WO2004110728A1 - Thermoplastic foil reinforced by unidirectional reinforcing elements and a production method - Google Patents

Thermoplastic foil reinforced by unidirectional reinforcing elements and a production method Download PDF

Info

Publication number
WO2004110728A1
WO2004110728A1 PCT/EP2004/051076 EP2004051076W WO2004110728A1 WO 2004110728 A1 WO2004110728 A1 WO 2004110728A1 EP 2004051076 W EP2004051076 W EP 2004051076W WO 2004110728 A1 WO2004110728 A1 WO 2004110728A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
reinforcing elements
unidirectional reinforcing
sheet
thermoplastic material
Prior art date
Application number
PCT/EP2004/051076
Other languages
French (fr)
Inventor
Claude Corbiere
Original Assignee
Cortex
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cortex filed Critical Cortex
Publication of WO2004110728A1 publication Critical patent/WO2004110728A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/504Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC] using rollers or pressure bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive

Definitions

  • the invention relates to a method for producing sheets of thermoplastic material having a reinforcing structure for increasing the resistance to laceration and the ability to be shaped.
  • This type of material can therefore be used in multiple applications, in particular for making vehicle covers, furniture coverings, flexible flexible partitions, or articles of clothing.
  • thermoplastic sheet To increase the laceration resistance of a thermoplastic sheet, it is known to associate this thermoplastic sheet with a reinforcing structure, constituted for example by a metallic network as described in the document GB 2 317 363.
  • Such a material is constituted by the association of a layer of thermoplastic material, and for example polyvinyl chloride, to which is attached a metal mesh which can for example be formed from a fabric or knitted fabric based on metallic wires. More specifically, the structure described in the aforementioned document comprises the assembly of two layers of thermoplastic material trapping a fabric or knitted fabric based on metallic threads. It is understood that this type of material has the disadvantage of being limited as regards the production widths. Indeed, the maximum width of this type of material is limited to the maximum width of the reinforcing layer based on metal wires. In other words, it is necessary to have available a fabric or a metallic knitted fabric having the final width of the reinforcing sheet which it is desired to produce. In certain applications, this limitation is prohibitive, and for example for the production of tarpaulins for trucks or secure partitions, for which it is necessary to benefit from a width of approximately three meters.
  • a first objective of the present invention is to provide a rapid manufacturing process which makes it possible to produce indifferently, and without additional step, reinforced sheets in large width, benefiting from a very high resistance.
  • the invention therefore relates to a method of manufacturing a sheet of thermoplastic material, reinforced by unidirectional elements.
  • unidirectional reinforcing elements is meant reinforcing threads such as high tenacity threads such as metallic threads, threads based on carbon fibers, glass or aramid, or the like, but also elements such as woven or braided ribbons, or even tubular elements such as hollow threads.
  • this process is characterized in that it consists:
  • the assembly formed by the first and the second strip is calendered to obtain the characteristic sheet, by autogenous welding.
  • a sheet of thermoplastic material which comprises, embedded in its thickness, at least three superposed beams of unidirectional elements of parallel reinforcement, these three beams having different orientations.
  • the production of the primary bands can be very rapid, because it is based on the call of a layer of wires and its continuous inclusion in the fusible sheet by calendering.
  • the second strip can be folded back on itself to form the beam (s) complementary to that of the first strip, according to different operating modes.
  • the second strip can be folded back on itself by being wound around the first strip, that is to say by coming into contact with this first strip by the two faces of the latter.
  • the second strip can also be folded in on itself in a zigzag, then placed on one face of the first strip, before being calendered with the latter.
  • the first and second strips can have identical widths. In this case, when the strip is folded in on itself in a zigzag or around the first strip, with tangent edges, the various bundles of unidirectional reinforcing elements thus formed form between them angles of 60 °.
  • the invention also covers variants in which strips of different widths are used, thus thus forming networks of unidirectional reinforcing elements having between them angles different from 60 °. It is also possible to wind the second strip on itself so that its edges are not tangent, but on the contrary generate several overlaps of the strip on itself.
  • the primary strip it is possible to deposit several secondary strips on the first strip, to form an assembly integrating several helices wound on the primary strip.
  • the different strips wound on the primary strip may be identical or different, and be wound with the same pitch or different pitches.
  • the use of several secondary bands can also be done by folding these bands back on themselves, before associating them with the primary band.
  • the method according to the invention is therefore not limited in terms of width, since it does not require the production of a total independent reinforcement structure, as is the case in the solutions of the prior art.
  • the reinforcement structure is formed in several stages, as the calendering of the different strips between them, which is also favorable in terms of production speed.
  • the method also makes it possible to adapt to very large manufacturing widths, since it then suffices to combine unitary bands in parallel to form either the main band or the secondary band which is folded over the primary band.
  • the secondary strip can also be produced by the assembly of several parallel unitary strips.
  • the reinforced sheet with at least one layer of a textile, fabric, knitted or nonwoven surface.
  • This association can take place during the production of the first strip, by calendering a fabric with the first strip and the unidirectional reinforcing elements. It can also take place after the production of the reinforced sheet comprising the network of bundles of reinforcement elements. This association can be made by calendering with this complex sheet or by gluing.
  • unidirectional reinforcing elements are metallic wires or ribbons, or more generally conductors of electricity or heat
  • the various metal wires when they are in contact with each other after the final calendering, they constitute a conductive mesh network, which can play the role of electromagnetic screen for example.
  • a textile fabric or more generally at least one insulating textile layer is incorporated in the reinforced sheet, it can provide electrical insulation between the different bundles of conductive threads. An attempted laceration can bring two wires of different bundles into contact, and thus allow the detection of this attempted laceration.
  • the reinforcing threads are glass fibers playing the role of optical fibers
  • the final calendering causes, at the crossing zones of these optical fibers, deformations of the latter. At these deformations, the optical fibers are located near the surface of the sheet thus obtained. The localized bending of the optical fibers therefore makes it possible to reveal localized light areas on the surface of the complex thus obtained.
  • connection between the various conductive reinforcing elements can take place by providing areas which do not undergo the final calendering, and which can then be cut to reveal the conductive elements and make the various electrical connections between the conductive elements.
  • zones where the calendering has no effect can be obtained by the use of non-stick tapes, for example based on silicone, arranged at the edge of the first characteristic strip.
  • Figure 1 is a summary perspective view illustrating the production of a primary strip incorporating reinforcing son
  • Figures 2 and 3 are two top views illustrating the step of associating the second strip with the first strip, according to two alternative embodiments
  • Figure 4 is a top view of the sheet of thermoplastic material obtained after final calendering
  • Figure 5 is a schematic view illustrating an assembly mode of the primary and secondary bands.
  • the invention relates to a method of manufacturing a sheet of thermoplastic material which has a reinforcing structure formed of unidirectional reinforcing elements oriented in three different directions.
  • a primary strip (1) is produced from a film (2) of thermoplastic material which can be of various materials, and in particular polyurethane, or alternatively polyester, polyamide, polyvinyl chloride, or more generally any hot-melt material.
  • thermoplastic material undergoes a calendering step by means of a conventional installation comprising for example two rollers (4,5).
  • This calendering makes it possible to integrate on the surface of the thermoplastic film (2) wires (7) reinforcement, as illustrated in Figure 1.
  • the nature of these son (7) and their diameter is determined according to the desired applications. It is thus possible to use high tenacity metallic wires, and for example wires based on steel, or alternatively wires based on glass fibers, aramid or carbon. It is also possible to use solid wires such as optical fibers, or else flat hollow wires, or even wider elements, in the form of ribbons.
  • the spacing between the different reinforcing wires (7) is also determined according to the desired applications.
  • this primary strip (1) After this primary strip (1) has been produced, the latter is associated with a secondary strip (10) which also has reinforcing wires (8).
  • this secondary strip (10) is identical to the primary strip (1), but the invention also covers variants in which this secondary strip may be different from the primary strip, as regards the film used, but also the type of reinforcement wires and their spacing.
  • the secondary strip (10) is identical to the primary strip (1), and is wound on the latter so as to cover the front and rear faces.
  • This secondary strip (10) is wound in such a way that the selvedges (12, 13) are almost contiguous during the winding. In this way, the entirety of the two faces of the primary strip (1) is covered, and the reinforcing wires (8) of the second strip form, with those (7) of the first strip, angles of 60 ° between them.
  • the second strip (20) can also be associated with the first strip, as illustrated in FIG. 3, after having been folded back on itself.
  • the second strip (20) is folded in a zigzag on itself so as to form patterns (21) visible in the form of equilateral triangles.
  • the assembly formed by the first (1) and the second strip (10,20) is then calender, so that the films (2) of thermoplastic material reach their softening temperature and the metal son (7,8) are found embedded in the thickness of the thermoplastic material.
  • the final strip (15) illustrated in FIG. 4 then comprises a network of wires (7,8) of three-way reinforcement, ensuring a very high resistance to laceration.
  • the establishment of the second strip (10) on the first strip can be carried out as illustrated in FIG. 5.
  • the first reinforced strip (1) is unwound vertically from a beam (30).
  • the first strip (1) passes between two plates (31,32) having a width almost identical to the width of the first strip (1).
  • the second strip (10) is wound on the first strip (1) at the level of these rigid plates (31, 32), by a circular movement (33) of the roller (34) which supports it, around the first strip (1 ).
  • the rigid plates (31, 32) are associated with a vibration generation system which makes it possible to ensure the sliding of the portion (35) of the second strip (10) wound on these plates, as the advancement of the first strip (1) in the vertical direction.
  • the assembly is then routed between two calendering cylinders (37,38) which ensure the cohesion of the assembly and the integration of the network of reinforcement wires.

Abstract

The invention relates to a method for producing a thermoplastic foil reinforced by unidirectional reinforcing elements, for example such as high tenacity threads. The inventive method consists in producing at least two reinforced strips (1, 10) by longitudinally integrating unidirectional reinforcing elements (7) in a thermoplastic film by calendering, placing at least one second refolded on itself reinforced strip (10) on the first (1) reinforced strip in such a way that the unidirectional reinforcing elements (8) of the second strip form with the unidirectional reinforcing elements (7) an angle ranging from 0 to 90° and in calendering the assembly formed by the first (1) and second (10) strips.

Description

FEUILLE DE MATIERE THERMOPLASTIOUE RENFORCEE PAR DES ELEMENTS UNIDIRECTIONNELS DE RENFORCEMENT. ET PROCEDE DE FABRICATION.SHEET OF THERMOPLASTIOUS MATERIAL REINFORCED WITH UNIDIRECTIONAL REINFORCEMENT ELEMENTS. AND MANUFACTURING METHOD.
Domaine TechniqueTechnical area
L'invention concerne un procédé permettant de réaliser des feuilles de matière thermoplastique présentant une structure de renforcement permettant d'accroître la résistance à la lacération et la capacité à être conformée. Ce type de matériau peut donc être utilisé dans de multiples applications, notamment pour réaliser des bâches de véhicules, des revêtements d'ameublement, des cloisons souples sécurisées, ou des articles d'habillement.The invention relates to a method for producing sheets of thermoplastic material having a reinforcing structure for increasing the resistance to laceration and the ability to be shaped. This type of material can therefore be used in multiple applications, in particular for making vehicle covers, furniture coverings, flexible flexible partitions, or articles of clothing.
Techniques antérieures Pour augmenter la résistance à la lacération d'une feuille thermoplastique, il est connu d'associer cette feuille thermoplastique à une structure de renforcement, constituée par exemple par un réseau métallique tel que décrit dans le document GB 2 317 363.PRIOR ART To increase the laceration resistance of a thermoplastic sheet, it is known to associate this thermoplastic sheet with a reinforcing structure, constituted for example by a metallic network as described in the document GB 2 317 363.
Un tel matériau est constitué par l'association d'une couche de matière thermoplastique, et par exemple du polychlorure de vinyle, sur lequel est rapporté un treillis métallique qui peut par exemple être formé d'un tissu ou d'un tricot à base de fils métalliques. Plus précisément, la structure décrite dans le document précité comporte l'assemblage de deux couches de matière thermoplastique emprisonnant un tissu ou tricot à base de fils métalliques. On conçoit que ce type de matériau présente l'inconvénient d'être limité en ce qui concerne les largeurs de production. En effet, la largeur maximum de ce type de matériau est limitée à la largeur maximale de la couche de renforcement à base de fils métalliques. Autrement dit, il est nécessaire d'avoir à disposition un tissu ou un tricot métallique présentant la largeur finale de la feuille de renforcement que l'on veut produire. Dans certaines applications, cette limitation est rédhibitoire, et par exemple pour la réalisation de bâches de camions ou de cloisons sécurisées, pour lesquelles il est nécessaire de bénéficier d'une largeur de trois mètres environ.Such a material is constituted by the association of a layer of thermoplastic material, and for example polyvinyl chloride, to which is attached a metal mesh which can for example be formed from a fabric or knitted fabric based on metallic wires. More specifically, the structure described in the aforementioned document comprises the assembly of two layers of thermoplastic material trapping a fabric or knitted fabric based on metallic threads. It is understood that this type of material has the disadvantage of being limited as regards the production widths. Indeed, the maximum width of this type of material is limited to the maximum width of the reinforcing layer based on metal wires. In other words, it is necessary to have available a fabric or a metallic knitted fabric having the final width of the reinforcing sheet which it is desired to produce. In certain applications, this limitation is prohibitive, and for example for the production of tarpaulins for trucks or secure partitions, for which it is necessary to benefit from a width of approximately three meters.
Un premier objectif de la présente invention est de fournir un procédé rapide de fabrication qui permette de réaliser de manière indifférente, et sans étape supplémentaire, des feuilles renforcées en grande largeur, bénéficiant d'une très haute résistance.A first objective of the present invention is to provide a rapid manufacturing process which makes it possible to produce indifferently, and without additional step, reinforced sheets in large width, benefiting from a very high resistance.
En outre, la réalisation de ce type de feuilles renforcées nécessite dans une première étape la fabrication du réseau métallique, qui est une opération lente et donc coûteuse. L'association de ce réseau métallique avec une feuille thermoplastique requiert des précautions opératoires, notamment pour assurer un positionnement précis. Un problème se pose donc en termes de productivité.In addition, the realization of this type of reinforced sheets requires in a first step the manufacture of the metal network, which is a slow operation and therefore expensive. The association of this metal network with a thermoplastic sheet requires operational precautions, in particular to ensure precise positioning. A problem therefore arises in terms of productivity.
Exposé de l'InventionStatement of the Invention
L'invention concerne donc un procédé de fabrication d'une feuille de matière thermoplastique, renforcée par des éléments unidirectionnels. Par "éléments unidirectionnels de renforcement", on entend des fils de renforcement tels que des fils de haute ténacité tels que des fils métalliques, des fils à base de fibres de carbone, de verre ou d'aramide, ou analogues, mais également des éléments tels que des rubans tissés ou tressés, voire encore des éléments tubulaires tels que des fils creux.The invention therefore relates to a method of manufacturing a sheet of thermoplastic material, reinforced by unidirectional elements. By "unidirectional reinforcing elements" is meant reinforcing threads such as high tenacity threads such as metallic threads, threads based on carbon fibers, glass or aramid, or the like, but also elements such as woven or braided ribbons, or even tubular elements such as hollow threads.
Conformément à l'invention, ce procédé se caractérise en ce qu'il consiste :According to the invention, this process is characterized in that it consists:
• tout d'abord, à fabriquer au moins deux bandes renforcées, en intégrant longitudinalement par calandrage des éléments unidirectionnels de renforcement dans une bande de matériau thermoplastique ; • par la suite, sur une première de ces bandes renforcées, on dépose au moins une seconde bande renforcée repliée sur elle-même, de telle sorte que les éléments unidirectionnels de renforcement de la deuxième bande forment un angle compris entre 0 et 90° avec les éléments unidirectionnels de renforcement de la première bande ;• first of all, to manufacture at least two reinforced strips, by integrating longitudinally by calendering unidirectional reinforcing elements in a strip of thermoplastic material; • thereafter, on a first of these reinforced strips, at least one second reinforced strip is deposited folded back on itself, so that the unidirectional reinforcing elements of the second strip form an angle between 0 and 90 ° with the unidirectional elements for reinforcing the first strip;
• enfin, on calandre l'ensemble formé par la première et la seconde bande pour obtenir la feuille caractéristique, par soudure autogène.• finally, the assembly formed by the first and the second strip is calendered to obtain the characteristic sheet, by autogenous welding.
On obtient ainsi une feuille de matière thermoplastique qui comporte, noyés dans son épaisseur, au moins trois faisceaux superposés de éléments unidirectionnels de renforcement parallèles, ces trois faisceaux présentant des orientations différentes.A sheet of thermoplastic material is thus obtained which comprises, embedded in its thickness, at least three superposed beams of unidirectional elements of parallel reinforcement, these three beams having different orientations.
On notera que la production des bandes primaires peut être très rapide, car elle est basée sur l'appel d'une nappe de Fils et son inclusion en continu dans la feuille fusible par calandrage.It will be noted that the production of the primary bands can be very rapid, because it is based on the call of a layer of wires and its continuous inclusion in the fusible sheet by calendering.
En pratique, la seconde bande peut être repliée sur elle-même pour former le ou les faisceaux complémentaires à celui de la première bande, selon différents modes opératoires.In practice, the second strip can be folded back on itself to form the beam (s) complementary to that of the first strip, according to different operating modes.
Ainsi, la seconde bande peut être repliée sur elle-même en étant enroulée autour de la première bande, c'est-à-dire en venant au contact de cette première bande par les deux faces de cette dernière.Thus, the second strip can be folded back on itself by being wound around the first strip, that is to say by coming into contact with this first strip by the two faces of the latter.
La seconde bande peut également être repliée sur elle-même en zigzag, puis disposée sur une face de la première bande, avant d'être calandrée avec cette dernière. En pratique, la première et la deuxième bandes peuvent présenter des largeurs identiques. Dans ce cas, lorsque la bande est repliée sur elle-même en zigzag ou autour de la première bande, avec des lisières tangentes, les différents faisceaux d'éléments unidirectionnels de renforcement ainsi formés forment entre eux des angles de 60°.The second strip can also be folded in on itself in a zigzag, then placed on one face of the first strip, before being calendered with the latter. In practice, the first and second strips can have identical widths. In this case, when the strip is folded in on itself in a zigzag or around the first strip, with tangent edges, the various bundles of unidirectional reinforcing elements thus formed form between them angles of 60 °.
Toutefois, l'invention couvre également des variantes dans lesquelles des bandes de largeur différentes sont employées, formant donc ainsi des réseaux d'éléments unidirectionnels de renforcement présentant entre eux des angles différents de 60°. Il est également possible d'enrouler la seconde bande sur elle- même de telle sorte que ses lisières ne sont pas tangentes, mais génèrent au contraire plusieurs recouvrements de la bande sur elle-même.However, the invention also covers variants in which strips of different widths are used, thus thus forming networks of unidirectional reinforcing elements having between them angles different from 60 °. It is also possible to wind the second strip on itself so that its edges are not tangent, but on the contrary generate several overlaps of the strip on itself.
De même, il est possible de déposer plusieurs bandes secondaires sur la première bande, pour former un assemblage intégrant plusieurs hélices enroulées sur la bande primaire. Les différentes bandes enroulées sur la bande primaire peuvent être identiques ou différentes, et être enroulées avec le même pas ou des pas différents. Bien entendu, l'emploi de plusieurs bandes secondaires peut également se faire en repliant ces bandes sur elles-mêmes, avant de les associer à la bande primaire.Likewise, it is possible to deposit several secondary strips on the first strip, to form an assembly integrating several helices wound on the primary strip. The different strips wound on the primary strip may be identical or different, and be wound with the same pitch or different pitches. Of course, the use of several secondary bands can also be done by folding these bands back on themselves, before associating them with the primary band.
Le procédé conforme à l'invention n'est donc pas limité en terme de largeur, puisqu'il ne nécessite pas la réalisation d'une structure de renforcement indépendante totale, comme c'est le cas dans les solutions de l'art antérieur. Au contraire, la structure de renforcement est formée en plusieurs étapes, au fur et à mesure du calandrage des différentes bandes entre elles, ce qui est également favorable en terme de rapidité de production.The method according to the invention is therefore not limited in terms of width, since it does not require the production of a total independent reinforcement structure, as is the case in the solutions of the prior art. On the contrary, the reinforcement structure is formed in several stages, as the calendering of the different strips between them, which is also favorable in terms of production speed.
Le procédé permet également de s'adapter à de très grandes largeurs de fabrication, puisqu'il suffit alors d'associer parallèlement des bandes unitaires pour former soit la bande principale, soit la bande secondaire qui est repliée sur la bande primaire. De la même manière, la bande secondaire peut également être réalisée par l'assemblage de plusieurs bandes unitaires parallèles.The method also makes it possible to adapt to very large manufacturing widths, since it then suffices to combine unitary bands in parallel to form either the main band or the secondary band which is folded over the primary band. In the same way, the secondary strip can also be produced by the assembly of several parallel unitary strips.
Selon les applications souhaitées, il est également possible d'associer la feuille renforcée avec au moins une couche d'une surface textile, tissu, tricot ou non-tissé. Cette association peut avoir lieu lors de la réalisation de la première bande, par calandrage d'une étoffe avec la première bande et les éléments unidirectionnels de renforcement. Elle peut également avoir lieu après la réalisation de la feuille renforcée comportant le réseau de faisceau d'éléments renforcement. Cette association peut être réalisée par calandrage avec cette feuille complexe ou par collage.Depending on the desired applications, it is also possible to combine the reinforced sheet with at least one layer of a textile, fabric, knitted or nonwoven surface. This association can take place during the production of the first strip, by calendering a fabric with the first strip and the unidirectional reinforcing elements. It can also take place after the production of the reinforced sheet comprising the network of bundles of reinforcement elements. This association can be made by calendering with this complex sheet or by gluing.
Certaines applications peuvent tirer profit du type d'éléments unidirectionnels de renforcement employés. Ainsi, dans le cas où les éléments unidirectionnels de renforcement de renforcement sont des fils ou des rubans métalliques, ou de manière plus générale conducteurs de l'électricité ou de la chaleur, plusieurs cas de figures peuvent se présenter. Ainsi, lorsque les différents fils métalliques se trouvent au contact les uns des autres après le calandrage final, ils constituent un réseau maillé conducteur, pouvant jouer le rôle d'écran électromagnétique par exemple. Dans le cas où une étoffe textile ou plus généralement au moins une couche textile isolante est incorporée dans la feuille renforcée, elle peut assurer une isolation électrique entre les différents faisceaux de fils conducteurs. Une tentative de lacération peut provoquer la mise en contact de deux fils de faisceaux différents, et permettre ainsi la détection de cette tentative de lacération. Il est également possible d'utiliser des faisceaux qui sont à des potentiels électriques différents pour alimenter différents récepteurs électriques, et par exemple des diodes électroluminescentes. Dans le cas où les fils de renforcement sont des fibres de verre jouant le rôle de fibres optiques, le calandrage final provoque, au niveau des zones de croisement de ces fibres optiques, des déformations de ces dernières. Au niveau de ces déformations, les fibres optiques se trouvent à proximité de la surface de la feuille ainsi obtenue. Le cintrage localisé des fibres optiques permet donc de faire apparaître des zones lumineuses localisées, à la surface du complexe ainsi obtenu.Certain applications can take advantage of the type of unidirectional reinforcing elements employed. Thus, in the case where the unidirectional reinforcing reinforcement elements are metallic wires or ribbons, or more generally conductors of electricity or heat, several scenarios can arise. Thus, when the various metal wires are in contact with each other after the final calendering, they constitute a conductive mesh network, which can play the role of electromagnetic screen for example. In the case where a textile fabric or more generally at least one insulating textile layer is incorporated in the reinforced sheet, it can provide electrical insulation between the different bundles of conductive threads. An attempted laceration can bring two wires of different bundles into contact, and thus allow the detection of this attempted laceration. It is also possible to use beams which are at different electrical potentials to supply different electrical receivers, and for example light-emitting diodes. In the case where the reinforcing threads are glass fibers playing the role of optical fibers, the final calendering causes, at the crossing zones of these optical fibers, deformations of the latter. At these deformations, the optical fibers are located near the surface of the sheet thus obtained. The localized bending of the optical fibers therefore makes it possible to reveal localized light areas on the surface of the complex thus obtained.
La connexion entre les différents éléments de renforcement conducteurs peut avoir lieu en ménageant des zones qui ne subissent pas le calandrage final, et qui peuvent ensuite être découpées pour laisser apparaître les éléments conducteurs et effectuer les différentes connexions électriques entre les éléments conducteurs.The connection between the various conductive reinforcing elements can take place by providing areas which do not undergo the final calendering, and which can then be cut to reveal the conductive elements and make the various electrical connections between the conductive elements.
Ces zones où le calandrage est sans effet peuvent s'obtenir par l'utilisation de rubans anti-adhésifs, par exemple à base de silicone, disposés en lisière de la première bande caractéristique.These zones where the calendering has no effect can be obtained by the use of non-stick tapes, for example based on silicone, arranged at the edge of the first characteristic strip.
Certains avantages peuvent également apparaître en localisant, non pas en lisière mais sur la largeur de la bande, des zones où le calandrage est sans effet. Dans ce cas, les différents films calandres ne se collent pas entre eux, grâce à l'interposition par exemple d'un ruban à base de silicone. Ces zones permettent par la suite de générer des passages tubulaires, disponibles par exemple pour l'insertion de baguettes de renforcement, ou pour le passage de fluide. La réalisation de zones dans lesquelles les différents films supportés ne sont pas collés entre eux peut également s'obtenir en employant une calandre dont les rouleaux sont gravés, ou qui, de façon générale, n'assurent pas de pression sur la feuille à des endroits localisés. On obtient alors un matériau homologue aux "tissus poches" obtenus sur métier Jacquard. Description sommaire des figuresSome advantages can also appear by locating, not at the edge but over the width of the strip, areas where calendering has no effect. In this case, the different calendered films do not stick together, thanks to the interposition, for example, of a silicone-based tape. These zones then make it possible to generate tubular passages, available for example for the insertion of reinforcing rods, or for the passage of fluid. The realization of zones in which the different supported films are not glued together can also be obtained by using a calender whose rolls are engraved, or which, in general, do not ensure pressure on the sheet at places located. This gives a material homologous to the "pocket fabrics" obtained on the Jacquard loom. Brief description of the figures
La manière dont l'invention est réalisée ainsi que les avantages qui en découlent ressortiront bien de la description du mode de réalisation qui suit, à l'appui des figures annexées dans lesquelles :The manner in which the invention is implemented as well as the advantages which result therefrom will emerge clearly from the description of the embodiment which follows, in support of the appended figures in which:
La figure 1 est une vue en perspective sommaire illustrant la réalisation d'une bande primaire intégrant des fils de renforcement ;Figure 1 is a summary perspective view illustrating the production of a primary strip incorporating reinforcing son;
Les figures 2 et 3 sont deux vues de dessus illustrant l'étape d'association de la seconde bande avec la première bande, selon deux modes de réalisation alternatifs ;Figures 2 and 3 are two top views illustrating the step of associating the second strip with the first strip, according to two alternative embodiments;
La figure 4 est une vue de dessus de la feuille de matière thermoplastique obtenue après calandrage final ;Figure 4 is a top view of the sheet of thermoplastic material obtained after final calendering;
La figure 5 est une vue schématique illustrant un mode d'assemblage des bandes primaires et secondaires.Figure 5 is a schematic view illustrating an assembly mode of the primary and secondary bands.
Manière de réaliser l'inventionWay of realizing the invention
Comme déjà évoqué, l'invention concerne un procédé de fabrication d'une feuille de matière thermoplastique qui présente une structure de renforcement formée de éléments unidirectionnels de renforcement orientés selon trois directions différentes.As already mentioned, the invention relates to a method of manufacturing a sheet of thermoplastic material which has a reinforcing structure formed of unidirectional reinforcing elements oriented in three different directions.
Ce procédé enchaîne plusieurs étapes dont une première consiste à réaliser une bande primaire intégrant des fils de renforcement tel qu'illustré à la figure 1. Une bande primaire (1) est réalisée à partir d'un film (2) de matériau thermoplastique qui peut être en matières variées, et notamment en polyuréthanne, ou bien encore polyester, polyamide, polychlorure de vinyle, ou plus généralement en toute matière thermofusible .This process links several stages, the first of which consists in producing a primary strip incorporating reinforcing wires as illustrated in FIG. 1. A primary strip (1) is produced from a film (2) of thermoplastic material which can be of various materials, and in particular polyurethane, or alternatively polyester, polyamide, polyvinyl chloride, or more generally any hot-melt material.
Ce film (2) de matière thermoplastique subit une étape de calandrage au moyen d'une installation classique comportant par exemple deux rouleaux (4,5).This film (2) of thermoplastic material undergoes a calendering step by means of a conventional installation comprising for example two rollers (4,5).
Ce calandrage permet d'intégrer en surface du film thermoplastique (2) des fils (7) de renforcement, comme illustré à la figure 1. La nature de ces fils (7) ainsi que leur diamètre est déterminé selon les applications souhaitées. On peut ainsi employer des fils métalliques de haute ténacité, et par exemple des fils à base d'acier, ou bien encore des fils à base de fibres de verre, d'aramide ou de carbone. On peut également employer des fils pleins tels que des fibres optiques, ou bien encore des fils creux plats, ou bien encore des éléments plus larges, se présentant sous la forme de rubans. L'écartement entre les différents fils (7) de renforcement est également déterminé en fonction des applications souhaitées.This calendering makes it possible to integrate on the surface of the thermoplastic film (2) wires (7) reinforcement, as illustrated in Figure 1. The nature of these son (7) and their diameter is determined according to the desired applications. It is thus possible to use high tenacity metallic wires, and for example wires based on steel, or alternatively wires based on glass fibers, aramid or carbon. It is also possible to use solid wires such as optical fibers, or else flat hollow wires, or even wider elements, in the form of ribbons. The spacing between the different reinforcing wires (7) is also determined according to the desired applications.
Après réalisation de cette bande primaire (1), on associe cette dernière avec une bande secondaire (10) qui présente également des fils (8) de renforcement. De manière préférée, cette bande secondaire (10) est identique à la bande primaire (1), mais l'invention couvre également des variantes dans lesquelles cette bande secondaire peut être différente de la bande primaire, en ce qui concerne le film employé, mais également le type de fils de renforcement et leur écartement.After this primary strip (1) has been produced, the latter is associated with a secondary strip (10) which also has reinforcing wires (8). Preferably, this secondary strip (10) is identical to the primary strip (1), but the invention also covers variants in which this secondary strip may be different from the primary strip, as regards the film used, but also the type of reinforcement wires and their spacing.
Dans l'exemple illustré à la figure 2, la bande secondaire (10) est identique à la bande primaire (1), et est enroulée sur cette dernière de manière à en recouvrir les faces avant et arrière. Cette bande secondaire (10) est enroulée de telle sorte que les lisières (12,13) soient quasi-jointives lors de l'enroulement. De la sorte, l'intégralité des deux faces de la bande primaire (1) est recouverte, et les fils (8) de renforcement de la seconde bande forment, avec ceux (7) de la première bande, des angles de 60° entre eux.In the example illustrated in Figure 2, the secondary strip (10) is identical to the primary strip (1), and is wound on the latter so as to cover the front and rear faces. This secondary strip (10) is wound in such a way that the selvedges (12, 13) are almost contiguous during the winding. In this way, the entirety of the two faces of the primary strip (1) is covered, and the reinforcing wires (8) of the second strip form, with those (7) of the first strip, angles of 60 ° between them.
La seconde bande (20) peut également être associée à la première bande, comme illustré à la figure 3, après avoir été repliée sur elle-même. Ainsi, la seconde bande (20) est repliée en zigzag sur elle-même de manière à former des motifs (21) apparents sous forme de triangles équilatéraux. Que ce soit après enroulement sur la première bande comme illustré à la figure 2, ou après enroulement sur elle-même comme illustré à la figure 3, l'ensemble formé par la première (1) et la seconde bande (10,20) est ensuite calandre, de telle sorte que les films (2) de matière thermoplastique atteignent leur température de ramollissement et que les fils métalliques (7,8) se retrouvent noyés dans l'épaisseur de la matière thermoplastique.The second strip (20) can also be associated with the first strip, as illustrated in FIG. 3, after having been folded back on itself. Thus, the second strip (20) is folded in a zigzag on itself so as to form patterns (21) visible in the form of equilateral triangles. Whether after winding on the first strip as illustrated in FIG. 2, or after winding on itself as illustrated in FIG. 3, the assembly formed by the first (1) and the second strip (10,20) is then calender, so that the films (2) of thermoplastic material reach their softening temperature and the metal son (7,8) are found embedded in the thickness of the thermoplastic material.
La bande finale (15) illustrée à la figure 4 comporte alors un réseau de fils (7,8) de renforcement tridirectionnels, assurant une très forte résistance à la lacération.The final strip (15) illustrated in FIG. 4 then comprises a network of wires (7,8) of three-way reinforcement, ensuring a very high resistance to laceration.
La mise en place de la seconde bande (10) sur la première bande peut être réalisée comme illustré à la figure 5. Ainsi, la première bande (1) renforcée est dévidée verticalement à partir d'une ensouple (30). La première bande (1) passe entre deux plaques (31,32) présentant une largeur quasi-identique à la largeur de la première bande (1). La seconde bande (10) est enroulée sur la première bande (1) au niveau de ces plaques rigides (31,32), par un mouvement circulaire (33) du rouleau (34) qui la supporte, autour de la première bande (1).The establishment of the second strip (10) on the first strip can be carried out as illustrated in FIG. 5. Thus, the first reinforced strip (1) is unwound vertically from a beam (30). The first strip (1) passes between two plates (31,32) having a width almost identical to the width of the first strip (1). The second strip (10) is wound on the first strip (1) at the level of these rigid plates (31, 32), by a circular movement (33) of the roller (34) which supports it, around the first strip (1 ).
Les plaques rigides (31,32) sont associées à un système de génération de vibrations qui permet d'assurer le glissement de la portion (35) de la seconde bande (10) enroulée sur ces plaques, au fur et à mesure de l'avancement de la première bande (1) dans le sens vertical. L'ensemble est ensuite acheminé entre deux cylindres de calandrage (37,38) qui permettent d'assurer la cohésion de l'ensemble et l'intégration du réseau de fils de renforcement.The rigid plates (31, 32) are associated with a vibration generation system which makes it possible to ensure the sliding of the portion (35) of the second strip (10) wound on these plates, as the advancement of the first strip (1) in the vertical direction. The assembly is then routed between two calendering cylinders (37,38) which ensure the cohesion of the assembly and the integration of the network of reinforcement wires.
Comme déjà évoqué, ces opérations peuvent s'effectuer aussi bien au moyen de bandes présentant de grandes dimensions, que des bandes réalisées par association de plusieurs bandes unitaires, mises en parallèles et soudées entre elles. Il ressort de ce qui précède que le procédé conforme à l'invention permet de réaliser des feuilles de matière thermoplastique renforcées par des fils de renforcement avec la possibilité de produire des largeurs nettement supérieures aux produits équivalents existant à ce jour, et avec des vitesses de production nettement plus élevées. Ces feuilles renforcées peuvent être utilisées en tant que bâches ou écran anti-pénétration possédant de bonnes propriétés de résistance à la lacération. Elles peuvent également être réalisées, en fonction du type de fils de haute ténacité employés, pour former des structures conformables, susceptibles d'être employées dans l'ameublement ou l'habillement en tirant partie des propriétés de mémorisation de forme des réseaux de fils de renforcement. As already mentioned, these operations can be carried out both by means of strips having large dimensions, as well as strips produced by association of several unitary strips, placed in parallel and welded together. It appears from the above that the process according to the invention makes it possible to produce sheets of thermoplastic material reinforced with reinforcing threads with the possibility of producing widths much greater than the equivalent products existing to date, and with speeds of significantly higher production. These reinforced sheets can be used as tarpaulins or anti-penetration screens with good laceration resistance properties. They can also be produced, depending on the type of high tenacity yarns used, to form conformable structures capable of being used in furniture or clothing by taking advantage of the shape memorizing properties of the arrays of yarns. enhancement.

Claims

REVENDICATIONS
1/ Procédé de fabrication d'une feuille (6) de matière thermopl astique renforcée par des éléments unidirectionnels de renforcement, caractérisé en ce qu'il consiste :1 / Method for manufacturing a sheet (6) of thermoplastic thermoplastic reinforced by unidirectional reinforcing elements, characterized in that it consists:
• tout d'abord, à fabriquer au moins deux bandes renforcées (1,10,20), en intégrant longitudinalement par calandrage des éléments unidirectionnels de renforcement (7) dans un film (2) de matériau thermoplastique ;• first of all, to manufacture at least two reinforced strips (1,10,20), by integrating longitudinally by calendering unidirectional reinforcing elements (7) in a film (2) of thermoplastic material;
• à déposer sur une première (1) des bandes renforcées, au moins une seconde bande renforcée (10) repliée sur elle-même, de telle sorte que les éléments unidirectionnels de renforcement (8) de la seconde bande forment un angle compris entre 0 et 90° avec les éléments unidirectionnels de renforcement (7) de la première bande (1) ;• depositing on a first (1) reinforced strips, at least one second reinforced strip (10) folded back on itself, so that the unidirectional reinforcing elements (8) of the second strip form an angle between 0 and 90 ° with the unidirectional reinforcing elements (7) of the first strip (1);
• à calandrer l'ensemble formé par la première (1) et la seconde bande (10).• calendering the assembly formed by the first (1) and the second strip (10).
2/ Procédé de fabrication selon la revendication 1, caractérisé en ce que la seconde bande (10) est repliée sur elle-même en étant enroulée autour de la première bande (1).2 / A manufacturing method according to claim 1, characterized in that the second strip (10) is folded back on itself by being wound around the first strip (1).
3/ Procédé de fabrication selon la revendication 1, caractérisé en ce que la seconde bande (20) est repliée sur elle-même en zigzag et est disposée sur une face de la première bande (1).3 / A manufacturing method according to claim 1, characterized in that the second strip (20) is folded back on itself in a zigzag and is arranged on one face of the first strip (1).
4/ Procédé de fabrication selon la revendication 1, caractérisé en ce que chaque bande renforcée est formée de bandes unitaires parallèles.4 / A manufacturing method according to claim 1, characterized in that each reinforced strip is formed of parallel unitary strips.
5/ Procédé de fabrication selon la revendication 1, caractérisé en ce que la première (1) et la seconde (10) bandes présentent des largeurs identiques. 6/ Procédé selon la revendication 1, caractérisé en ce l'on ménage entre le première et la seconde bandes, des zones dans lesquelles le calandrage ne provoque pas le collage des première et seconde bandes.5 / A manufacturing method according to claim 1, characterized in that the first (1) and the second (10) strips have identical widths. 6 / A method according to claim 1, characterized in that between the first and the second strips, areas in which the calendering does not cause the bonding of the first and second strips.
7/ Feuille (6) de matière thermoplastique renforcée par des éléments unidirectionnels de renforcement fabriquée selon l'une des revendications 1 à 6, caractérisée en ce qu'elle comporte, noyés dans son épaisseur, au moins trois faisceaux superposés d'éléments unidirectionnels de renforcement parallèles (7,8), les trois faisceaux présentant des orientations différentes.7 / sheet (6) of thermoplastic material reinforced with unidirectional reinforcing elements manufactured according to one of claims 1 to 6, characterized in that it comprises, embedded in its thickness, at least three beams superimposed unidirectional elements of parallel reinforcement (7,8), the three beams having different orientations.
8/ Feuille de matière thermoplastique selon la revendication 7, caractérisée en ce que le matériau thermoplastique est choisi dans le groupe comprenant le polyuréthanne, le polyester, le polychlorure de vinyle et le polyamide.8 / sheet of thermoplastic material according to claim 7, characterized in that the thermoplastic material is selected from the group comprising polyurethane, polyester, polyvinyl chloride and polyamide.
9/ Feuille de matière thermoplastique selon la revendication 7, caractérisée en ce que les éléments unidirectionnels de renforcement sont choisis dans le groupe comprenant les fils métalliques et notamment les fils à base d'acier, les fils de verre, de carbone ou d'aramide et les fibres optiques.9 / sheet of thermoplastic material according to claim 7, characterized in that the unidirectional reinforcing elements are chosen from the group comprising metallic wires and in particular steel-based wires, glass, carbon or aramid wires and optical fibers.
10/ Feuille de matière thermoplastique selon la revendication 7, caractérisée en ce qu'elle comporte au moins une couche formée par une étoffe textile.10 / sheet of thermoplastic material according to claim 7, characterized in that it comprises at least one layer formed by a textile fabric.
11/ Feuille de matière thermoplastique selon la revendication 7, caractérisée en ce que les éléments unidirectionnels de renforcement d'au moins deux faisceaux sont conducteurs de l'électricité.11 / sheet of thermoplastic material according to claim 7, characterized in that the unidirectional reinforcing elements of at least two beams are electrically conductive.
12/ Feuille de matière thermoplastique selon la revendication 11 caractérisée en ce que les éléments unidirectionnels de renforcement des deux faisceaux conducteurs sont en contact électrique les uns avec les autres. 13/ Feuille de matière thermoplastique selon la revendication 11 caractérisée en ce que les éléments unidirectionnels de renforcement des deux faisceaux conducteurs sont séparés par au moins une couche électriquement isolante. 12 / sheet of thermoplastic material according to claim 11 characterized in that the unidirectional reinforcing elements of the two conductive bundles are in electrical contact with each other. 13 / sheet of thermoplastic material according to claim 11 characterized in that the unidirectional reinforcing elements of the two conductive bundles are separated by at least one electrically insulating layer.
PCT/EP2004/051076 2003-06-19 2004-06-09 Thermoplastic foil reinforced by unidirectional reinforcing elements and a production method WO2004110728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0307393A FR2856336A1 (en) 2003-06-19 2003-06-19 SHEET OF THERMOPLASTIC MATERIAL REINFORCED WITH UNIDIRECTIONAL REINFORCING ELEMENTS, AND MANUFACTURING METHOD
FR0307393 2003-06-19

Publications (1)

Publication Number Publication Date
WO2004110728A1 true WO2004110728A1 (en) 2004-12-23

Family

ID=33484564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051076 WO2004110728A1 (en) 2003-06-19 2004-06-09 Thermoplastic foil reinforced by unidirectional reinforcing elements and a production method

Country Status (2)

Country Link
FR (1) FR2856336A1 (en)
WO (1) WO2004110728A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011101706B4 (en) * 2010-10-25 2012-05-17 Price Link Pty Ltd Construction Safety Netting
DE102012111761A1 (en) * 2012-12-04 2014-06-05 Rehau Ag + Co. A method for producing a two-ply or multi-ply sheet-like semi-finished material having at least one unidirectionally fiber-reinforced ply and system for carrying out the method
EP2878432B1 (en) * 2013-11-29 2019-01-02 Airbus Operations GmbH Method and system for producing composite component

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033244A2 (en) * 1980-01-23 1981-08-05 Henry Roy Smith Fibre reinforced materials and methods of making and using them
US5431979A (en) * 1994-04-12 1995-07-11 Hoechst Celanese Corporation Cut-resistant tarpaulin
EP1236820A2 (en) * 2001-03-02 2002-09-04 Tissage et Enduction Serge Ferrari SA Anti-laceration fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0033244A2 (en) * 1980-01-23 1981-08-05 Henry Roy Smith Fibre reinforced materials and methods of making and using them
US5431979A (en) * 1994-04-12 1995-07-11 Hoechst Celanese Corporation Cut-resistant tarpaulin
EP1236820A2 (en) * 2001-03-02 2002-09-04 Tissage et Enduction Serge Ferrari SA Anti-laceration fabric

Also Published As

Publication number Publication date
FR2856336A1 (en) 2004-12-24

Similar Documents

Publication Publication Date Title
FR2580003A1 (en)
EP0160609B1 (en) Material based on a non-woven fabric useful as a reinforcement layer for water-proofing cover materials
FR2821631A1 (en) PROCESS AND DEVICE FOR MANUFACTURING A COMPOSITE PLATE WITH MULTIAXIAL FIBER REINFORCEMENT
EP2964825B1 (en) Method and machine for spreading a fabric-type textile sheet
EP0193478B1 (en) Textile reinforcement for the manufacture of layered products
FR2758340A1 (en) PROCESS AND DEVICE FOR MANUFACTURING COMPOSITE PLATES
WO2014095991A1 (en) Device for interconnecting photovoltaic cells having contacts on their back side, and module comprising such a device
EP3843965B1 (en) Method for producing a composite preform for producing a composite panel with double curvature geometry
EP2657385B1 (en) Textile reinforcement framework and method for manufacturing same
WO2005102690A1 (en) Laminated fabric for sails of wind-driven engines
WO2001016418A1 (en) Method and device for making composite plates
WO2004110728A1 (en) Thermoplastic foil reinforced by unidirectional reinforcing elements and a production method
EP0193479A1 (en) Textile reinforcement for layered products, and process for making it
EP0441719B1 (en) Tarpaulin or similar material having improved tear resistance
EP3114262A1 (en) Reinforcing textile structure for composite materials
EP0931638A1 (en) Method and apparatus for winding simultaneously several fiber strands on a support and composite structures thus produced
EP3843983B1 (en) Method for manufacturing a turbomachine composite part
FR2846345A1 (en) REINFORCEMENT TAPE COMPRISING A LONGITUDINAL THREAD LAP OF HIGH TENACITY
WO2013160596A1 (en) Reinforcing textile complex for composite parts and manufacturing method
WO2005121430A2 (en) Multilayer construction that can be used as a reinforcement in a part obtained by resin transfer molding
FR3136695A1 (en) METHOD FOR OBTAINING A HEATED FLOOR FOR VEHICLES, AND HEATED FLOOR FOR VEHICLES
FR3085127A1 (en) METHOD FOR MANUFACTURING A PRECURSOR OF A COMPOSITE SKIN FOR STRUCTURAL PART AND METHOD FOR MANUFACTURING SUCH A STRUCTURAL PART
FR2745746A1 (en) Composite material for lining pipes
FR2811256A1 (en) Production of casing with compensation bridges, for flexography, has composite material comprising several layers wound helicoidally and impregnated with resins
EP2138963A1 (en) Method of manufacturing a device with adjustable thickness comprising a radio frequency transponder antenna and device obtained

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase