold Th is raised and lowered again to try to change the specific position of the R wave.
[0037] ステップ 17では、ステップ 8の信頼度のグループ分け、ステップ 9の断層像リストの表 示、ステップ 10の断層像画像の表示を再度行う。  In step 17, the reliability is grouped in step 8, the tomographic image list is displayed in step 9, and the tomographic image is displayed in step 10 again.
[0038] なお、付言すれば、ステップ 11で再演算を指定する画像は一つでなくても良い。例 えば、信頼度の低い Cグループのものをまとめて再演算することも可能である。  [0038] It should be noted that the number of images for which recalculation is specified in step 11 may not be one. For example, it is also possible to collectively recalculate C groups with low reliability.
[0039] また、上記ステップ 11から 17までの繰り返し計算の実行では、信頼度がなかなか改 善されずに無限に実行される場合もありうる。例えば、心拍周期が被検者の不整脈に よって変動した場合や、 R波信号が完全に欠落した場合、 R波信号と酷似したノイズ が混入した場合などがこれにあたる。本実施例ではこのような無限実行を防ぐため、 ステップ 12において計算演算回数の最大値 Nを設定可能となっているわけである。つ まり、それ以上計算しても信頼度が改善しないような回数に到達すると計算をストップ させることが可能である。なお、このステップ 11から 17もコンピュータ 12によって実行さ れる。  [0039] In addition, in the execution of the iterative calculation in steps 11 to 17, the reliability may not be improved so easily and may be executed indefinitely. For example, this may be the case where the cardiac cycle fluctuates due to the subject's arrhythmia, the case where the R-wave signal is completely missing, or the case where noise very similar to the R-wave signal is mixed. In this embodiment, in order to prevent such infinite execution, the maximum value N of the number of calculation operations can be set in step 12. In other words, it is possible to stop the calculation when the number of times that the reliability does not improve even if it is calculated further. Steps 11 to 17 are also performed by the computer 12.
[0040] 本実施例によれば、 X線計測と同時に読み込まれた心電情報力 R波位置の特定 を行い、その特定した R波位置をもとに心拍位相を求め、同心拍位相における断層 像を複数個求めるが、 R波の特定処理に使用する R波位置特定パラメータ、例えば、 R波の波高の閾値 Thを変化させながら R波位置の特定を繰り返し実行する。そして、 繰り返しながら画像を求め、信頼度がある目標値を達成できるようにする。その結果、 操作者の目視によって適正な再構成が行われたか否カゝ判定をしなくとも、各計測時 点における最適な R波位置特定パラメータを自動的に求めることができ、 R波の特定 精度も高まり、更には各断層像の信頼度も高まる。  [0040] According to the present embodiment, the R-wave position of the electrocardiographic information force read at the same time as the X-ray measurement is specified, and the heartbeat phase is determined based on the specified R-wave position. A plurality of images are obtained, and the R-wave position is repeatedly specified while changing the R-wave position specifying parameter used for the R-wave specifying process, for example, the threshold value Th of the R-wave height. Then, the image is obtained repeatedly, so that the target value with reliability can be achieved. As a result, it is possible to automatically determine the optimal R-wave position identification parameter at each measurement point without having to visually judge whether or not the appropriate reconstruction has been performed. Accuracy increases, and reliability of each tomographic image also increases.
[0041] これにより、特に、脈がもともと弱い人や緊張のため脈が乱れる人の心電同期再構 成をする際に、 R波の取り落としを防いで適正な投影データを収集して画像再構成に 供することが可能となり、再構成画像を診断に用いることに関する信頼度を極力向上 可能である。  [0041] In particular, when performing ECG-gated reconstruction of a person whose pulse is originally weak or a person whose pulse is disturbed due to tension, it is possible to prevent the dropping of R waves and collect appropriate projection data to reconstruct an image. This makes it possible to provide the configuration, and the reliability of using the reconstructed image for diagnosis can be improved as much as possible.
[0042] 実施例 2  Example 2
上記実施例 1における図 3は、図 9 (c)のように被検者のある R波 53の特定ができず に、それに対応する投影データを取り漏らしてしまう場合への対応を示したものであ る力 本実施例は、図 9 (b)のように、実際には R波ではないノイズ 61, 62を R波である と誤検出してしまう場合に関するものである。実施例 2は特に断らない限り、実施例 1と 同じ装置構成及び同じ処理を使用するので、実施例 1と同じ構成部分はそれと同じ 参照番号で表されるものとする。 FIG. 3 in Example 1 above shows that the R-wave 53 with the subject could not be identified as in FIG. 9 (c). In addition, this example shows how to deal with the case where the corresponding projection data is missed.In this embodiment, as shown in FIG. This relates to the case where an R wave is erroneously detected. The second embodiment uses the same apparatus configuration and the same processing as in the first embodiment unless otherwise specified. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals.
[0043] 実施例 2の実施例 1に対する具体的相違点は、図 2のステップ 7と図 1 (b)の信頼度 算出手段 7dにおいて、式 1に代わり式 2を使用する点である。すでに説明したように、 図 9 (b)の場合には、ノイズ 61を R波と誤認して、 R波 51とノイズ 61の間を各断層像の計 測時における R波周期 Raとして認識してしまうおそれがある。この場合、計測時にお ける R波周期 Raは撮影前に測定された被検者の平均心拍周期 Reより小さくなる。この 場合、下式 3を使用する。  A specific difference between the second embodiment and the first embodiment is that step 2 in FIG. 2 and equation 2 are used instead of equation 1 in the reliability calculation means 7d in FIG. 1B. As described above, in the case of Fig. 9 (b), the noise 61 is mistaken for the R wave, and the interval between the R wave 51 and the noise 61 is recognized as the R wave period Ra at the time of measuring each tomographic image. There is a risk that it will. In this case, the R-wave period Ra at the time of measurement is smaller than the average heartbeat period Re of the subject measured before the imaging. In this case, use Equation 3 below.
信頼度 = (Ra/Re) X 100 ただし、 Re>Ra (3)  Confidence = (Ra / Re) X 100 where Re> Ra (3)
[0044] 以上、本実施例によれば、特に、心電計などが周辺機器の電磁波等を拾ってしま V、ノイズを発生する場合ゃ被検者の不整脈に起因するノイズがある場合でも、 R波の 取り落としを防いで適正な投影データを収集して画像再構成に供することが可能とな り、再構成画像を診断に用いることに関する信頼度をさらに向上可能である。  As described above, according to the present embodiment, particularly, an electrocardiograph or the like picks up electromagnetic waves or the like from peripheral devices. V. When noise is generated. Even when there is noise due to the arrhythmia of the subject, Proper projection data can be collected without dropping the R-wave and used for image reconstruction, and the reliability of using the reconstructed image for diagnosis can be further improved.
[0045] 実施例 3  Example 3
実施例 3は特に断らない限り、実施例 1と同じ装置構成及び同じ処理を使用するの で、実施例 1と同じ構成部分はそれと同じ参照番号で表されるものとする。  The third embodiment uses the same apparatus configuration and the same processing as in the first embodiment unless otherwise specified. Therefore, the same components as those in the first embodiment are denoted by the same reference numerals.
[0046] 上記実施例 1と 2において、ステップ 11では、ステップ 7で算出されたあるスライス位 置の断層像の信頼度が低いとき、例えば図 5の画像の信頼度が低いとき、図 5に示す 画像を図 4のリスト上カーソルで選択した状態で再演算実行ボタン 75を選択して、画 像を再演算させていた。  In Embodiments 1 and 2 described above, in Step 11, when the reliability of the tomographic image at a certain slice position calculated in Step 7 is low, for example, when the reliability of the image in FIG. 5 is low, FIG. When the image shown was selected with the cursor on the list in FIG. 4, the recalculation execution button 75 was selected to recalculate the image.
[0047] 本実施例では、ステップ 11にお 、て、信頼度が低 、画像に代えて信頼度の低 、グ ループをまとめて選択する。例えば、信頼度の低い Cグループのものをまとめて選択 して再演算するように構成した。グループを選択する際は、図 4の信頼度グループ中 例えば信頼度 Cの部分を選択すると、 Cのついたグループが一斉に選択される。その 後、再演算実行ボタンを押すことで信頼度 Cのものが連続的に再演算される。 [0048] 信頼度グループが同じである画像同士は、図 7に示した R波判定値が近いことが多 い。このため、同じグループに属する画像に関しては、ステップ 13から 14の間の R波 位置の再特定ループの繰り返し回数がほぼ同一で済むことが多い。 In this embodiment, in step 11, a group having low reliability and a group having low reliability instead of an image is collectively selected. For example, the system is configured so that those in the C group with low reliability are collectively selected and recalculated. When selecting a group, for example, if the part of the reliability C is selected from the reliability groups in FIG. 4, the group with C is selected all at once. Then, by pressing the recalculation execution button, the one with reliability C is continuously recalculated. [0048] Images having the same reliability group often have similar R-wave determination values shown in Fig. 7. For this reason, for the images belonging to the same group, the number of repetitions of the loop for re-specifying the R wave position between steps 13 and 14 can be almost the same in many cases.
[0049] 本実施例では、グループ内の画像がまとめてほぼ同一の再特定ループの繰り返し 回数で再計算されることにより、迅速に信頼度の見直しが可能となる。 In this embodiment, since the images in the group are collectively recalculated with substantially the same number of re-specific loop iterations, the reliability can be quickly reviewed.
[0050] 以上、本発明は上記実施例に限定されるものではなぐ本発明の要旨を逸脱しな い範囲で種々に変形して実施できるものである。 [0050] As described above, the present invention is not limited to the above-described embodiment, and can be variously modified and implemented without departing from the gist of the present invention.
[0051] 例えば、上記 X線 CT装置は、機械的に X線源と X線検出器を対向回転する方式に 限らず、固定された複数の X線照射部と検出装置を有して、照射点からの X線照射を 切り替えて 、く方式のものであってもよ!/、。 [0051] For example, the X-ray CT apparatus is not limited to a method in which an X-ray source and an X-ray detector are mechanically rotated to face each other. You can switch to X-ray irradiation from a point and use the X-ray method!
[0052] また、 X線検出器は被検者の体軸方向に一列の検出器列を有するものに限らず、 複数の検出器列を有するものも含む。 [0052] The X-ray detector is not limited to one having a single detector row in the body axis direction of the subject, but also includes one having a plurality of detector rows.
[0053] また、前記信頼度は、信頼度を被検者の平均心拍周期と断層像計測時の R波周期 とがどの程度一致するかにより求められる数値とし、信頼度の換算式として式 1および 式 3、 R波位置特定パラメータの更新式として式 2を用いた力 これらに限定されるもの ではない。 [0053] The reliability is a numerical value obtained by determining how much the average heart cycle of the subject matches the R-wave cycle at the time of tomographic image measurement. And Equation 3, the force using Equation 2 as an update equation for the R-wave position identification parameter. The present invention is not limited to these.
[0054] なお、本発明は、特開 2002— 330961号公報に開示の撮影後に再構成する ECGゲ ートあるいはレトロスぺクティブに好適と考えられる。実施例 1 3は撮影後に再構成す る ECGゲートあるいはレトロスぺクティブを念頭においた方法である。しかし、実施例 1 3は、これに限定されるものではない。 ECGトリガーあるいはプロスペクティブにおい ても、例えば X線照射と計測の時間を長くするような場合にも、本発明は有用である。  The present invention is considered to be suitable for an ECG gate or a retrospective which is reconstructed after photographing as disclosed in JP-A-2002-330961. Embodiment 13 is a method in which an ECG gate or a retroactive image to be reconstructed after imaging is considered. However, Example 13 is not limited to this. The present invention is also useful in an ECG trigger or a prospective case, for example, when extending the time between X-ray irradiation and measurement.
[0055] 以下、 ECGゲートあるいはレトロスぺクティブと ECGトリガーあるいはプロスぺクティ ブを説明すると、 ECGトリガーあるいはプロスペクティブの特徴は、被曝が少なぐ画 像再構成に必要なデータだけを収集する点にある。例えば、スキャン開始前の心電 波形情報中、隣接する 2つの R波間の間隔 (以下、心拍周期という)を 100%とした場合 の 70%の位置、つまり例えば 1秒スキャンでは R波から 0. 7秒の時点(拡張中期)をスキ ヤン開始のタイミングと決め、さらにこの R波に同期して上記ガントリーを回転し、画像 再構成に必要なビュー角度で X線を曝射して投影データを取得し、寝台を移動しな がら螺旋スキャンを行うものである。また、 ECGゲートあるいはレトロスぺクティブは、 短期的な被曝は特に考慮しない。それより、投影データの取り損じを防いで、後に任 意のスライス位置の心臓断層像を再構成して得ようとするものである。そのため、螺旋 軌道スキャンを行 、投影データを所定タイミングではなく連続して収集する。これと同 時に、投影データ取得に時間軸を合致させて心電計など力 心電情報も記録する。 その後、最終的に得られた投影データから同心拍時相に係るものを取り出して画像 再構成に供する。この方法では、再構成用に投影データが余分に取得してあるため 、万が一データがうまく取得できない場合や心時相が判読できない場合でも、その部 分以外の他の投影データを使用して何とか目的断層像を作成可能である。この結果 、撮影のやり直しという事態の発生が減少する。このように本発明は、 ECGゲートある いはレトロスぺクティブのように投影データが心電情報と組み合わせて取得される場 合に特に好適である。さらに、 ECGトリガーあるいはプロスペクティブの場合でも長時 間撮影をするような場合、投影データが心電情報と組み合わせて使用さえる場合に 好適となる。 [0055] Hereinafter, the ECG gate or retroactive and the ECG trigger or prospective will be described. The feature of the ECG trigger or prospective is that only the data necessary for image reconstruction with less exposure is collected. is there. For example, in the electrocardiographic waveform information before the start of the scan, 70% of the position when the interval between two adjacent R waves (hereinafter referred to as the heartbeat cycle) is 100%, that is, for example, in the 1-second scan, the position from the R wave to 0. The time of 7 seconds (middle diastole) is determined as the scan start timing, and the gantry is rotated in synchronization with this R-wave, and X-rays are emitted at the view angle required for image reconstruction to project projection data. Get and move the couch A spiral scan is performed. ECG gates or retrospectives do not specifically consider short-term exposures. Thus, it is intended to prevent a loss of projection data and to reconstruct a tomographic image of a heart at an arbitrary slice position later. Therefore, a spiral trajectory scan is performed, and projection data is continuously collected instead of at a predetermined timing. At the same time, electrocardiographic information such as an electrocardiograph is recorded by matching the time axis with the projection data acquisition. After that, the data related to the same heartbeat time phase is taken out from the finally obtained projection data and used for image reconstruction. In this method, since extra projection data is acquired for reconstruction, even if the data cannot be acquired well or the cardiac phase cannot be read, some other projection data other than that part can be used. A target tomographic image can be created. As a result, the occurrence of a situation in which the shooting is redone is reduced. As described above, the present invention is particularly suitable for a case where projection data is acquired in combination with electrocardiographic information, such as an ECG gate or a retrospective. Furthermore, it is suitable for long-time imaging even in the case of ECG trigger or prospective, or when the projection data can be used in combination with ECG information.

Claims

請求の範囲 The scope of the claims
[1] 被検体を間に挟んで対向して配置された、 X線を放射する X線源と、前記被検体を 透過して減弱した X線量を検出する X線検出器と、  [1] an X-ray source that emits X-rays and is opposed to each other with the subject interposed therebetween, an X-ray detector that detects the attenuated X-ray dose that has passed through the subject,
前記 X線源と前記 X線検出器の照射および検出方向を前記被検体周囲の略円周 上で順次に回転移動させる手段と、  Means for sequentially rotating and moving the irradiation and detection directions of the X-ray source and the X-ray detector on a substantially circumference around the subject;
前記被検体内にある周期的な運動をする部位の周期的運動を計測する周期運動 計測手段と、  A periodic motion measuring means for measuring the periodic motion of a part of the subject that performs a periodic motion,
前記周期的運動の計測時点と前記 X線量の検出時点と前記 X線量の検出データを 対応させて記憶する手段と、  Means for storing the measurement time of the periodic motion, the detection time of the X-ray dose, and the detection data of the X-ray dose in association with each other;
前記周期運動計測手段で得られた前記被検体の周期的運動計測時点をもとに、 前記周期的運動の第 1の特定位相の時点を特定する手段と、  Means for specifying a time point of a first specific phase of the periodic motion based on a time point of the periodic motion measurement of the subject obtained by the periodic motion measuring means;
前記第 1の特定位相の時点をもとに、第 2の特定位相の時点を設定する手段と、 該第 2の特定位相の時点における前記 X線量の検出データを用 、画像再構成を行 つて、前記回転移動面に沿った被検体の断層像を得る手段と、を備えた X線 CT装置 において、  Means for setting a time point of a second specific phase based on the time point of the first specific phase, and performing image reconstruction using the detection data of the X-ray dose at the time point of the second specific phase. Means for obtaining a tomographic image of the subject along the rotational movement plane, the X-ray CT apparatus comprising:
前記断層像を得るために用いた前記第 2の特定位相の時点に関連する信頼度を 計算する手段と、  Means for calculating a reliability associated with the time point of the second specific phase used to obtain the tomographic image;
該信頼度を断層像とともに表示する表示手段と、をさらに備えたことを特徴とする X 線 CT装置。  Display means for displaying the reliability together with the tomographic image, and an X-ray CT apparatus.
[2] 前記信頼度は、数値または記号もしくはこれらの組合せで前記表示装置に表示さ れることを特徴とする請求項 1に記載の X線 CT装置。  [2] The X-ray CT apparatus according to claim 1, wherein the reliability is displayed on the display device as a numerical value, a symbol, or a combination thereof.
[3] 前記信頼度計算手段は、該当する断層像計測時における隣接した前記第 1の特定 位相間隔と、前記被検体の周期的に運動をする部位の平均的周期との差異をもとに[3] The reliability calculating means is configured to calculate the reliability based on a difference between an adjacent first specific phase interval at the time of measuring the corresponding tomographic image and an average period of a portion of the subject that periodically moves.
、前記信頼度を計算することを特徴とする請求項 1または 2の 、ずれかに記載の X線The X-ray according to any one of claims 1 and 2, wherein the reliability is calculated.
CT装置。 CT device.
[4] 前記被検体の周期的に運動をする部位の平均的周期を前記断層像計測前に取 得後保存する記憶手段を更に備え、前記信頼度計算手段は、前記記憶手段に記憶 された心拍周期を前記平均的周期として用いることを特徴とする請求項 3に記載の X 線 CT装置。 [4] The apparatus further comprises storage means for acquiring and storing an average period of the part of the subject which periodically moves before the tomographic image measurement, and storing the average period, wherein the reliability calculation means is stored in the storage means. The X according to claim 3, wherein a heart cycle is used as the average cycle. Ray CT device.
[5] 前記信頼度計算手段は、前記第 1の特定位相間隔が前記平均的周期より小さい場 合、前記信頼度を前記第 1の特定位相間隔に対する前記平均的周期の割合とし、ま た、前記第 1の特定位相間隔が前記平均的周期より大きい場合、前記信頼度を前記 平均的周期に対する前記第 1の特定位相間隔の割合とすることを特徴とする請求項 3 または 4の 、ずれかに記載の X線 CT装置。  [5] If the first specific phase interval is smaller than the average period, the reliability calculation means sets the reliability as a ratio of the average period to the first specific phase interval, 5. The method according to claim 3, wherein when the first specific phase interval is larger than the average period, the reliability is a ratio of the first specific phase interval to the average period. 6. The X-ray CT apparatus described in 1.
[6] 前記信頼度の低い断層像については、前記第 1の特定位相の時点を再検出して、 前記再検出した第 1の特定位相の時点をもとに、再度、第 2の特定位相の時点を設定 し、前記再設定した第 2の特定位相の時点における X線量の検出データを用いて、再 度、画像再構成を行って前記断層像を得る手段をさらに備えたことを特徴とする請求 項 1から 5のいずれかひとつに記載の X線 CT装置。  [6] For the tomographic image with low reliability, the time point of the first specific phase is re-detected, and the second specific phase is again detected based on the re-detected time point of the first specific phase. Means for obtaining the tomographic image by performing image reconstruction again by using the detected X-ray dose data at the time point of the reset second specific phase. The X-ray CT apparatus according to any one of claims 1 to 5.
[7] 前記表示手段は、前記断層像の名前と、これに対応する前記信頼度と、前記周期 的運動の第 1の特定位相の時点を特定させるスィッチと、を表示しており、  [7] The display means displays a name of the tomographic image, the reliability corresponding to the tomographic image, and a switch for specifying a time point of a first specific phase of the periodic motion,
前記信頼度計算手段は、上記表示手段上の前記断層像の名前と前記スィッチが 選択されると、前記断層像に関する前記第 1の特定位相の時点を再度特定し直して 、その後前記第 2の特定位相の時点に関する信頼度を再度計算することを特徴とす る請求項 1から 6のいずれかひとつに記載の X線 CT装置。  The reliability calculating means, when the name of the tomographic image and the switch on the display means are selected, re-specifies the time of the first specific phase with respect to the tomographic image, and then the second The X-ray CT apparatus according to any one of claims 1 to 6, wherein the reliability at the time of the specific phase is calculated again.
[8] 前記表示手段は、前記断層像の名前と、これに対応する前記信頼度と、前記信頼 度を所定範囲でグループ分けした結果と、前記周期的運動の第 1の特定位相の時点 を特定させるスィッチと、を表示するものであり、  [8] The display means displays the name of the tomographic image, the corresponding reliability, a result of grouping the reliability in a predetermined range, and a time point of a first specific phase of the periodic motion. And a switch to be specified.
前記信頼度計算手段は、前記表示手段上にお!、て前記信頼度のグループと前記 スィッチが選択されると、前記グループに属する全ての画像に対して、第 1の特定位 相の時点を再度特定し直して、その後前記第 2の特定位相の時点に関する信頼度を 再度計算することを特徴とする請求項 1から 6のいずれかひとつに記載の X線 CT装置  When the reliability group and the switch are selected on the display means, the reliability calculation means determines the time of the first specific phase for all images belonging to the group. The X-ray CT apparatus according to any one of claims 1 to 6, wherein the identification is performed again, and then the reliability regarding the time point of the second specific phase is calculated again.
[9] 前記信頼度計算手段は、所定の信頼度の目標値と前記再計算の回数の範囲内で 、前記計算毎に、前記第一の特定位相における前記周期的運動計測データの波高 値を検出するための閾値をずらしながら、前記第 1の特定位相の時点を再度特定す ることを特徴とする請求項 7または 8に記載の X線 CT装置。 [9] The reliability calculation means calculates a peak value of the periodic motion measurement data in the first specific phase for each calculation within a range of a target value of the predetermined reliability and the number of recalculations. While shifting the threshold for detection, the time point of the first specific phase is specified again. 9. The X-ray CT apparatus according to claim 7, wherein the X-ray CT apparatus is used.
[10] 前記 X線検出器は、被検者の体軸方向に複数列の検出器が配置されて構成され た多列検出器であることを特徴とする請求項 1から 9のいずれかひとつに記載の X線 CT装置。 [10] The X-ray detector according to any one of claims 1 to 9, wherein the X-ray detector is a multi-row detector configured by arranging a plurality of detectors in a body axis direction of a subject. The X-ray CT apparatus described in 1.
[11] 被検体を間に挟んで対向して配置された、 X線を放射する X線源と、前記被検体を 透過して減弱した X線量を検出する X線検出器と、  [11] An X-ray source that emits X-rays and is opposed to each other with the subject interposed therebetween, an X-ray detector that detects the attenuated X-ray dose transmitted through the subject,
前記 X線源と前記 X線検出器の X線照射および検出方向を前記被検体周囲の略円 周上で順次に回転移動させる手段と、  Means for sequentially rotating and moving the X-ray source and the X-ray irradiation and detection directions of the X-ray detector on a substantially circumference around the subject;
前記被検体に取り付けられ前記被検体からの心電情報を得る心電計と、 前記 X線量の検出と同時に収集された前記心電情報中から、 R波位置の特定用パ ラメータを用いて R波位置を特定する R波位置特定手段と、  An electrocardiograph attached to the subject to obtain electrocardiographic information from the subject, and an electrocardiographic information collected at the same time as the detection of the X-ray dose. R wave position specifying means for specifying a wave position;
前記 R波位置特定手段で得られた前記 R波位置を基に、所望の心拍位相および所 望の被検体のスライス位置での画像再構成に必要な前記 X線量を投影データとして 抽出する投影データ抽出手段と、  Projection data for extracting the X-ray dose required for image reconstruction at a desired heartbeat phase and a desired slice position of the subject as projection data based on the R-wave position obtained by the R-wave position specifying means. Extraction means;
前記投影データ抽出手段で抽出された前記投影データから画像再構成によって 断層像を作成する画像再構成手段と、  Image reconstruction means for creating a tomographic image by image reconstruction from the projection data extracted by the projection data extraction means,
前記作成された断層像の信頼度を算出する信頼度算出手段と、  A reliability calculating means for calculating the reliability of the created tomographic image,
前記信頼度算出手段によって算出された信頼度を表示する手段と、を備えたことを 特徴とする X線 CT装置。  An X-ray CT apparatus, comprising: means for displaying the reliability calculated by the reliability calculation means.
PCT/JP2004/008900 2003-06-25 2004-06-24 X-ray ct device WO2005000122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003180571A JP2005013378A (en) 2003-06-25 2003-06-25 X-ray ct system
JP2003-180571 2003-06-25

Publications (1)

Publication Number Publication Date
WO2005000122A1 true WO2005000122A1 (en) 2005-01-06

Family

ID=33549503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008900 WO2005000122A1 (en) 2003-06-25 2004-06-24 X-ray ct device

Country Status (2)

Country Link
JP (1) JP2005013378A (en)
WO (1) WO2005000122A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767844A (en) * 1993-09-03 1995-03-14 Fukuda Denshi Co Ltd Device and method for detecting qrs wave in long time electrocardiogram
JPH08206089A (en) * 1994-11-30 1996-08-13 Nec Corp Organism information collecting/recording device
JP2003164446A (en) * 2001-11-26 2003-06-10 Ge Medical Systems Global Technology Co Llc Method and apparatus for cardiac imaging
JP2004174006A (en) * 2002-11-28 2004-06-24 Ge Medical Systems Global Technology Co Llc Signal acquisition apparatus and x-ray ct instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767844A (en) * 1993-09-03 1995-03-14 Fukuda Denshi Co Ltd Device and method for detecting qrs wave in long time electrocardiogram
JPH08206089A (en) * 1994-11-30 1996-08-13 Nec Corp Organism information collecting/recording device
JP2003164446A (en) * 2001-11-26 2003-06-10 Ge Medical Systems Global Technology Co Llc Method and apparatus for cardiac imaging
JP2004174006A (en) * 2002-11-28 2004-06-24 Ge Medical Systems Global Technology Co Llc Signal acquisition apparatus and x-ray ct instrument

Also Published As

Publication number Publication date
JP2005013378A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
EP1820450B9 (en) X-ray diagnostic apparatus, image processing apparatus, and program
JP4567130B2 (en) CT image generation method
CN103239253B (en) Medical image diagnostic apparatus
EP2088918B1 (en) Reconstruction window adaption in ecg-gated computed tomography
KR101664432B1 (en) Computer tomography apparatus and method for displaying a computer tomography image thereof
JP4737859B2 (en) Ultrasonic diagnostic apparatus, X-ray CT apparatus, and display control program
JP6618900B2 (en) X-ray CT apparatus and image reconstruction method
JP2007175258A (en) Tomographic x-ray equipment and x-ray tomographic method
KR101665513B1 (en) Computer tomography apparatus and method for reconstructing a computer tomography image thereof
JPWO2015108097A1 (en) X-ray CT apparatus, image processing apparatus, and image reconstruction method
CN112568925A (en) System and method for cardiac imaging
US20190298290A1 (en) Imaging support apparatus and radiographic imaging system
JP5670045B2 (en) Image analysis apparatus, image analysis method, and image analysis program
JP2003180677A (en) Method and apparatus of determining and displaying helical artifact index
US7477771B2 (en) Method and system for extracting information about the cardiac cycle from CT projection data
JP2007175399A (en) X-ray ct apparatus and its control method
JP5147047B2 (en) X-ray CT system
JP5426783B2 (en) X-ray computed tomography apparatus, image processing apparatus, and program
JP6878022B2 (en) Medical diagnostic imaging equipment, servers and programs
JP2009160221A (en) X-ray computerized tomographic apparatus and three-dimensional image processing apparatus
WO2005000122A1 (en) X-ray ct device
JP4503279B2 (en) X-ray CT system
JP4854811B2 (en) Ultrasonic diagnostic apparatus, X-ray CT apparatus, and display control program
US7477928B2 (en) Method and system for associating an EKG waveform with a CT image
JPWO2013187461A1 (en) X-ray CT apparatus and image reconstruction method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase