WO2004113830A1 - Strain and ae measurement device using optical fiber sensor - Google Patents

Strain and ae measurement device using optical fiber sensor Download PDF

Info

Publication number
WO2004113830A1
WO2004113830A1 PCT/JP2004/008315 JP2004008315W WO2004113830A1 WO 2004113830 A1 WO2004113830 A1 WO 2004113830A1 JP 2004008315 W JP2004008315 W JP 2004008315W WO 2004113830 A1 WO2004113830 A1 WO 2004113830A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
filter
change
reflected light
fbg
Prior art date
Application number
PCT/JP2004/008315
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Tsuda
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Publication of WO2004113830A1 publication Critical patent/WO2004113830A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements

Definitions

  • the present invention uses a fiber Bragg grating (hereinafter referred to as "FBG") sensor to detect a distortion change and to emit an elastic wave (acoustic emission) accompanying the occurrence of microscopic damage to a material structure.
  • FBG fiber Bragg grating
  • AE elastic wave
  • the present invention can be applied to a case where a sound wave is generated using a piezoelectric element to evaluate the soundness of a structure, and furthermore, a case where a high-speed strain change due to an impact load is detected. .
  • the present invention can be applied to the case where a single FBG sensor simultaneously measures strain for checking the load of a material or a structure and a damage state and AE caused by microscopic destruction.
  • the present invention is expected to be used for soundness evaluation of automobiles, aircraft, bridges, buildings, and the like.
  • AE has been detected by using a piezoelectric element
  • shock load has been detected by using a strain gauge.
  • Non-Patent Document a technique has been proposed in the United States in which a reflected wave from an FBG sensor is passed through an FBG having a Bragg wavelength substantially equal to the Bragg wavelength of the FBG sensor, and AE is detected from the transmitted light.
  • the distortion is measured by measuring the wavelength of the reflected wave from the FBG sensor using an optical spectrum analyzer.
  • Non-Patent Document 1 1. Perez, H.-Shii Cui and E. Udd, 2001 SPIE, Vol. 4328, p.209-215 Disclosure of the Invention
  • FBG sensors do not suffer from electromagnetic interference because they convert measurement parameters into optical signals.
  • the detected waveform cannot always reproduce the original AE waveform, and the waveform may appear distorted.
  • the technique of measuring the Bragg wavelength change of an FBG sensor using an optical spectrum analyzer is based on the fact that the sampling rate of the optical spectrum analyzer is usually about one sampling per second, so that a high-speed strain change or AE It is not possible to follow up and detect minute distortion changes with frequency characteristics of several hundred kHz. For this reason, there is a problem that a high-speed strain change cannot be detected in a following manner.
  • An object of the present invention is to solve such a conventional problem, and an object of the present invention is to realize an optical fiber strain sensor having the following features.
  • the FBG sensor can detect a wide range of strain changes from AE, which is a small strain change, to an impact load that causes a large strain change.
  • the FBG sensor converts measurement parameters into optical signals and is not affected by electromagnetic interference.
  • the present invention provides an FBG sensor made of an optical fiber in which an FBG is written and attached to a subject, a broadband light source for making broadband wavelength light incident on the FBG sensor, and the FBG sensor.
  • An optical fiber sensor comprising a coupler that branches reflected light transmitted from the sensor, a strain measurement filter that reflects or transmits the reflected light branched by the coupler, and an AE detection filter, respectively.
  • the strain and AE measuring device, the strain measurement filter and the AE detection filter have different transmittances corresponding to the two types of wavelengths, respectively.
  • the intensity of the transmitted or reflected light of the AE detection filter changes due to the change in the Bragg wavelength, which is converted to an electrical signal by a photoelectric converter to simultaneously change the distortion and AE.
  • An optical fiber strain and AE measuring device characterized by detecting at the same time is provided. [0013] Based on the information on the change in distortion obtained by converting the signal into an electric signal by the photoelectric converter, a wavelength band in which the transmittance of the AE detection filter for AE detection changes is controlled. It is possible to measure the transmitted light intensity, the reflected light intensity, or the difference AE between the transmitted light intensity and the reflected light intensity of the AE detection filter.
  • both strain and AE can be measured simultaneously with a single sensor.
  • FIG. 1 is a diagram for explaining the principle of FBG.
  • FIG. 2 is a diagram for explaining the relationship between Bragg wavelength and distortion.
  • FIG. 3 is a diagram illustrating Example 1 of the present invention.
  • FIG. 4 is a diagram for explaining the operation of the first embodiment.
  • FIG. 5 is a diagram for explaining the operation of the first embodiment.
  • FIG. 6 is a diagram for explaining the operation of the first embodiment.
  • FIG. 7 is a view for explaining Example 2 of the present invention.
  • FIG. 8 is a diagram illustrating a third embodiment of the present invention.
  • a narrow band having a center wavelength (herein referred to as "the Ragg wavelength") is given as ⁇ ⁇ given by twice the product of the refractive index n and the interval ⁇ of the refractive index change. Is reflected, and the other light components pass through the FBG sensor.
  • the optical circulator sends the reflected light from the FBG sensor connected to terminal (2) to terminal (3) as shown in the figure.
  • FIG. 2 is a diagram showing the relationship between the Bragg wavelength and the strain received by the FBG sensor.
  • the FBG sensor receives a strain
  • the refractive index changes the interval and the refractive index.
  • the change ⁇ ⁇ ⁇ of the Bragg wavelength ⁇ ⁇ ⁇ is given by the following equation 1 under a constant temperature condition.
  • is an optical fiber axial strain applied to the FBG. Therefore, the Bragg wavelength shifts to the long wavelength side when the FBG sensor is subjected to tensile strain, and shifts to the short wavelength side when subjected to compressive strain. For example, when subjected to a strain change of FBG sensor force X 10-6 with a Bragg wavelength of 1550 nm, the Bragg wavelength changes (shifts) by 1.2 pm. In short, the center wavelength of the reflected wave from the FBG sensor fluctuates in proportion to the change in strain applied to the FBG.
  • reflected light from the FBG sensor is passed through a filter having different transmittance according to the wavelength, and the change in the Bragg wavelength is converted into a change in light intensity.
  • the reflected light from the FBG sensor is transmitted and branched to two fibers by a 1 X 2 coupler via an optical circulator, and a strain measurement filter having different transmittances for two wavelengths and an AE detection filter, respectively. Filter.
  • the transmitted light and the reflected light of both filters change in intensity due to the change in Bragg wavelength. By detecting these with a photoelectric converter, strain change and AE can be detected simultaneously.
  • the strain measurement filter has a characteristic that the transmittance changes over a wide wavelength range as compared with the AE detection filter.
  • An FBG sensor with a Bragg wavelength of 1550 nm without distortion produces a wavelength shift of 1.2 pm per 1 x 10-6 strain, so if it is assumed that the object under test will be subjected to a maximum of ⁇ 1% strain.
  • the distortion results in a Bragg wavelength change of ⁇ 12 nm. Therefore, the change in strain can be measured by a filter whose transmittance varies in the wavelength range of 1538 to 1562 nm.
  • a configuration for detecting AE from this measurement system using FBG as an AE detection filter has already been proposed by the present inventors in Japanese Patent Application No. 2002-340197. In order to detect AE, it is necessary that the power of the reflection wavelength band from the FBG sensor be within the transmittance change wavelength band of the SAE detection filter.
  • the change in the transmittance of the AE detection filter is limited to a very narrow wavelength range of about 0.4 band or less, if a large change in distortion occurs, the change in the light reflected from the sensor is blocked.
  • the wavelength may fluctuate significantly and deviate from the wavelength range of the transmittance change of the AE detection filter.
  • the AE detection filter is a tunable filter whose transmittance change wavelength band changes according to the strain applied to the test object.
  • the transmitted light and the reflected light of the strain measurement filter are converted into electric signals by a photoelectric converter, and the strain is measured. Based on this distortion information, the operating wavelength range (wavelength band where the transmittance changes) of the tunable filter for AE detection is controlled.
  • the AE can be measured from the transmitted light or reflected light intensity of the tunable filter, or the difference between the transmitted light intensity and the reflected light intensity.
  • FIG. 3 is a diagram illustrating a strain and AE measuring device using the optical fiber sensor according to the present invention.
  • light from a broadband light source is incident on an FBG sensor via an optical circulator.
  • the FBG sensor is fixed to an object to be measured.
  • the reflected light from the FBG sensor is passed through an IX2 coupler via an optical circulator.
  • the I X 2 coupler splits the reflected light from the FBG sensor into two optical fibers.
  • One optical fiber is connected to a filter for strain measurement, and the other is connected to a tunable filter for AE detection.
  • Transmitted light and reflected light of each filter are connected to a photoelectric converter, and each light intensity is converted into an electric signal.
  • the reflected light of the filter can be extracted by attaching an optical circulator in front of the filter.
  • Transmitted light intensity of strain measurement filter The strain can be measured from the degree and the reflected light intensity.
  • the photoelectric converter Sst is connected to a tunable filter control unit.
  • the tunable filter control unit evaluates the Bragg wavelength that has moved due to the distortion change, and sends a signal for controlling the tunable filter's operating wavelength range (the wavelength range in which the transmittance changes) to the tunable filter.
  • FIG. 4 is a diagram showing the principle of strain measurement using a strain measurement filter.
  • the FBG sensor receives a strain
  • the Bragg wavelength changes.
  • the transmitted light and reflected light intensity obtained by passing the reflected light from the FBG sensor through a filter whose transmittance changes with wavelength vary with the position of the Bragg wavelength.
  • the transmitted light intensity of the filter decreases.
  • the Bragg wavelength change can be evaluated as the electric signal intensity.
  • the intensity of the light received by the photoelectric converter changes each time the optical fiber connector is connected. This is caused by misalignment of the connector connection. For this reason, it is not possible to quantitatively evaluate distortion using transmitted light or reflected light intensity alone.
  • the distortion can be quantitatively evaluated from the value obtained by dividing the difference between the transmitted light intensity and the reflected light intensity by the sum of the two intensities.
  • FIG. 5 is a diagram illustrating the principle of AE detection by the FBG sensor. Since the change in strain due to AE is very small, a filter with a narrow wavelength range where the transmittance is changing compared to strain measurement is required to detect AE with the FBG sensor. The Bragg wavelength of the light reflected from the FBG sensor is affected by AE, albeit minutely.
  • this Bragg wavelength change By passing this Bragg wavelength change through a filter having a narrow band transmittance change, Convert to change.
  • a filter having a narrow band transmittance change For example, as shown in FIG. 5, when there is no AE, the reflected light of the Bragg wavelength s returns from the FBG sensor, and the center wavelength of the transmittance change of the AE detection filter is F. FBG sensor force The Bragg wavelength changes due to the strain change due to SAE. The Bragg wavelength changes in compression and tensile strain respectively; I s ′ and s ′ ′.
  • the transmitted light intensity of the filter changes in proportion to the area indicated by oblique lines due to a change in distortion due to AE. Therefore, the output of the photoelectric converter that converts the transmitted light intensity of the filter into an electric signal by the change in distortion due to AE is as shown in the lower diagram of Fig.
  • a filter for detecting AE there is a dielectric multilayer filter and an FBG force.
  • a low-pass, no-pass, or bypass filter using a band-pass filter as the AE detection filter may be used.
  • FIG. 6 is a diagram showing the movement of the tunable filter operating wavelength band with a change in distortion.
  • the filter for detecting AE has a wavelength range in which the transmittance changes about 0.4 nm.
  • the tunable filter can change the operating wavelength range by an external control signal.
  • the operating wavelength range of the AE measurement filter is controlled according to the strain received by the FBG sensor.
  • the operating wavelength range of the tunable filter is controlled by using the strain information evaluated from the value obtained by dividing the difference between the transmitted light intensity and the reflected light intensity of the strain measurement filter by the sum of the two intensities.
  • FIG. 7 shows a second embodiment of the present invention, in which simultaneous multi-point strain by a plurality of FBG sensors, an AE meter It is a configuration that enables measurement.
  • This shows a device that measures strain and AE at multiple points simultaneously by arranging FBG sensors with different Bragg wavelengths in series.
  • the reflected light from the FBG sensor array is separated into signals from each FBG sensor by the optical demultiplexer and output.
  • the optical circulator in front of the filter and the extraction of reflected light from the filter are not shown for simplification of the drawing.
  • FIG. 8 shows Embodiment 3 of the present invention, and shows a configuration in which a plurality of FBG sensors can measure strain and AE at a specific location.
  • This shows a device that arranges FBG sensors with different Bragg wavelengths in series and measures the strain and AE at the location where a specific FBG sensor is attached.
  • the reflected light from the FBG sensor array from the optical circulator is passed through a tunable filter to extract only the desired reflected light component from the FBG sensor.
  • the operating wavelength band of the strain measurement filter is changed in conjunction with it. Note that in FIG. 8, the optical circulator in front of the filter and the extraction of reflected light from the filter are omitted for simplification of the drawing.
  • the strain and AE measuring device using the optical fiber sensor according to the present invention can measure both strain and AE simultaneously using a single sensor using the FBG sensor.
  • the present invention can be applied to generation of elastic waves using a piezoelectric element to evaluate the soundness of a structure, and to detection of a high-speed strain change due to an impact load.
  • the present invention can be applied to simultaneous measurement of strain and AE due to the occurrence of microscopic destruction for examining the load of materials and structures and the damage state with one FBG sensor.
  • INDUSTRIAL APPLICABILITY The present invention is expected to be used for soundness evaluation of automobiles, aircraft, bridges, buildings, and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Optical Transform (AREA)

Abstract

A strain and AE measurement device includes an FBG (Fiber Bragg Grating) sensor, a wide band light source, a coupler for branching reflected light transmitted from the FBG sensor, a strain measurement filter for reflecting or transmitting the reflected light branched by the coupler, and a filter for detecting AE (acoustic emission, elastic wave emission). The strain measurement filter and the AE detection filter have different transmittances corresponding to two types of wavelength. The light passing through or reflected by the strain measurement filter and the AE detection filter changes its intensity according to the change of the Bragg wavelength. The intensity change is converted into an electric signal by a photo-electric converter so as to detect a strain change as well as AE accompanying generation of a fine damage in the material/structure.

Description

明 細 書  Specification
光ファイバセンサを用いたひずみと AEの計測装置  Strain and AE measurement device using optical fiber sensor
技術分野  Technical field
[0001] 本発明はファイバ'ブラッグ.グレーティング(以下「FBG」という。)センサを用いてひ ずみ変化を検出するとともに、材料'構造体の微視損傷発生にともなう弾性波放出( アコースティック'ェミッション。以下、「AE」という。 )を検出するものである。  [0001] The present invention uses a fiber Bragg grating (hereinafter referred to as "FBG") sensor to detect a distortion change and to emit an elastic wave (acoustic emission) accompanying the occurrence of microscopic damage to a material structure. Hereinafter, it is referred to as “AE”.
[0002] そしてこの発明は、圧電素子を用いて弾性波を発生させ構造体の健全性評価を行 う際に、さらには衝撃負荷による高速なひずみ変化を検出する際に適用することがで きる。  [0002] The present invention can be applied to a case where a sound wave is generated using a piezoelectric element to evaluate the soundness of a structure, and furthermore, a case where a high-speed strain change due to an impact load is detected. .
[0003] 即ち、本発明は、材料や構造体の負荷、および損傷状態を調べるためのひずみと 微視破壊発生にともなう AEを一つの FBGセンサで同時に計測する際に適用すること ができる。本発明は、 自動車、航空機、橋梁、建築物などの健全性評価への利用が 期待されるものである。  [0003] That is, the present invention can be applied to the case where a single FBG sensor simultaneously measures strain for checking the load of a material or a structure and a damage state and AE caused by microscopic destruction. The present invention is expected to be used for soundness evaluation of automobiles, aircraft, bridges, buildings, and the like.
背景技術  Background art
[0004] 従来、 AEの検出には圧電素子を用いて、衝撃負荷の検出にはひずみゲージを用 レ、て計測される技術が用いられてレ、る。  Conventionally, AE has been detected by using a piezoelectric element, and shock load has been detected by using a strain gauge.
[0005] 又、 FBGセンサからの反射波を FBGセンサのブラッグ波長とほぼ等しいブラッグ波 長を有する FBGに通して、その透過光から AEを検出する手法が米国で提案されてい る (非特許文献 1参照)。 [0005] Also, a technique has been proposed in the United States in which a reflected wave from an FBG sensor is passed through an FBG having a Bragg wavelength substantially equal to the Bragg wavelength of the FBG sensor, and AE is detected from the transmitted light (Non-Patent Document) 1).
[0006] さらに、 FBGセンサのブラッグ波長変化に関しては従来、 FBGセンサからの反射波 波長を光スペクトルアナライザ一により計測してひずみを測定している。 [0006] Further, regarding the change in the Bragg wavelength of the FBG sensor, conventionally, the distortion is measured by measuring the wavelength of the reflected wave from the FBG sensor using an optical spectrum analyzer.
[0007] 非特許文献 1 : 1. Perez, H. -し Cui and E. Udd, 2001 SPIE, Vol. 4328, p.209-215 発明の開示 [0007] Non-Patent Document 1: 1. Perez, H.-Shii Cui and E. Udd, 2001 SPIE, Vol. 4328, p.209-215 Disclosure of the Invention
発明が解決しょうとする課題  Problems the invention is trying to solve
[0008] し力、しながら、従来の AEの検出に圧電素子を用いる技術は、計測パラメータが直接 電気信号に変換されて計測するため、電磁波障害の影響を受ける欠点があった。 [0008] However, the conventional technique using a piezoelectric element for AE detection has a drawback that it is affected by electromagnetic interference because measurement parameters are directly converted into electric signals for measurement.
[0009] 又、 FBGセンサは計測パラメータを光信号に変換するため電磁波障害を受けない 力 検出された波形はかならずしも AEの原波形を再現することができず、波形にひ ずみが現れる場合がある。 [0009] FBG sensors do not suffer from electromagnetic interference because they convert measurement parameters into optical signals. The detected waveform cannot always reproduce the original AE waveform, and the waveform may appear distorted.
[0010] さらに、 FBGセンサのブラッグ波長変化を光スペクトルアナライザーを用いて計測す る技術は、光スペクトルアナライザーのサンプリング速度は通常、毎秒 1サンプリング 程度であるこのため衝撃荷重による高速なひずみ変化や AEのような数百 kHzの周波 数特性を持つ微小なひずみ変化を追随して検出することはできなレ、。このため高速 のひずみ変化を追随して検出することはできないという問題がある。  [0010] Furthermore, the technique of measuring the Bragg wavelength change of an FBG sensor using an optical spectrum analyzer is based on the fact that the sampling rate of the optical spectrum analyzer is usually about one sampling per second, so that a high-speed strain change or AE It is not possible to follow up and detect minute distortion changes with frequency characteristics of several hundred kHz. For this reason, there is a problem that a high-speed strain change cannot be detected in a following manner.
[0011] 本発明は、このような従来の問題点を解決することを目的とするものであり、次のよう な特徴を備えた光ファイバひずみセンサを実現することを課題とする。  An object of the present invention is to solve such a conventional problem, and an object of the present invention is to realize an optical fiber strain sensor having the following features.
(1) AEや衝撃負荷による高速なひずみ変化を FBGセンサで検出する際に正確にひ ずみ変化を検出することができる  (1) Accurate strain change can be detected when FBG sensor detects high-speed strain change due to AE or impact load
(2)フィルタの反射特性を変えることにより、 FBGセンサー本で微小なひずみ変化で ある AEから大きなひずみ変化が生じる衝撃負荷までの幅広いひずみ変化を検出す ること力 Sできる。  (2) By changing the reflection characteristics of the filter, the FBG sensor can detect a wide range of strain changes from AE, which is a small strain change, to an impact load that causes a large strain change.
(3) FBGセンサは計測パラメータを光信号に変換するため電磁波障害を受けない。 (3) The FBG sensor converts measurement parameters into optical signals and is not affected by electromagnetic interference.
(4)一個の FBGセンサでひずみと AEの両方を計測するもので、材料'構造物健全性 評価の際に重要なひずみ、 AE計測においてセンサ数を少なくする。 (4) Measures both strain and AE with one FBG sensor, and reduces the number of sensors in strain and AE measurement, which are important when evaluating the integrity of materials and structures.
課題を解決するための手段  Means for solving the problem
[0012] 本発明は上記課題を解決するために、 FBGを書き込んだ光ファイバから成り被検体 に取り付けられる FBGセンサと、該 FBGセンサに広帯域波長光を入射するための広 帯域光源と、上記 FBGセンサから伝送される反射光を分岐するカップラーと、該カツ ブラーで分岐された反射光をそれぞれ反射又は透過させるひずみ計測用のフィルタ 及び AE検出用のフィルタと、を備えて成る光ファイバセンサを用いたひずみと AEの 計測装置であって、上記ひずみ計測用のフィルタ及び AE検出用のフィルタは、二種 類の波長のそれぞれに対応して互いに透過率が異なり、上記ひずみ計測用のフィル タ及び AE検出用のフィルタの透過光又は反射光は、ブラッグ波長の変化により強度 が変化し、これらを光電変換器で電気信号に変換してひずみ変化と AEを同時に検 出することを特徴とする光ファイバひずみと AEの計測装置を提供する。 [0013] 上記光電変換器で電気信号に変換して得られたひずみ変化に係る情報に基づレ、 て、上記 AE検出用の AE検出用のフィルタの透過率が変化する波長帯を制御し、上 記 AE検出用のフィルタの透過光強度、反射光強度、又は透過光強度と反射光強度 の差力 AEを計測することができる。 [0012] In order to solve the above problems, the present invention provides an FBG sensor made of an optical fiber in which an FBG is written and attached to a subject, a broadband light source for making broadband wavelength light incident on the FBG sensor, and the FBG sensor. An optical fiber sensor comprising a coupler that branches reflected light transmitted from the sensor, a strain measurement filter that reflects or transmits the reflected light branched by the coupler, and an AE detection filter, respectively. The strain and AE measuring device, the strain measurement filter and the AE detection filter have different transmittances corresponding to the two types of wavelengths, respectively. The intensity of the transmitted or reflected light of the AE detection filter changes due to the change in the Bragg wavelength, which is converted to an electrical signal by a photoelectric converter to simultaneously change the distortion and AE. An optical fiber strain and AE measuring device characterized by detecting at the same time is provided. [0013] Based on the information on the change in distortion obtained by converting the signal into an electric signal by the photoelectric converter, a wavelength band in which the transmittance of the AE detection filter for AE detection changes is controlled. It is possible to measure the transmitted light intensity, the reflected light intensity, or the difference AE between the transmitted light intensity and the reflected light intensity of the AE detection filter.
発明の効果  The invention's effect
[0014] 以上の構成から成る光ファイバセンサを用いたひずみと AE計測装置によると、 According to the strain and AE measurement device using the optical fiber sensor having the above configuration,
FBGセンサを用いてひずみと AEの両方を同時に一個のセンサで計測することができ る。 Using an FBG sensor, both strain and AE can be measured simultaneously with a single sensor.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0015] [図 1]図 1は FBGの原理図を説明する図である。  FIG. 1 is a diagram for explaining the principle of FBG.
[図 2]図 2はブラッグ波長とひずみとの関係を説明する図である。  FIG. 2 is a diagram for explaining the relationship between Bragg wavelength and distortion.
[図 3]図 3は本発明の実施例 1を説明する図である。  FIG. 3 is a diagram illustrating Example 1 of the present invention.
[図 4]図 4は実施例 1の作用を説明する図である。  FIG. 4 is a diagram for explaining the operation of the first embodiment.
[図 5]図 5は実施例 1の作用を説明する図である。  FIG. 5 is a diagram for explaining the operation of the first embodiment.
[図 6]図 6は実施例 1の作用を説明する図である。  FIG. 6 is a diagram for explaining the operation of the first embodiment.
[図 7]図 7は本発明の実施例 2を説明する図である。  FIG. 7 is a view for explaining Example 2 of the present invention.
[図 8]図 8は本発明の実施例 3を説明する図である。  FIG. 8 is a diagram illustrating a third embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明に係る光ファイバセンサを用いたひずみと AE計測装置の実施の形態を実 施例に基づいて図面を参照して以下説明する。  An embodiment of a strain and AE measuring device using an optical fiber sensor according to the present invention will be described below with reference to the drawings based on an embodiment.
[0017] (FBGの動作原理)  [0017] (FBG operating principle)
本発明の説明に入る前に、本発明の基本となっている FBGの原理を図 1において 説明する。広帯域光源からの光を光サーキユレータの端子(1)から、端子(2)につな がれた FBGセンサ(FBGを書き込んだ光ファイノく)に入射する。  Before describing the present invention, the principle of the FBG, which is the basis of the present invention, will be described with reference to FIG. Light from the broadband light source is incident from the terminal (1) of the optical circulator to the FBG sensor (optical fiber with FBG) connected to terminal (2).
[0018] FBGセンサからは、屈折率 nと屈折率変化の間隔 Λの積の二倍で与えられる λ Βを 中心波長 (本明細書ではこれをげラッグ波長」と呼ぶ。 )とする狭帯域の光成分が反 射され、それ以外の光成分は FBGセンサを透過する。光サーキユレータは図に示す ように端子(2)につながれた FBGセンサからの反射光を端子(3)へ送る。 [0019] 図 2は、ブラッグ波長と FBGセンサの受けたひずみとの関係を示す図である。 FBG センサがひずみを受けたとき、屈折率変化を設けた間隔と屈折率が変化する。今、 FBGセンサがファイバ軸方向に εのひずみを受けたとき、ブラッグ波長 λ Βの変化 Δ λ Βは、一定温度条件下で、次の数 1で与えられることが知られている。 [0018] From the FBG sensor, a narrow band having a center wavelength (herein referred to as "the Ragg wavelength") is given as λ で given by twice the product of the refractive index n and the interval の of the refractive index change. Is reflected, and the other light components pass through the FBG sensor. The optical circulator sends the reflected light from the FBG sensor connected to terminal (2) to terminal (3) as shown in the figure. FIG. 2 is a diagram showing the relationship between the Bragg wavelength and the strain received by the FBG sensor. When the FBG sensor receives a strain, the refractive index changes the interval and the refractive index. Now, when the FBG sensor receives a strain of ε in the fiber axis direction, it is known that the change Δ λ Β of the Bragg wavelength λ 与 え is given by the following equation 1 under a constant temperature condition.
[0020] [数 1]
Figure imgf000006_0001
[0020] [number 1]
Figure imgf000006_0001
[0021] ここで peは光弾性定数 (=0.213)であり、 εは FBGが受ける光ファイバ軸方向ひずみ である。従って、 FBGセンサが引っ張りひずみを受けたとき、ブラッグ波長は長波長側 へ、圧縮ひずみをうけたときは短波長側へ移動する。例えば、ブラッグ波長 1550nmの FBGセンサ力 X 10-6のひずみ変化を受けたとき、 1.2pmだけブラッグ波長が変化( シフト)する。要するに、 FBGセンサからの反射波の中心波長は FBGが受けるひずみ 変化に比例して変動する。 Here, pe is a photoelastic constant (= 0.213), and ε is an optical fiber axial strain applied to the FBG. Therefore, the Bragg wavelength shifts to the long wavelength side when the FBG sensor is subjected to tensile strain, and shifts to the short wavelength side when subjected to compressive strain. For example, when subjected to a strain change of FBG sensor force X 10-6 with a Bragg wavelength of 1550 nm, the Bragg wavelength changes (shifts) by 1.2 pm. In short, the center wavelength of the reflected wave from the FBG sensor fluctuates in proportion to the change in strain applied to the FBG.
[0022] (本発明の特徴)  (Features of the present invention)
[0023] 本発明の特徴を以下説明する。本発明では、高速にブラッグ波長の変化を計測す るために、波長に伴い透過率の異なるフィルタに FBGセンサからの反射光を通し、ブ ラッグ波長の変化を光強度の変化に変換する。  The features of the present invention will be described below. In the present invention, in order to measure the change in the Bragg wavelength at high speed, reflected light from the FBG sensor is passed through a filter having different transmittance according to the wavelength, and the change in the Bragg wavelength is converted into a change in light intensity.
[0024] そして、 FBGセンサからの反射光を光サーキユレータを介して 1 X 2カップラーにより 、二つのファイバに伝送分岐し、それぞれ二種類の波長にともない透過率の異なる ひずみ計測用フィルタと AE検出用のフィルタに通す。両方のフィルタの透過光及び 反射光はブラッグ波長の変化により強度が変化する。これらを光電変換器で検出す ることにより、ひずみ変化と AEを同時に検出することができる。  [0024] Then, the reflected light from the FBG sensor is transmitted and branched to two fibers by a 1 X 2 coupler via an optical circulator, and a strain measurement filter having different transmittances for two wavelengths and an AE detection filter, respectively. Filter. The transmitted light and the reflected light of both filters change in intensity due to the change in Bragg wavelength. By detecting these with a photoelectric converter, strain change and AE can be detected simultaneously.
[0025] ひずみ計測用フィルタは AE検出用フィルタと比較すると広い波長範囲で透過率が 変化する特性を有するものとする。ひずみなしでのブラッグ波長が 1550nmの FBGセ ンサでは 1 X 10-6ひずみ当たり 1.2pmの波長シフトが生じることから、被検査対象物 が最大 ± 1%のひずみを受けることが想定される場合、ひずみにより ± 12nmのブラッグ 波長変化が生じることになる。そのため 1538 1562nmの波長範囲で透過率が変動 するフィルタによりひずみ変化が測定できる。 [0026] FBGを AE検出用フィルタとして用いて、この計測システムから AEを検出する構成は 、本発明者が、すでに特願 2002-340197において提案している。 AE検出のために は FBGセンサからの反射波長帯域力 SAE検出用フィルタの透過率変化波長帯域中に あることが必要である。 [0025] It is assumed that the strain measurement filter has a characteristic that the transmittance changes over a wide wavelength range as compared with the AE detection filter. An FBG sensor with a Bragg wavelength of 1550 nm without distortion produces a wavelength shift of 1.2 pm per 1 x 10-6 strain, so if it is assumed that the object under test will be subjected to a maximum of ± 1% strain. The distortion results in a Bragg wavelength change of ± 12 nm. Therefore, the change in strain can be measured by a filter whose transmittance varies in the wavelength range of 1538 to 1562 nm. A configuration for detecting AE from this measurement system using FBG as an AE detection filter has already been proposed by the present inventors in Japanese Patent Application No. 2002-340197. In order to detect AE, it is necessary that the power of the reflection wavelength band from the FBG sensor be within the transmittance change wavelength band of the SAE detection filter.
[0027] AE検出用フィルタの透過率変化は 0.4 匪以内程度の非常に狭い波長域に限られ ることから、大きなひずみ変化が生じた場合にぉレ、てはセンサからの反射光のブラッ グ波長が大きく変動して、 AE検出用フィルタの透過率変化波長範囲から外れること 力ある。このため AE検出用フィルタはその透過率変化波長帯が被検查物が受けるひ ずみに応じて変化するチューナブルフィルタであることが好ましい。  [0027] Since the change in the transmittance of the AE detection filter is limited to a very narrow wavelength range of about 0.4 band or less, if a large change in distortion occurs, the change in the light reflected from the sensor is blocked. The wavelength may fluctuate significantly and deviate from the wavelength range of the transmittance change of the AE detection filter. For this reason, it is preferable that the AE detection filter is a tunable filter whose transmittance change wavelength band changes according to the strain applied to the test object.
[0028] ひずみ計測用フィルタの透過光、および反射光を光電変換器により電気信号に変 換して、ひずみを計測する。このひずみ情報に基づいて、 AE検出用のチューナブル フィルタの動作波長域 (透過率が変化する波長帯)を制御する。 そしてチューナブ ルフィルタの透過光、または反射光強度、または透過光強度と反射光強度の差から AEを計測することができる。  [0028] The transmitted light and the reflected light of the strain measurement filter are converted into electric signals by a photoelectric converter, and the strain is measured. Based on this distortion information, the operating wavelength range (wavelength band where the transmittance changes) of the tunable filter for AE detection is controlled. The AE can be measured from the transmitted light or reflected light intensity of the tunable filter, or the difference between the transmitted light intensity and the reflected light intensity.
[0029] このシステムによりひずみ計測用フィルタを通した信号からひずみが計測され、 AE 検出用フィルタを通した信号から AEが計測される。以下、さらに図面を利用して本発 明の実施例 1一 3を説明をする。  [0029] With this system, strain is measured from the signal that has passed through the strain measurement filter, and AE is measured from the signal that has passed through the AE detection filter. Hereinafter, Embodiments 13 of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0030] 図 3は、本発明に係る光ファイバセンサを用いたひずみと AEの計測装置を説明す る図である。この図 3において、広帯域光源からの光を光サーキユレータを介して、 FBGセンサに入射する。 FBGセンサは被測定物に固定されている。  FIG. 3 is a diagram illustrating a strain and AE measuring device using the optical fiber sensor according to the present invention. In FIG. 3, light from a broadband light source is incident on an FBG sensor via an optical circulator. The FBG sensor is fixed to an object to be measured.
[0031] FBGセンサからの反射光は光サーキユレータを介して、 I X 2カップラーに通される 。 I X 2カップラーは FBGセンサからの反射光を 2本の光ファイバに分岐する。一本の 光ファイバはひずみ計測用のフィルタへ、もう一本は AE検出用のチューナブルフィル タへつながっている。  [0031] The reflected light from the FBG sensor is passed through an IX2 coupler via an optical circulator. The I X 2 coupler splits the reflected light from the FBG sensor into two optical fibers. One optical fiber is connected to a filter for strain measurement, and the other is connected to a tunable filter for AE detection.
[0032] それぞれのフィルタの透過光、および反射光は光電変換器につながれ、それぞれ の光強度は電気信号に変換される。フィルタの反射光はフィルタの前段に光サーキ ユレータをつけることにより取り出すことが出来る。ひずみ計測用フィルタの透過光強 度と反射光強度からひずみを計測することができる。 [0032] Transmitted light and reflected light of each filter are connected to a photoelectric converter, and each light intensity is converted into an electric signal. The reflected light of the filter can be extracted by attaching an optical circulator in front of the filter. Transmitted light intensity of strain measurement filter The strain can be measured from the degree and the reflected light intensity.
[0033] 光電変換器 Sstはチューナブルフィルタ制御部に接続されている。チューナブルフ ィルタ制御部ではひずみ変化により移動したブラッグ波長を評価し、チューナブルフ ィルタの動作波長域 (透過率が変化する波長域)制御のための信号をチューナブル フィルタへ送る。  [0033] The photoelectric converter Sst is connected to a tunable filter control unit. The tunable filter control unit evaluates the Bragg wavelength that has moved due to the distortion change, and sends a signal for controlling the tunable filter's operating wavelength range (the wavelength range in which the transmittance changes) to the tunable filter.
[0034] 図 4は、ひずみ計測用フィルタを用いたひずみ計測原理を示す図である、図 4にお いて、 FBGセンサがひずみを受けるとブラッグ波長が変化する。透過率が波長にとも ない変化するフィルタに FBGセンサからの反射光を通して得られる透過光、および 反射光強度はブラッグ波長の位置により変化する。  FIG. 4 is a diagram showing the principle of strain measurement using a strain measurement filter. In FIG. 4, when the FBG sensor receives a strain, the Bragg wavelength changes. The transmitted light and reflected light intensity obtained by passing the reflected light from the FBG sensor through a filter whose transmittance changes with wavelength vary with the position of the Bragg wavelength.
[0035] 例えば、図 4の上の図に示すように、長波長になるに従い透過率が減少するフィル タに FBGセンサからの反射光を通した場合、 FBGセンサが圧縮ひずみを受けた場 合 (ブラッグ波長が短波長側へシフト)、フィルタの透過光強度は増加する。  For example, as shown in the upper diagram of FIG. 4, when the reflected light from the FBG sensor passes through a filter whose transmittance decreases as the wavelength becomes longer, when the FBG sensor receives compressive strain, (The Bragg wavelength shifts to the shorter wavelength side), and the transmitted light intensity of the filter increases.
[0036] また、図 4の下の図に示すように、引張ひずみを受けた場合 (ブラッグ波長が長波 長側へシフト)、フィルタの透過光強度は低下することになる。この透過光強度変化を 光電変換器により電気信号に変換することにより、電気信号強度としてブラッグ波長 変化を評価することができる。  As shown in the lower diagram of FIG. 4, when a tensile strain is applied (the Bragg wavelength shifts to the longer wavelength side), the transmitted light intensity of the filter decreases. By converting the transmitted light intensity change into an electric signal by a photoelectric converter, the Bragg wavelength change can be evaluated as the electric signal intensity.
[0037] また反射光強度に関しては反射率 = 1一透過率の関係から同じ原理によりブラッグ 波長変化にともなレゝ信号強度が変化する。つまりフィルタの透過光強度と反射光強 度はひずみにより変化することになる。しかし光電変換器が受光する強度は光フアイ バコネクタの接続のたびに変化する。これはコネクタ接続部のァライメントのずれから 引き起こされる。このため透過光、または反射光強度単独ではひずみを定量評価す ることはできない。透過光強度と反射光強度の差を両強度の和で割った値からひず みを定量評価することができる。  With respect to the intensity of the reflected light, the signal intensity changes with the Bragg wavelength change according to the same principle from the relationship of reflectance = 1-transmittance. That is, the transmitted light intensity and the reflected light intensity of the filter change due to the distortion. However, the intensity of the light received by the photoelectric converter changes each time the optical fiber connector is connected. This is caused by misalignment of the connector connection. For this reason, it is not possible to quantitatively evaluate distortion using transmitted light or reflected light intensity alone. The distortion can be quantitatively evaluated from the value obtained by dividing the difference between the transmitted light intensity and the reflected light intensity by the sum of the two intensities.
[0038] 図 5の上の図は、 FBGセンサによる AEの検出原理を説明する図である。 AEによる ひずみ変化は微小なので FBGセンサにより AEを検出するためにはひずみ計測と比 較して透過率が変化している波長域が狭いフィルタが必要である。 FBGセンサからの 反射光のブラッグ波長は AEにより微小ではあるが変化を受ける。  [0038] The upper diagram of FIG. 5 is a diagram illustrating the principle of AE detection by the FBG sensor. Since the change in strain due to AE is very small, a filter with a narrow wavelength range where the transmittance is changing compared to strain measurement is required to detect AE with the FBG sensor. The Bragg wavelength of the light reflected from the FBG sensor is affected by AE, albeit minutely.
[0039] このブラッグ波長変化を狭帯域の透過率変化をもつフィルタに通すことにより強度 変化に変換させる。例えば図 5に示すように AEがない場合に FBGセンサからはブラッ グ波長え sの反射光が戻ってきて、 AE検出用フィルタの透過率変化の中心波長をえ Fとする。 FBGセンサ力 SAEによるひずみ変化を受けることによりブラッグ波長は変化す る。ブラッグ波長は圧縮、および引張ひずみではそれぞれ; I s'、 および s' 'に変 化する。 By passing this Bragg wavelength change through a filter having a narrow band transmittance change, Convert to change. For example, as shown in FIG. 5, when there is no AE, the reflected light of the Bragg wavelength s returns from the FBG sensor, and the center wavelength of the transmittance change of the AE detection filter is F. FBG sensor force The Bragg wavelength changes due to the strain change due to SAE. The Bragg wavelength changes in compression and tensile strain respectively; I s ′ and s ′ ′.
[0040] フィルタの透過光強度は AEによるひずみ変化により斜線で表される面積に比例し て変化する。そのため AEによるひずみ変化によりフィルタの透過光強度を電気信号 に変換する光電変換器の出力は図 5の下図のようになる。反射光強度に関しても、反 射率 = 1一透過率の関係から同様に AEを検出したとき反射光強度は変化する。また 透過光と反射光信号強度の両者の差も同じ原理で AEにより変化する。  [0040] The transmitted light intensity of the filter changes in proportion to the area indicated by oblique lines due to a change in distortion due to AE. Therefore, the output of the photoelectric converter that converts the transmitted light intensity of the filter into an electric signal by the change in distortion due to AE is as shown in the lower diagram of Fig. Regarding the reflected light intensity, the reflected light intensity changes when AE is detected in the same manner from the relationship of reflectance = 1-transmittance. Also, the difference between the transmitted light and the reflected light signal intensity is changed by AE according to the same principle.
[0041] AEを検出するためのフィルタとして誘電体多層膜フィルタ、 FBG力ある。またこの図 の例では AE検出用フィルタにバンドパスフィルタを挙げた力 ローパス、ノ、ィパスフィ ルタを用いても良い。  As a filter for detecting AE, there is a dielectric multilayer filter and an FBG force. In the example of this figure, a low-pass, no-pass, or bypass filter using a band-pass filter as the AE detection filter may be used.
[0042] 図 6は、ひずみ変化にともなうチューナブルフィルタ動作波長帯の移動を示す図で ある。 AEを検出するためのフィルタは透過率が変化している波長域が 0.4nm程度であ る。  FIG. 6 is a diagram showing the movement of the tunable filter operating wavelength band with a change in distortion. The filter for detecting AE has a wavelength range in which the transmittance changes about 0.4 nm.
[0043] このため大きなひずみ変化を受け、ブラッグ波長が数醒移動したときは AE検出用 のフィルタの透過率が変化している波長域から FBGセンサの反射光の波長域は外れ てしまうことになる。このため AE計測のためにはひずみ計測用のフィルタにより計測さ れたひずみ変化に応じて AE計測用のフィルタの動作波長域を変化させる必要があ る。  [0043] For this reason, when the Bragg wavelength shifts rapidly due to a large distortion change, the wavelength range of the reflected light of the FBG sensor deviates from the wavelength range in which the transmittance of the AE detection filter changes. Become. Therefore, for AE measurement, it is necessary to change the operating wavelength range of the AE measurement filter according to the strain change measured by the strain measurement filter.
[0044] チューナブルフィルタは外部からの制御信号により、動作波長域を変化させること ができる。 AE計測用のフィルタとしてチューナブルフィルタとすることにより、 FBGセン サが受けるひずみに応じて AE計測用のフィルタの動作波長域を制御する。このとき チューナブルフィルタの動作波長域の制御にひずみ計測用のフィルタの透過光強度 と反射光強度の差を両強度の和で割った値から評価されるひずみ情報を用いる。 実施例 2  [0044] The tunable filter can change the operating wavelength range by an external control signal. By using a tunable filter as the filter for AE measurement, the operating wavelength range of the AE measurement filter is controlled according to the strain received by the FBG sensor. At this time, the operating wavelength range of the tunable filter is controlled by using the strain information evaluated from the value obtained by dividing the difference between the transmitted light intensity and the reflected light intensity of the strain measurement filter by the sum of the two intensities. Example 2
[0045] 図 7は、本発明の実施例 2を示し、複数の FBGセンサによる同時多点ひずみ、 AE計 測可能とする構成である。ブラッグ波長の異なる FBGセンサを直列に配列することに より多点で同時にひずみと AEを計測する装置を示す。 FBGセンサ列からの反射光は 光分波器によりそれぞれの FBGセンサからの信号に分離されて出力される。なお、図 7においては図面の簡略化のためにフィルタ前段の光サーキユレータとフィルタの反 射光の取り出しは図示しなレ、。 FIG. 7 shows a second embodiment of the present invention, in which simultaneous multi-point strain by a plurality of FBG sensors, an AE meter It is a configuration that enables measurement. This shows a device that measures strain and AE at multiple points simultaneously by arranging FBG sensors with different Bragg wavelengths in series. The reflected light from the FBG sensor array is separated into signals from each FBG sensor by the optical demultiplexer and output. In FIG. 7, the optical circulator in front of the filter and the extraction of reflected light from the filter are not shown for simplification of the drawing.
[0046] 図 8は、本発明の実施例 3を示し、複数の FBGセンサによる特定箇所のひずみ、 AE 計測可能とする構成を示す。ブラッグ波長の異なる FBGセンサを直列に配列し、特定 の FBGセンサが貼り付けられている箇所のひずみと AEを計測する装置を示す。  FIG. 8 shows Embodiment 3 of the present invention, and shows a configuration in which a plurality of FBG sensors can measure strain and AE at a specific location. This shows a device that arranges FBG sensors with different Bragg wavelengths in series and measures the strain and AE at the location where a specific FBG sensor is attached.
[0047] 光サーキユレータからの FBGセンサ列からの反射光をチューナブルフィルタを通し て、所望する FBGセンサからの反射光成分のみを取り出す。また、ひずみ計測用の フィルタの動作波長帯もそれに連動させて変化させる。なお、図 8においては、図面 の簡略化のためにフィルタ前段の光サーキユレータとフィルタの反射光の取り出しは 削除して表現している。  [0047] The reflected light from the FBG sensor array from the optical circulator is passed through a tunable filter to extract only the desired reflected light component from the FBG sensor. In addition, the operating wavelength band of the strain measurement filter is changed in conjunction with it. Note that in FIG. 8, the optical circulator in front of the filter and the extraction of reflected light from the filter are omitted for simplification of the drawing.
[0048] 以上、実施例により本発明に係る光ファイバセンサを用いたひずみと AE計測装置 の実施の形態を実施例に基づいて説明したが、このような実施例に限定されることな ぐ特許請求の範囲記載の技術的事項の範囲内でいろいろ実施例があることは言う までもない。  As described above, the embodiment of the strain and AE measuring device using the optical fiber sensor according to the present invention has been described based on the embodiment, but the patent is not limited to such embodiment. It goes without saying that there are various embodiments within the scope of the technical matters described in the claims.
産業上の利用可能性  Industrial applicability
[0049] 以上のとおり、本発明に係る光ファイバセンサを用いたひずみと AE計測装置は、 FBGセンサを用いてひずみと AEの両方を同時に一個のセンサで計測することができ る。そして本発明は、圧電素子を用いて弾性波を発生させ構造体の健全性評価を行 う際に、さらには衝撃負荷による高速なひずみ変化を検出する際に適用することがで きる。 [0049] As described above, the strain and AE measuring device using the optical fiber sensor according to the present invention can measure both strain and AE simultaneously using a single sensor using the FBG sensor. The present invention can be applied to generation of elastic waves using a piezoelectric element to evaluate the soundness of a structure, and to detection of a high-speed strain change due to an impact load.
従って、本発明は、材料や構造体の負荷、および損傷状態を調べるためのひずみ と微視破壊発生にともなう AEを一つの FBGセンサで同時に計測する際に適用するこ とができる。本発明は、 自動車、航空機、橋梁、建築物などの健全性評価への利用 が期待されるものである。  Therefore, the present invention can be applied to simultaneous measurement of strain and AE due to the occurrence of microscopic destruction for examining the load of materials and structures and the damage state with one FBG sensor. INDUSTRIAL APPLICABILITY The present invention is expected to be used for soundness evaluation of automobiles, aircraft, bridges, buildings, and the like.

Claims

請求の範囲 The scope of the claims
[1] FBGを書き込んだ光ファイバから成り被検体に取り付けられる FBGセンサと、該 FBG センサに広帯域波長光を入射するための広帯域光源と、上記 FBGセンサ力 伝送さ れる反射光を分岐するカップラーと、該カップラーで分岐された反射光をそれぞれ反 射又は透過させるひずみ計測用のフィルタ及び AE検出用のフィルタと、を備えて成 る光ファイバセンサを用いたひずみと AEの計測装置であって、  [1] An FBG sensor, which is composed of an optical fiber on which FBG is written, and is attached to a subject, a broadband light source for inputting broadband wavelength light to the FBG sensor, and a coupler for branching the reflected light transmitted by the FBG sensor. A strain measurement filter and an AE detection filter that respectively reflect or transmit the reflected light branched by the coupler, and a strain and AE measurement device using an optical fiber sensor,
上記ひずみ計測用のフィルタ及び AE検出用のフィルタは、二種類の波長のそれぞ れに対応して互いに透過率が異なり、  The strain measurement filter and the AE detection filter have different transmittances for the two wavelengths, respectively.
上記ひずみ計測用のフィルタ及び AE検出用のフィルタの透過光又は反射光は、ブ ラッグ波長の変化により強度が変化し、これらを光電変換器で電気信号に変換して ひずみ変化と AEを同時に検出することを特徴とする光ファイバひずみと AEの計測装 置。  The intensity of the transmitted light or reflected light of the strain measurement filter and the AE detection filter changes due to the change in the Bragg wavelength, and these are converted to electrical signals by a photoelectric converter to detect the change in strain and AE simultaneously. An optical fiber strain and AE measuring device characterized by
[2] 上記光電変換器で電気信号に変換して得られたひずみ変化に係る情報に基づい て、上記 AE検出用の AE検出用のフィルタの透過率が変化する波長帯を制御し、上 記 AE検出用のフィルタの透過光強度、反射光強度、又は透過光強度と反射光強度 の差力 AEを計測することができることを特徴とする請求項 1記載の光ファイバセン サを用いたひずみと AEの計測装置。  [2] The wavelength band in which the transmittance of the AE detection filter for AE detection changes is controlled based on the information on the change in distortion obtained by converting the signal into an electric signal by the photoelectric converter, and The strain using the optical fiber sensor according to claim 1, wherein the transmitted light intensity, the reflected light intensity, or the differential force AE between the transmitted light intensity and the reflected light intensity of the AE detection filter can be measured. AE measurement device.
PCT/JP2004/008315 2003-06-17 2004-06-14 Strain and ae measurement device using optical fiber sensor WO2004113830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003172321A JP3944578B2 (en) 2003-06-17 2003-06-17 Strain and AE measuring device using optical fiber sensor
JP2003-172321 2003-06-17

Publications (1)

Publication Number Publication Date
WO2004113830A1 true WO2004113830A1 (en) 2004-12-29

Family

ID=33534672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008315 WO2004113830A1 (en) 2003-06-17 2004-06-14 Strain and ae measurement device using optical fiber sensor

Country Status (2)

Country Link
JP (1) JP3944578B2 (en)
WO (1) WO2004113830A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419348A (en) * 2011-08-19 2012-04-18 北京航空航天大学 Acoustic emission signal power type nondestructive detecting method based on fiber Bragg grating
CN102680581A (en) * 2012-06-07 2012-09-19 北京航空航天大学 Matched-type fiber-grating acoustic emission sensing method with temperature compensation
CN102830176A (en) * 2011-06-17 2012-12-19 中国特种设备检测研究院 Local damage monitoring system and method based on extrinsic optical-fiber acoustic emission
ITRM20110401A1 (en) * 2011-07-27 2013-01-28 Ace S R L DEVICE AND METHOD FOR OPTICAL MEASUREMENT OF ADHERENCE OF A TIRE AND PNEUMATIC SUITABLE FOR SUCH MEASUREMENT
CN103048389A (en) * 2011-10-13 2013-04-17 中国科学院合肥物质科学研究院 Double-probe compensation-type fiber acoustic emission sensor
CN104360254A (en) * 2014-12-10 2015-02-18 广东电网有限责任公司电力科学研究院 Ultrasonic detection system and method for fiber bragg grating for local discharge detection on electrical equipment in power grid
CN105371815A (en) * 2015-10-28 2016-03-02 衡阳市规划设计院 Portable rock lateral deformation measurement device
CN105466861A (en) * 2015-12-24 2016-04-06 天津大学 Structure health detecting system integrating optical fiber and acoustic emission sensors and method
CN108508097A (en) * 2017-02-28 2018-09-07 香港理工大学 A kind of rail crack monitoring system based on fiber ultrasonic guided wave technology
US10663325B2 (en) 2017-09-19 2020-05-26 Analog Devices, Inc. Fiber Bragg grating interrogation and sensing system and methods comprising a first photodetector for measuring filtered light and a second photodetector for measuring unfiltered light

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030081B2 (en) 2006-08-18 2012-09-19 独立行政法人産業技術総合研究所 AE / ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus provided with the same
JP5008182B2 (en) * 2006-12-01 2012-08-22 富士重工業株式会社 Impact detection system
JP2008139170A (en) * 2006-12-01 2008-06-19 Fuji Heavy Ind Ltd System for detecting impact
JP2009279343A (en) * 2008-05-26 2009-12-03 Toshiba Corp Catheter system and catheter
JP5586009B2 (en) * 2010-01-22 2014-09-10 独立行政法人産業技術総合研究所 Vibration detection system, apparatus using the system, and vibration detection method
JP5586011B2 (en) * 2010-03-18 2014-09-10 独立行政法人産業技術総合研究所 FBG vibration detection system, apparatus using the system, and vibration detection method
CN102175170B (en) * 2011-03-23 2012-10-24 东南大学 Detecting method and sensor for cracks of civil structure based on optical fiber long chirped grating frequency domain reflection technology
CN102323527B (en) * 2011-09-09 2013-06-05 北京航空航天大学 Power transformer partial discharge detection system and method based on fiber bragg grating
JP5858397B2 (en) * 2011-09-12 2016-02-10 株式会社Ihi検査計測 FBG sensor measuring method and measuring apparatus
RU2622479C2 (en) * 2012-03-16 2017-06-15 Конинклейке Филипс Н.В. Optical measurement system for determining position and/or form of associated object
JP6145344B2 (en) * 2013-07-18 2017-06-07 株式会社Ihi検査計測 Impact detection method and detection apparatus
CN103472378B (en) * 2013-09-24 2016-02-24 国家电网公司 A kind of all-fiber Partial Discharge in Power Transformer detection system and detection method thereof
CN104267101B (en) * 2014-10-23 2016-12-07 吉林大学 Optical fiber acoustic scenograph
JP6560952B2 (en) * 2015-10-14 2019-08-14 ミネベアミツミ株式会社 Detection device, interrogator, and strain detection system
JP6656914B2 (en) * 2015-12-24 2020-03-04 ミネベアミツミ株式会社 Detector, interrogator, and strain detection system
WO2017159211A1 (en) * 2016-03-14 2017-09-21 株式会社日立製作所 Power semiconductor module and power converter
JP7131967B2 (en) * 2018-05-30 2022-09-06 株式会社Subaru Optical inspection system, optical inspection method, and aircraft structure
CN110986822A (en) * 2019-12-18 2020-04-10 武汉理工大学 Bridge linear detection system based on optical fiber sensing and detection method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319435A (en) * 1991-09-04 1994-06-07 Melle Serge M Method and apparatus for measuring the wavelength of spectrally narrow optical signals
JP2001508535A (en) * 1996-06-28 2001-06-26 アメリカ合衆国 Optical sensor system using Bragg grating sensor
US6256090B1 (en) * 1997-07-31 2001-07-03 University Of Maryland Method and apparatus for determining the shape of a flexible body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319435A (en) * 1991-09-04 1994-06-07 Melle Serge M Method and apparatus for measuring the wavelength of spectrally narrow optical signals
JP2001508535A (en) * 1996-06-28 2001-06-26 アメリカ合衆国 Optical sensor system using Bragg grating sensor
US6256090B1 (en) * 1997-07-31 2001-07-03 University Of Maryland Method and apparatus for determining the shape of a flexible body

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102830176A (en) * 2011-06-17 2012-12-19 中国特种设备检测研究院 Local damage monitoring system and method based on extrinsic optical-fiber acoustic emission
ITRM20110401A1 (en) * 2011-07-27 2013-01-28 Ace S R L DEVICE AND METHOD FOR OPTICAL MEASUREMENT OF ADHERENCE OF A TIRE AND PNEUMATIC SUITABLE FOR SUCH MEASUREMENT
WO2013014637A1 (en) * 2011-07-27 2013-01-31 Universita' Degli Studi Di Roma "La Sapienza" Method and device for optical measuring of tyre adhesion and tyre suitable said measurement
CN102419348B (en) * 2011-08-19 2013-05-08 北京航空航天大学 Acoustic emission signal power type nondestructive detecting method based on fiber Bragg grating
CN102419348A (en) * 2011-08-19 2012-04-18 北京航空航天大学 Acoustic emission signal power type nondestructive detecting method based on fiber Bragg grating
CN103048389A (en) * 2011-10-13 2013-04-17 中国科学院合肥物质科学研究院 Double-probe compensation-type fiber acoustic emission sensor
CN102680581A (en) * 2012-06-07 2012-09-19 北京航空航天大学 Matched-type fiber-grating acoustic emission sensing method with temperature compensation
CN102680581B (en) * 2012-06-07 2014-08-20 北京航空航天大学 Matched-type fiber-grating acoustic emission sensing method with temperature compensation
CN104360254A (en) * 2014-12-10 2015-02-18 广东电网有限责任公司电力科学研究院 Ultrasonic detection system and method for fiber bragg grating for local discharge detection on electrical equipment in power grid
CN105371815A (en) * 2015-10-28 2016-03-02 衡阳市规划设计院 Portable rock lateral deformation measurement device
CN105466861A (en) * 2015-12-24 2016-04-06 天津大学 Structure health detecting system integrating optical fiber and acoustic emission sensors and method
CN108508097A (en) * 2017-02-28 2018-09-07 香港理工大学 A kind of rail crack monitoring system based on fiber ultrasonic guided wave technology
CN108508097B (en) * 2017-02-28 2021-03-02 香港理工大学 Rail crack monitoring system based on optical fiber ultrasonic guided wave technology
US10663325B2 (en) 2017-09-19 2020-05-26 Analog Devices, Inc. Fiber Bragg grating interrogation and sensing system and methods comprising a first photodetector for measuring filtered light and a second photodetector for measuring unfiltered light

Also Published As

Publication number Publication date
JP3944578B2 (en) 2007-07-11
JP2005009937A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP3944578B2 (en) Strain and AE measuring device using optical fiber sensor
JP5030081B2 (en) AE / ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus provided with the same
US9146095B2 (en) FBG vibration detection system, apparatus and vibration detection method using the system
US8909040B1 (en) Method and apparatus of multiplexing and acquiring data from multiple optical fibers using a single data channel of an optical frequency-domain reflectometry (OFDR) system
CN106680535B (en) The differential-type optical accelerometer of laser beat frequency is realized based on Fiber Bragg Grating Reflective Spectrum Characteristics
EP1422494B1 (en) Rapid fiber Bragg grating ( FBG ) strain sensor with reflecting/transmitting filter for acoustic emission detection
AU2010308572C1 (en) Stimulated brillouin system with multiple FBG's
JP5196483B2 (en) Vibration or elastic wave detector
JP6159095B2 (en) Displacement measuring device and displacement measuring method
CN106338308A (en) Distributed multi-parameter sensing system based on ultra-short fiber Bragg grating array
CN202547766U (en) Fiber bragg grating vibration sensing measurement system
EP1405043B1 (en) Differential measurement system based on the use of pairs of bragg gratings
JP2005326326A (en) Strain measuring and ultrasound/ae detecting apparatus using optical fiber sensor
JP2004233070A (en) Fbg sensing system
GB2443575A (en) Dynamic optical waveguide sensor
JP3925202B2 (en) High speed wavelength detector
JP2003270041A (en) Apparatus for high-speed detection of wavelength
KR101975521B1 (en) Optical fiber interrogator using wavelength variable optical device
JP3790815B2 (en) Material damage evaluation method and apparatus using optical fiber sensor
JP2007205783A (en) Reflection spectrum measurement system
Smith et al. Design of a fiber Bragg based measurement system for strain and temperature monitoring
Mendoza et al. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system
Kaczmarek Optical wavelength discriminator with uniform fiber Bragg grating for demodulation of bipolar signals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase