WO2004110623A1 - Arsenadsorbierende ionenaustauscher - Google Patents
Arsenadsorbierende ionenaustauscher Download PDFInfo
- Publication number
- WO2004110623A1 WO2004110623A1 PCT/EP2004/005877 EP2004005877W WO2004110623A1 WO 2004110623 A1 WO2004110623 A1 WO 2004110623A1 EP 2004005877 W EP2004005877 W EP 2004005877W WO 2004110623 A1 WO2004110623 A1 WO 2004110623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- iron
- ion exchanger
- iron oxide
- iii
- salts
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/42—Treatment of water, waste water, or sewage by ion-exchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/64—Heavy metals or compounds thereof, e.g. mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/16—Organic material
- B01J39/17—Organic material containing also inorganic materials, e.g. inert material coated with an ion-exchange resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J45/00—Ion-exchange in which a complex or a chelate is formed; Use of material as complex or chelate forming ion-exchangers; Treatment of material for improving the complex or chelate forming ion-exchange properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J47/00—Ion-exchange processes in general; Apparatus therefor
- B01J47/016—Modification or after-treatment of ion-exchangers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/66—Treatment of water, waste water, or sewage by neutralisation; pH adjustment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/103—Arsenic compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/06—Contaminated groundwater or leachate
Definitions
- the present invention relates to a method for producing iron oxide / iron oxyhydroxide-containing carboxyl group-carrying ion exchangers, which is characterized in that
- the suspensions obtained from stages a) or a ') are adjusted to pH values in the range from 3 to 14 by adding alkali metal or alkaline earth metal hydroxides and the iron oxide / iron oxyhydroxide-containing ion exchangers obtained are isolated by known methods.
- Arsenic occurs in natural waters as an oxidic compound with trivalent and pentavalent arsenic. It shows that the species H 3 AsO 3 , H 2 AsO 3 " , H 2 AsO 4 " , HAsO 4 2 " mainly occur at the pH values prevailing in natural waters.
- Ion exchangers are used in a variety of ways to purify raw water, waste water and aqueous process streams. They are particularly effective in softening and desalination. Chelate resins are preferably used in hydrometallurgy for the adsorption of metal, in particular heavy metal or noble metal ions and their compounds from aqueous solutions or organic media.
- This adsorber is therefore not able to remove arsenic ions from aqueous solutions except for the necessary residual amounts.
- the object of the present invention is now to provide an ion exchange resin for the removal of pollutants, preferably heavy metals, in particular arsenic, from liquids, preferably aqueous media or gases, and to provide a process for its production.
- pollutants preferably heavy metals, in particular arsenic
- the suspensions obtained from stages a) or a ⁇ ) are adjusted to pH values in the range from 3 to 14 by adding alkali metal or alkaline earth metal hydroxides and the iron oxide / iron oxyhydroxide-containing ion exchanger obtained is isolated by known methods.
- steps a) and b) can optionally be carried out several times in succession.
- iron (III) salt iron (II) salts can also be used which are wholly or partially oxidized to iron-IH salts in the reaction medium by known oxidation processes.
- the bead polymers obtained are colored brown and, in contrast to the prior art mentioned above, are distinguished by the formation of a highly specific iron oxide / iron oxy hydroxide phase for the adsorption of heavy metals, preferably arsenic.
- heterodisperse or monodisperse carboxyl group-containing ion exchangers or heterodisperse or monodisperse aminomethylated polystyrene bead polymers can be used.
- monodisperse ion exchangers are referred to as bead-shaped resins in which at least 90% by volume or mass of the particles have a diameter which lies in the interval with the width of + 10% of the most common diameter around the most common diameter.
- resin beads with the most common diameter of 0.5 mm are at least 90% by volume or mass in a size interval between 0.45 mm and 0.55 mm, with resin beads with the most common diameter of 0.7 mm are at least 90 Volume or mass% in a size interval between 0.77 mm and 0.63 mm.
- (meth) acrylic acid esters unsaturated aliphatic (meth) acrylic acid esters, in particular methyl acrylic acid, ethyl acrylic acid and methyl methacrylate are used. Unsaturated aliphatic nitriles of the formula (I) are used as (meth) acrylonitrile.
- A, B and C are each independently for. Are hydrogen, alkyl or halogen.
- alkyl means straight-chain or branched alkyl radicals having 1 to 8 carbon atoms, preferably having 1 to 4 carbon atoms.
- Halogen in the sense of the present invention means chlorine, fluorine and bromine.
- Preferred nitriles for the purposes of the present invention are acrylonitrile or methacrylonitrile, acrylonitrile is particularly preferably used.
- Divinyl group-bearing aliphatic or aromatic compounds are used as crosslinkers. These include divinylbenzene, hexadiene 1.5, octadiene 1.7, 2,5-dimethyl-1,5-hexadiene and divinyl ether.
- Suitable divinyl ethers are compounds of the general formula (II)
- Suitable polyvinyl ethers in the case of n> 2 are trivinyl ethers of glycerol, trimethylolpropane or tetravinyl ether of pentaerythritol.
- Divinyl ethers of ethylene glycol, di-, tetra- or polyethylene glycol, butanediol or poly-THF or the corresponding tri- or tetravinyl ethers are preferably used. Particularly preferred are the divinyl ethers of butanediol and diethylene glycol as described in EP-A 11 10 608.
- the reaction (saponification) of the acrylic polymer-containing bead polymers can be carried out with acids or alkalis.
- carboxyl group-containing chelation exchangers which contain aminoacetic acid and / or iminodiacetic acid groups.
- Chelate resins with acetic acid groups are preferably prepared by functionalizing crosslinked styrene / divinylbenzene bead polymers.
- EP-A 0 980 711 and EP-A 1 078 690 describe the reaction of crosslinked heterodisperse or monodisperse crosslinked bead polymers based on styrene / divinylbenzene using the phthalimide process to form chelate resins with groups of acetic acid.
- the content of both documents is included in the present application.
- US Pat. No. 4,444,961 describes, for example, a reaction of crosslinked, macroporous bead polymers by the chloromethylation process to give chloromethylated bead polymer and the subsequent reaction with iminodiacetic acid to form chelate resins with acetic acid groups, the content of which is included in the present application.
- macroporous ion exchangers are preferably used.
- Macroporous bead polymers can be formed, for example, by adding inert materials (porogens) to the monomer mixture during the polymerization.
- Organic substances which dissolve in the monomer but dissolve or swell the polymer poorly for example aliphatic hydrocarbons (paint factories Bayer DBP 1045102, 1957; DBP 1113570, 1957), are particularly suitable as such.
- An aminomethylated, crosslinked polystyrene bead polymer suitable for process step a 1 ) can be prepared, for example, as follows: First, the amidomethylation reagent is prepared. For this purpose, for example, phthalimide or a phthalimide derivative is dissolved in a solvent and mixed with formalin. A bis (phthalimido) methyl ether is then formed from this with elimination of water. The bis (phthalimido) methyl ether can optionally be converted to the phthalimido ester.
- Preferred phthalimide derivatives are phthalimide itself or substituted phthalimides, for example methylphthalimide.
- Inert solvents are used as solvents which are suitable for swelling the polymer, preferably chlorinated hydrocarbons, particularly preferably dichloroethane or methylene chloride. Further details can be found in EP-A 0 980 711 and EP-A 10 78 690.
- the bead polymer is condensed with phthalimide derivatives.
- Oleum, sulfuric acid or sulfur trioxide is used as the catalyst.
- the cleavage of the phthalic acid and the aminomethyl is effected in this case by treating the phthalimidomethylated crosslinked bead polymer with aqueous or alcoholic solutions of an alkali hydroxide such as sodium hydroxide or potassium hydroxide at temperatures between 100 and 250 0 C, preferably 120-190 0 C.
- concentration the sodium hydroxide solution is in the range from 10 to 50% by weight, preferably 20 to 40% by weight.
- the resulting aminomethylated polymer beads can be washed with deionized water without alkali.
- All soluble iron (III) salts can be used as iron (III) salts in process step a) or a '), in particular iron (III) chloride, sulfate, nitrate are used.
- All soluble iron (II) salts can be used as iron (II) salts, in particular iron (II) chloride, sulfate, and nitrate are used.
- the iron (I ⁇ ) salts in the suspension in process step a) or a ') are preferably oxidized by air.
- iron (II) salts or iron (III) salts can be used in bulk or as aqueous solutions.
- the concentration of the iron salts in aqueous solution is freely selectable. Solutions with iron salt contents of 10 to 20% by weight are preferably used.
- the dosage of the aqueous iron salt solution is not critical in terms of time. Depending on the technical circumstances, this can be done as quickly as possible. 0.1 to 2 mol, preferably 0.5 to 1.3 mol, of alkali metal or alkaline earth metal hydroxides are used per mol of iron salt used.
- aminor ⁇ ethylated, crosslinked bead polymers are loaded with iron (III) ions in aqueous suspension and additionally reacted with chloroacetic acid in an alkaline medium to give a bead polymer which contains both chelating iminoacetic acid groups and iron oxide / iron hydroxide.
- the chloroacetic acid preferably monochloroacetic acid
- Chloroacetic acid is metered in over a period of 2 to 6 hours, preferably 3 to 5 hours. Chloroacetic acid is dosed at temperatures between 60 and 100 0 C, preferably at temperatures between 75 and 95 ° C.
- the suspensions obtained from process steps a) and a ') have a pH of ⁇ 3.
- the pH value in process step b) is adjusted using alkali or alkaline earth hydroxides; especially potassium hydroxide, sodium hydroxide or calcium hydroxide. '
- the pH value range in which iron oxide / iron oxyhydroxide groups are formed is in the range between 3 and 14, preferably 3 and 8, particularly preferably between 4 and 7.
- the substances mentioned are preferably used as aqueous solutions.
- the concentration of the aqueous alkali metal hydroxide or alkaline earth metal hydroxide solutions can be up to 50% by weight.
- Aqueous solutions with an alkali hydroxide or alkaline earth hydroxide concentration in the range from 10 to 20% by weight are preferably used.
- the rate of dosing of the aqueous solutions of alkali or alkaline earth hydroxide depends on the level of the desired pH value and the technical conditions. For example, 60 minutes are required. After the desired pH has been reached, stirring is continued for 0.1 to 10 hours, preferably 1 to 4 hours.
- aqueous solutions of alkali or alkaline earth hydroxide are metered in at temperatures between 15 and 95 ° C., preferably at 20 to 50 ° C.
- Per milliliter or carboxyl Ammomethyl phenomenon-carrying ion exchange resin are used from 0.5 to 3 ml of deionized water to .a 'good stirrability to reach the resin.
- process step b) it is likely that the pH change in the pores of the ion exchange resins leads to the formation of FeOOH compounds which have freely accessible OH groups on the surface.
- the arsenic removal then probably takes place via an exchange OH " for HAsO 4 2" or H 2 AsO 4 " with the formation of an AsO-Fe bond.
- Equally capable of ion exchange are also to HAsO 4 2 " or H 2 AsO 4 " isostructural ions such as z. B. H 2 PO 4 " , VO, MoO, WO, SbO anions.
- NaOH or KOH is preferably used as the base.
- any other base which leads to the formation of FeOH groups can also be used, such as NH 4 OH, Na 2 CO 3 , CaO, Mg (OH) 2 etc.
- Isolating in the sense of the present invention means separating the ion exchanger from the aqueous suspension and cleaning it.
- the separation takes place according to the measures known to those skilled in the art, such as decanting, centrifuging, filtering.
- the cleaning is carried out by washing with, for example, deionized water and can include a classification for separating fine or coarse fractions.
- the iron oxide / iron oxyhydroxide-containing ion exchangers can be dried, preferably by reduced pressure and / or more preferably at temperatures between 20 0 C and 18O 0 C.
- the present invention also relates to the products obtainable by the process according to the invention, namely iron oxides / iron oxyhydroxide-containing carboxyl-bearing ion exchangers obtainable by contacting them
- the iron exchangers / iron oxyhydroxide-containing ion exchangers according to the invention not only adsorb arsenic in its various forms but also heavy metals such as cobalt, nickel, lead, zinc, cadmium, copper.
- the iron oxide / iron oxyhydroxide-containing ion exchangers according to the invention can be used for cleaning drinking water from wastewater streams from the chemical industry and from waste incineration plants.
- Another application of the ion exchanger according to the invention is the purification of leachate from landfills.
- the iron oxide / iron oxyhydroxide-containing ion exchangers according to the invention are preferably used in devices suitable for their tasks.
- the invention therefore also relates to devices through which a liquid to be treated can flow, preferably filtration units, particularly preferably adsorption containers, in particular filter adsorption containers, containing ion exchangers containing iron oxide / iron oxyhydroxide, obtainable by the process described in this application, for removing heavy metals, in particular arsenic, from aqueous solutions Media, preferably drinking water or gases are used.
- the devices can e.g. connected to the sanitary and drinking water supply in the household.
- the ion exchangers containing iron oxide / iron oxyhydroxide can be used in combination with other adsorbents, such as activated carbon.
- the present invention therefore also relates to devices through which a liquid to be treated can flow, which in addition to iron oxide / iron oxyhydroxide-containing ion exchangers contain further adsorbents.
- 3000 g of fully demineralized water are placed in a 10 l glass reactor and a solution of 10 g of gelatin, 16 g of disodium hydrogenphosphate dodecahydrate and 0.73 g of resorcinol in 320 g of deionized water is added and mixed. The mixture is heated to 25 0 C.
- a mixture of 3200 g of microencapsulated monomer droplets with a narrow particle size distribution of 3.6% by weight of divinylbenzene and 0.9% by weight of ethylstyrene (used as a commercially available mixture of isomers of divinylbenzene and ethylstyrene with 80% divinylbenzene), 5% by weight of dibenzoyl peroxide, 56.2% by weight of styrene and 38.8% by weight of isododecane (technical isomer mixture with a high proportion of pentamethylheptane), the microcapsule consisting of a complex coacervate of gelatin and a copolymer which is hardened with formaldehyde There is acrylamide and acrylic acid, and 3200 g of aqueous phase with a pH of 12 are added.
- the average particle size of the monomer droplets is 460 ⁇ m.
- the batch is polymerized with stirring by increasing the temperature according to a temperature program at 25 ° C. and ending at 95 ° C.
- the mixture is cooled, washed over a 32 ⁇ m sieve and then dried in vacuo at 80 ° C. 1893 g of a spherical polymer having an average particle size of 440 ⁇ m, a narrow particle size distribution and a smooth surface are obtained.
- the polymer is chalky white when viewed from above and has a bulk density of approx. 370 g / l.
- 3000 g of fully demineralized water are placed in a 10 L glass reactor and a solution of 10 g of gelatin, 16 g of di-sodium hydrogenphosphate dodecahydrate and 0.73 g of resorcinol in 320 g of deionized water are added and mixed. The mixture is heated to 25 ° C.
- a mixture of 3200 g of microencapsulated monomer droplets with a narrow particle size distribution of 8.0% by weight of divinylbenzene and 2.0% by weight of ethylstyrene (used as a commercially available mixture of isomers of divinylbenzene and Ethyl styrene with 80% divinylbenzene), 0.5% by weight of dibenzoyl peroxide, 52.0% by weight of styrene and 37.5% by weight of isododecane (technical isomer mixture with a high proportion of pentamethylheptane), the microcapsule consisting of a Formaldehyde-hardened complex coacervate consists of gelatin and a copolymer of acrylamide and acrylic acid, and 3200 g of aqueous phase with a pH of 12 are added.
- the average particle size of the monomer droplets is 460 ⁇ m.
- the batch is polymerized with stirring by increasing the temperature according to a temperature program at 25 ° C. and ending at 95 ° C.
- the mixture is cooled, washed over a 32 ⁇ m sieve and then dried in vacuo at 80 ° C. 1893 g of a spherical polymer having an average particle size of 440 ⁇ m, a narrow particle size distribution and a smooth surface are obtained.
- the polymer is chalky white when viewed from above and has a bulk density of approx. 370 g / l.
- the bead polymer obtained is washed with deionized water.
- the total yield - extrapolated - is 1804 ml
- 1180 ml of aminomethylated polymer beads from Example Ic) are metered into 1890 ml of completely deionized water at room temperature.
- 729.2 g of sodium salt of monochloroacetic acid are metered into this suspension.
- the mixture is stirred at room temperature for 30 minutes.
- the pH of the suspension is adjusted to pH 10 with 20% by weight sodium hydroxide solution.
- the suspension is heated to 80 ° C. in 2 hours.
- the mixture is then stirred at this temperature for a further 10 hours. During this time, the pH is kept at 10 by controlled addition of sodium hydroxide solution.
- the suspension is then cooled.
- the resin is washed free of chloride with deionized water.
- a chelate resin of the iminodiacetic acid type loaded with iron oxide / iron oxyhydroxide 400 ml of the chelating resin produced according to Example 1 with iminodiacetic acid groups are containing with 750 ml of aqueous iron (III) chloride solution, which 103.5 g of iron (III) chloride per liter, and added 750 mL of deionized water and 2.5 ⁇ Stirred for hours at room temperature. A pH of 6 is then set with 10% strength by weight sodium hydroxide solution and held for 2 hours.
- the ion exchanger is then filtered off through a sieve and washed with deionized water until the process is clear.
- the Fe content of the loaded ion exchange beads was determined titrimetrically to be 14.4%.
- Powder diffractograms identify ⁇ -FeOOH as the crystalline phase.
- Powder diffractograms identify ⁇ -FeOOH as the crystalline phase.
- 500 ml of an aminomethylated bead polymer prepared according to Example Ic are introduced into 375 ml of deionized water.
- 750 ml of aqueous iron (III) chloride solution containing 103.5 g of iron (III) chloride per liter are added.
- the suspension is heated to 90 ° C.
- 268 g of monochloroacetic acid are metered in within 4 hours.
- the pH is adjusted to 9.2 with 50% by weight aqueous KOH solution.
- the temperature is heated to 95 ° C .; the pH is adjusted to 10.5 and the mixture is stirred for a further 6 hours at 95 ° C. and pH 10.5.
- Powder diffractograms identify ⁇ -FeOOH as the crystalline phase.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Water Supply & Treatment (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Separation Of Gases By Adsorption (AREA)
- Water Treatment By Sorption (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/571,883 US20060273014A1 (en) | 2003-06-13 | 2004-06-01 | Arsenic-adsorbing ion exchanger |
JP2006515813A JP2006527078A (ja) | 2003-06-13 | 2004-06-01 | ヒ素吸着性イオン交換体 |
EP04735569A EP1656201A1 (de) | 2003-06-13 | 2004-06-01 | Arsenadsorbierende ionenaustauscher |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10327110.4 | 2003-06-13 | ||
DE10327110A DE10327110A1 (de) | 2003-06-13 | 2003-06-13 | Arsenadsorbierende Ionenaustauscher |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004110623A1 true WO2004110623A1 (de) | 2004-12-23 |
Family
ID=33495068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2004/005877 WO2004110623A1 (de) | 2003-06-13 | 2004-06-01 | Arsenadsorbierende ionenaustauscher |
Country Status (6)
Country | Link |
---|---|
US (2) | US20060273014A1 (de) |
EP (1) | EP1656201A1 (de) |
JP (1) | JP2006527078A (de) |
CN (1) | CN1835803A (de) |
DE (1) | DE10327110A1 (de) |
WO (1) | WO2004110623A1 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1568660A1 (de) | 2004-02-24 | 2005-08-31 | Rohm and Haas Company | Verfahren zur Entfernung von Arsen aus Wasser |
WO2006022863A1 (en) * | 2004-08-20 | 2006-03-02 | Resintech, Inc. | Modified anion exchange materials with metal inside the materials, method of making same and method of removing and recovering metals from solutions |
EP1727618A2 (de) * | 2004-01-21 | 2006-12-06 | Sengupta, Arup K. | Verfahren zur herstellung und verwendung eines hybridanionenaustauschers zur selektiven entfernung verunreinigender liganden aus fluiden |
EP1987882A1 (de) * | 2007-05-03 | 2008-11-05 | Lanxess Deutschland GmbH | Konditionierung von Ionenaustauschern zur Adsorption von Oxoanionen |
EP2292561A2 (de) | 2009-09-08 | 2011-03-09 | LANXESS Deutschland GmbH | Entfernen von Oxoanionen aus silikathaltigem Wasser |
WO2016061265A1 (en) | 2014-10-14 | 2016-04-21 | Halosource, Inc. | Polymeric hybrid particle containing nano particles and uses |
WO2017013110A1 (de) * | 2015-07-20 | 2017-01-26 | Lanxess Deutschland Gmbh | Aluminiumdotierte, iminoessigsäuregruppe enthaltende chelatharze |
US9885095B2 (en) | 2014-01-31 | 2018-02-06 | Goldcorp Inc. | Process for separation of at least one metal sulfide from a mixed sulfide ore or concentrate |
CN107970890A (zh) * | 2017-11-30 | 2018-05-01 | 华南理工大学 | 一种羟基铁改性活性炭复合材料及其制备方法 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10353534A1 (de) * | 2003-11-14 | 2005-06-16 | Bayer Chemicals Ag | Chelataustauscher |
DE102006017372A1 (de) * | 2006-04-11 | 2007-10-18 | Lanxess Deutschland Gmbh | Oxoanionen-adsorbierende Ionenaustauscher |
DE102006017371A1 (de) * | 2006-04-11 | 2007-10-18 | Lanxess Deutschland Gmbh | Amphotere Ionenaustauscher zur Adsorption von Oxoanionen |
JP2010022923A (ja) * | 2008-07-17 | 2010-02-04 | Mitsubishi Chemicals Corp | 排水の処理方法 |
DE202009017948U1 (de) * | 2009-05-13 | 2010-11-04 | Artemis Control Ag | Adsorptives Filtermaterial |
JP2010284607A (ja) * | 2009-06-12 | 2010-12-24 | Toshiba Corp | リン吸着材、及びリン回収システム |
KR20120051000A (ko) * | 2009-07-06 | 2012-05-21 | 할로소스, 인코포레이티드 | 수성 매체로부터 물의 회수 및 현탁된 고형물의 분리를 위한 이중 중합체 시스템 |
US9028590B2 (en) | 2009-10-19 | 2015-05-12 | Lanxess Deutschland Gmbh | Process and apparatus for carbon dioxide and carbonyl sulfide capture via ion exchange resins |
US8414689B2 (en) * | 2009-10-19 | 2013-04-09 | Lanxess Sybron Chemicals Inc. | Process and apparatus for carbon dioxide capture via ion exchange resins |
CN101829603B (zh) * | 2010-04-20 | 2012-03-07 | 华东师范大学 | 负载β-羟基氧化铁树脂的制备方法及其在光催化中的应用 |
US9233863B2 (en) | 2011-04-13 | 2016-01-12 | Molycorp Minerals, Llc | Rare earth removal of hydrated and hydroxyl species |
CN102249455B (zh) * | 2011-05-20 | 2012-07-25 | 杭州永腾膜科技有限公司 | 具有除砷功能的农村饮用水净化系统 |
CN102652915A (zh) * | 2012-04-17 | 2012-09-05 | 南京大学 | 聚合物水凝胶基纳米氧化铁辐射制备方法及应用 |
US9884294B2 (en) | 2012-10-19 | 2018-02-06 | ADA-ES, Inc. | Method and system to thermally regenerate a sorbent |
EP3113859A4 (de) | 2014-03-07 | 2017-10-04 | Secure Natural Resources LLC | Cerium-(iv)-oxid mit hervorragenden arsenentfernungseigenschaften |
CN104946138A (zh) * | 2014-03-27 | 2015-09-30 | 苏州吉利鼎海洋生物科技有限公司 | 一种明胶去重金属离子方法 |
WO2017005741A1 (de) * | 2015-07-06 | 2017-01-12 | Lanxess Deutschland Gmbh | Caesium selektive harze |
JP6846656B2 (ja) * | 2016-12-14 | 2021-03-24 | パナソニックIpマネジメント株式会社 | 水処理装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61187931A (ja) * | 1985-02-18 | 1986-08-21 | Asahi Chem Ind Co Ltd | 水溶液中の砒素の吸着剤 |
JPH09225298A (ja) * | 1996-02-23 | 1997-09-02 | Miyoshi Oil & Fat Co Ltd | 砒素吸着用樹脂及び砒素を含む溶液からの砒素の回収方法 |
WO1999050182A1 (en) * | 1998-04-01 | 1999-10-07 | Alcan International Limited | Water treatment product and method |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3733033A1 (de) * | 1987-09-30 | 1989-04-13 | Bayer Ag | Verfahren zur herstellung von kunstharzen mit anionenaustauschenden eigenschaften |
DE10033583A1 (de) * | 2000-07-11 | 2002-01-24 | Bayer Ag | Superparamagnetische Perlpolymerisate |
DE602005025268D1 (de) * | 2004-02-24 | 2011-01-27 | Rohm & Haas | Verfahren zur Entfernung von Arsen aus Wasser |
CA2577761A1 (en) * | 2004-08-20 | 2006-03-02 | Resintech, Inc | Modified anion exchange materials with metal inside the materials, method of making same and method of removing and recovering metals from solutions |
-
2003
- 2003-06-13 DE DE10327110A patent/DE10327110A1/de not_active Withdrawn
-
2004
- 2004-06-01 WO PCT/EP2004/005877 patent/WO2004110623A1/de active Application Filing
- 2004-06-01 CN CNA2004800232499A patent/CN1835803A/zh active Pending
- 2004-06-01 JP JP2006515813A patent/JP2006527078A/ja not_active Withdrawn
- 2004-06-01 US US10/571,883 patent/US20060273014A1/en not_active Abandoned
- 2004-06-01 EP EP04735569A patent/EP1656201A1/de not_active Withdrawn
-
2005
- 2005-12-08 US US11/299,098 patent/US20060173083A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61187931A (ja) * | 1985-02-18 | 1986-08-21 | Asahi Chem Ind Co Ltd | 水溶液中の砒素の吸着剤 |
JPH09225298A (ja) * | 1996-02-23 | 1997-09-02 | Miyoshi Oil & Fat Co Ltd | 砒素吸着用樹脂及び砒素を含む溶液からの砒素の回収方法 |
WO1999050182A1 (en) * | 1998-04-01 | 1999-10-07 | Alcan International Limited | Water treatment product and method |
Non-Patent Citations (8)
Title |
---|
DATABASE WPI Section Ch Week 198640, Derwent World Patents Index; Class D15, AN 1986-260866, XP002299016 * |
DATABASE WPI Section Ch Week 199745, Derwent World Patents Index; Class A91, AN 1997-484610, XP002298870 * |
DO. Q. TRUNG: "Preconcentration of Arsenic Species in Environmental Waters by Solid Phase Extraction Using Metal-loaded Chelating Resins", ANALYTICAL SCIENCES, vol. 17, 2001, pages 1219 - 1222, XP002297287, Retrieved from the Internet <URL:http://wwwsoc.nii.ac.jp/jsac/analsci/ICAS2001/pdfs/1200/1219_p2074.pdf> [retrieved on 20040930] * |
EDWARDS M ET AL: "ADSORPTIVE FILTRATION USING COATED SAND: A NEW APPROACH FOR TREATMENT OF METAL-BEARING WASTES", JOURNAL OF THE WATER POLLUTION CONTROL FEDERATION, WATER POLLUTION CONTROL FEDERATION. WASHINGTON, US, vol. 61, no. 9 / 10, 1 September 1989 (1989-09-01), pages 1523 - 1533, XP000173147 * |
ILEANA RAU: "Arsenic (V) adsorption by immobilized iron mediation. Modeling of the adsorption process and influence of interfering anions", REACTIVE AND FUNCTIONAL POLYMERS, vol. 54, January 2003 (2003-01-01), pages 85 - 94, XP002297282 * |
M. CHANDA: "Ligand exchange sorption of arsenate and arsenite anions by chelating resins in ferric ion form: II. Iminodiacetic chelating resin chelex 100", REACTIVE POLYMERS, vol. 8, 1988, pages 85 - 95, XP002298869 * |
MATTHEW J. DE MARCO; A.K. SENGUPTA: "Arsenic removal using a polymeric/inorgnic hybrid sorbent", WATER RESEARCH, vol. 37, January 2003 (2003-01-01), pages 164 - 176, XP002298868 * |
T. GUENEGOU: "Elimination of arsenic traces contained in liquid effluents by chromatographic treatment", ANALUSIS, vol. 26, 1998, pages 352 - 357, XP002297283, Retrieved from the Internet <URL:http://www.edpsciences.org/articles/analusis/pdf/1998/09/s120998.pdf> [retrieved on 20040930] * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1727618A2 (de) * | 2004-01-21 | 2006-12-06 | Sengupta, Arup K. | Verfahren zur herstellung und verwendung eines hybridanionenaustauschers zur selektiven entfernung verunreinigender liganden aus fluiden |
EP1727618A4 (de) * | 2004-01-21 | 2011-03-09 | Sengupta Arup K | Verfahren zur herstellung und verwendung eines hybridanionenaustauschers zur selektiven entfernung verunreinigender liganden aus fluiden |
EP1568660A1 (de) | 2004-02-24 | 2005-08-31 | Rohm and Haas Company | Verfahren zur Entfernung von Arsen aus Wasser |
US7282153B2 (en) | 2004-02-24 | 2007-10-16 | Rohm And Haas Company | Method for removal of arsenic from water |
WO2006022863A1 (en) * | 2004-08-20 | 2006-03-02 | Resintech, Inc. | Modified anion exchange materials with metal inside the materials, method of making same and method of removing and recovering metals from solutions |
US7504036B2 (en) | 2004-08-20 | 2009-03-17 | Resintech Incorporated | Method of making and using modified anion exchange materials with metal inside the materials |
EP1987882A1 (de) * | 2007-05-03 | 2008-11-05 | Lanxess Deutschland GmbH | Konditionierung von Ionenaustauschern zur Adsorption von Oxoanionen |
DE102007020688A1 (de) | 2007-05-03 | 2008-11-06 | Lanxess Deutschland Gmbh | Konditionierung von Ionenaustauschern zur Adsorption von Oxoanionen |
EP2292561A2 (de) | 2009-09-08 | 2011-03-09 | LANXESS Deutschland GmbH | Entfernen von Oxoanionen aus silikathaltigem Wasser |
US9885095B2 (en) | 2014-01-31 | 2018-02-06 | Goldcorp Inc. | Process for separation of at least one metal sulfide from a mixed sulfide ore or concentrate |
US11124857B2 (en) | 2014-01-31 | 2021-09-21 | Goldcorp Inc. | Process for separation of antimony and arsenic from a leach solution |
WO2016061265A1 (en) | 2014-10-14 | 2016-04-21 | Halosource, Inc. | Polymeric hybrid particle containing nano particles and uses |
WO2017013110A1 (de) * | 2015-07-20 | 2017-01-26 | Lanxess Deutschland Gmbh | Aluminiumdotierte, iminoessigsäuregruppe enthaltende chelatharze |
CN107849179A (zh) * | 2015-07-20 | 2018-03-27 | 朗盛德国有限责任公司 | 新颖的铝掺杂的、含亚氨基乙酸基团的螯合树脂 |
CN107849179B (zh) * | 2015-07-20 | 2019-12-13 | 朗盛德国有限责任公司 | 新颖的铝掺杂的、含亚氨基乙酸基团的螯合树脂 |
CN107970890A (zh) * | 2017-11-30 | 2018-05-01 | 华南理工大学 | 一种羟基铁改性活性炭复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN1835803A (zh) | 2006-09-20 |
US20060173083A1 (en) | 2006-08-03 |
DE10327110A1 (de) | 2005-01-05 |
EP1656201A1 (de) | 2006-05-17 |
JP2006527078A (ja) | 2006-11-30 |
US20060273014A1 (en) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004110623A1 (de) | Arsenadsorbierende ionenaustauscher | |
EP1078690B1 (de) | Verfahren zur Herstellung von monodispersen Ionenaustauschern mit chelatisierenden Gruppen | |
EP2259874B1 (de) | Picolylaminharze | |
EP2025387B1 (de) | Verfahren zur herstellung monodisperser chelatharze | |
EP1078937B1 (de) | Verfahren zur Herstellung von monodispersen, vernetzten Perlpolymerisaten mit Thioharnstoffgruppen und ihre Verwendung zur Adsorption von Metallverbindungen | |
EP1987882A1 (de) | Konditionierung von Ionenaustauschern zur Adsorption von Oxoanionen | |
EP1844854A1 (de) | Oxoanionen-Adsorbierende Ionenaustauscher | |
EP1844857A2 (de) | Amphotere loneaustauscher zur Adsorption von Oxoanionen | |
EP2305382A1 (de) | Verfahren zur verbesserten Entfernung von Kationen mittels Chelatharzen | |
EP1078688A2 (de) | Verfahren zur Herstellung von monodispersen Anionenaustauschern | |
DE10353534A1 (de) | Chelataustauscher | |
EP2259875B1 (de) | Picolylaminharze | |
EP2305381A2 (de) | Verfahren zur verbesserten Entfernung von Kationen mittels Chelatharzen | |
DE102007050833A1 (de) | Amphotere Ionenaustauscher | |
EP1078689A2 (de) | Verfahren zur Herstellung von monodispersen Anionenaustauschern mit stark basischen funktionellen Gruppen | |
EP1254914A1 (de) | Verfahren zur Herstellung heterodisperser Chelatharze | |
DE102007034731A1 (de) | Chelatharze | |
EP3102328B1 (de) | Neue aluminiumdotierte, iminodiessigsäuregruppen enthaltende chelatharze | |
WO2005028362A2 (de) | Verfahren zur reinigung von schwefelsäuren | |
DE102006034668A1 (de) | Mittel- oder starkbasische Anionenaustauscher | |
DE19954399A1 (de) | Verfahren zur Herstellung von monodispersen Ionenaustauschern mit chelatisierenden Gruppen und ihre Verwendung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200480023249.9 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004735569 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 5498/DELNP/2005 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006515813 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006273014 Country of ref document: US Ref document number: 10571883 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 2004735569 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10571883 Country of ref document: US |