WO2004112692A2 - Therapeutic herbal compositions - Google Patents

Therapeutic herbal compositions Download PDF

Info

Publication number
WO2004112692A2
WO2004112692A2 PCT/US2004/015694 US2004015694W WO2004112692A2 WO 2004112692 A2 WO2004112692 A2 WO 2004112692A2 US 2004015694 W US2004015694 W US 2004015694W WO 2004112692 A2 WO2004112692 A2 WO 2004112692A2
Authority
WO
WIPO (PCT)
Prior art keywords
composition
root
bark
sodium chloride
herbal mixture
Prior art date
Application number
PCT/US2004/015694
Other languages
French (fr)
Other versions
WO2004112692A3 (en
Inventor
Chaim Jeremiah Lieberman
Original Assignee
Amazon Biotech Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/848,459 external-priority patent/US20040234546A1/en
Application filed by Amazon Biotech Inc. filed Critical Amazon Biotech Inc.
Publication of WO2004112692A2 publication Critical patent/WO2004112692A2/en
Publication of WO2004112692A3 publication Critical patent/WO2004112692A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/84Valerianaceae (Valerian family), e.g. valerian
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/32Burseraceae (Frankincense family)
    • A61K36/324Boswellia, e.g. frankincense
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/54Lauraceae (Laurel family), e.g. cinnamon or sassafras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/61Myrtaceae (Myrtle family), e.g. teatree or eucalyptus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/896Liliaceae (Lily family), e.g. daylily, plantain lily, Hyacinth or narcissus
    • A61K36/8962Allium, e.g. garden onion, leek, garlic or chives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/906Zingiberaceae (Ginger family)
    • A61K36/9066Curcuma, e.g. common turmeric, East Indian arrowroot or mango ginger

Definitions

  • the subject invention relates to a therapeutic herbal composition which is potentially beneficial for immune enhancement, prophylaxis and treatment of cancer, AIDS, Severe Acute Respiratory Syndrome (SARS) virus, Epstein Barr syndrome, depression, immune disorders, lymes disease, rheumatic arthritis and the like, and as a blood tonic.
  • SARS Severe Acute Respiratory Syndrome
  • HIV human immunodeficiency virus
  • Turmeric extract prepared from Curcuma longa was shown in Japanese Patent Publication No. 4,095,032 to stimulate transdermal absorption and to increase the effect of pharmacologically active components.
  • Japanese Publication No. 4,091,029 describes the combination of Curcoma longa and Clnnamonmum cassia to obtain a similar effect.
  • Japanese Patent Publication No. 4,005,237 teaches. the combination of Ci-.-.a- ⁇ .o-r.u- ⁇ . sleboldll and Alllum sa tlvum for superoxide scavenging in the treatment of inflammatory disorders.
  • Ci-.na-no- ⁇ .u- ⁇ . zeylanicum as an anti-inflammatory agent which exerts a synergistic anti-inflammatory effect in combination with Pumlca granltum cortex, Cardamon zlnglberacele fruit and Piper longum fruit.
  • Japanese Patent Publication No. 2,069,431 discloses the use of Curcuma longa for use as an antioxidant in foods and pharmaceutical products .
  • German Patent Publication No. 1,767,469 teaches the use of Alllum sa tlvum for use in preparations having an anti-cancer, anti-bacterial and che otherapeutic effect.
  • PCT Application PCT/US94/02183, published as WO 94/18993, is directed to a therapeutic herbal composition formed from the disclosed herbs. This reference does not disclose the unexpected activity related to the digestibility of the compounds as well as the storage stability which characterizes compositions to which effective concentrations of sodium chloride, more preferably, sea salt, have been added.
  • Severe Acute Respiratory Syndrome is a new serious global public health problem. During a two- month period since its initial reporting more than 7,000 patients were diagnosed in the world with more than 500 fatalities. Very high attack rates have been reported in certain populations such as health care workers in Hong Kong and China, in persons in close contact in apartment buildings and in hotels. The disease has also been reported among household contacts . Because of the serious threat the disease may pose, following a world-wide alert, major efforts are under way to understand the pathogenesis of the disease and potential control measures, including containment of causative agent (s) and the rapid development of effective treatment.
  • SARS Severe Acute Respiratory Syndrome
  • SARS virus corona virus
  • SARS patients may be diagnosed according to two or more of the following symptoms, as recommended by WHO:
  • composition of herbs described herein functions to augment the immune system through the synergistic interaction of the herbal components, and thus represents a potential tool in the treatment of cancer, AIDS, immune disorders, lymes disease, rheumatic arthritis, Epstein Barr virus and depression, as well as a general blood tonic.
  • the subject invention provides a therapeutic composition
  • a therapeutic composition comprising Boswelia carterii stem resin, Styrax benzoin stem resin, Cinnamomum zeylanicum bark, Curcuma zedoarla root, Syzyglum aroma tlcum fruit, Nardostachys chlnensls root, Betula alba bark, Impa tlens balsamina bark, Costus splca tus root, Allilum sa tivum bulb and Cyperus rotundus root in amounts effective to produce a physiological benefit in combination with an amount of sodium chloride, more preferably sea salt, which is effective to promote the digestibility (palatability) and storage stability of the therapeutic composition.
  • the present therapeutic composition is effective for treatment or prophylaxis of AIDS, SARS, immune disorders, lymes disease, rheumatic arthritis, and cancer.
  • the present therapeutic composition may further comprise Hyssopus officinalis .
  • Fig. 1A shows the enhancement of the proliferation of rat spleen cells by tryspin-treated Perthon (a composition comprising a herb mixture as illustrated in the following Table 1 in combination with 3% seal salt obtained from Dead sea, by weight based on the total weight of the herb mixture and the seal salt) .
  • Fig. IB shows the enhancement of the proliferation of human blood lymphocytes by tryspin-treated Perthon.
  • Fig. IC shows the enhancement of the proliferation of Molt4 T cells by tryspin-treated Perthon.
  • Fig. 2 shows the enhancement of cell proliferation by two protein preparations in the Perthon IEF fractionates .
  • the term "patient” or “subject” is used throughout the specification to describe a human to whom treatment with the compositions and methods according to the present invention is provided.
  • the term “effective concentration” or “effective amount” is used to describe an amount or concentration of an active agent or composition according to the present invention which is used in the present invention to produce an intended result.
  • effective concentrations are generally concentrations which are effective to treat AIDS, SARS virus, Epstein Barr virus, cancer, depression and for use as a general blood tonic, which may include concentrations of the active agent which prevent these conditions as well.
  • effective concentration or amount subsumes the administration of a pharmaceutically active agent according to the present invention for a period consistent with the realization of the intended result.
  • Effective amounts of the compounds which are used according to the present invention include amounts which comprise approximately 250 mg to about 750 mg, more preferably about 600 mg, taken 1 to 8 times per day. These amounts of herbal product produce an effective concentration range in human body fluids, i.e., blood, plasma and serum.
  • a salt is used to describe preferred salt which is used in the present invention to promote the digestibility and storage stability of compositions according to the present invention.
  • any source of sodium chloride may be used in the present invention, provided that the amount of sodium chloride represents approximately 1% to about 20% by weight, more preferably about 3% to about 5% by weight of the final composition, salt obtained by the evaporation of salt water obtained from the ocean or sea, and in particular the Dead Sea, is preferred.
  • numerous sources of salt are proposed for use in the present invention, one supplier of the preferred Dead Sea Salt is Modin BAM, Israel.
  • the subject invention will now be described in terms of its preferred embodiments. These embodiments are set forth to aid in the understanding of the subject composition and method of use. However, these preferred embodiments are not to be construed as limiting.
  • the subject composition comprises the eleven plants of the following list for typical administration:
  • Styrax benzoin stem resin 90 mg 15.5 1.5 - 75
  • Curcuma zedoaria root 35 mg 6.0 0.6 - 30
  • Nardostachys chinensis root 35 mg 6.0 0.6 - 30
  • Cyperus rotundus root 25 mg 4.3 0.4 - 25
  • Hyssopus officinalis (“hyssop”) is an evergreen bushy herb. For preparation, it is washed to remove any contaminates and then freeze-dried and ground into a powder form. Test tube studies for HIV/AIDS have found that certain fractions of hyssop may inhibit the activity of the human immunodeficiency virus (HIV) (see e.g. Gollapudi S, Sharma HA, Aggarwal S, et al. Isolation of a previously unidentified polysaccharide (MAR-10) from Hyssop officinalis that exhibits strong activity against human immunodeficiency virus type 1.
  • HIV human immunodeficiency virus
  • composition of Table 1 may further comprise hyssop as an additional ingredient of the herb mixture.
  • Table 2 shows a composition comprising eleven herb plants of Table 1 in combination with an additional herb plant hyssop.
  • Boswelia carterii stem resin 90 mg 14.1 1.5 - 75
  • Styrax benzoin stem resin 90 mg 14.1 1.5 - 75
  • Curcuma zedoaria root 35 mg 5.5 0.6 - 30
  • Nardostachys chinensis root 35 mg 5.5 0.6 - 30
  • Allilum sativum bulb 25 mg 3.9 0.4 - 25 Ingredients wt. % by wt. Range (wt. %)
  • Cyperus rotundus root 25 mg 3.9 0.4 - 25
  • compositions are preferably combined with between about 1% and 20% by weight (final weight of the composition which includes the herbal combination plus sodium chloride) of sodium chloride, preferably in the form of sea salt, most preferably Dead Sea salt.
  • the amount of sodium chloride included ranges from about 3% to about 5% by weight, most preferably about 3% by weight.
  • the above herbs are typically dried and ground to a fine powder. All weights are expressed in milligrams and all percentages are by weight of the essential elements in the composition.
  • the composition is typically an intimate mixture of powders. However, extracted herbs may also be used.
  • the composition is then combined with effective amounts of sodium chloride, more preferably sea salt, in amounts effective to substantially enhance the digestibility and the storage stability of the composition.
  • This amount generally ranges from about 1% to about 20% by weight of the composition, more preferably about 3% to about 5% by weight of the composition. 3% by weight of salt is most preferably included in the present compositions.
  • the known biological active components include choline and thiamine. Under normal conditions a 580 mg dose shown in Table 1 or 638 mg dose shown in Table 2 would be administered several times daily. The dosage of course may vary depending on body weight and other conditions readily determinable by those skilled in the art who have read the subject application. Administration is typically oral, with administration being via, e.g. a capsule, tablet, sachet). For example, the composition can be made in oral caplet form.
  • the optimal time for therapy with the subject composition should commence in relation to the first appearance of symptoms, or may be used as a prophylactic prior to any indications.
  • four units dosage (capsules, tablets, or cachets) of the subject composition are taken orally twice daily (morning and evening), one hour before meals.
  • Each unit dosage of the subject composition may comprise the herbal mixture of Table 1, in combination with 3% seal salt obtained from the Dead Sea, by weight based on the total weight of sea salt and the herbal mixture.
  • the composition was shown to be a low toxicity product capable of dramatically elevating the population of helper T cells.
  • various pharmaceutically acceptable additives, excipients and/or fillers, such as ash, may be present.
  • a unique natural composition derived from plant extracts has been demonstrated to overcome many of the debilitating symptoms of AIDS, SARS, Epstein Barr syndrome, depression, immune disorders, lymes disease, rheumatic arthritis and the like, and as a blood tonic.
  • This composition which is typically orally ingested, represents a breakthrough in the pharmaceutical management of patients infected by any of the above- mentioned disease.
  • the clinical objectives of treating SARS patients with the subject composition include the following:
  • the mean hemoglobin concentration was 11.19 g/dL at the commencement of treatment, but was significantly elevated (p ⁇ 0.001) to 14.3 g/dL after a treatment period (a 20.4% increase).
  • the subject powder maintains a brown color and does not lose its character under the cycling effect of night and day. Smell and taste are unchanged during storage.
  • the batches are sterilized within radiation or by ethylene oxide, the stability records show a lack of detectable amounts of degradation products and systematic bacteriological tests under conditions of high humidity proved satisfactory.
  • Each capsule of the subjection composition comprises 580 mg of the herb mixture of Table 1, in combination with 3% sea salt, obtained from the Dead Sea, by weight based on the total weight of the herb mixture and the sea salt.
  • the composition was shown to be a low toxicity product capable of 5 dramatically elevating the population of helper T cells .
  • Table 3 lists the clinical data obtained from pilot studies on the effectiveness of the 10 subject composition in protecting AlDS-infected patients from the debilitating effects of the disease.
  • the mean CD4/CD8 ratio (ratio of helper T cells to cytotoxic T cell and suppressor T cells) at the commencement of treatment was 0.42 ⁇ 0.08. (Note: The ratio in a healthy population is 1.0 - 3.5.) After a treatment period ranging from 2-23 months the CD4/CD8 ratio had significantly increased by two-fold to 0.84 ⁇ 0.14 (p ⁇ 0.001). Concurrently with this change was an improvement in the response to skin hypersensitivity tests and a general increase in well-being. This latter effect is demonstrated by the overall restoration of body weight, increasing from 62.9 to 70.1 kg, a weight gain of 7.2 kg
  • CD4/CD8 ratio greater than 0.20 60% had ratios in the range of normal, healthy people by the last date of assessment.
  • CD4/CD8 ratio less than 0.20 none had ratios in the normal range, although the ratio had increased twofold in value (Before: 0.14 ⁇ 0.02; After: 0.28 ⁇ 0.05).
  • the chief function of the immune system is to protect against infection, by destroying and eliminating invading organisms and any toxic molecules they produce.
  • the immune response is a highly sophisticated defense system, without an organism would die as a result of bacterial, viral, fungal, or parasitic infection. This protection against entry of foreign organisms into the tissues is, to a large extent, dependent on a particular type of white blood cell called the lymphocyte.
  • Lymphocytes are found in large numbers in the blood and the lymph (the colorless fluid in the lymphatic vessels that connect the lymph nodes of the body) and in specialized lymphoid organs, such as the thymus, lymph nodes, spleen, tonsils and appendix.
  • Lymphocytes can be separated into two major classes based on the type of immune response. Both classes, called B cells and T cells, arise from common stem cells in the bone marrow. When produced in the bone marrow, lymphocytes are immature and require further processing in order to become mature, functional cells. In mammals some cells differentiate within the bone marrow to become B cells, whereas others are processed in the thymus to generate T cells . These two cell types also differ in terms of their response to foreign substances, called antigens. Binding of an antigen transforms a B cell into a plasma cell, which is responsible for humoral or antibody-mediated immunity. The plasma cell produces and secretes antibodies, which bind to an invading cell, either causing it to be inactivated or targeting it for removal from the body.
  • the effector cell can kill a virus-infected host cell that has viral proteins on its surface, thereby eliminating the infected cell before the virus has replicated. In other situations the reacting cell activates macrophages to destroy the foreign microorganism.
  • the cell-mediated immune response is also responsible for the rejection of skin grafts and organ transplants.
  • the main function of the immune system is to save us from disease-causing microorganisms, the system cannot actually distinguish between pathogenic and non-pathogenic organisms. Rather, it is because they are recognized as foreign (or non-self) that our immune system is induced to react against them.
  • B cells differentiate to mature antibody-secreting cells, called plasma cells, they carry their antibodies as membrane-bound surface molecules. These antibodies act as cell surface receptors for antigens, thereby providing a means of distinguishing foreign invading cells from the body's own cells.
  • an antigen associated with a bacteria, virus, etc.
  • the specific binding together with other cellular interactions, triggers the proliferation and maturation of that particular B cell.
  • the resultant plasma cells secrete antibodies of the same specificity as the original antibody on the surface of the immature B cell.
  • the process whereby antigens stimulate division and maturation of B cells to which they bind is referred to as clonal selection.
  • This term is derived from the proposal that the immune system contains many millions of different families, or clones, of B cells each committed to make one particular antibody. The presence of a foreign antigen is immediately recognized by one (or more) of these millions of clones, and those that react with the antigen are induced to proliferate and mature. Each cell produced from a clone therefore produces the same antibody and this leads to a build-up of the specific antibody. These antibody molecules are then directed against the foreign antigen. If the foreign antigen is toxic, binding of antibody generally inactivates the toxin. If it is an invading microorganism, antibody binding leads to destruction of the microorganism
  • T H cells helper T cells
  • the helper T cells respond by releasing growth factors, called interleukins (or lymphokines) , which stimulate cell division and maturation of the B cells, ultimately inducing the production of memory cells and plasma cells, which are specialized for producing large quantities of antibodies.
  • T lymphocytes are involved in two very different types of cellular immune responses. One is to destroy cells that contain foreign antigens on their surface, as occurs when a host cell becomes infected with a virus. Thus, often the target cells are an individual's own cells shortly after a virus has infected them. The cells responsible for this response are referred to as cytotoxic T cells .
  • cytotoxic T cells Because viruses proliferate within cells, where they are protected from attack by antibodies, the cytotoxic T cells provide an important defense against the spreading of the viral infection to other cells, by destroying the infected cell before virus proliferation and assembly has occurred. Cytotoxic T cells are also responsible for the rejection of skin grafts and organ transplants.
  • T cell When an antigen binds to the immature T cell via specific cell-surface receptors, the cell is transformed into a lymphoblast which divides to produce a population of activated T cells. These T cells subsequently differentiate to produce cytotoxic T cells, memory cells, helper T cells (T H cells) and suppressor T cells (T s cells) . The latter two cell types represent the majority of the T lymphocyte cell population and are responsible for the second major function of the T lymphocytes, that is the regulation of the immune system.
  • T H cells helper T cells
  • T s cells suppressor T cells
  • the T H cells are critical in facilitating the response of both B cells (as discussed earlier) and the cytotoxic T cells. As a consequence, any reduction in the circulating level Of' T H cells leads to a dramatically impaired immune response.
  • T s cells have the opposite effect by blocking B and T cell responses.
  • cytotoxic T cells and B cells are the cells directly responsible for the immune responses against infection, their effectiveness in the elimination of the infection is dramatically modulated by the relative level of helper T cells and suppressor T cells in the blood.
  • the various classes of T lymphocytes are small, round cells which are not readily distinguishable under the microscope. They can be identified, however, by the presence of specific glycoproteins that are present on their surface (see Table 5) . Whereas all T cells have the CD3 glycoprotein, only helper T cells have the CD4 glycoprotein and both cytotoxic T cells and suppressor T cells have the CD8 glycoprotein. The importance of these differences is that they can be used to determine the relative concentration of the various types of T cells. For instance, the CD4/CD8 ratio can be used to determine the concentration of helper T cells relative to the concentration of both the cytotoxic and suppressor T cells. Table 5
  • the host cell for the human immunodeficiency virus is the helper T cell (T H cell) .
  • T H cell helper T cell
  • the T H cells of that individual immediately recognize the virus-infected cell as foreign.
  • the foreign HIV particles have bound to the T H cells, been incorporated into the cells, and rendered them inactive.
  • the virus is surrounded by a lipid bilayer membrane containing two glycoproteins, one of which binds tightly to the CD4 protein on the membrane of the T H cells.
  • one of the features which distinguish them from other T cells, namely the presence of the CD4 protein on their surface, renders them susceptible to attack.
  • the membranes of the cell and virus fuse and the genetic elements of the virus are readily incorporated into the genetic material of the host cell.
  • the virus As the virus is transferred from one T H cell to another in the infected individual, an increasing proportion of the immune system is disabled, since the cells that are essential for mounting an immune response are rapidly being destroyed.
  • the HIV virus may lie dormant inside the infected T H cells for some time. However, once stimulated, the proliferation of the virus-infected cells overwhelms the remaining uninfected' T H cells and the immune system is rapidly rendered ineffective.
  • the depletion of the T H cell population can be clinically evaluated by measuring the CD4/CD8 ratio, which is a measure of the T H cell population relative to that of the cytotoxic T cells and the T s cells. In summary, infection by the AIDS virus leads ultimately to the destruction of the T H cell population.
  • the entire immune system is rendered quite inactive.
  • the infected individual is then prone to a greater incidence of certain cancers and to infection by other opportunistic microorganisms . It is this latter effect that frequently leads to the death of the infected person.
  • the subject composition by being able to elevate the T H cell population, has the potential to prolong the life of AIDS sufferers by restoring the T cell profile to normal levels .
  • Example 3 To study the mitogenic activity of the composition in accordance with the present invention for lymphoid cells, the following experiments were carried out.
  • a fifty microlitter aliquot of each fraction was incubated with 100 ⁇ l of (A) rat spleen cells, (B) human peripheral blood lymphocytes, and (C) human Molt-4 T cells for 24 hours in a 37°C incubator (experiments were performed in quadruplicate) . Enhancement of cell proliferation was performed by MTS assays (Promega) .
  • Example 3 were pooled (from #1 to # 11) and subjected to preparative polyacrylamide gel electrophoresis . Proteins which migrated into the gel (separated by charges and molecular sizes) were harvested by electroelution. Six protein fractions were obtained and tested for their effects on the proliferation fo rat spleen cells, monocytic THP-1 cells and Molt- T cells during a 24 -hour run. Each fraction contains less than 800 ng proteins (or 2.5 ⁇ g/ml) in treating the cells. As shown in Fig. 2, the protein fractions from electroelcution # 2 effectively enhance the proliferation of rat spleen cells and THP-1 cells, but has a less effect on Molt-4 cells. Fraction # 4 also has a mitoenic activity for the growth of rat spleen cells.

Abstract

A therapeutic herbal composition is beneficial for enhancing the immune system and treating such a diverse range of diseases as AIDS, SARS, immune disorders, lymes disease, rheumatic arthritis, cancer. It is also useful as a general blood tonic. This composition includes the synergistic combination of Boswelia carterii stem resin, Styrax benzoin stem resin, Cinnamomum zeylanicum bark, Curcuma zedoaria root, Syzygium aromaticum fruit, Nardostachys chinensis root, Betula alba bark, Impatiens balsamina bark, Costus spicatus root, Allilum sativum bulb and Cyperus rotundus root. In addition, this composition may further comprise Hyssopus officinalis.

Description

Therapeutic Herbal Compositions
BACKGROUND OF THE INVENTION
1. Field of the Invention The subject invention relates to a therapeutic herbal composition which is potentially beneficial for immune enhancement, prophylaxis and treatment of cancer, AIDS, Severe Acute Respiratory Syndrome (SARS) virus, Epstein Barr syndrome, depression, immune disorders, lymes disease, rheumatic arthritis and the like, and as a blood tonic.
2. Description of the Related Art
Acquired immune deficiency syndrome, commonly known .as AIDS, is a disease caused by a retrovirus called human immunodeficiency virus (HIV) . First recognized in 1981, this devastating disease has spread on an international scale with millions of people world-wide considered to be HIV-infected. The virus preferentially targets the helper T cells, which play a central role in the functioning of the immune system. In most cases the virus, once incorporated into the helper T cell, remains dormant for an unspecified period of time. Once activated, however, the virus rapidly destroys the helper T cells, thereby crippling the immune system. It is at this stage that the symptoms of AIDS become evident. These include: o enlarged lymphoid glands; o unexplained rapid weight loss and diarrhea; o fever and night sweats; o dermatitis and skin eruptions and lesions; o diminished sensitivity to skin tests; o memory disorder and behavioral changes; o increased incidence of certain cancers (a common tumor of AIDS patients is Kaposi's sarcoma, resulting in purplish marks on the skin) ; and o increased susceptibility to opportunistic infections that rarely infect normal individuals (it is these infections that generally cause the patient's death within a few years of the onset of symptoms) . Currently, there is no cure for AIDS and attempts to produce a vaccine have been hindered by the fact that the virus is capable of changing its outer membrane configuration .
Although the use of various herbs has been described in related areas, the synergistic combination of the subject invention has never previously been described.
Turmeric extract prepared from Curcuma longa was shown in Japanese Patent Publication No. 4,095,032 to stimulate transdermal absorption and to increase the effect of pharmacologically active components.
Likewise, Japanese Publication No. 4,091,029 describes the combination of Curcoma longa and Clnnamonmum cassia to obtain a similar effect. Japanese Patent Publication No. 4,005,237 teaches. the combination of Ci-.-.a-τ.o-r.u-τ. sleboldll and Alllum sa tlvum for superoxide scavenging in the treatment of inflammatory disorders. German Patent Publication No.
3,724,341 teaches the use of Ci-.na-no-τ.u-τ. zeylanicum as an anti-inflammatory agent which exerts a synergistic anti-inflammatory effect in combination with Pumlca granltum cortex, Cardamon zlnglberacele fruit and Piper longum fruit.
Japanese Patent Publication No. 2,069,431 discloses the use of Curcuma longa for use as an antioxidant in foods and pharmaceutical products . German Patent Publication No. 1,767,469 teaches the use of Alllum sa tlvum for use in preparations having an anti-cancer, anti-bacterial and che otherapeutic effect. PCT Application PCT/US94/02183, published as WO 94/18993, is directed to a therapeutic herbal composition formed from the disclosed herbs. This reference does not disclose the unexpected activity related to the digestibility of the compounds as well as the storage stability which characterizes compositions to which effective concentrations of sodium chloride, more preferably, sea salt, have been added.
In view of the above, there exists a great need for therapeutic compositions useful in enhancing the immune system. Severe Acute Respiratory Syndrome (SARS) is a new serious global public health problem. During a two- month period since its initial reporting more than 7,000 patients were diagnosed in the world with more than 500 fatalities. Very high attack rates have been reported in certain populations such as health care workers in Hong Kong and China, in persons in close contact in apartment buildings and in hotels. The disease has also been reported among household contacts . Because of the serious threat the disease may pose, following a world-wide alert, major efforts are under way to understand the pathogenesis of the disease and potential control measures, including containment of causative agent (s) and the rapid development of effective treatment.
Although the etiology of SARS has not been entirely defined, at least a new corona virus (SARS virus) that differs from all previously known strains has been identified as a human SARS pathogen.
It is a general consensus in the medical profession that features of presentation of SARS patients are relatively consistent across all nations. Presentation is of a prodromal illness with a sudden onset of high fever. In a great number of cases this sudden, high fever is associated with myalgia, chills, rigors, and non-productive cough. At presentation (which is often 3 to 4 days after onset of symptoms) a large proportion of patients have characteristic changes on chest x-rays. After the initial presentation, chest x-rays continue to worsen and most patients demonstrate bilateral changes with interstitial infiltrations . These infiltrations produce x-rays with a characteristic cloudy appearance. Patients then fall into one of 2 groups. The majority (80 to 90 percent of patients), at day 6 or 7, show improvement in signs and symptoms. A second smaller group, progress to a more severe form of SARS, many of whom develop acute respiratory distress syndrome and require mechanical ventilatory support.
Although mortality associated with the more severe group is high, a number of patients have remained on ventilator support for prolonged periods of time. Mortality in the severe group appears to be linked to a patient's other illnesses (co-morbid factors) .
Generally, patients over 40 with other illnesses are more likely to progress to the severe form of the disease .
SARS patients may be diagnosed according to two or more of the following symptoms, as recommended by WHO:
1) recent visit to an area known to harbor patients infected with the SARS virus, or recent contact with a patient known to be suffering with SARS; 2) recent onset of fever greater than a 100.4 degrees Fahrenheit;
3) recent onset of cough; and
4) recent onset of dyspnea. SUMMARY OF THE INVENTION
The composition of herbs described herein functions to augment the immune system through the synergistic interaction of the herbal components, and thus represents a potential tool in the treatment of cancer, AIDS, immune disorders, lymes disease, rheumatic arthritis, Epstein Barr virus and depression, as well as a general blood tonic. The subject invention provides a therapeutic composition comprising Boswelia carterii stem resin, Styrax benzoin stem resin, Cinnamomum zeylanicum bark, Curcuma zedoarla root, Syzyglum aroma tlcum fruit, Nardostachys chlnensls root, Betula alba bark, Impa tlens balsamina bark, Costus splca tus root, Allilum sa tivum bulb and Cyperus rotundus root in amounts effective to produce a physiological benefit in combination with an amount of sodium chloride, more preferably sea salt, which is effective to promote the digestibility (palatability) and storage stability of the therapeutic composition. The present therapeutic composition is effective for treatment or prophylaxis of AIDS, SARS, immune disorders, lymes disease, rheumatic arthritis, and cancer. In addition, the present therapeutic composition may further comprise Hyssopus officinalis .
BRIEF DESCRIPTION OF THE DRAWINGS In the drawings :
Fig. 1A shows the enhancement of the proliferation of rat spleen cells by tryspin-treated Perthon (a composition comprising a herb mixture as illustrated in the following Table 1 in combination with 3% seal salt obtained from Dead sea, by weight based on the total weight of the herb mixture and the seal salt) .
Fig. IB shows the enhancement of the proliferation of human blood lymphocytes by tryspin-treated Perthon.
Fig. IC shows the enhancement of the proliferation of Molt4 T cells by tryspin-treated Perthon.
Fig. 2 shows the enhancement of cell proliferation by two protein preparations in the Perthon IEF fractionates .
DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS
The term "patient" or "subject" is used throughout the specification to describe a human to whom treatment with the compositions and methods according to the present invention is provided. The term "effective concentration" or "effective amount" is used to describe an amount or concentration of an active agent or composition according to the present invention which is used in the present invention to produce an intended result. In the case of the present invention, effective concentrations are generally concentrations which are effective to treat AIDS, SARS virus, Epstein Barr virus, cancer, depression and for use as a general blood tonic, which may include concentrations of the active agent which prevent these conditions as well. The term effective concentration or amount subsumes the administration of a pharmaceutically active agent according to the present invention for a period consistent with the realization of the intended result. Effective amounts of the compounds which are used according to the present invention include amounts which comprise approximately 250 mg to about 750 mg, more preferably about 600 mg, taken 1 to 8 times per day. These amounts of herbal product produce an effective concentration range in human body fluids, i.e., blood, plasma and serum.
The term "sea salt" is used to describe preferred salt which is used in the present invention to promote the digestibility and storage stability of compositions according to the present invention. Although any source of sodium chloride may be used in the present invention, provided that the amount of sodium chloride represents approximately 1% to about 20% by weight, more preferably about 3% to about 5% by weight of the final composition, salt obtained by the evaporation of salt water obtained from the ocean or sea, and in particular the Dead Sea, is preferred. Although numerous sources of salt are proposed for use in the present invention, one supplier of the preferred Dead Sea Salt is Modin BAM, Israel. The subject invention will now be described in terms of its preferred embodiments. These embodiments are set forth to aid in the understanding of the subject composition and method of use. However, these preferred embodiments are not to be construed as limiting. The subject composition comprises the eleven plants of the following list for typical administration:
Table 1
Ingredients wt %bywt. Range (wt o/o)
Boswelia carteriistem resin 90 mg 15.5 1.5 - 75
Styrax benzoin stem resin 90 mg 15.5 1.5 - 75
Cinnamomum zeylanicum 40 mg 6.9 0.7 - 35 Ingredients wt. % by wt. Range (wt. %)
bark
Curcuma zedoaria root 35 mg 6.0 0.6 - 30
Syzygium aromaticum fruit 35 mg 6.0 0.6 - 30
Nardostachys chinensis root 35 mg 6.0 0.6 - 30
Betula alba bark 90 mg 15.5 1.5 - 75
Impatiens balsamina bark 90 mg 15.5 1.5 - 35
Costus spicatus root 25 mg 4.3 0.4 - 25
Allilum sativum bulb 25 mg 4.3 0.4 - 25
Cyperus rotundus root 25 mg 4.3 0.4 - 25
Total >80 mg 100 100
Hyssopus officinalis ("hyssop") is an evergreen bushy herb. For preparation, it is washed to remove any contaminates and then freeze-dried and ground into a powder form. Test tube studies for HIV/AIDS have found that certain fractions of hyssop may inhibit the activity of the human immunodeficiency virus (HIV) (see e.g. Gollapudi S, Sharma HA, Aggarwal S, et al. Isolation of a previously unidentified polysaccharide (MAR-10) from Hyssop officinalis that exhibits strong activity against human immunodeficiency virus type 1. Biochem Biophys Res Commun 1995;210:145-51; Kreis W, Kaplan MH, Freeman J, et al . Inhibition of HIV replication by Hyssop officinalis extracts. Antiviral Res 1990;14:323-37.) Hence, the composition of Table 1 may further comprise hyssop as an additional ingredient of the herb mixture. The following Table 2 shows a composition comprising eleven herb plants of Table 1 in combination with an additional herb plant hyssop.
Table 2
Ingredients wt. % by wt. Range (wt. %)
Boswelia carterii stem resin 90 mg 14.1 1.5 - 75
Styrax benzoin stem resin 90 mg 14.1 1.5 - 75
Cinnamomum zeylanicum bark 40 mg 6.3 0.7 - 35
Curcuma zedoaria root 35 mg 5.5 0.6 - 30
Syzygium aromaticum fruit 35 mg 5.5 0.6 - 30
Nardostachys chinensis root 35 mg 5.5 0.6 - 30
Betula alba bark 90 mg 14.1 1.5 - 75
Impatiens balsamina bark 90 mg 14.1 1.5 - 35
Costus spicatus root 25 mg 3.9 0.4 - 25
Allilum sativum bulb 25 mg 3.9 0.4 - 25 Ingredients wt. % by wt. Range (wt. %)
Cyperus rotundus root 25 mg 3.9 0.4 - 25
Hyssopus Officinalis 58 mg 9.0 9-15
Total 638 mg 100 100
The above compositions are preferably combined with between about 1% and 20% by weight (final weight of the composition which includes the herbal combination plus sodium chloride) of sodium chloride, preferably in the form of sea salt, most preferably Dead Sea salt. Preferably, the amount of sodium chloride included ranges from about 3% to about 5% by weight, most preferably about 3% by weight. The above herbs are typically dried and ground to a fine powder. All weights are expressed in milligrams and all percentages are by weight of the essential elements in the composition. The composition is typically an intimate mixture of powders. However, extracted herbs may also be used. The composition is then combined with effective amounts of sodium chloride, more preferably sea salt, in amounts effective to substantially enhance the digestibility and the storage stability of the composition. This amount generally ranges from about 1% to about 20% by weight of the composition, more preferably about 3% to about 5% by weight of the composition. 3% by weight of salt is most preferably included in the present compositions. The known biological active components include choline and thiamine. Under normal conditions a 580 mg dose shown in Table 1 or 638 mg dose shown in Table 2 would be administered several times daily. The dosage of course may vary depending on body weight and other conditions readily determinable by those skilled in the art who have read the subject application. Administration is typically oral, with administration being via, e.g. a capsule, tablet, sachet). For example, the composition can be made in oral caplet form.
It is expected that the optimal time for therapy with the subject composition should commence in relation to the first appearance of symptoms, or may be used as a prophylactic prior to any indications. For example, four units dosage (capsules, tablets, or cachets) of the subject composition are taken orally twice daily (morning and evening), one hour before meals. Each unit dosage of the subject composition may comprise the herbal mixture of Table 1, in combination with 3% seal salt obtained from the Dead Sea, by weight based on the total weight of sea salt and the herbal mixture. The composition was shown to be a low toxicity product capable of dramatically elevating the population of helper T cells.
In addition to the above herbs, various pharmaceutically acceptable additives, excipients and/or fillers, such as ash, may be present.
A unique natural composition derived from plant extracts has been demonstrated to overcome many of the debilitating symptoms of AIDS, SARS, Epstein Barr syndrome, depression, immune disorders, lymes disease, rheumatic arthritis and the like, and as a blood tonic. This composition, which is typically orally ingested, represents a breakthrough in the pharmaceutical management of patients infected by any of the above- mentioned disease.
Pilot studies on patients infected with AIDS have demonstrated that the subject composition causes: o reversal of gland swelling o restoration of feeling of well being and associated weight gain o improvement in response to skin hypersensitivity tests o increase in the circulating concentration of helper T cells (CD4-positive cells) . Associated with this is an improvement in the CD4/CD8 ratio, with many patients returning to a normal ratio.
The clinical objectives of treating SARS patients with the subject composition include the following:
1) reduction in fever to less than 100.4 degrees Fahrenheit;
2) disappearance of chills;
3) mitigation of dyspnea;
4) reversal of hypoxia;
5) stabilization of blood pressure; 6) reduction of tachycardia; and
7) disappearance of general malaise including a) return of energy; and b) return of appetite.
Testing results of capsules containing the subject composition show that the product complies with the British Pharmacopoeia specifications during its two-year shelf life. The herbal powder is packed into moisture permeable gelatine capsules of zero size and next in 350 ml polyvinyl chloride bottles stored at range temperature 20-30DC. Susceptibility to moisture absorption change during storage and distribution was from 5.6% to 12% (an acceptable level). The batch studies of pH aqueous solutions indicate an inherent characteristic value between 4.4 and 4.8.
In degradation pathways of the digestibility test within pepsin solution according to Association of
Official Analytical Chemists, 28% of the subject powder is digested during 16 hours at a temperature of 42-45DC. A method is applicable within 0.2% pepsin concentration demonstrating good market quality. Further comparative studies of digestibility for extracted powder of diethyl ether, chloroform and ethyl alcohol conform a stable minimum for protein decomposition for standard batches otherwise increasing a degradation in bioactive reactions. Moreover, data accumulated from clinical trials on the effectiveness of the subject composition in protecting AIDS-infected patients from the debilitating effects of the disease illustrate 2.5 fold increase with CD4/CD8 ratio during time ranging from 2.5-24 months. (Ratio of helper T cells to cytotoxic T cell and suppressor T cells) . Secondly, the mean hemoglobin concentration was 11.19 g/dL at the commencement of treatment, but was significantly elevated (p<0.001) to 14.3 g/dL after a treatment period (a 20.4% increase). The subject powder maintains a brown color and does not lose its character under the cycling effect of night and day. Smell and taste are unchanged during storage. Alternative solubility of the subject composition in organic solvents, e.g. dichloromethane, chloroform, and ethyl alcohol at room temperature and at 40D, 60D and 70DC, identify the product with a dissolution rate of 26-56%. However, the batches are sterilized within radiation or by ethylene oxide, the stability records show a lack of detectable amounts of degradation products and systematic bacteriological tests under conditions of high humidity proved satisfactory.
Example 1 Pilot studies on the effectiveness of the subject composition in protecting AIDS patients against depletion of the helper T cells have been conducted in several countries. In Australia, fifteen patients have been evaluated to determine the clinical responses in AIDS-affected patients to the administration of the subject composition.
Four capsules of the subject composition were taken orally twice daily (morning and evening) , one hour before meals. Each capsule of the subjection composition comprises 580 mg of the herb mixture of Table 1, in combination with 3% sea salt, obtained from the Dead Sea, by weight based on the total weight of the herb mixture and the sea salt. The composition was shown to be a low toxicity product capable of 5 dramatically elevating the population of helper T cells . Detailed hematological and biochemical tests were conducted on each patient, the most significant data are presented in Table 3. Table 3 lists the clinical data obtained from pilot studies on the effectiveness of the 10 subject composition in protecting AlDS-infected patients from the debilitating effects of the disease.
Table 3
Figure imgf000021_0001
Figure imgf000022_0001
Of the fifteen patients, the mean CD4/CD8 ratio (ratio of helper T cells to cytotoxic T cell and suppressor T cells) at the commencement of treatment was 0.42 ± 0.08. (Note: The ratio in a healthy population is 1.0 - 3.5.) After a treatment period ranging from 2-23 months the CD4/CD8 ratio had significantly increased by two-fold to 0.84 ± 0.14 (p < 0.001). Concurrently with this change was an improvement in the response to skin hypersensitivity tests and a general increase in well-being. This latter effect is demonstrated by the overall restoration of body weight, increasing from 62.9 to 70.1 kg, a weight gain of 7.2 kg
(p < 0.001) .
Of the ten patients commencing treatment with a
CD4/CD8 ratio greater than 0.20, 60% had ratios in the range of normal, healthy people by the last date of assessment. For the five patients commencing with a
CD4/CD8 ratio less than 0.20, none had ratios in the normal range, although the ratio had increased twofold in value (Before: 0.14 ± 0.02; After: 0.28 ± 0.05).
Example 2
In India, six patients have been evaluated to determine the clinical responses in AIDS-affected patients to the administration of the subject composition. The six patients were selected based on never having been prescribed any HIV/AIDS drug. ELISA and
Western Blot test confirmed this absence of HIV/AIDS.
The patients took caplets comprising 1000 mg herbal mixture of Table 1, in combination with 3% seal salt obtained from the Dead Sea, by weight based on the total weight of the herbal mixture and the sea salt.
The study lasted for one month. Before the beginning of the study, hemoglobin, weight and CD4 levels were measured. After this, patients began to take two caplets in the morning and two caplets in the evening. At the end of the study, hemoglobin, weight, and CD4 levels were measured again. The results are shown in Table 4.
Table 4
Patient Sex Age HGB Weight Kg CD4
Before After Before Before After After
1 M 36 13.2 14 59.1 62 182 172
2 F 42 14.8 15.6 40.8 42.2 150 162
3 F 21 13.6 13.4 42.9 51.5 346 437
4 F 32 11.6 10.5 37.7 37.7 180 214
5 F 24 13.3 13 49.3 49.3 236 263
6 F 25 14.4 13.7 39.5 40 343 440
As shown in Table 4, the study results show that: 1. In five out of the six patients - CD4 levels increased.
2. In five out of six subjects - CD4 levels increased by ten percent or more.
The chief function of the immune system is to protect against infection, by destroying and eliminating invading organisms and any toxic molecules they produce. The immune response is a highly sophisticated defense system, without an organism would die as a result of bacterial, viral, fungal, or parasitic infection. This protection against entry of foreign organisms into the tissues is, to a large extent, dependent on a particular type of white blood cell called the lymphocyte.
Lymphocytes are found in large numbers in the blood and the lymph (the colorless fluid in the lymphatic vessels that connect the lymph nodes of the body) and in specialized lymphoid organs, such as the thymus, lymph nodes, spleen, tonsils and appendix.
Lymphocytes can be separated into two major classes based on the type of immune response. Both classes, called B cells and T cells, arise from common stem cells in the bone marrow. When produced in the bone marrow, lymphocytes are immature and require further processing in order to become mature, functional cells. In mammals some cells differentiate within the bone marrow to become B cells, whereas others are processed in the thymus to generate T cells . These two cell types also differ in terms of their response to foreign substances, called antigens. Binding of an antigen transforms a B cell into a plasma cell, which is responsible for humoral or antibody-mediated immunity. The plasma cell produces and secretes antibodies, which bind to an invading cell, either causing it to be inactivated or targeting it for removal from the body.
A second type of response, involving T cells, is called cell-mediated immunity. This involves the production of specialized cells that react with foreign antigens on the surface of other host cells . The effector cell can kill a virus-infected host cell that has viral proteins on its surface, thereby eliminating the infected cell before the virus has replicated. In other situations the reacting cell activates macrophages to destroy the foreign microorganism. The cell-mediated immune response is also responsible for the rejection of skin grafts and organ transplants.
Although the main function of the immune system is to save us from disease-causing microorganisms, the system cannot actually distinguish between pathogenic and non-pathogenic organisms. Rather, it is because they are recognized as foreign (or non-self) that our immune system is induced to react against them. Before B cells differentiate to mature antibody-secreting cells, called plasma cells, they carry their antibodies as membrane-bound surface molecules. These antibodies act as cell surface receptors for antigens, thereby providing a means of distinguishing foreign invading cells from the body's own cells. When an antigen (associated with a bacteria, virus, etc.) interacts with a corresponding cell-surface receptor on an immature B cell, the specific binding, together with other cellular interactions, triggers the proliferation and maturation of that particular B cell. The resultant plasma cells secrete antibodies of the same specificity as the original antibody on the surface of the immature B cell. The process whereby antigens stimulate division and maturation of B cells to which they bind is referred to as clonal selection. This term is derived from the proposal that the immune system contains many millions of different families, or clones, of B cells each committed to make one particular antibody. The presence of a foreign antigen is immediately recognized by one (or more) of these millions of clones, and those that react with the antigen are induced to proliferate and mature. Each cell produced from a clone therefore produces the same antibody and this leads to a build-up of the specific antibody. These antibody molecules are then directed against the foreign antigen. If the foreign antigen is toxic, binding of antibody generally inactivates the toxin. If it is an invading microorganism, antibody binding leads to destruction of the microorganism
It is now recognized that although the B cells are responsible for the production of antibodies, a complex cellular interaction is required in order to activate this process. Central in this process are a specific type of T lymphocytes, the helper T cells (TH cells), which enhance the activation of the B cells . Although the details of this activation event are still being determined, it is known that the presence of a foreign organism (antigen) within our body causes macrophages to bind the antigen and process it. The processed antigen is then presented to the B cells and helper T cells . The helper T cells respond by releasing growth factors, called interleukins (or lymphokines) , which stimulate cell division and maturation of the B cells, ultimately inducing the production of memory cells and plasma cells, which are specialized for producing large quantities of antibodies. T lymphocytes are involved in two very different types of cellular immune responses. One is to destroy cells that contain foreign antigens on their surface, as occurs when a host cell becomes infected with a virus. Thus, often the target cells are an individual's own cells shortly after a virus has infected them. The cells responsible for this response are referred to as cytotoxic T cells . Because viruses proliferate within cells, where they are protected from attack by antibodies, the cytotoxic T cells provide an important defense against the spreading of the viral infection to other cells, by destroying the infected cell before virus proliferation and assembly has occurred. Cytotoxic T cells are also responsible for the rejection of skin grafts and organ transplants.
When an antigen binds to the immature T cell via specific cell-surface receptors, the cell is transformed into a lymphoblast which divides to produce a population of activated T cells. These T cells subsequently differentiate to produce cytotoxic T cells, memory cells, helper T cells (TH cells) and suppressor T cells (Ts cells) . The latter two cell types represent the majority of the T lymphocyte cell population and are responsible for the second major function of the T lymphocytes, that is the regulation of the immune system.
The TH cells are critical in facilitating the response of both B cells (as discussed earlier) and the cytotoxic T cells. As a consequence, any reduction in the circulating level Of' TH cells leads to a dramatically impaired immune response.
The Ts cells have the opposite effect by blocking B and T cell responses. Thus, although cytotoxic T cells and B cells are the cells directly responsible for the immune responses against infection, their effectiveness in the elimination of the infection is dramatically modulated by the relative level of helper T cells and suppressor T cells in the blood. The various classes of T lymphocytes are small, round cells which are not readily distinguishable under the microscope. They can be identified, however, by the presence of specific glycoproteins that are present on their surface (see Table 5) . Whereas all T cells have the CD3 glycoprotein, only helper T cells have the CD4 glycoprotein and both cytotoxic T cells and suppressor T cells have the CD8 glycoprotein. The importance of these differences is that they can be used to determine the relative concentration of the various types of T cells. For instance, the CD4/CD8 ratio can be used to determine the concentration of helper T cells relative to the concentration of both the cytotoxic and suppressor T cells. Table 5
Figure imgf000031_0001
* "+" means that glycoprotein is present; "-" means that glycoprotein is absent.
The host cell for the human immunodeficiency virus (HIV) is the helper T cell (TH cell) . Indeed, the disease is transmitted when a TH cell, infected by the virus, is transferred through the blood or via semen or vaginal secretions, to an uninfected individual. The TH cells of that individual immediately recognize the virus-infected cell as foreign. However, before any immune response can be invoked, the foreign HIV particles have bound to the TH cells, been incorporated into the cells, and rendered them inactive. The virus is surrounded by a lipid bilayer membrane containing two glycoproteins, one of which binds tightly to the CD4 protein on the membrane of the TH cells. Thus, one of the features, which distinguish them from other T cells, namely the presence of the CD4 protein on their surface, renders them susceptible to attack. Once bound, the membranes of the cell and virus fuse and the genetic elements of the virus are readily incorporated into the genetic material of the host cell.
As the virus is transferred from one TH cell to another in the infected individual, an increasing proportion of the immune system is disabled, since the cells that are essential for mounting an immune response are rapidly being destroyed. The HIV virus may lie dormant inside the infected TH cells for some time. However, once stimulated, the proliferation of the virus-infected cells overwhelms the remaining uninfected' TH cells and the immune system is rapidly rendered ineffective. The depletion of the TH cell population can be clinically evaluated by measuring the CD4/CD8 ratio, which is a measure of the TH cell population relative to that of the cytotoxic T cells and the Ts cells. In summary, infection by the AIDS virus leads ultimately to the destruction of the TH cell population. Because of the key regulatory role of this particular cell population, which is essential for both the adequate functioning of the B cells (antibody response) and the cytotoxic T cells (cell-mediated response) , the entire immune system is rendered quite inactive. The infected individual is then prone to a greater incidence of certain cancers and to infection by other opportunistic microorganisms . It is this latter effect that frequently leads to the death of the infected person. The subject composition, by being able to elevate the TH cell population, has the potential to prolong the life of AIDS sufferers by restoring the T cell profile to normal levels .
Example 3 To study the mitogenic activity of the composition in accordance with the present invention for lymphoid cells, the following experiments were carried out.
Perthon was treated with trypsin for 16 hours at 37°C, followed by removing the insoluble material by centrifugation and harvesting the water-soluble portion for preparative isoelectric focusing (IEF) . After IEF, 20 fractions were obtained ranging from low pi (2.0; fraction #1) up to high pi (12.0; fraction # 20) . The fractions were exhaustively dialyzed against phosphate buffered saline (PBS) prior to testing their effects on cell proliferation. A fifty microlitter aliquot of each fraction was incubated with 100 μl of (A) rat spleen cells, (B) human peripheral blood lymphocytes, and (C) human Molt-4 T cells for 24 hours in a 37°C incubator (experiments were performed in quadruplicate) . Enhancement of cell proliferation was performed by MTS assays (Promega) .
As shown in Fig.s 1A-1C, the water-soluble portion of the digested Perthon, when subjected to IEF, was shown to significantly enhance the proliferation of rat spleen cell (Fig. 1A) and human peripheral blood lymphocytes (Fig. IB), whereas Molt-4 cells were less responsive to these fractions (Fig. IC) . It can be seen from these figures that fractions 1-11, corresponding to pi 2.0-8.0 evidently show the mitogenic effects. Example 4
The following experiments were to continue the identification of the mitogenic activity in Perthon IEF fractionates . Perthon IEF fractions from the above studies
(Example 3) were pooled (from #1 to # 11) and subjected to preparative polyacrylamide gel electrophoresis . Proteins which migrated into the gel (separated by charges and molecular sizes) were harvested by electroelution. Six protein fractions were obtained and tested for their effects on the proliferation fo rat spleen cells, monocytic THP-1 cells and Molt- T cells during a 24 -hour run. Each fraction contains less than 800 ng proteins (or 2.5 μg/ml) in treating the cells. As shown in Fig. 2, the protein fractions from electroelcution # 2 effectively enhance the proliferation of rat spleen cells and THP-1 cells, but has a less effect on Molt-4 cells. Fraction # 4 also has a mitoenic activity for the growth of rat spleen cells.
Upon reading the subject application, various alternative embodiments will become obvious to those skilled in the art. These embodiments are to be considered within the scope and spirit of the subject invention, which is only to be limited by the claims which follow and their equivalents.

Claims

1. A therapeutic composition comprising a herbal mixture formed by Boswelia carterii stem resin, Styrax benzoin stem resin, Cinnamomum zeylanicum bark, Curcuma zedoaria root, Syzygium aroma ticum fruit,
Nardostachys chinensis root, Betula alba bark, Impa tiens balsamina bark, Costus spica tus root, Allilum sa tivum bulb and Cyperus rotundus root in amounts effective to produce a physiological benefit in combination with an amount of sodium chloride effective to substantially promote the digestibility and storage stability of the composition.
2. The composition of claim 1 wherein the sodium chloride is in an amount ranging from about 1% to about 20% by weight based on the total weight of the herbal mixture and the sodium chloride.
3. The composition according to claim 1, wherein by weight based on the total weight of the herbal mixture, the herbal mixture comprises from about 1.5% to about 75% Boswelia carterii stem resin; from about 1.5% to about 75% Styrax benzoin stem resin; from about 0.7% to about 35% Cinnamomum zeylanicum bark; from about 0.6% to about 30% Curcuma zedoaria root; from about 0.6% to about 30% Syzygium aroma ticum fruit; from about 0.6% to about 30% Nardostachys chinensis root; from about 1.5% to about 75% Betula alba bark; from about 1.5% to about 35% Impa tiens balsamina bark; from about 0.4% to about 25% Costus spica tus root; from about 0.4% to about 25% Allilum sa tivum bulb; and from about 0.4% to about 25% Cyperus rotundus root.
4. The composition of claim 1 wherein the sodium chloride is in an amount ranging from about 3% to about 5% by weight based on the total weight of the herbal mixture and the sodium chloride. 5. The composition of claim 1 wherein by weight based on the total weight of the herbal mixture, the herbal mixture comprises about 15.5% Boswelia carterii stem resin; about 15.5% Styrax benzoin stem resin; about 6.9% Cin-.a-Ωθ-ΩU-n zeylanicum bark; about 6.0% Curcuma zedoaria root; about 6.0% Syzygium aroma ticum fruit; about 6.0% Nardostachys chinensis root; about 15.5% Betula alba bark; about 15.
5% Impa tiens balsamina bark; about 4.3% Costus spica tus root; about 4.3% Allilum sa tivum bulb; and about 4.3% Cyperus rotundus root .
6. The composition of claim 1 wherein the composition comprises about 3% sodium chloride by weight based on the total weight of the sodium chloride and the herbal composition.
7. The composition of claim 1 wherein the sodium chloride is in the form of sea salt.
8. The composition of claim 7 wherein the sea salt is obtained from Dead Sea.
9. The composition of claim 1 further comprising at least one of a pharmaceutically acceptable additive, excipient, and filler.
10. The composition of claim 1 further comprising Hyssopus Officinalis .
11. The composition of claim 1 wherein the composition is in an oral dosage form selected from the group consisting of capsule, tablet, and sachet.
12. The composition of claim 11 wherein each unit dosage of the composition comprises about 90 mg Boswelia carterii stem resin; about 90 mg Styrax benzoin stem resin, about 40 mg Cinnamomum zeylanicum bark; about 35 mg Curcuma zedoaria root; about 35 mg Syzygium aroma ticum fruit; about 35 mg Nardostachys chinensis; about 90 mg Betula alba bark; about 90 mg Impa tiens balsamina bark; about 25 mg Costus spica tus root; about 25 mg Allilum sativum bulb; about 25 mg Cyperus rotundus root; and sodium chloride in an amount ranging from about 1% to about 10% by weight based on the total weight of the herbal mixture and sodium chloride.
13. The composition of claim 12 further comprising about 58 mg Hyssopus Officinalis .
14. The composition of claim 11 wherein each unit dosage of the composition comprises about 1000 mg of the herbal mixture .
15. The composition of claim 1 wherein the composition is in the form of oral caplet .
16. A method for treatment or prophylaxis of a disease selected from the group consisting of AIDS, SARS, immune disorders, lymes disease, rheumatic arthritis, cancer and combinations thereof comprising administering a patient a composition which comprises a herbal mixture formed by Boswelia carterii stem resin, Styrax benzoin stem resin, Cinnamomum zeylanicum bark, Curcuma zedoaria root, Syzygium aroma ticum fruit,
Nardostachys chinensis root, Betula alba bark, Impa tiens balsamina bark, Costus spica tus root, Allilum sa tivum bulb and Cyperus rotundus root in amounts effective to produce a physiological benefit in combination with an amount of sodium chloride effective to substantially promote the digestibility and storage stability of the composition.
17. The method of claim 16 wherein the sodium chloride is in an amount ranging from about 1% to about 20% by weight based on the total weight of the herbal mixture and the sodium chloride.
18. The method of claim 16 wherein by weight based on the total weight of the herbal mixture, the herbal mixture comprises from about 1.5% to about 75% Boswelia carterii stem resin; from about 1.5% to about 75% Styrax benzoin stem resin; from about 0.7% to about 35% Ci-.na.mo-T.u-T. zeylanicum bark; from about 0.6% to about 30% Curcuma zedoaria root; from about 0.6% to about 30% Syzygium aromaticum fruit; from about 0.6% to about 30% Nardostachys chinensis root; from about 1.5% to about 75% Betula alba bark; from about 1.5% to about 35% Impa tiens balsamina bark; from about 0.4% to about 25% Costus spica tus root; from about 0.4% to about 25% Allilum sa tivum bulb; and from about 0.4% to about 25% Cyperus rotundus root.
19. The method of claim 16 wherein the composition further comprises Hyssopus Officinalis .
20. The method of claim 16 wherein the composition is in an oral dosage form selected from the group consisting of capsule, tablet, and cachet.
21. The method of claim 20 wherein each unit dosage of the composition comprises about 90 mg Boswelia carterii stem resin; about 90 mg Styrax benzoin stem resin, about 40 mg Cin--a.mo-i.---r. zeylanicum bark; about 35 mg Curcuma zedoaria root; about 35 mg Syzygium aroma ticum fruit; about 35 mg Nardostachys chinensis; about 90 mg Betula alba bark; about 90 mg Impa tiens balsamina bark; about 25 mg Costus spica tus root; about 25 mg Allilum sa tivum bulb; about 25 mg Cyperus rotundus root; and sodium chloride in an amount ranging from about 1% to about 10% by weight based on the total weight of the herbal mixture and sodium chloride.
22. The method of claim 21 wherein the composition further comprises about 58 mg Hyssopus Officinalis .
23. The method of claim 21 wherein the patient is administered several times daily.
24. The method of claim 21 wherein the patient is daily administered four units dosage in the morning, four units dosage in the evening, about one hour before meals .
25. The method of claim 20 wherein each unit dosage of the composition comprises about 1000 mg of the herbal mixture.
26. The method of claim 25 wherein the patient is daily administered two units dosage in the morning, two units dosage in the evening, about one hour before meals.
27. The method of claim 16 wherein the composition is in caplet form. \ 28. The method of claim 16 wherein the
5 disease is AIDS .
29. The method of claim 16 wherein the disease is SARS. I
30. The method of claim 16 wherein the disease is lymes disease.
10 31. The method of claim 16 wherein the disease is rheumatic arthritis.
32. A therapeutic composition comprising a herbal mixture formed by Boswelia carterii stem resin, Styrax benzoin stem resin, Cin-.a-ττo-τιu-π zeylanicum bark, 15 Curcuma zedoaria root, Syzygium aroma ticum fruit, Nardostachys chinensis root, Betula alba bark, Impatiens balsamina bark, Costus spica tus root, Allilum sa tivum bulb, Cyperus rotundus root and Hyssopus officinalis in amounts effective to produce a physiological benefit in 20 combination with an amount of sodium chloride effective to substantially promote the digestibility and storage stability of the composition.
33. The composition of claim 32 wherein the sodium chloride is in an amount ranging from about 1% to about 20% by weight based on the total weight of the herbal mixture and the sodium chloride.
34. The composition according to claim 32, wherein by weight based on the total weight of the herbal mixture, the herbal mixture comprises from about 1.5% to about 75% Boswelia carterii stem resin; from about 1.5% to about 75% Styrax benzoin stem resin; from about 0.7% to about 35% Cinnamomum zeylanicum bark; from about 0.6% to about 30% Curcuma zedoaria root; from about 0.6% to about 30% Syzygium aroma ticum fruit; from about 0.6% to about 30% Nardostachys chinensis root; from about 1.5% to about 75% Betula alba bark; from about 1.5% to about 35% Impa tiens balsamina bark; from about 0.4% to about 25% Costus spicatus root; from about 0.4% to about 25% Allilum sa tivum bulb; from about 0.4% to about 25% Cyperus rotundus root; and from about 9% to about 15% Hyssopus officinalis .
35. The composition of claim 32 wherein the sodium chloride is in an amount ranging from about 3% to about 5% by weight based on the total weight of the herbal mixture and the sodium chloride.
36. The composition of claim 32 wherein by weight based on the total weight of the herbal mixture, the herbal mixture comprises about 14.1% Boswelia carterii stem resin; about 14.1% Styrax benzoin stem resin; about 6.3% Cinnamomum zeylanicum bark; about 5.5% Curcuma zedoaria root; about 5.5% Syzygium aromaticum fruit; about 5.5% Nardostachys chinensis root; about 14.1% Betula alba bark; about 14.1% Impa tiens balsamina bark; about 3.9% Costus spica tus root; about 3.9% Allilum sa tivum bulb; about 3.9% Cyperus rotundus root; and about 9.0% Hyssopus officinalis .
37. The composition of claim. 32 wherein the composition comprises about 3% sodium chloride by weight based on the total weight of the sodium chloride and the herbal composition.
38. The composition of claim 32 wherein the sodium chloride is in the form of sea salt.
39. The composition of claim 38 wherein the sea salt is obtained from Dead Sea.
40. The composition of claim 32 further comprising at least one of a pharmaceutically acceptable additive, excipient, and filler.
41. The composition of claim 32 wherein the composition is in an oral dosage form selected from the group consisting of capsule, tablet and sachet.
42. The composition of claim 41 wherein each unit dosage of the composition comprises about 90 mg Boswelia carterii stem resin; about 90 mg Styrax benzoin stem resin, about 40 mg Cinna-ττo-τ.u-τι zeylanicum bark; about 35 mg Curcuma zedoaria root; about, 35 mg Syzygium aroma ticum fruit; about 35 mg Nardostachys chinensis; about 90 mg Betula alba bark; about 90 mg Impa tiens balsamina bark; about 25 mg Costus spica tus root; about 25 mg Allilum sativum bulb; about 25 mg Cyperus rotundus root; about 58 mg Hyssopus officinalis and sodium chloride in an amount ranging from about 1% to about 10% by weight based on the total weight of the herbal mixture and sodium chloride.
43. The composition of claim 41 wherein each unit dosage of the composition comprises about 1000 mg of the herbal mixture.
44. The composition of claim 32 wherein the composition is in the form of oral caplet.
PCT/US2004/015694 2003-05-19 2004-05-19 Therapeutic herbal compositions WO2004112692A2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US47192803P 2003-05-19 2003-05-19
US47189203P 2003-05-19 2003-05-19
US47197503P 2003-05-19 2003-05-19
US60/471,928 2003-05-19
US60/471,975 2003-05-19
US60/471,892 2003-05-19
US10/848,459 US20040234546A1 (en) 2003-05-19 2004-05-18 Treatments using an herbal composition

Publications (2)

Publication Number Publication Date
WO2004112692A2 true WO2004112692A2 (en) 2004-12-29
WO2004112692A3 WO2004112692A3 (en) 2005-08-04

Family

ID=33545546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/015694 WO2004112692A2 (en) 2003-05-19 2004-05-19 Therapeutic herbal compositions

Country Status (1)

Country Link
WO (1) WO2004112692A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023780B1 (en) 2009-02-23 2011-03-21 주식회사한국전통의학연구소 Composition for preventing and treating acute pancreatitis comprising Nardostachys jatamansi extract as an active ingredient
WO2011039574A1 (en) * 2009-10-02 2011-04-07 Van Der Walt, Louis, Stephanus The use of a herbal composition for the treatment of a person infected with hiv
WO2012030142A2 (en) * 2010-08-30 2012-03-08 주식회사 한국전통의학연구소 Composition for treating prostate cancer including spikenard extract
WO2012134163A2 (en) * 2011-03-28 2012-10-04 주식회사 한국전통의학연구소 Composition for lung cancer treatment and composition for cosmetics containing nardostachyos rhizoma extract
WO2012134250A2 (en) * 2011-03-31 2012-10-04 주식회사 한국전통의학연구소 Composition for renal cancer treatment and composition for cosmetic containing nardostachyos rhizoma extract
WO2012134251A2 (en) * 2011-03-31 2012-10-04 주식회사 한국전통의학연구소 Composition for pancreatic cancer treatment and composition for cosmetics containing nardostachyos rhizoma extract
WO2022259260A1 (en) * 2021-06-09 2022-12-15 Anupam Gupta Non-steroidal topical composition and method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018993A1 (en) * 1993-02-23 1994-09-01 Pharmakon Usa, Inc. Therapeutic herbal composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994018993A1 (en) * 1993-02-23 1994-09-01 Pharmakon Usa, Inc. Therapeutic herbal composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101023780B1 (en) 2009-02-23 2011-03-21 주식회사한국전통의학연구소 Composition for preventing and treating acute pancreatitis comprising Nardostachys jatamansi extract as an active ingredient
WO2011039574A1 (en) * 2009-10-02 2011-04-07 Van Der Walt, Louis, Stephanus The use of a herbal composition for the treatment of a person infected with hiv
WO2012030142A2 (en) * 2010-08-30 2012-03-08 주식회사 한국전통의학연구소 Composition for treating prostate cancer including spikenard extract
WO2012030142A3 (en) * 2010-08-30 2012-05-31 주식회사 한국전통의학연구소 Composition for treating prostate cancer including spikenard extract
WO2012134163A2 (en) * 2011-03-28 2012-10-04 주식회사 한국전통의학연구소 Composition for lung cancer treatment and composition for cosmetics containing nardostachyos rhizoma extract
WO2012134163A3 (en) * 2011-03-28 2013-03-07 주식회사 한국전통의학연구소 Composition for lung cancer treatment and composition for cosmetics containing nardostachyos rhizoma extract
WO2012134250A2 (en) * 2011-03-31 2012-10-04 주식회사 한국전통의학연구소 Composition for renal cancer treatment and composition for cosmetic containing nardostachyos rhizoma extract
WO2012134251A2 (en) * 2011-03-31 2012-10-04 주식회사 한국전통의학연구소 Composition for pancreatic cancer treatment and composition for cosmetics containing nardostachyos rhizoma extract
WO2012134250A3 (en) * 2011-03-31 2013-03-07 주식회사 한국전통의학연구소 Composition for renal cancer treatment and composition for cosmetic containing nardostachyos rhizoma extract
WO2012134251A3 (en) * 2011-03-31 2013-03-07 주식회사 한국전통의학연구소 Composition for pancreatic cancer treatment and composition for cosmetics containing nardostachyos rhizoma extract
WO2022259260A1 (en) * 2021-06-09 2022-12-15 Anupam Gupta Non-steroidal topical composition and method thereof

Also Published As

Publication number Publication date
WO2004112692A3 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
Kreft Buckwheat phenolic metabolites in health and disease
US6039949A (en) Method of preparation and composition of a water soluble extract of the plant species uncaria
US6759062B2 (en) Composition and method for treating the effects of diseases and maladies
Abdullah et al. Badam (Prunus amygdalus Bail.): A fruit with medicinal properties
Kosasih et al. Hepatoprotective effect of citrus sinensis peel extract against isoniazid and rifampicin-induced liver injury in wistar rats
US6238675B1 (en) Method of preparation and composition of a water soluble extract of the plant species Uncaria for enhancing immune, anti-inflammatory and anti-tumor processes of warm blooded animals
WO1994018993A1 (en) Therapeutic herbal composition
WO2004112692A2 (en) Therapeutic herbal compositions
Amber et al. Nephroprotective effect of Citrus sinensis L. on mercury exposed wistar rats
Sheena et al. Therapeutic potential of Ganoderma lucidum (Fr.) P. Karst.
Kaur et al. Hepatoprotective activity of aqueous extract of Picrorhiza kurroa in carbon tetrachloride (ccl4) induced hepatotoxicity in albino wistar rats
Oladimeji et al. The potential therapeutic advantage of Abrus precatorius Linn. an alternative to Glycyrrhiza glabra: a review
US20040258712A1 (en) Herbal composition containing sea salt
US20010022981A1 (en) Method of preparation and composition of a water soluble extract of the plant species uncaria for enhancing immune, anti-inflammatory, anti-tumor and DNA repair processes of warm blooded animals
US5980903A (en) Composition for the treatment of viral infections including HIV
US7160561B2 (en) Herbal composition and method of treating HIV infection
US20040234546A1 (en) Treatments using an herbal composition
KR101749674B1 (en) Composition comprising Hericium erinaceum extract for prevent, treatment or improvement of inflammatory bone joint diseases
Marbun et al. The Immunomodulatory Activity of Pirdot Leaf Extract (Sauraia Vulcani korth.) on the Immune System of Male Rats
AU760967B2 (en) Herbal composition for the prophylaxis and treatment of AIDS
JP2002154981A (en) Garlic fermented composition
Omodale et al. Protective effect of aqueous root extract of Gongronema latifolium against paracetamol induced hepatotoxicity and chloroquine induced nephrotoxicity in rats
IF et al. Hepatoprotective potential and histological studies of effects of Celosia Argentea L. on Paracetamol-Induced Liver Damage
US20020006446A1 (en) Botanical combinations for treating AIDS and immune-deficient patients to maintain good health and the process for preparing the same
Eidangbe et al. Attenuation of Carbon Tetrachloride—Induced Hepatoxicity by Dacryodes edulis Seeds Ethanolic Extract in Male Wistar Rats

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase