WO2004114449A2 - Protection d'une pile a combustible - Google Patents

Protection d'une pile a combustible Download PDF

Info

Publication number
WO2004114449A2
WO2004114449A2 PCT/FR2004/050276 FR2004050276W WO2004114449A2 WO 2004114449 A2 WO2004114449 A2 WO 2004114449A2 FR 2004050276 W FR2004050276 W FR 2004050276W WO 2004114449 A2 WO2004114449 A2 WO 2004114449A2
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
current
circuit
voltage
electrical power
Prior art date
Application number
PCT/FR2004/050276
Other languages
English (en)
Other versions
WO2004114449A3 (fr
Inventor
Pierre Charlat
Original Assignee
L'air Liquide,Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide,Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide,Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to US10/559,976 priority Critical patent/US20060166044A1/en
Priority to EP04767838A priority patent/EP1639667A2/fr
Priority to CA002528980A priority patent/CA2528980A1/fr
Publication of WO2004114449A2 publication Critical patent/WO2004114449A2/fr
Publication of WO2004114449A3 publication Critical patent/WO2004114449A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04552Voltage of the individual fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/04947Power, energy, capacity or load of auxiliary devices, e.g. batteries, capacitors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • FIG. 1 represents an example of a conventional architecture of a power generator 10 comprising a fuel cell 12.
  • the fuel cell 12 receives a flow of inlet air driven by a compressor 14 at an inlet flow rate Q and rejects an exhaust air flow at an output flow rate Q Q.
  • the fuel cell 12 consists of a set of elementary cells (not shown) arranged in series and can be represented, schematically, by a voltage generator between two terminals 16, 17. A chemical electrolysis reaction consuming the oxygen supplied by the inlet air flow occurs at the level of each elementary cell.
  • the voltage at terminals 16, 17 of the fuel cell 12, or cell voltage, is denoted Up and Ip the current supplied by the fuel cell 12 or cell current.
  • Terminal 17 is connected to a reference potential GND, for example ground, and terminal 16 is connected to a node E input of a power converter 18.
  • the converter 18 supplies a power P Q requested by a user, called thereafter user power
  • the power generator 10 comprises a booster circuit 19 comprising a battery 20 and a diode 22 connected in series.
  • One terminal of the battery 20 is connected to the anode of the diode 22 and the other terminal is connected to the ground GND.
  • the cathode of the diode 22 is connected to the node E.
  • the booster circuit 19 supplies a current Ig or booster current to assist the fuel cell 12.
  • the battery 20 is recharged by a battery charger not shown .
  • the total current In received by the power converter 18 corresponds to the sum of the battery current Ip and the make-up current Ig.
  • all of the current 1 ⁇ is supplied by the battery and the make-up current Ig is zero.
  • the fuel cell 12 does not necessarily have the capacity to immediately supply all of the current I ⁇ requested.
  • the battery voltage ⁇ p therefore tends to drop suddenly.
  • the diode D then becomes on and the booster circuit 19 temporarily supplies a booster current I ⁇ to meet the user power demand until the fuel cell is able to supply all of the current. 1 ⁇ asked.
  • FIGS. 2A to 2E show in more detail, by way of example, the temporal evolution of signals characteristic of the power generator 10 of FIG. 1 during a transient of the user power P Q.
  • Curves 25 to 29 respectively represent the total current I ⁇ v the battery current Ip, the battery voltage Up, the inlet air flow Q j , and the oxygen rate x ⁇ 2 of the air flow exhaust.
  • the power PQ is successively equal to an idling power (for example 200 watts) for 0.1 second, to twice the nominal power of the fuel cell 12 (for example 4 kilowatts) for one second and, finally, to the nominal power of the fuel cell 12.
  • the oxygen rate ⁇ 2 is substantially equal to 12%. This corresponds to a stationary situation for which the stoichiometric factor of oxygen consumption of the overall chemical reaction which takes place within the fuel cell 12 is of the order of 2.
  • the flow rate of inlet air Q is then stabilized to ensure such a stoichiometric factor.
  • the total current Irr is fully supplied by the fuel cell 12 and the cell voltage Up is high.
  • the compressor 14 receives an input air flow setpoint Qj determined from the total current If. However, the inertia of the compressor 14 causes a delay between the moment when the compressor receives a determined set point and the moment when the compressor 14 supplies the inlet air flow Q corresponding to the determined set point. It therefore takes a few seconds for the inlet air flow Q to increase. Just after the user power PQ has increased to twice the nominal power, the fuel cell 12 still has enough air to supply all of the total current 1 ⁇ for a short period (of about 0, 1 s). However, since the speed of the compressor 14 has not yet increased, the fuel cell 12 receives an air flow rate Q substantially identical to the flow rate received when the user power P Q was equal to the idling power.
  • the fuel cell 12 therefore consumes all the oxygen it has in its internal volume, which can be checked on the curve shown in FIG. 2E by the drop in the oxygen rate ⁇ 2 in the exhaust air flow.
  • the rate ⁇ 2 reaches around 4%, some of the cells of the fuel cell 12 which are less well supplied, in particular for reasons of minimal geometric deviation during manufacture, see their voltage drop just below zero. Such cells are then in reverse polarity. This causes a further drop in the battery voltage Up so that the diode 22 turns on and allows the battery 20 to supply part of the total current I j .
  • the current supplied by the battery Ip then drops and equilibrates to a value twice the value corresponding to the idle power. This corresponds to a stoichiometric factor of oxygen consumption of the overall chemical reaction within the fuel cell 21 equal to 1. Substantially all the oxygen introduced into the fuel cell 12 is then consumed.
  • the present invention relates to a method for protecting a fuel cell, and to a fuel cell booster circuit for implementing the protection method, making it possible to avoid the phenomenon of reverse polarity of cells of the fuel cell during transients of user power.
  • the present invention also relates to a fuel cell booster circuit, for the implementation of the protection method, of simple design, resulting in little modification of the architecture of the power generator.
  • the present invention provides a method of protecting a fuel cell, consisting of elementary cells, providing electrical power in response to a power demand, a booster circuit being adapted to provide additional electrical power. to assist the fuel cell, consisting in determining a parameter representative of the minimum voltage among the voltages at the terminals of each elementary cell; and controlling the additional electrical power supplied by the booster circuit so that said minimum voltage remains above a determined threshold.
  • the booster circuit maintains the voltage across the fuel cell from a setpoint determined from said parameter.
  • the elementary cells of the fuel cell are supplied with oxygen by a flow of inlet air, the fuel cell rejecting a flow of exhaust air, said parameter being l image of the oxygen rate of the exhaust air flow, the booster circuit providing additional electrical power so that the oxygen rate is greater than a determined threshold.
  • said parameter is the image of the derivative of the voltage across the fuel cell, the booster circuit providing additional electrical power so that the derivative of the voltage across the terminals of the fuel cell is greater than a determined threshold.
  • the control of the additional electric power supplied by the booster circuit consisting in determining an image current of the current supplied by the fuel cell; filtering the image current by a low-pass filter; providing a comparison signal equal to the sum of a constant and the filtered image current multiplied by a correction coefficient; and controlling the additional electrical power supplied by the booster circuit so that the image current of the current supplied by the fuel cell converges towards the comparison signal.
  • the present invention also provides a backup device for a fuel cell, consisting of a set of elementary cells and adapted to supply electrical power in response to a power demand, said device being adapted to supply additional electrical power to assist the fuel cell, comprising a circuit for determining a parameter representative of the minimum voltage among the voltages across each elementary cell; and a circuit for controlling the additional electric power supplied so that said minimum voltage remains strictly positive.
  • the device further comprises a voltage source; a circuit for supplying a deposit; and a chopper circuit connected to the voltage source, receiving said instruction and fixing the voltage across the fuel cell from said instruction.
  • the setpoint supply circuit comprises a circuit for determining a current image of the current supplied by the fuel cell; a circuit for determining a comparison signal equal to the sum of a constant and the image current multiplied by a correction coefficient; a comparison circuit supplying an error signal corresponding to the difference between the image current and the comparison signal; and a regulator providing the setpoint to minimize the error signal.
  • the regulator is of the integral or proportional-integral type.
  • FIG. 1, previously described represents a conventional architecture of a fuel cell power generator
  • FIGS. 2A to 2E previously described, show the evolution of characteristic parameters of the power generator of FIG. 1 during a power transient
  • FIG. 3 represents, diagrammatically, a fuel cell power generator comprising an exemplary embodiment of a booster circuit according to the invention
  • Figure 4 shows an example of a control signal used by the booster circuit of Figure 3
  • FIG. 5 schematically represents a first embodiment of a control circuit for the booster circuit of FIG. 3
  • FIG. 6 represents a second embodiment of the control circuit
  • FIGS. 7A to 7H represent the evolution of characteristic parameters of the power generator of FIG. 3 during a power transient
  • FIG. 8 schematically represents a third embodiment of the control circuit
  • FIG. 9 represents a more detailed embodiment of the control circuit of FIG. 8.
  • the protection method according to the present invention consists in providing a backup circuit adapted to assist the fuel cell 12 before certain elementary cells of the fuel cell 12 are in reverse polarity.
  • FIG. 3 represents a power generator 10 similar to the generator represented in FIG. 1, equipped with a booster circuit 30 according to the invention.
  • the booster circuit 30 includes an inductor 32 connected in series with the battery 20 between the battery 20 and the diode 22, a capacitor 34, one terminal of which is connected to the cathode of the diode 22 and the other terminal of which is connected to the GND ground, and a controlled switch 36 one terminal of which is connected to the anode of diode 22 and the other terminal of which is connected to ground GND.
  • the switch 36 for example consisting of a MOS transistor, is controlled by a control signal SQ supplied by an oscillating circuit 38 (OSC) from a setpoint S Q supplied by a control circuit 40 (COM).
  • OSC oscillating circuit 38
  • COM control circuit 40
  • the circuit consisting of the controlled switch 36, the inductor 32 and the capacitor 34 corresponds to a chopping circuit.
  • the booster circuit 30 therefore imposes a battery voltage Up which depends on the setpoint SQ.
  • U ⁇ and I D at respectively the voltage across the battery 20 and the current supplied by the battery 20.
  • FIG. 4 shows an example of the time course of the control signal S Q. It is a signal in periods of oc cyclical ratio, periodic with period T, varying for example between the zero value ("0") and a high level ("1").
  • the setpoint SQ supplied by the control circuit 40 is the image of the cyclic ratio oc.
  • the oscillating circuit 38 is designed in a conventional manner and will not be detailed further below.
  • the booster circuit 30 shown in Figure 3 is substantially equivalent to the booster circuit 19 shown in Figure 1 given the small amount of energy stored in the inductor 32 and the capacitor 34 with respect to the energies present at the level of the battery 20 and of the fuel cell 12.
  • FIG. 5 schematically represents a first embodiment of the control circuit 40.
  • the control circuit 40 receives a current Imrr image of the current total 1 ⁇ , and a current Imp image of the battery current Ip.
  • a first low-pass filter 42 receives the current Imp and supplies a filtered current Imrp *.
  • a second low-pass filter 44 receives the current Imp and supplies a filtered current Imp *. Filters 42, 44 make it possible to remove excessively abrupt variations in the currents Im ⁇ and Imp.
  • a subtractor 46 supplies a current Im. ⁇ equal to the difference between the currents Imip * and Imp *. The current Img therefore corresponds to the image of the current supplied by the circuit booster 30.
  • a second subtractor 48 determines an error signal ⁇ equal to the difference between the current Iirt ⁇ and a reference current IREF-
  • a regulator 50 (PI) of the proportional-integral type receives the error signal ⁇ provides the SQ setpoint.
  • the current Im ⁇ * is representative of the drive speed of the compressor 14.
  • the current Imp * is representative of the influence of the cell current on the quantity of oxygen in the fuel cell 12.
  • the current Img is then representative of the quantity of oxygen present in the fuel cell 12, that is to say the oxygen rate x ⁇ 2 in the exhaust air flow.
  • the correction method according to the first embodiment of the invention consists in ensuring that the oxygen rate ⁇ 2 is always greater than a reference quantity, for example 10%. This ensures that in no case the voltage across one of the elementary cells of the fuel cell 12 does not drop below 0 volts.
  • the regulation of the control circuit 40 is further designed so that the battery current intensity Ip does not increase too suddenly and therefore limits the upward slope of the battery current Ip.
  • the regulation must be sufficiently insensitive to avoid the supply of an additional current I ⁇ when the variation of the total current I ⁇ is sufficiently rapid and small. Such variations correspond for example to low frequency ripples which can occur when the voltage supplied to the customer is alternating and single-phase or to disturbances, for example electromagnetic, at the level of the current sensors.
  • intrinsic protection of the operation of the booster circuit 40 must prevent the supply of a booster current I ⁇ if the battery voltage Up exceeds a determined threshold.
  • a negative make-up current I ⁇ must not be supplied at the input of the fuel cell 12.
  • the SQ setpoint is determined so that the image current Imp of the battery current Ip never exceeds a state value ⁇ Imp * + In.
  • the filtered current Imp * is obtained from Imp by a low-pass filter, of the first or second order, with a time constant of the order of a few tenths of seconds.
  • the current IQ corresponds to a constant value and is the image of the current supplied by the fuel cell 12 when the compressor 14 is idling.
  • the coefficient ⁇ is a constant greater than 1, for example of the order of 1.2. Regulation is achieved by a proportional-integral type regulator.
  • the control circuit 40 receives the current Imp at an input terminal IN.
  • a resistor RQ connects the midpoint between the input terminal IN and a node J to ground GND.
  • the node J constitutes the entry point of a first low-pass filter consisting of a resistor R ⁇ arranged between the node E and a node K and a capacitor C ⁇ arranged between the node K, and the ground GND.
  • the node J constitutes the entry point of a second low-pass filter consisting of a resistor 2 disposed between the node J and a node L, and of a capacitor C2 disposed between the node G and the ground GND.
  • the node K is connected to the inverting input (-) of an operational amplifier 52 via a resistor R3.
  • the node L is connected to the non-inverting input (+) of the operational amplifier 52 via a resistor R4.
  • a resistor R5 is disposed between the inverting input of the operational amplifier 52 and the GND ground.
  • the operational amplifier 52 provides the setpoint S Q.
  • the inverting input of the operational amplifier 52 is connected to the output of the operational amplifier 52 via a capacitor C3 connected in series with a resistor Rg.
  • the circuit formed by resistors R4, R5, Rg, and the capacitor C3 constitutes a regulator of the proportional-integral type.
  • the circuit of command 40 includes a protection circuit 54 comprising, connected in series between node J and the non-inverting input, a diode D ] _, a resistor R7, and a diode D2.
  • the anode of the diode Oi is connected to the node J and the anode of the diode D2 is connected to the non-inverting input.
  • a resistor Rg connects the cathode of diode D2 to ground GND.
  • the first low-pass filter has a bandwidth of a few tens of hertz to allow greater robustness of the control circuit 40. Furthermore, such a filter is not troublesome as long as the reaction time of the voltage regulation Up is less than the time taken for the oxygen reserve to decrease in the fuel cell 12 (which is generally equal to a few tens of milliseconds).
  • the current Imp can vary appreciably between 4 and 20 milliamps.
  • the non-zero value of the current Imp associated with the zero value of the battery current Ip makes it possible to obtain the constant In of the regulation.
  • the coefficient ⁇ is fixed by the resistance R4.
  • the operational amplifier provides a setpoint S Q varying between 0 to 5 volts, for supplying a battery voltage Up varying between 45 and 90 volts.
  • the resistances Rn, Ri / R2r R3r R4 / R $ r 6 ' R 7 e ⁇ R-8 are respectively equal to 250 ohms, 4.7 kiloohms, 4.7 kiloohms , 22 kiloohms, 100 kiloohms, 47 kiloohms, 100 kiloohms, 1 kiloohms and 10 kiloohms.
  • the capacitors i, C2 and C3 respectively have capacities equal to 100 microfarads, 2.2 microfarads and 22 nanofarads.
  • the operational amplifier 52 is of the LM6142 type.
  • the diodes O ⁇ , D2 are for example of the type 1N4148.
  • the booster circuit 30 cannot effectively supply the voltage corresponding to the control signal S Q. Such a case corresponds to the stationary regime, for which the value of the duty cycle must be strictly equal to zero.
  • the cell voltage Up obtained by the regulation should preferably not increase too slowly.
  • the minimum level of the battery voltage Up obtained by the regulation is therefore maintained at a value slightly lower than the average voltage of the battery.
  • a saturation of the battery voltage Up obtained by regulation is therefore provided for at a minimum value much greater than 0, for example at 45 volts.
  • the protection circuit 54 makes it possible to accelerate the decrease in the setpoint S Q when the current Imp suddenly decreases in order to avoid reinjecting current into the fuel cell 12.
  • FIGS. 7A to 7H represent curves 60 to 67 representative of the time evolution respectively of the total current I ⁇ , of the battery current Ip, of the battery voltage Up, of the inlet air flow rate Qj, of the rate of oxygen x ⁇ 2 in the exhaust air flow, of the current of the booster circuit I ⁇ , of the battery voltage U Da ⁇ - and of the battery current I at P ° ur the same power transient as in Figures 2A to 2E with the control circuit 30 of FIG. 6.
  • the fuel cell 12 When the user power goes from an idle level to twice the nominal power, the fuel cell 12 begins to supply for a very short instant almost all of the total current I ⁇ required by consuming the oxygen qu 'it contains.
  • the backup circuit 30 then almost immediately supplies most of the total current I.
  • the battery current Ip therefore drops suddenly and then increases slowly as the speed of the compressor 14 increases.
  • the protection method according to the invention therefore makes it possible to limit the drop in the oxygen rate x ⁇ 2 r e therefore the voltages at the terminals of the elementary cells of the fuel cell 12. This thus avoids deterioration of cells of the fuel cell 12.
  • FIG. 8 schematically illustrates a third embodiment of the control circuit 40 in which regulation ensures that the derivative of the battery voltage Up is always greater than a determined threshold Up ⁇ p '. This prevents a sudden decrease in the battery voltage Up, which is a good indicator of the risk that the voltages at the terminals of some of the elementary cells of the fuel cell 12 will drop below zero. The risk of deterioration of cells of the fuel cell 12 is thus reduced.
  • the input terminal IN of the control circuit 40 receives a voltage U p image of the battery voltage Up.
  • the voltage Up is supplied to a low pass filter 68 (F), for example a first order filter.
  • a derivator 70 (D / DT) receives the output of the low pass filter 68 and provides a signal U p 'image of the derivative of the battery voltage Up.
  • a subtractor 72 supplies an error signal ⁇ * equal to the difference between the signal Up 'and the reference threshold UREF' to a regulator 74, for example of the proportional integral type, which supplies the setpoint S Q.
  • FIG. 9 represents a more detailed example of implementation of the control circuit 40 of FIG. 8.
  • the input terminal IN receiving the voltage Up corresponds to the input of a low-pass filter consisting of a resistor Rg connected between the input terminal IN and a node M, and a capacitor C4 connected between the node M and the GND ground.
  • a differentiator is formed by a capacitor C5 connected between the node M and the inverting input (-) of an operational amplifier 76.
  • a resistor R ⁇ g is connected between the inverting input and a determined potential U ⁇ .
  • the non-inverting input (+) of the operational amplifier 76 is connected to GND ground.
  • the regulator is, in the present example, of the pure integral type and comprises a capacitor Cg connected between the inverting input and the output of the operational amplifier 76.
  • the operational amplifier 76 provides the setpoint S Q.
  • Two diodes in series D3, D4 are connected in parallel with the capacitor Cg.
  • the anode of diode D3 is connected to the inverting input of the operational amplifier 76 and the cathode of the diode D4 is connected to the output of the operational amplifier 76.
  • Resistor R7 allows adjustment of the threshold KF '.
  • the diodes D3, D4 allow to impose a value slightly less than 0 (here -1.2 volt approximately) for saturation of the integral of the regulator. This integral will quickly reduce the zero value at the time of a transient for more rapidity (otherwise this integral saturates at the negative supply voltage of the operational amplifier 76, well below 0 volts).
  • the present invention provides a method of protecting a fuel cell from a power generator which makes it possible to regulate the power supplied by the fuel cell so as to avoid deterioration of the elementary cells constituting the fuel cell.
  • the present invention is susceptible to various variants and modifications which will appear to those skilled in the art.
  • the battery in the booster circuit can be replaced by an accumulator, a set of capacitors, a supercapacitor, etc.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un procédé de protection d'une pile à combustible (12), constituée de cellules élémentaires, fournissant une puissance électrique en réponse à une demande de puissance, un circuit d'appoint (30) étant adapté à fournir une puissance électrique complémentaire pour assister la pile à combustible, comprenant les étapes consistant à déterminer un paramètre représentatif de la tension minimale parmi les tensions aux bornes de chaque cellule élémentaire ; et à commander la puissance électrique complémentaire fournie par le circuit d'appoint pour que ladite tension minimale reste supérieure à un seuil déterminé. La présente invention concerne également un dispositif d'appoint de pile à combustible.

Description

PROTECTION D'UNE PILE A COMBUSTIBLE
La présente invention concerne un procédé de protection d'une pile à combustible et un circuit d'appoint de pile à combustible pour la mise en oeuvre du procédé de protection. La figure 1 représente un exemple d'architecture classique d'un générateur de puissance 10 comprenant une pile à combustible 12. La pile à combustible 12 reçoit un flux d'air d'entrée entraîné par un compresseur 14 à un débit d'entrée Q et rejette un flux d'air d'échappement à un débit de sortie QQ . La pile à combustible 12 est constituée d'un ensemble de cellules élémentaires (non représentées) agencées en série et peut être représentée, de façon schématique, par un générateur de tension entre deux bornes 16, 17. Une réaction chimique d'électrolyse consommant de l'oxygène fourni par le flux d'air d'entrée se produit au niveau de chaque cellule élémentaire. On note Up la tension aux bornes 16, 17 de la pile à combustible 12, ou tension de pile, et Ip le courant fourni par la pile à combustible 12 ou courant de pile. La borne 17 est reliée à un potentiel de référence GND, par exemple la masse, et la borne 16 est reliée à un noeud E entrée d'un convertisseur de puissance 18. Le convertisseur 18 fournit une puissance PQ demandée par un utilisateur, appelée par la suite puissance d'utilisateur Le générateur de puissance 10 comprend un circuit d'appoint 19 comportant une batterie 20 et une diode 22 montées en série. Une borne de la batterie 20 est reliée à l'anode de la diode 22 et l'autre borne est reliée à la masse GND. La cathode de la diode 22 est reliée au noeud E. Le circuit d'appoint 19 fournit un courant Ig ou courant d'appoint pour assister la pile à combustible 12. La recharge de la batterie 20 est assurée par un chargeur de batterie non représenté.
Le courant total In reçu par le convertisseur de puissance 18, correspond à la somme du courant de pile Ip et du courant d'appoint Ig. En fonctionnement normal, la totalité du courant 1^ est fourni par la pile et le courant d'appoint Ig est nul. Lors de transitoires rapides et importants de la puissance d'utilisateur Pg, la pile à combustible 12 n'a pas nécessairement la capacité à fournir immédiatement la totalité du courant Iτ demandé. La tension de pile ϋp tend en conséquence à chuter brutalement. La diode D devient alors passante et le circuit d'appoint 19 fournit temporairement un courant d'appoint Iβ pour répondre à la demande de puissance d'utilisateur jusqu'à ce que la pile à combustible est en mesure de fournir la totalité du courant 1^ demandé.
Les figures 2A à 2E représentent plus en détail, à titre d'exemple, l'évolution temporelle de signaux caractéristiques du générateur de puissance 10 de la figure 1 lors d'un transitoire de la puissance d'utilisateur PQ. Les courbes 25 à 29 représentent respectivement le courant total I^v le courant de pile Ip, la tension de pile Up, le débit d'air d'entrée Qj, et le taux d'oxygène xÛ2 du flux d'air d'échappement. La puissance PQ est égale successivement à une puissance de ralenti (par exemple 200 watts) pendant 0,1 seconde, au double de la puissance nominale de la pile à combustible 12 (par exemple de 4 kilowatts) pendant une seconde et, enfin, à la puissance nominale de la pile à combustible 12.
Lorsque la puissance d'utilisateur PQ est égale à la puissance de ralenti, le taux d'oxygène Û2 est sensiblement égal à 12%. Ceci correspond à une situation stationnaire pour laquelle le facteur stoechiométrique de consommation d'oxygène de la réaction chimique globale qui a lieu au sein de la pile a combustible 12 est de l'ordre de 2. Le débit d'air d'entrée Q est alors stabilisé pour assurer un tel facteur stoechiométrique. Le courant total Irr est intégralement fourni par la pile à combustible 12 et la tension de pile Up est élevée .
Lorsque la puissance d'utilisateur PQ passe au double de la puissance nominale, le courant total Ij augmente brutalement et la tension de la pile Up chute brutalement pour se stabiliser à environ 50 volts.
Le compresseur 14 reçoit une consigne de débit d'air d'entrée Qj déterminée à partir du courant total If. Toutefois, l'inertie du compresseur 14 entraîne un retard entre le moment où le compresseur reçoit une consigne déterminée et le moment où le compresseur 14 fournit le débit d'air d'entrée Q correspondant à la consigne déterminée. Quelques secondes sont donc nécessaires pour que le débit d'air d'entrée Q augmente. Juste après que la puissance d'utilisateur PQ ait augmenté au double de la puissance nominale, la pile à combustible 12 dispose encore d'assez d'air pour fournir la totalité du courant total 1^ pendant une courte période (d'environ 0,1 s). Mais comme le régime du compresseur 14 n'a pas encore augmenté, la pile à combustible 12 reçoit un débit d'air Q sensiblement identique au débit reçu lorsque la puissance d'utilisateur PQ était égale à la puissance de ralenti. La pile à combustible 12 consomme donc tout l'oxygène dont elle dispose dans son volume interne, ce qui peut être vérifié sur la courbe représentée en figure 2E par la chute du taux d'oxygène θ2 dans le flux d'air d'échappement. Lorsque le taux θ2 atteint environ 4%, certaines des cellules de la pile à combustible 12 moins bien alimentées, notamment pour des raisons d'écart géométrique minime à la fabrication, voient leur tension chuter juste en dessous de zéro. De telles cellules sont alors en inversion de polarité. Ceci provoque une chute supplémentaire de la tension de pile Up de sorte que la diode 22 devient passante et permet à la batterie 20 de fournir une partie du courant total Ij. Le courant fourni par la pile Ip chute alors et s'équilibre à une valeur double de la valeur correspondant à la puissance de ralenti. Ceci correspond à un facteur stoechiométrique de consommation d'oxygène de la réaction chimique globale au sein de la pile à combustible 21 égal à 1. Sensiblement tout l'oxygène introduit dans la pile à combustible 12 est alors consommé.
Ensuite, à mesure que le régime du compresseur 14 augmente, le débit d'air Qj et le courant de pile Ip augmentent. Pendant toute cette phase, le facteur stoechiométrique de consommation d'oxygène reste égal à 1 et le taux d'oxygène xθ2 inférieur à 4%. Un courant de plus en plus élevé traverse donc les cellules de la pile à combustible 12 qui sont en inversion de polarité. De telles cellules risquent alors d'être endommagées, réduisant ainsi leur durée de vie.
La présente invention vise un procédé de protection d'une pile à combustible, et un circuit d'appoint de pile à combustible pour la mise en oeuvre du procédé de protection, permettant d'éviter le phénomène d'inversion de polarité de cellules de la pile à combustible lors de transitoires de la puissance d'utilisateur. La présente invention vise également un circuit d'appoint de pile à combustible, pour la mise en oeuvre du procédé de protection, de conception simple, entraînant peu de modifications de l'architecture du générateur de puissance.
Pour atteindre ces objets, la présente invention prévoit un procédé de protection d'une pile à combustible, constituée de cellules élémentaires, fournissant une puissance électrique en réponse à une demande de puissance, un circuit d'appoint étant adapté à fournir une puissance électrique complémentaire pour assister la pile à combustible, consistant à déterminer un paramètre représentatif de la tension minimale parmi les tensions aux bornes de chaque cellule élémentaire ; et à commander la puissance électrique complémentaire fournie par le circuit d'appoint pour que ladite tension minimale reste supérieure à un seuil déterminé. Selon un mode de réalisation de l'invention, le circuit d'appoint maintient la tension aux bornes de la pile à combustible à partir d'une consigne déterminée à partir dudit paramètre.
Selon un mode de réalisation de l'invention, les cellules élémentaires de la pile à combustible sont alimentées en oxygène par un flux d'air d'entrée, la pile à combustible rejetant un flux d'air d'échappement, ledit paramètre étant l'image du taux d'oxygène du flux d'air d'échappement, le circuit d'appoint fournissant une puissance électrique complémentaire pour que le taux d'oxygène soit supérieur à un seuil déterminé.
Selon un mode de réalisation de l'invention, ledit paramètre est l' image de la dérivée de la tension aux bornes de la pile à combustible, le circuit d'appoint fournissant une puissance électrique complémentaire pour que la dérivée de la tension aux bornes de la pile à combustible soit supérieure à un seuil déterminé.
Selon un mode de réalisation de l'invention, la commande de la puissance électrique complémentaire fournie par le circuit d'appoint consistant à déterminer un courant image du courant fourni par la pile à combustible ; à filtrer le courant image par un filtre passe-bas ; à fournir un signal de comparaison égal à la somme d'une constante et du courant image filtré multiplié par un coefficient de correction ; et à commander la puissance électrique complémentaire fournie par le circuit d'appoint de façon que le courant image du courant fourni par la pile à combustible converge vers le signal de comparaison.
La présente invention prévoir également un dispositif d'appoint d'une pile à combustible, constituée d'un ensemble de cellules élémentaires et adaptée à fournir une puissance électrique en réponse à une demande de puissance, ledit dispositif étant adapté à fournir une puissance électrique complémentaire pour assister la pile à combustible, comprenant un circuit de détermination d'un paramètre représentatif de la tension minimale parmi les tensions aux bornes de chaque cellule élémentaire ; et un circuit de commande de la puissance électrique complémentaire fournie de façon que ladite tension minimale reste strictement positive. Selon un mode de réalisation de l'invention, le dispositif comprend en outre une source de tension ; un circuit de fourniture d'une consigne ; et un circuit hacheur relié à la source de tension, recevant ladite consigne et fixant la tension aux bornes de la pile à combustible à partir de ladite consigne. Selon un mode de réalisation de l'invention, le circuit de fourniture de la consigne comprend un circuit de détermination d'un courant image du courant fourni par la pile à combustible ; un circuit de détermination d'un signal de comparaison égal à la somme d'une constante et du courant image multiplié par un coefficient de correction ; un circuit de comparaison fournissant un signal d'erreur correspondant à la différence entre le courant image et le signal de comparaison ; et un régulateur fournissant la consigne pour minimiser le signal d'erreur. Selon un mode de réalisation de l'invention, le régulateur est du type intégral ou proportionnel-intégral.
Ces objets, caractéristiques et avantages, ainsi que d'autres de la présente invention seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles : la figure 1, précédemment décrite, représente une architecture classique d'un générateur de puissance à pile à combustible ; les figures 2A à 2E, précédemment décrites, représentent l'évolution de paramètres caractéristiques du générateur de puissance de la figure 1 lors d'un transitoire de puissance ; la figure 3 représente, de façon schématique, un générateur de puissance à pile à combustible comprenant un exemple de réalisation d'un circuit d'appoint selon l'invention ; la figure 4 représente un exemple d'un signal de commande utilisé par le circuit d'appoint de la figure 3 ; la figure 5 représente, de façon schématique, un premier mode de réalisation d'un circuit de commande du circuit d'appoint de la figure 3 ; la figure 6 représente un deuxième mode de réalisation du circuit de commande ; les figures 7A à 7H représentent l'évolution de paramètres caractéristiques du générateur de puissance de la figure 3 lors d'un transitoire de puissance ; la figure 8 représente de façon schématique un troisième mode de réalisation du circuit de commande ; et la figure 9 représente un exemple de réalisation plus détaillé du circuit de commande de la figure 8.
Sur les différentes figures, de mêmes éléments sont désignés par de mêmes références. Le procédé de protection selon la présente invention consiste à prévoir un circuit d'appoint adapté à assister la pile à combustible 12 avant que certaines cellules élémentaires de la pile à combustible 12 ne soient en inversion de polarité.
La figure 3 représente un générateur de puissance 10 similaire au générateur représenté en figure 1, équipé d'un circuit d'appoint 30 selon l'invention. Le circuit d'appoint 30 comporte une inductance 32 montée en série avec la batterie 20 entre la batterie 20 et la diode 22, un condensateur 34 dont une borne est connectée à la cathode de la diode 22 et l'autre borne est connectée à la masse GND, et un interrupteur commandé 36 dont une borne est connectée à l'anode de la diode 22 et l'autre borne est reliée à la masse GND. L'interrupteur 36, par exemple constitué d'un transistor MOS, est commandé par un signal de commande SQ fourni par un circuit oscillant 38 (OSC) à partir d'une consigne SQ fournie par un circuit de commande 40 (COM) . Le circuit constitué de l'interrupteur commandé 36, de l'inductance 32 et du condensateur 34 correspond à un circuit hacheur. Le circuit d'appoint 30 impose donc une tension de pile Up qui dépend de la consigne SQ. On note U^^ et IDat respectivement la tension aux bornes de la batterie 20 et le courant fourni par la batterie 20.
La figure 4 représente un exemple d'évolution temporelle du signal de commande SQ. Il s'agit d'un signal en créneaux de rapport cyclique oc, périodique de période T, variant par exemple entre la valeur nulle ("0") et un niveau haut ("1") . La consigne SQ fournie par le circuit de commande 40 est l'image du rapport cyclique oc. Le circuit oscillant 38 est conçu de façon classique et ne sera pas détaillé d'avantage par la suite. Lorsque le rapport cyclique c est égal à 0, le circuit d'appoint 30 représenté en figure 3 est sensiblement équivalent au circuit d'appoint 19 représenté en figure 1 étant donné la faible quantité d'énergie stockée dans l'inductance 32 et le condensateur 34 par rapport aux énergies présentes au niveau de la batterie 20 et de la pile à combustible 12. La figure 5 représente de façon schématique un premier mode de réalisation du circuit de commande 40. Le circuit de commande 40 reçoit un courant Imrr image du courant total 1^, et un courant Imp image du courant de pile Ip. Un premier' filtre passe-bas 42 (FI) reçoit le courant Imp et fournit un courant filtré Imrp*. Un second filtre passe-bas 44 (F2) reçoit le courant Imp et fournit un courant filtré Imp*. Les filtres 42, 44 permettent de supprimer les variations trop brutales des courants Im^ et Imp. Un soustracteur 46 fournit un courant Im.β égal à la différence entre les courants Imip* et Imp*. Le courant Img correspond donc à l'image du courant fourni par le circuit d'appoint 30. Un second soustracteur 48 détermine un signal d'erreur ε égal à la différence entre le courant Iirtβ et un courant de référence IREF- Un régulateur 50 (PI) du type proportionnel-intégral reçoit le signal d'erreur ε fournit la consigne SQ .
En choisissant une constante de temps du filtre 42 telle que le retard induit par le filtre 42 corresponde au retard du compresseur 14, le courant Imτ* est représentatif de la vitesse d'entraînement du compresseur 14. Le courant Imp* est représentatif de l'influence du courant de pile sur la quantité d'oxygène dans la pile à combustible 12. Le courant Img est alors représentatif de la quantité d'oxygène présente dans la pile à combustible 12, c'est-à-dire du taux d'oxygène xÛ2 dans le flux d'air d'échappement. Le procédé de correction selon le premier mode de réalisation de l'invention consiste à assurer que le taux d'oxygène θ2 est toujours supérieur à une quantité de référence, par exemple 10%. Ceci permet d'assurer qu'en aucun cas la tension aux bornes de l'une des cellules élémentaires de la pile à combustible 12 ne chute en dessous de 0 volt. La régulation du circuit de commande 40 est en outre conçue de façon que l'intensité de courant de pile Ip n'augmente pas trop brutalement et limite donc la pente montante du courant de pile Ip. De plus, la régulation doit être suffisamment insensible pour éviter la fourniture d'un courant d'appoint Iβ lorsque la variation du courant total Iχ est suffisamment rapide et faible. De telles variations correspondent par exemple à des ondulations basse fréquence pouvant survenir lorsque la tension fournie au client est alternative et monophasée ou à des perturbations, par exemple électromagnétiques, au niveau des capteurs de courant. En outre, une protection intrinsèque du fonctionnement du circuit d'appoint 40 doit prévenir la fourniture d'un courant d'appoint Iβ si la tension de pile Up dépasse un seuil déterminé. Enfin, un courant d'appoint Iβ négatif ne doit pas être fourni en entrée de la pile à combustible 12. La figure 6 représente un deuxième exemple de réalisation du circuit de commande 40 selon l'invention. La consigne SQ est déterminée de façon que le courant Imp image du courant de pile Ip ne dépasse jamais une valeur d'état β Imp*+In. Le courant filtré Imp* est obtenu à partir de Imp par un filtre passe-bas, du premier ou du deuxième ordre, avec une constante de temps de l'ordre de quelques dixièmes de secondes. Le courant IQ correspond à une valeur constante et est l'image du courant fourni par la pile à combustible 12 lorsque le compresseur 14 tourne au ralenti. Le coefficient β est une constante supérieure à 1, par exemple de l'ordre de 1,2. La régulation est obtenue par un régulateur du type proportionnel- intégral .
Le circuit de commande 40 reçoit le courant Imp à une borne d'entrée IN. Une résistance RQ relie le point milieu entre la borne d'entrée IN et un noeud J à la masse GND. Le noeud J constitue le point d'entrée d'un premier filtre passe-bas constitué d'une résistance R^ disposée entre le noeud E et un noeud K et un condensateur C^ disposé entre le noeud K, et la masse GND. Le noeud J constitue le point d'entrée d'un second filtre passe-bas constitué d'une résistance 2 disposée entre le noeud J et un noeud L, et d'un condensateur C2 disposé entre le noeud G et la masse GND. Le noeud K est relié à l'entrée inverseuse (-) d'un amplificateur opérationnel 52 par l'intermédiaire d'une résistance R3. Le noeud L est relié à l'entrée non inverseuse (+) de l'amplificateur opérationnel 52 par l'intermédiaire d'une résistance R4. Une résistance R5 est disposée entre l'entrée inverseuse de l'amplificateur opérationnel 52 et la masse GND. L'amplificateur opérationnel 52 fournit la consigne SQ . L'entrée inverseuse de l'amplificateur opérationnel 52 est reliée à la sortie de l'amplificateur opérationnel 52 par l'intermédiaire d'un condensateur C3 monté en série avec une résistance Rg. Le circuit formé par les résistances R4, R5, Rg, et le condensateur C3 constitue un régulateur du type proportionnel-intégral. Le circuit de commande 40 inclut un circuit de protection 54 comprenant, montées en série entre le noeud J et l'entrée non inverseuse, une diode D]_, une résistance R7, et une diode D2. L'anode de la diode Oi est reliée au noeud J et l'anode de la diode D2 est reliée à l'entrée non inverseuse. Une résistance Rg relie la cathode de la diode D2 à la masse GND.
Le premier filtre passe-bas a une bande passante de quelques dizaines de hertz pour permettre une plus grande robustesse du circuit de commande 40. En outre, un tel filtre n'est pas gênant tant que le temps de réaction de la régulation de la tension Up est inférieur au temps que met la réserve d'oxygène à diminuer dans la pile à combustible 12 (qui est généralement égal à quelques dizaines de millisecondes) .
A titre d'exemple, pour un courant de pile Ip variant entre 0 et 100 ampères, le courant Imp peut varier sensiblement entre 4 et 20 milliampères . La valeur non nulle du courant Imp associé à la valeur nulle du courant de pile Ip permet d'obtenir la constante In de la régulation. Le coefficient β est fixé par la résistance R4. A titre d'exemple, l'amplificateur opérationnel fournit une consigne SQ variant entre 0 à 5 volts, pour la fourniture d'une tension de pile Up variant entre 45 et 90 volts. A titre d'exemple, pour obtenir une telle régulation, les résistances Rn, Ri/ R2r R3r R4/ R$r 6' R7 e^ R-8 sont respectivement égales à 250 ohms, 4,7 kiloohms, 4,7 kiloohms, 22 kiloohms, 100 kiloohms, 47 kiloohms, 100 kiloohms, 1 kiloohms et 10 kiloohms. Les condensateurs i, C2 et C3 ont respectivement des capacités égales à 100 microfarads, 2,2 microfarads et 22 nanofarads. L'amplificateur opérationnel 52 est du type LM6142. Les diodes O\, D2 sont par exemple du type 1N4148. Lorsque la tension de pile qui serait obtenue avec un signal de commande S donné est inférieure à la tension réelle de la pile Up, le circuit d'appoint 30 ne peut pas effectivement fournir la tension correspondant au signal de commande SQ. Un tel cas correspond au régime stationnaire, pour lequel la valeur du rapport cyclique doit être strictement égale à zéro. Lorsque le circuit d'appoint 30 assiste la pile à combustible 12, la tension de pile Up obtenue par la régulation ne doit pas, de préférence, augmenter trop lentement. On maintient donc le niveau minimum de la tension de pile Up obtenue par la régulation à une valeur un peu inférieure à la tension moyenne de la pile. On prévoit donc une saturation de la tension de pile Up obtenue par la régulation à une valeur minimale largement supérieure à 0, par exemple à 45 volts.
Le circuit de protection 54 permet d'accélérer la diminution de la consigne SQ lorsque le courant Imp diminue brutalement pour éviter de réinjecter du courant dans la pile à combustible 12.
Les figures 7A à 7H représentent des courbes 60 à 67 représentatives de l'évolution temporelle respectivement du courant total Iχ, du courant de pile Ip, de la tension de pile Up, du débit d'air d'entrée Qj, du taux d'oxygène xθ2 dans le flux d'air d'échappement, du courant du circuit d'appoint Iβ, de la tension de batterie UDaι- et du courant de batterie I at P°ur le même transitoire de puissance qu'aux figures 2A à 2E avec le circuit de commande 30 de la figure 6.
Au moment où la puissance d'utilisateur passe d'un niveau de ralenti au double de la puissance nominale, la pile à combustible 12 commence à fournir pendant un très court instant la quasi-totalité du courant total IΦ demandé en consommant l'oxygène qu'elle contient. Le circuit d'appoint 30 fournit alors presque aussitôt l'essentiel du courant total I . Le courant de pile Ip chute donc brutalement et augmente ensuite lentement au fur et à mesure que la vitesse du compresseur 14 augmente. Le procédé de protection selon l'invention permet donc bien de limiter la chute du taux d'oxygène xθ2r e donc des tensions aux bornes des cellules élémentaires de la pile à combustible 12. On évite ainsi une détérioration de cellules de la pile à combustible 12.
La figure 8 illustre, de façon schématique, un troisième mode de réalisation du circuit de commande 40 dans lequel la régulation assure que la dérivée de la tension de pile Up est toujours supérieure à un seuil déterminé Upβp'. On prévient ainsi une diminution brutale de la tension de pile Up, qui est un bon indicateur signalant le risque que les tensions aux bornes de certaines des cellules élémentaires de la pile à combustible 12 diminuent en dessous de zéro. Le risque de détérioration de cellules de la pile à combustible 12 est ainsi réduit.
La borne d'entrée IN du circuit de commande 40 reçoit une tension Up image de la tension de pile Up. La tension Up est fournie à un filtre passe bas 68 (F) , par exemple un filtre du premier ordre. Un dérivateur 70 (D/DT) reçoit la sortie du filtre passe bas 68 et fournit un signal Up' image de la dérivée de la tension de pile Up. Un soustracteur 72 fournit un signal d'erreur ε * égal à la différence entre le signal Up' et le seuil de référence UREF' à un régulateur 74, par exemple du type proportionnel intégral, qui fournit la consigne SQ.
La figure 9 représente un exemple plus détaillé de mise en oeuvre du circuit de commande 40 de la figure 8. La borne d'entrée IN recevant la tension Up correspond à l'entrée d'un filtre passe-bas constitué d'une résistance Rg connecté entre la borne d'entrée IN et un noeud M, et un condensateur C4 relié entre le noeud M et la masse GND. Un dérivateur est formé par un condensateur C5 connecté entre le noeud M et l'entrée inverseuse (-) d'un amplificateur opérationnel 76. Une résistance R^g est connectée entre l'entrée inverseuse et un potentiel déterminé Uβ. L'entrée non inverseuse (+) de l'amplificateur opérationnel 76 est connectée à la masse GND. Le régulateur est, dans le présent exemple, du type intégral pur et comprend un condensateur Cg connecté entre l'entrée inverseuse et la sortie de l'amplificateur opérationnel 76. L'amplificateur opérationnel 76 fournit la consigne SQ. Deux diodes en série D3, D4 sont connectées en parallèle avec le condensateur Cg. L'anode de la diode D3 est reliée à l'entrée inverseuse de l'amplificateur opérationnel 76 et la cathode de la diode D4 est reliée à la sortie de l'amplificateur opérationnel 76.
La résistance R7 permet le réglage du seuil KF' . Les diodes D3, D4 permettent d'imposer une valeur légèrement inférieure à 0 (ici -1.2 volt environ) pour saturation de l'intégrale du régulateur. Cette intégrale refranchira rapidement la valeur nulle au moment d'un transitoire pour plus de rapidité (sinon cette intégrale sature à la tension négative d'alimentation de l'amplificateur opérationnel 76, bien en dessous de 0 volt) .
La présente invention prévoit un procédé de protection d'une pile à combustible d'un générateur de puissance qui permet de réguler la puissance fournie par la pile à combustible de façon à éviter la détérioration des cellules élémentaires constituant la pile à combustible.
Bien entendu, la présente invention est susceptible de diverses variantes et modifications qui apparaîtront à l'homme de l'art. En particulier, la batterie du circuit d'appoint peut être remplacée par un accumulateur, un ensemble de condensateurs, un supercondensateur, etc...

Claims

REVENDICATIONS
1. Procédé de protection d'une pile à combustible (12) , constituée de cellules élémentaires, fournissant une puissance électrique en réponse à une demande de puissance, un circuit d'appoint (30) étant adapté à fournir une puissance électrique complémentaire pour assister la pile à combustible, caractérisé en ce qu'il comprend les étapes suivantes : déterminer un paramètre représentatif de la tension minimale parmi les tensions aux bornes de chaque cellule élémentaire ; et commander la puissance électrique complémentaire fournie par le circuit d'appoint pour que ladite tension minimale reste supérieure à un seuil déterminé.
2. Procédé selon la revendication 1, dans lequel le circuit d'appoint (30) maintient la tension aux bornes (16, 17) de la pile à combustible (12) à partir d'une consigne (SQ) déterminée à partir dudit paramètre.
3. Procédé selon la revendication 1, dans lequel les cellules élémentaires de la pile à combustible (12) sont alimentées en oxygène par un flux d'air d'entrée, la pile à combustible rejetant un flux d'air d'échappement, ledit paramètre étant l'image du taux d'oxygène (XO2) du flux d'air d'échappement, le circuit d'appoint (30) fournissant une puissance électrique complémentaire pour que le taux d'oxygène soit supérieur à un seuil déterminé.
4. Procédé selon la revendication 1, dans lequel ledit paramètre est l'image de la dérivée de la tension aux bornes
(16, 17) de la pile à combustible (12), le circuit d'appoint (30) fournissant une puissance électrique complémentaire pour que la dérivée de la tension aux bornes de la pile à combustible soit supérieure à un seuil déterminé.
5. Procédé selon la revendication 1, dans lequel la commande de la puissance électrique complémentaire fournie par le circuit d'appoint (30) comprend les étapes suivantes : déterminer un courant (Imp) image du courant (Ip) fourni par la pile à combustible (12) ; filtrer le courant image par un filtre passe-bas ; fournir un signal de comparaison égal à la somme d'une constante (I ) et du courant image filtré multiplié par un coefficient de correction (β ) ; commander la puissance électrique complémentaire fournie par le circuit d'appoint (30) de façon que le courant image du courant fourni par la pile à combustible converge vers le signal de comparaison.
6. Dispositif d'appoint (30) d'une pile à combustible
(12) , constituée d'un ensemble de cellules élémentaires et adaptée à fournir une puissance électrique en réponse à une demande de puissance, ledit dispositif étant adapté à fournir une puissance électrique complémentaire pour assister la pile à combustible, caractérisé en ce qu'il comprend : un circuit de détermination d'un paramètre représentatif de la tension minimale parmi les tensions aux bornes de chaque cellule élémentaire ; et - un circuit de commande de la puissance électrique complémentaire fournie de façon que ladite tension minimale reste strictement positive.
7. Dispositif selon la revendication 6, comprenant en outre : - une source de tension (20) ; un circuit de fourniture d'une consigne (SQ) / un circuit hacheur relié à la source de tension, recevant ladite consigne et fixant la tension aux bornes (16, 17) de la pile à combustible à partir de ladite consigne.
8. Dispositif selon la revendication 7, dans lequel le circuit de fourniture de la consigne (SQ) comprend : un circuit de détermination d'un courant image (Imp) du courant (Ip) fourni par la pile à combustible (12) ; un circuit de détermination d'un signal de comparaison égal à la somme d'une constante (IQ) et du courant image multiplié par un coefficient de correction (β ) ; un circuit de comparaison fournissant un signal d'erreur (ε) correspondant à la différence entre le courant image et le signal de comparaison ; et un régulateur fournissant la consigne pour minimiser le signal d'erreur.
9. Dispositif selon la revendication 9, dans lequel le régulateur est du type intégral ou proportionnel-intégral.
PCT/FR2004/050276 2003-06-20 2004-06-17 Protection d'une pile a combustible WO2004114449A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/559,976 US20060166044A1 (en) 2003-06-20 2004-06-17 Fuel cell protection
EP04767838A EP1639667A2 (fr) 2003-06-20 2004-06-17 Protection d une pile a combustible
CA002528980A CA2528980A1 (fr) 2003-06-20 2004-06-17 Protection d'une pile a combustible

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR03/07471 2003-06-20
FR0307471A FR2856523B1 (fr) 2003-06-20 2003-06-20 Protection d'une pile a combustible

Publications (2)

Publication Number Publication Date
WO2004114449A2 true WO2004114449A2 (fr) 2004-12-29
WO2004114449A3 WO2004114449A3 (fr) 2006-03-30

Family

ID=33484599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050276 WO2004114449A2 (fr) 2003-06-20 2004-06-17 Protection d'une pile a combustible

Country Status (5)

Country Link
US (1) US20060166044A1 (fr)
EP (1) EP1639667A2 (fr)
CA (1) CA2528980A1 (fr)
FR (1) FR2856523B1 (fr)
WO (1) WO2004114449A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4877656B2 (ja) * 2007-07-02 2012-02-15 トヨタ自動車株式会社 燃料電池システムおよびその電流制御方法
US8531057B1 (en) * 2008-10-22 2013-09-10 Lockheed Martin Corporation Faraday electrical energy sink for a power bus
RU2483396C1 (ru) * 2012-02-02 2013-05-27 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Аэродромный энергомодуль на топливных элементах

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443115A (en) * 1966-06-15 1969-05-06 Allis Chalmers Mfg Co Means for paralleling direct current sources having different output characteristics
US4741978A (en) * 1986-08-14 1988-05-03 Fuji Electric Co., Ltd. Fuel cell generator control system
WO1999067869A1 (fr) * 1998-06-23 1999-12-29 Xcellsis Gmbh Circuiterie destinee a un systeme composite de piles a combustible
US20030022031A1 (en) * 2001-07-25 2003-01-30 Ballard Power Systems Inc. Fuel cell system automatic power switching method and apparatus
EP1286405A1 (fr) * 2000-05-15 2003-02-26 Toyota Jidosha Kabushiki Kaisha Alimentation en electricite utilisant une pile a combustible et accumulateur chargeable/dechargeable
US20040061474A1 (en) * 2002-09-30 2004-04-01 Kabushiki Kaisha Toshiba Fuel cell with battery, electronic apparatus having fuel cell with battery, and method of utilizing same
EP1414091A2 (fr) * 2002-10-22 2004-04-28 Nissan Motor Co., Ltd. Système de pile à combustible et le procédé de commande associé
US20040202900A1 (en) * 2003-04-09 2004-10-14 Pavio Jeanne S. Dual power source switching control

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1010855A3 (nl) * 1997-01-15 1999-02-02 Zevco Belgium Besloten Vennoot Elektrische voeding met een brandstofcel en werkwijze om in dergelijke voeding de brandstofcel te beschermen.
US6369461B1 (en) * 2000-09-01 2002-04-09 Abb Inc. High efficiency power conditioner employing low voltage DC bus and buck and boost converters

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443115A (en) * 1966-06-15 1969-05-06 Allis Chalmers Mfg Co Means for paralleling direct current sources having different output characteristics
US4741978A (en) * 1986-08-14 1988-05-03 Fuji Electric Co., Ltd. Fuel cell generator control system
WO1999067869A1 (fr) * 1998-06-23 1999-12-29 Xcellsis Gmbh Circuiterie destinee a un systeme composite de piles a combustible
EP1286405A1 (fr) * 2000-05-15 2003-02-26 Toyota Jidosha Kabushiki Kaisha Alimentation en electricite utilisant une pile a combustible et accumulateur chargeable/dechargeable
US20030022031A1 (en) * 2001-07-25 2003-01-30 Ballard Power Systems Inc. Fuel cell system automatic power switching method and apparatus
US20040061474A1 (en) * 2002-09-30 2004-04-01 Kabushiki Kaisha Toshiba Fuel cell with battery, electronic apparatus having fuel cell with battery, and method of utilizing same
EP1414091A2 (fr) * 2002-10-22 2004-04-28 Nissan Motor Co., Ltd. Système de pile à combustible et le procédé de commande associé
US20040202900A1 (en) * 2003-04-09 2004-10-14 Pavio Jeanne S. Dual power source switching control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section EI, Week 199913 Derwent Publications Ltd., London, GB; Class X16, AN 1999-143492 XP002273810 & BE 1 010 855 A (ZEVCO BELGIUM) 2 février 1999 (1999-02-02) -& BE 1 010 855 A ((ZVECO BELGIUM)) 2 février 1999 (1999-02-02) *

Also Published As

Publication number Publication date
FR2856523A1 (fr) 2004-12-24
US20060166044A1 (en) 2006-07-27
FR2856523B1 (fr) 2005-08-26
EP1639667A2 (fr) 2006-03-29
WO2004114449A3 (fr) 2006-03-30
CA2528980A1 (fr) 2004-12-29

Similar Documents

Publication Publication Date Title
EP0847124B1 (fr) Alimentation de secours destinée à suppléer provisoirement à une carence d'une source d'alimentation principale
FR2794578A1 (fr) Dispositif d'accumulation a batterie
EP0883051A1 (fr) Système de fourniture d'une tension régulée
EP1388774A1 (fr) Circuit de conditionnement d'une source au point de puissance maximum
EP1685622A2 (fr) Procede de chargement equilibre d une batterie lithium-ion o u lithium polymere
WO2006075112A1 (fr) Procede de chargement equilibre d'une batterie lithium-ion ou lithium polymere
FR2651932A1 (fr) Alimentation solaire a mecanisme de deverrouillage de ligne commune de panneau solaire.
EP1334551A1 (fr) Convertisseur de tension a circuit de commande autooscillant
EP0498715B1 (fr) Procédé d'optimisation de la charge d'une batterie d'accumulateurs, et dispositif pour la mise en oeuvre de ce procédé
EP1274106A1 (fr) Procédé et dispositif d'équilibrage de supercapacité
FR2548403A1 (fr) Stabilisateur de tension integre monolithique a domaine d'utilisation etendu, pour des applications de type automobile
EP0599410A1 (fr) Système de mise en parallèle de convertisseurs d'énergie
EP0998008B1 (fr) Dispositif d'alimentation électrique à générateur solaire et batterie
OA11640A (fr) Procédé de commande d'une centrale électrique associée à une source d'énergie temporellement aléatoire.
EP1639667A2 (fr) Protection d une pile a combustible
FR2720201A1 (fr) Dispositif régulateur pour véhicules alimentés par une batterie d'accumulateurs.
EP1396002B1 (fr) Procédé d'alimentation d'un équipement électrique
FR2458967A1 (fr) Dispositif d'alimentation a decoupage regule contre les variations de tension d'entree et de puissance de sortie, notamment pour recepteur de television
FR2850211A1 (fr) Dispositif d'alimentation electrique
FR2765699A1 (fr) Procede et dispositif pour commander un appareil consommateur d'electricite
EP4014309B1 (fr) Circuit de maintien inductif
FR2570898A1 (fr) Circuit de commande d'alimentation commutee regulee
FR2899039A1 (fr) Procede et dispositif de conversion d'une tension continue en une tension variable de forme predeterminee,et onduleur dote d'un tel dispositif
FR2629957A1 (fr) Regulateur de la tension de charge d'une batterie sur la valeur crete de la tension alternateur
FR2850221A1 (fr) Dispositif de circuit et procede pour produire un signal a modulation d'impulsions en largeur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004767838

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2528980

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2006166044

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10559976

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004767838

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10559976

Country of ref document: US