WO2004109235A2 - Optical sensor element and sensor array - Google Patents

Optical sensor element and sensor array Download PDF

Info

Publication number
WO2004109235A2
WO2004109235A2 PCT/EP2004/006247 EP2004006247W WO2004109235A2 WO 2004109235 A2 WO2004109235 A2 WO 2004109235A2 EP 2004006247 W EP2004006247 W EP 2004006247W WO 2004109235 A2 WO2004109235 A2 WO 2004109235A2
Authority
WO
WIPO (PCT)
Prior art keywords
optical sensor
electrodes
sensor element
doping
insulated
Prior art date
Application number
PCT/EP2004/006247
Other languages
German (de)
French (fr)
Other versions
WO2004109235A3 (en
Inventor
Peter Deimel
Ulrich Prechtel
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10340906A external-priority patent/DE10340906A1/en
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Priority to US10/560,498 priority Critical patent/US20060284275A1/en
Publication of WO2004109235A2 publication Critical patent/WO2004109235A2/en
Publication of WO2004109235A3 publication Critical patent/WO2004109235A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices

Definitions

  • the present invention relates to an optical sensor element in which a light-sensitive region in which charge carriers can be released by exposure and two doping zones for receiving charge carriers released in the light-sensitive region are formed in a semiconductor substrate, and electrodes with which are insulated from the light-sensitive region for generation a field gradient in the photosensitive area.
  • FIG. 1 shows a section through a semiconductor substrate 1, in which doping zones 2, 3 are formed by diffusion or implantation of foreign atoms.
  • a translucent oxide layer 4 covers part of the doping zones 2, 3 and an intermediate substrate area with intrinsic conductivity.
  • Two translucent electrodes 5, 6 are applied to the oxide layer 4.
  • the structure is similar to that of a conventional MOSFET, the gate of which is divided into two parts corresponding to the electrodes 5, 6 by a narrow window 7.
  • the electrodes 5, 6 are transparent in order to be able to use the entire substrate surface between the doping zones 2, 3 for light absorption.
  • the electrodes 5, 6 are alternately connected to a potential which creates a potential gradient in the region of the semiconductor substrate 1 lying between the electrodes 5, 6, which, depending on the polarity, “shovels” the charge carriers to one of the two doping zones 2, 3 . Charge carriers of the appropriate type that reach one of the doping zones 2 or 3 thus result in a photocurrent.
  • a light source such as a laser diode
  • a light source is modulated on-off with the same signal that is also applied to one of the electrodes 5, 6 in order to generate a potential gradient with an alternating direction between them.
  • the laser diode radiates the light onto an object , the distance of which is to be measured, and light reflected by the object strikes the electrodes 5, 6 and / or the window 7 and generates charge carrier pairs in the semiconductor material underneath.
  • the distance of the object is zero, there is no phase difference between the light striking the window 7 and the signal, for example, applied to the electrode 5; Whenever light hits the window 7, there is a potential gradient at the electrodes 5, which leads the charge carriers generated in the substrate to the doping zone 2. In the time intervals in which the direction of the potential gradient is reversed and the charge carriers are guided to the doping zone 3, no light falls on the window 7, so that a maximum photocurrent is detected at the doping zone 2 and no photocurrent at the doping zone 3. With increasing distance of the object to be detected, the transit time-related phase shift between the signals applied to the electrodes and the light incident on the window 7 increases, and the distance of the object can be deduced from the ratio of the photocurrents tapped at the doping zones 2, 3 become.
  • a problem with the known structure in FIG. 1 is that the light penetrates into a silicon semiconductor substrate 1 a few micrometers deep (approx. 20 ⁇ m at a wavelength of 850 nm), but that the space charge zone and thus the field gradient serve is generated in the substrate 1 by the potentials applied in phase opposition to the electrodes 5, 6, and is required to allow the charge carriers to migrate to one of the doping zones 2, 3 and has a considerably lower penetration depth. That is, only charge carriers with good effectiveness are collected and directed into the doping zones which are generated in the space charge zone close to the surface of the semiconductor substrate 1 and at a short distance from the electrodes 5, 6; However, a large part of the charge carriers generated arise in deeper areas of the substrate 1 outside the space charge zone, where there is no potential gradient. With these charge carriers, there is a high probability that they will not reach a doping zone or will only reach a doping zone by thermal diffusion after the potential gradient has reversed its direction. The distance information contained in these charge carriers is thus lost.
  • the electrodes 5, 6 on the surface of the substrate leads to a strengthening of the electric field at the mutually facing edges of the electrodes.
  • the electrodes themselves shield large parts of the substrate 1 against the electrical field of the potential gradient, so that charge carriers from there also slowly reach one of the doping zones 2, 3 by thermal diffusion.
  • the object of the present invention is to provide a sensor element of the type defined at the outset, which has a high sensitivity.
  • the object is achieved by a sensor element having the features of claim 1.
  • the insulated electrodes are arranged in trenches formed in the surface of the substrate, they are able to generate an electric field which drives a charge carrier drift between adjacent trenches, which penetrates to a considerable depth into the substrate and also detects charge carriers generated in regions of the substrate remote from the surface and quickly dissipates them to one of the doping zones.
  • the arrangement of the electrodes prevents local elevation of the potential gradient; shielding by channel formation can be avoided.
  • a high percentage of the substrate surface can be used for signal generation.
  • the electric field extends from one trench to the other, ie the potential gradient between the trenches is sufficient to pull almost all of the charge carriers generated out of the space charge zone.
  • Each doping zone should expediently touch an insulation layer of one of the insulated electrodes, so that if a conductive channel forms on the insulation layer as a result of a pull-off potential applied to the insulated electrode, this channel has contact with the doping zone and charge carriers of the doping zone collected in the channel can be supplied without losses. Since, in contrast to the conventional structure, the channels in the structure according to the invention are practically perpendicular to the desired drift direction, they do not shield the areas of the semiconductor substrate lying between two electrodes to any appreciable extent against the electrical field. The entire semiconductor mass between the two electrodes thus contributes to the sensitivity of the sensor element.
  • charge carriers can also be supplied to the doping zones via the channels which form on the electrodes and which lie in deep zones of the semiconductor substrate below of the doping zones are generated. Since the thickness of the doping zones is generally much smaller than the penetration depth of the light, even the semiconductor material below the doping zones can contribute to the sensitivity of the sensor element.
  • the preferred depth of the trenches is between 5 and 40 ⁇ m, preferably between 12 and 25 ⁇ m. In general, the deeper the trenches, the greater the depth of penetration of the light to be detected into the semiconductor substrate 1.
  • two sensor elements adjacent in a first direction are expediently arranged on both sides of a common insulated electrode. Doping zones of the two sensor elements adjacent to the common insulated electrode can be connected in an electrically conductive manner. Two sensor elements with conductively connected doping zones are expediently combined to form a pixel, wherein a pixel can have more than two sensor elements.
  • Such insulation of doping zones lying opposite one another on both sides of an insulated electrode can be achieved, for example, by the insulated electrode lying between them having a thicker insulating layer at the bottom of its trench than at its side walls. This measure prevents the creation of a conductive channel Prevented floor of the trench, which could otherwise be a conductive connection between the doping zones.
  • two adjacent sensor elements belonging to different pixels do not have a common insulated electrode, but a zone which isolates the electrodes from one another is formed between two such electrodes of the adjacent sensor elements.
  • Such an insulating zone can be, for example, the semiconductor substrate itself if, for example, the two electrodes are each housed in their own trenches.
  • the charges discharged from the doping zones are stored on two capacitors.
  • the distance of an object imaged on the pixels can be determined from the difference in the lengths of these two capacitors.
  • these capacitors are 'as the insulated electrodes are preferably housed in trenches so that its plates are perpendicular to the substrate surface orientation aids advantage.
  • Fig. 3 is a plan view of a pixel of a spatial resolution
  • Sensor arrangement formed from several of the sensor elements shown in FIG. 2; 4 shows a plan view of a plurality of pixels of a second spatially resolving sensor arrangement;
  • FIG. 5 shows a schematic section through a sensor element according to a second embodiment of the invention
  • FIG. 6 shows a further example of a sensor arrangement
  • FIG. 2 shows a single sensor element 10 according to the invention. It comprises two parallel trenches 11 anisotropically etched in a silicon substrate 1, which after the etching have been oxidized on the surface to form an insulating oxide layer 12, and which are subsequently coated with electrically conductive material such as metal or highly doped polysilicon have been filled in to form electrodes 13, 14 insulated against the substrate 1.
  • the electrodes 13, 14 face each other like parallel plates of a capacitor.
  • the depth of the trenches 11 is typically approximately 25 ⁇ m, their length is largely arbitrary and, depending on the size of a pixel formed by one or more sensor elements 10, can be, for example, in a range from 20 to 200 ⁇ m.
  • Two doping zones 15, 16 are formed between the two electrodes 13, 14 and in each case in contact with the oxide layer 12 of one of them.
  • the thickness of the doping zones 15, 16 is a few hundred nanometers and is therefore significantly less than the depth of penetration of the light into the semiconductor substrate 1, so that not only light that falls on an undoped surface area 17 between the zones 15, 16, but also light that penetrates the doping zones 15, 16 can release charge carriers in the sensitive area 18 of the substrate lying between the trenches 11 , These charge carriers are drawn off toward the electrode 13 or 14, each of which has a pull-off potential.
  • a channel 19 is formed in this region in which the charge carriers can move freely. The charge carriers flow via this channel 19 to the adjacent doping zone 15 or 16.
  • the charge carriers are derived from the doping zones 15, 16 via an ohmic contact attached thereto, e.g. to (not shown) collecting capacitors, the plates of which, like the electrodes 13, 14, are each formed by electrically conductive material which is introduced into a trench etched into the semiconductor substrate 1 and is electrically insulated from the substrate 1.
  • FIG. 3 shows a plan view of a pixel of a sensor arrangement, which is composed of four sensor elements 10, as shown in FIG. 2.
  • An individual sensor element 10 in FIG. 3 corresponds to the area identified by a dashed rectangle.
  • the two doping zones 15, 16 on each of the electrodes 13 ' are extended over a longitudinal end of the electrode 13' and thus fused together in an electrically conductive manner. Only the outer electrodes, designated 13 ", have a doping zone 15, 16 only on one long side.
  • the electrodes 13 ', 13 are each connected alternately to two supply lines 20, 21, via which they each receive the pull-off potential out of phase. Accordingly, the doping zones 15, 16 are alternately connected to two signal lines 22, 23 via which drain the charge carriers to collecting capacitors and / or other evaluation circuits.
  • each individual doping zone 15 or 16 surrounding an insulated electrode 13 or 14 is provided with its own signal line 24.
  • the doping zones 15 surrounding them each collect charge carriers from the two sensor elements which are combined in the figure under the reference numeral 24, while when the electrodes 14 receive the pull-off potential, they each Collect load carriers from the pairs labeled 25.
  • Two sensor elements 10 each form a pixel, the position of the pixels fluctuating periodically by half a pixel width or the assignment of the sensor elements 10 to a pixel varying depending on which electrodes have the pull-off potential.
  • the sensor element 10 ′ shown in this figure differs from the sensor element 10 in FIG. 2 in that the oxide layer 12 of the insulated electrodes 13, 14 is in each case made significantly wider at the bottom 26 of the trench in which the electrodes are arranged than on its side flanks 27.
  • the electric field strength in the semiconductor material adjacent to the oxide layer 12 is rial in each case lower on the bottom 26 than on the side flanks 27. This makes it possible to apply a pull-off potential to one of the electrodes 13, 14 that is strong enough to produce two channels 19 on both sides of the electrode, but not one the bottom 26 bridging channel that would short these two channels 19.
  • each sensor element 10' is a pixel that is independent of the other represents.
  • each insulated electrode 13, 14 belongs to exactly one sensor element 10, and there is one between adjacent electrodes 13, 14 of different sensor elements 10 insulating layer 28, here in the form of material of the semiconductor substrate 1.
  • the insulating layer can also be a further trench, which electrically separates the trenches of adjacent electrodes 13, 14 from one another.
  • Such a trench can surround the entire pixel and thus contribute to the optical and electrical separation of the individual pixels from one another.
  • FIG. 7 A single sensor element according to the invention is shown in FIG. 7 in accordance with FIG.
  • the sensor element shown in FIG. 7 differs from the sensor element shown in FIG. 2 in that a simple metal semiconductor structure 31 is introduced in the etched trench 11 instead of a metal oxide semiconductor (MOS). Instead of an O
  • MOS metal oxide semiconductor
  • the trenches 11 etched into the photosensitive region 18 are filled with a metal layer, analogously to the highly doped polysilicon 14.
  • the oxide layer 12 shown in FIG. 2 is not present here.
  • the trenches 11 filled with the metal are metal-semiconductor contacts which form Schottky barriers 30 with respect to the silicon in the photosensitive region 18.
  • the sensor element has no doping zones (15, 16). As a result, the sensor element can be manufactured easily, with fewer work steps being required.
  • Fig. 8 shows a plurality of sensor elements according to the invention with the surface of the light-sensitive areas 18-diffused p + contact closure 32.
  • the wide ohmic p + - contacts 32 can direct the light, such as sunlight in the environment, are eliminated.
  • photons from the ambient light of the surroundings are also absorbed on the surface of the light-sensitive areas 18.
  • the short-wave portion of the constant light photons has only a small penetration depth in silicon and is therefore absorbed on the surface of the photosensitive region 18.
  • Signal photons of the near infrared wavelength range penetrate deeper into the silicon.
  • those charge carriers are removed which are generated by the short-wave direct light radiation near the surface of the photosensitive region 18 and do not contribute to the signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

The invention relates to an optical sensor element (10) which comprises, in a semiconductor substrate (1), a light-sensitive region (18) in which charge carriers can be released by irradiation, and two doped regions (15, 16) for receiving the charge carriers released in the light-sensitive region (18). The invention is characterized in that electrodes (13, 14) for generating a field gradient in the light-sensitive region (18) are insulated from the light-sensitive region (18) and are disposed in trenches formed in the surface of the substrate (1).

Description

Optisches Sensorelement und Sensoranordnung Optical sensor element and sensor arrangement
Die vorliegende Erfindung betrifft ein optisches Sensorelement, bei dem in einem Halbleitersubstrat ein lichtempfindlicher Bereich, in dem durch Belichtung Ladungsträger freisetzbar sind, und zwei Dotierungszonen zum Aufnehmen von in dem lichtempfindlichen Bereich freigesetzten Ladungsträgern gebildet sind, sowie mit gegen den lichtempfindlichen Bereich isolierten Elektroden zum Erzeugen eines Feldgradienten in dem lichtempfindlichen Bereich.The present invention relates to an optical sensor element in which a light-sensitive region in which charge carriers can be released by exposure and two doping zones for receiving charge carriers released in the light-sensitive region are formed in a semiconductor substrate, and electrodes with which are insulated from the light-sensitive region for generation a field gradient in the photosensitive area.
Herkömmliche Sensorelemente dieses Typs haben den in Fig. 1 schematisch dargestellten Aufbau. Fig. 1 zeigt einen Schnitt durch ein Halbleitersubstrat 1, in dem durch Diffusion oder Implantation von Fremdatomen Dotierungszonen 2, 3 gebildet sind. Eine lichtdurchlässige Oxidschicht 4 überdeckt jeweils einen Teil der Dotierungszonen 2, 3 sowie einen dazwischenliegenden Substratbereich mit intrinsischer Leitfähigkeit. Auf der Oxidschicht 4 sind zwei lichtdurchlässige Elektroden 5, 6 aufgebracht. Die Struktur ähnelt der eines herkömmlichen MOSFET, dessen Gate durch ein schmales Fenster 7 in zwei den Elektroden 5, 6 entsprechende Teile geteilt ist.Conventional sensor elements of this type have the structure shown schematically in FIG. 1. 1 shows a section through a semiconductor substrate 1, in which doping zones 2, 3 are formed by diffusion or implantation of foreign atoms. A translucent oxide layer 4 covers part of the doping zones 2, 3 and an intermediate substrate area with intrinsic conductivity. Two translucent electrodes 5, 6 are applied to the oxide layer 4. The structure is similar to that of a conventional MOSFET, the gate of which is divided into two parts corresponding to the electrodes 5, 6 by a narrow window 7.
Licht dringt durch die Elektroden 5, 6 und das dazwischen liegende Fenster 7 und durch die Oxidschicht 4 in das Halbleitersubstrat 1 ein und erzeugt darin Paare von Ladungsträ- gern. Die Elektroden 5, 6 sind transparent, um die gesamte Substratoberfläche zwischen den Dotierungszonen 2, 3 für die Lichtabsorption nutzen zu können. Die Elektroden 5, 6 werden jeweils alternierend mit einem Potential beschaltet, das in dem zwischen den Elektroden 5, 6 liegenden Bereich des Halbleitersubstrats 1 einen Potentialgradienten hervorruft, der je nach Polung die Ladungsträger zu einer der zwei Dotierungszonen 2, 3 „schaufelt".. Ladungsträger des geeigneten Typs, die eine der Dotierungszonen 2 o- der 3 erreichen, ergeben so einen Photostrom.Light penetrates through the electrodes 5, 6 and the window 7 lying between them and through the oxide layer 4 into the semiconductor substrate 1 and generates pairs of charge carriers therein. The electrodes 5, 6 are transparent in order to be able to use the entire substrate surface between the doping zones 2, 3 for light absorption. The electrodes 5, 6 are alternately connected to a potential which creates a potential gradient in the region of the semiconductor substrate 1 lying between the electrodes 5, 6, which, depending on the polarity, “shovels” the charge carriers to one of the two doping zones 2, 3 . Charge carriers of the appropriate type that reach one of the doping zones 2 or 3 thus result in a photocurrent.
Der Nutzen derartiger Sensorelemente liegt insbesondere in ihrer Eignung zur Durchführung eines optischen Entfernungsmessverfahrens. Hierfür wird eine Lichtquelle wie etwa eine Laserdiode mit dem gleichen Signal ein-aus-moduliert , das auch an einer der Elektroden 5, 6 anliegt, um zwischen diesen einen Potentialgradienten mit wechselnder Richtung zu erzeu- gen. Die Laserdiode strahlt das Licht auf ein Objekt, dessen Entfernung gemessen werden soll, und von dem Objekt reflektiertes Licht trifft auf die Elektroden 5, 6 und/oder das Fenster 7 und erzeugt im darunter liegenden Halbleitermaterial Ladungsträgerpaare. Wenn die Entfernung des Objektes Null ist, besteht zwischen dem auf das Fenster 7 treffenden Licht und dem beispielsweise an der Elektrode 5 anliegenden Signal kein Phasenunterschied; immer dann, wenn Licht auf das Fenster 7 trifft, liegt ein Potentialgradient an den Elektroden 5 an, der die in dem Substrat erzeugten Ladungsträger zur Do- tierungszone 2 ableitet. In den Zeitintervallen, in denen die Richtung des Potentialgradienten umgekehrt ist und die Ladungsträger zur Dotierungszone 3 geführt werden, fällt kein Licht auf das Fenster 7, so dass an der Dotierungszone 2 ein maximaler Photostrom und an der Dotierungszone 3 kein Photo- ström erfasst wird. Mit zunehmender Entfernung des zu erfassenden Objektes wird die laufzeitbedingte Phasenverschiebung zwischen den an den Elektroden anliegenden Signalen und dem auf das Fenster 7 treffenden Licht immer größer, und aus dem Verhältnis der an den Dotierungszonen 2, 3 abgegriffenen Pho- toströme kann die Entfernung des Objektes gefolgert werden. Ein Problem bei der bekannten Struktur der Fig. 1 ist, dass das Licht in ein Silizium-Halbleitersubstrat 1 einige Mikrometer tief eindringt (ca. 20 μm bei einer Wellenlänge von 850 nm) , dass aber die Raumladungszone und damit der Feldgra- dient, der in dem Substrat 1 durch die gegenphasig an den E- lektroden 5, 6 anliegenden Potentiale erzeugt wird, und der benötigt wird, um die Ladungsträger zu einer der Dotierungs- zonen 2, 3 wandern zu lassen, eine demgegenüber wesentlich geringere Eindringtiefe aufweist. Das heißt, es werden nur Ladungsträger mit guter Effektivität aufgefangen und in die Dotierungszonen geleitet, die in der Raumladungszone nahe an der Oberfläche des Halbleitersubstrats 1 und in geringer Entfernung von den Elektroden 5, 6 erzeugt werden; ein Großteil der erzeugten Ladungsträger entsteht jedoch in tieferen Be- reichen des Substrats 1 außerhalb der Raumladungszone, wo kein Potentialgradient vorliegt. Bei diesen Ladungsträgern ist die Wahrscheinlichkeit groß, dass sie keine Dotierungszone erreichen, bzw. durch thermische Diffusion eine Dotierungszone erst erreichen, nachdem das Potentialgradient seine Richtung umgekehrt hat. Die in diesen Ladungsträgern enthaltene Entfernungsinformation geht so verloren.The use of such sensor elements lies in particular in their suitability for carrying out an optical distance measuring method. For this purpose, a light source, such as a laser diode, is modulated on-off with the same signal that is also applied to one of the electrodes 5, 6 in order to generate a potential gradient with an alternating direction between them. The laser diode radiates the light onto an object , the distance of which is to be measured, and light reflected by the object strikes the electrodes 5, 6 and / or the window 7 and generates charge carrier pairs in the semiconductor material underneath. If the distance of the object is zero, there is no phase difference between the light striking the window 7 and the signal, for example, applied to the electrode 5; Whenever light hits the window 7, there is a potential gradient at the electrodes 5, which leads the charge carriers generated in the substrate to the doping zone 2. In the time intervals in which the direction of the potential gradient is reversed and the charge carriers are guided to the doping zone 3, no light falls on the window 7, so that a maximum photocurrent is detected at the doping zone 2 and no photocurrent at the doping zone 3. With increasing distance of the object to be detected, the transit time-related phase shift between the signals applied to the electrodes and the light incident on the window 7 increases, and the distance of the object can be deduced from the ratio of the photocurrents tapped at the doping zones 2, 3 become. A problem with the known structure in FIG. 1 is that the light penetrates into a silicon semiconductor substrate 1 a few micrometers deep (approx. 20 μm at a wavelength of 850 nm), but that the space charge zone and thus the field gradient serve is generated in the substrate 1 by the potentials applied in phase opposition to the electrodes 5, 6, and is required to allow the charge carriers to migrate to one of the doping zones 2, 3 and has a considerably lower penetration depth. That is, only charge carriers with good effectiveness are collected and directed into the doping zones which are generated in the space charge zone close to the surface of the semiconductor substrate 1 and at a short distance from the electrodes 5, 6; However, a large part of the charge carriers generated arise in deeper areas of the substrate 1 outside the space charge zone, where there is no potential gradient. With these charge carriers, there is a high probability that they will not reach a doping zone or will only reach a doping zone by thermal diffusion after the potential gradient has reversed its direction. The distance information contained in these charge carriers is thus lost.
Außerdem ist anzunehmen, dass nur ein kleiner Teil der Oberfläche des Substrats effektiv zum Nachweis von Licht nutzbar ist. Die Anordnung der Elektroden 5, 6 an der Oberfläche des Substrats führt zu einer Verstärkung des elektrischen Feldes an den einander zugewandten Rändern der Elektroden. Die E- lektroden selbst schirmen große Teile des Substrats 1 gegen das elektrische Feld des Potentialgradienten ab, so dass La- dungsträger von dort ebenfalls langsam durch thermische Diffusion zu einer der Dotierungszonen 2, 3 gelangen.In addition, it can be assumed that only a small part of the surface of the substrate can be used effectively for the detection of light. The arrangement of the electrodes 5, 6 on the surface of the substrate leads to a strengthening of the electric field at the mutually facing edges of the electrodes. The electrodes themselves shield large parts of the substrate 1 against the electrical field of the potential gradient, so that charge carriers from there also slowly reach one of the doping zones 2, 3 by thermal diffusion.
Aufgabe der vorliegenden Erfindung ist, ein Sensorelement der eingangs definierten Art anzugeben, das eine hohe Empfind- lichkeit aufweist. Die Aufgabe wird gelöst durch ein Sensorelement mit den Merkmalen des Anspruches 1. Indem erfindungsgemäß die isolierten Elektroden in in der Oberfläche des Substrats gebildeten Gräben angebracht sind, sind sie im Stande, ein eine Drift der Ladungsträger antreibendes elektrisches Feld zwischen benachbarten Gräben zu erzeugen, das bis in eine beträchtliche Tiefe in das Substrat vordringt und auch in oberflächenfernen Bereichen des Substrat erzeugte Ladungsträger erfasst und schnell zu einer der Dotierungszonen ableitet. Die Anordnung der Elektroden verhindert eine lokale Überhöhung des Potentialgradienten; eine Abschirmung durch Kanalbildung kann vermieden werden. Außerdem ist aufgrund der Anordnung der Elektroden ein hoher Prozentsatz der Substratoberfläche zur Signalerzeugung nutzbar. Im Idealfall reicht das elektrische Feld von einem Graben bis zum anderen, d.h. der Potentialgradient zwischen den Gräben reicht aus, um nahezu alle erzeugten Ladungsträger aus der Raumladungszone herauszuziehen.The object of the present invention is to provide a sensor element of the type defined at the outset, which has a high sensitivity. The object is achieved by a sensor element having the features of claim 1. According to the invention, since the insulated electrodes are arranged in trenches formed in the surface of the substrate, they are able to generate an electric field which drives a charge carrier drift between adjacent trenches, which penetrates to a considerable depth into the substrate and also detects charge carriers generated in regions of the substrate remote from the surface and quickly dissipates them to one of the doping zones. The arrangement of the electrodes prevents local elevation of the potential gradient; shielding by channel formation can be avoided. In addition, due to the arrangement of the electrodes, a high percentage of the substrate surface can be used for signal generation. Ideally, the electric field extends from one trench to the other, ie the potential gradient between the trenches is sufficient to pull almost all of the charge carriers generated out of the space charge zone.
Jede Dotierungszone sollte zweckmäßigerweise eine Isolations- schicht einer der isolierten Elektroden berühren, so dass, wenn sich durch ein an die isolierte Elektrode angelegtes Abziehpotential ein leitfähiger Kanal an der Isolationsschicht bildet, dieser Kanal Kontakt mit der Dotierungszone hat und in dem Kanal gesammelte Ladungsträger der Dotierungszone ohne Verluste zugeleitet werden können. Da anders als bei der herkömmlichen Struktur die Kanäle bei der erfindungsgemäßen Struktur zur gewünschten Driftrichtung praktisch senkrecht stehen, schirmen sie die zwischen zwei Elektroden liegenden Bereiche des Halbleitersubstrats nicht nennenswert gegen das elektrische Feld ab. So trägt die gesamte Halbleitermasse zwischen den zwei Elektroden zur Empfindlichkeit des Sensorelements bei.Each doping zone should expediently touch an insulation layer of one of the insulated electrodes, so that if a conductive channel forms on the insulation layer as a result of a pull-off potential applied to the insulated electrode, this channel has contact with the doping zone and charge carriers of the doping zone collected in the channel can be supplied without losses. Since, in contrast to the conventional structure, the channels in the structure according to the invention are practically perpendicular to the desired drift direction, they do not shield the areas of the semiconductor substrate lying between two electrodes to any appreciable extent against the electrical field. The entire semiconductor mass between the two electrodes thus contributes to the sensitivity of the sensor element.
Wenn die Tiefe der Gräben größer ist als die Dicke der Dotie- rungszonen, können den Dotierungszonen auch über die sich an den Elektroden bildenden Kanäle Ladungsträger zugeführt werden, die in tiefen Zonen des Halbleitersubstrats unterhalb der Dotierungszonen erzeugt werden. Da die Dicke der Dotierungszonen im Allgemeinen viel kleiner als die Eindringtiefe des Lichts ist, kann sogar das Halbleitermaterial unterhalb der Dotierungszonen einen Beitrag zur Empfindlichkeit des Sensorelements leisten.If the depth of the trenches is greater than the thickness of the doping zones, charge carriers can also be supplied to the doping zones via the channels which form on the electrodes and which lie in deep zones of the semiconductor substrate below of the doping zones are generated. Since the thickness of the doping zones is generally much smaller than the penetration depth of the light, even the semiconductor material below the doping zones can contribute to the sensitivity of the sensor element.
Die bevorzugte Tiefe der Gräben liegt zwischen 5 und 40 μm, vorzugsweise zwischen 12 und 25 μm. Im Allgemeinen wird man um so tiefere Gräben wählen, je größer die Eindringtiefe des nachzuweisenden Lichtes in das Halbleitersubstrat 1 ist.The preferred depth of the trenches is between 5 and 40 μm, preferably between 12 and 25 μm. In general, the deeper the trenches, the greater the depth of penetration of the light to be detected into the semiconductor substrate 1.
Um eine gute Ausnutzung der Substratfläche zu erreichen, sind zweckmäßigerweise jeweils zwei in einer ersten Richtung benachbarte Sensorelemente beiderseits einer gemeinsamen iso- lierten Elektrode angeordnet . Dabei können an die gemeinsame isolierte Elektrode angrenzende Dotierungszonen der zwei Sensorelemente elektrisch leitend verbunden sein. Zwei Sensorelemente mit leitend verbundenen Dotierungszonen sind zweckmäßigerweise jeweils zu einem Pixel zusammengefasst , wobei ein Pixel durchaus mehr als zwei Sensorelemente aufweisen kann.In order to achieve a good utilization of the substrate area, two sensor elements adjacent in a first direction are expediently arranged on both sides of a common insulated electrode. Doping zones of the two sensor elements adjacent to the common insulated electrode can be connected in an electrically conductive manner. Two sensor elements with conductively connected doping zones are expediently combined to form a pixel, wherein a pixel can have more than two sensor elements.
Um eine ortsauflösende Sensoranordnung zu schaffen, sollten wenigstens einzelne Paare von Sensorelementen existieren, bei denen an die gemeinsame isolierte Elektrode angrenzende Dotierungszonen der zwei Sensorelemente elektrisch voneinander isoliert sind, so dass die in den zwei Dotierungszonen aufgefangenen Photoströme getrennt voneinander verarbeitet werden können .In order to create a spatially resolving sensor arrangement, there should be at least individual pairs of sensor elements in which doping zones of the two sensor elements adjacent to the common insulated electrode are electrically isolated from one another, so that the photocurrents collected in the two doping zones can be processed separately from one another.
Eine solche Isolation von sich beiderseits einer isolierten Elektrode gegenüberliegenden Dotierungszonen ist zum Beispiel dadurch realisierbar, dass die zwischen ihnen liegende isolierte Elektrode am Boden ihres Grabens eine dickere Isolier- schicht als an dessen Seitenwänden aufweist. Durch diese Maßnahme wird die Entstehung eines leitfähigen Kanals über den Boden des Grabens hinweg verhindert, der sonst eine leitfähige Verbindung zwischen den Dotierungszonen darstellen könnte.Such insulation of doping zones lying opposite one another on both sides of an insulated electrode can be achieved, for example, by the insulated electrode lying between them having a thicker insulating layer at the bottom of its trench than at its side walls. This measure prevents the creation of a conductive channel Prevented floor of the trench, which could otherwise be a conductive connection between the doping zones.
Einer anderen Ausgestaltung zufolge haben zwei benachbarte, zu verschiedenen Pixeln gehörende Sensorelemente nicht eine gemeinsame isolierte Elektrode, sondern zwischen zwei solchen Elektroden der benachbarten Sensorelemente ist eine die E- lektroden gegeneinander isolierende Zone gebildet. Bei einer solchen isolierenden Zone kann es sich zum Beispiel um das Halbleitersubstrat selbst handeln, wenn beispielsweise die zwei Elektroden jeweils in eigenen Gräben untergebracht sind.According to another embodiment, two adjacent sensor elements belonging to different pixels do not have a common insulated electrode, but a zone which isolates the electrodes from one another is formed between two such electrodes of the adjacent sensor elements. Such an insulating zone can be, for example, the semiconductor substrate itself if, for example, the two electrodes are each housed in their own trenches.
Die von den den Dotierungszonen abgeführten Ladungen werden auf zwei Kondensatoren gespeichert. Aus der Differenz der La- düngen dieser zwei Kondensatoren kann die Entfernung eines auf die Pixel abgebildeten Objekts bestimmt werden. Um Substratoberfläche zu sparen, sind 'diese Kondensatoren wie die isolierten Elektroden vorzugsweise in Gräben untergebracht, so dass ihre Platten senkrecht zur Substratoberfläche orien- tiert sind.The charges discharged from the doping zones are stored on two capacitors. The distance of an object imaged on the pixels can be determined from the difference in the lengths of these two capacitors. To save substrate surface, these capacitors are 'as the insulated electrodes are preferably housed in trenches so that its plates are perpendicular to the substrate surface orientation aids advantage.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren.Further features and advantages of the invention result from the following description of exemplary embodiments with reference to the attached figures.
Dabei zeigen:Show:
Fig. 1 bereits behandelt, einen Schnitt durch ein Halbleitersubstrat mit einem herkömmlichen Sensorelement;1 already treated, a section through a semiconductor substrate with a conventional sensor element;
Fig. 2 teils im Schnitt, teils in perspektivischer Drauf- sieht auf die Oberfläche, ein erfindungsgemäßes Sensorelement ;2, partly in section, partly in a perspective top view looking at the surface, a sensor element according to the invention;
Fig. 3 eine Draufsicht auf ein Pixel einer ortauflösendenFig. 3 is a plan view of a pixel of a spatial resolution
Sensoranordnung, gebildet aus mehreren der in Fig. 2 gezeigten Sensorelemente; Fig. 4 eine Draufsicht auf mehrere Pixel einer zweiten ortsauflösenden Sensoranordnung;Sensor arrangement formed from several of the sensor elements shown in FIG. 2; 4 shows a plan view of a plurality of pixels of a second spatially resolving sensor arrangement;
Fig. 5 einen schematischen Schnitt durch ein Sensorelement gemäß einer zweiten Ausgestaltung der Erfindung; und Fig. 6 ein weiteres Beispiel für eine Sensoranordnung;5 shows a schematic section through a sensor element according to a second embodiment of the invention; and FIG. 6 shows a further example of a sensor arrangement;
Fig. 7 teils im Schnitt, teils in perspektivischer Draufsicht auf die Oberfläche, ein erfindungsgemäßes Sensorelement mit 'Metall-Halbleiterstruktur und Schott- ky-Barriere; Fig. 8 mehrere Sensorelemente mit eindiffundiertem p+-Kontakt .7, partly in section, partly in a perspective top view of the surface, an inventive sensor element with a metal semiconductor structure and Schottky barrier; Fig. 8 several sensor elements with diffused p + contact.
Fig. 2 zeigt ein einzelnes erfindungsgemäßes Sensorelement 10. Es umfasst zwei in einem Siliziumsubstrat 1 anisotrop ge- ätzte, parallele Gräben 11, die nach dem Ätzen oberflächlich oxidiert worden sind, um eine isolierende Oxidschicht 12 zu bilden, und die anschließend mit elektrisch leitfähigem Material wie etwa Metall oder hochdotiertem Polysilizium aufgefüllt worden sind, um gegen das Substrat 1 isolierte Elektro- den 13, 14 zu bilden. Die Elektroden 13, 14 liegen einander wie parallele Platten eines Kondensators gegenüber. Die Tiefe der Gräben 11 beträgt typischerweise ca. 25 μm, ihre Länge ist weitgehend willkürlich wählbar und kann je nach Größe eines durch ein oder mehrere Sensorelemente 10 gebildeten Pi- xels beispielsweise in einem Bereich von 20 bis 200 μm liegen.2 shows a single sensor element 10 according to the invention. It comprises two parallel trenches 11 anisotropically etched in a silicon substrate 1, which after the etching have been oxidized on the surface to form an insulating oxide layer 12, and which are subsequently coated with electrically conductive material such as metal or highly doped polysilicon have been filled in to form electrodes 13, 14 insulated against the substrate 1. The electrodes 13, 14 face each other like parallel plates of a capacitor. The depth of the trenches 11 is typically approximately 25 μm, their length is largely arbitrary and, depending on the size of a pixel formed by one or more sensor elements 10, can be, for example, in a range from 20 to 200 μm.
Zwischen den zwei Elektroden 13, 14 und jeweils in Kontakt mit der Oxidschicht 12 einer von ihnen sind zwei Dotierungs- zonen 15, 16 gebildet. Die Dicke der Dotierungszonen 15, 16 beträgt einige hundert Nanometer und ist damit deutlich geringer als die Eindringtiefe des Lichtes in das Halbleiter- substrat 1, so dass nicht nur Licht, das auf einen undotierten Oberflächenbereich 17 zwischen den Zonen 15, 16 fällt, sondern auch Licht, das die Dotierungszonen 15, 16 durchdringt, in dem zwischen den Gräben 11 liegenden empfindlichen Bereich 18 des Substrats Ladungsträger freisetzen kann. Diese Ladungsträger werden zu der jeweils mit einem Abziehpotential beaufschlagten Elektrode 13 oder 14 hin abgezogen. Wenn das angelegte Abziehpotential hoch genug ist, um Ladungsträger an die Oxidschicht 12 der Elektrode 13 oder 14 angrenzenden Bereich des Substrats 1 anzuziehen, .bildet sich in diesem Bereich ein Kanal 19 aus, in dem die Ladungsträger frei beweglich sind. Über diesen Kanal 19 fließen die Ladungsträger zu der benachbarten Dotierungszone 15 bzw. 16 ab.Two doping zones 15, 16 are formed between the two electrodes 13, 14 and in each case in contact with the oxide layer 12 of one of them. The thickness of the doping zones 15, 16 is a few hundred nanometers and is therefore significantly less than the depth of penetration of the light into the semiconductor substrate 1, so that not only light that falls on an undoped surface area 17 between the zones 15, 16, but also light that penetrates the doping zones 15, 16 can release charge carriers in the sensitive area 18 of the substrate lying between the trenches 11 , These charge carriers are drawn off toward the electrode 13 or 14, each of which has a pull-off potential. If the applied pull-off potential is high enough to attract charge carriers to the region of the substrate 1 adjoining the oxide layer 12 of the electrode 13 or 14, a channel 19 is formed in this region in which the charge carriers can move freely. The charge carriers flow via this channel 19 to the adjacent doping zone 15 or 16.
Von den Dotierungszonen 15, 16 werden die Ladungsträger über einen daran angebrachten Ohmschen Kontakt abgeleitet , z.B. zu (nicht dargestellten) Sammelkondensatoren, deren Platten wie die Elektroden 13, 14 jeweils durch elektrisch leitfähiges Material gebildet sind, das in einem in das Halbleiter- substrat 1 geätzten Graben, gegen das Substrat 1 elektrisch isoliert, eingebracht ist.The charge carriers are derived from the doping zones 15, 16 via an ohmic contact attached thereto, e.g. to (not shown) collecting capacitors, the plates of which, like the electrodes 13, 14, are each formed by electrically conductive material which is introduced into a trench etched into the semiconductor substrate 1 and is electrically insulated from the substrate 1.
Fig. 3 zeigt eine Draufsicht auf ein Pixel einer Sensoranordnung, das aus vier Sensorelementen 10, wie in Fig. 2 darge- stellt, zusammengesetzt ist. Ein einzelnes Sensorelement 10 entspricht in Fig. 3 dem durch ein gestricheltes Rechteck gekennzeichneten Bereich. Es gibt zwei isolierte Elektroden 13, in Fig. 3 mit 13' bezeichnet, die jeweils zwei einander benachbarten Sensorelementen 10 angehören und an deren zwei Längsseiten sich Dotierungszonen 15, 16 erstrecken. Die zwei Dotierungszonen 15, 16 an jeder der Elektroden 13' sind über ein Längsende der Elektrode 13 ' verlängert und so miteinander elektrisch leitend verschmolzen. Nur die äußeren Elektroden, mit 13" bezeichnet, weisen nur an einer Längsseite eine Do- tierungszone 15, 16 auf. Die Elektroden 13', 13" sind jeweils alternierend mit zwei Versorgungsleitungen 20, 21 verbunden, über die sie jeweils um 180° phasenverschoben das Abziehpotential empfangen. Entsprechend sind die Dotierungszonen 15, 16 jeweils alternie- rend mit zwei Signalleitungen 22, 23 verbunden, über die die Ladungsträger zu Sammelkondensatoren und/oder anderen Auswertungsschaltungen abfließen.FIG. 3 shows a plan view of a pixel of a sensor arrangement, which is composed of four sensor elements 10, as shown in FIG. 2. An individual sensor element 10 in FIG. 3 corresponds to the area identified by a dashed rectangle. There are two insulated electrodes 13, designated 13 ′ in FIG. 3, which each belong to two adjacent sensor elements 10 and on whose two long sides doping zones 15, 16 extend. The two doping zones 15, 16 on each of the electrodes 13 'are extended over a longitudinal end of the electrode 13' and thus fused together in an electrically conductive manner. Only the outer electrodes, designated 13 ", have a doping zone 15, 16 only on one long side. The electrodes 13 ', 13 "are each connected alternately to two supply lines 20, 21, via which they each receive the pull-off potential out of phase. Accordingly, the doping zones 15, 16 are alternately connected to two signal lines 22, 23 via which drain the charge carriers to collecting capacitors and / or other evaluation circuits.
Bei der in Fig. 4 gezeigten Sensoranordnung ist jede einzelne eine isolierte Elektrode 13 oder 14 umgebende Dotierungszone 15 oder 16 mit einer eigenen Signalleitung 24 versehen. Dies bedeutet, dass, wenn die Elektroden 13 mit dem Abziehpotential beschaltet sind, die sie umgebenden Dotierungszonen 15 jeweils Ladungsträger aus den zwei in der Fig. jeweils unter dem Bezugszeichen 24 zusammengefassten Sensorelementen sammeln, während, wenn die Elektroden 14 das Abziehpotential empfangen, diese jeweils Ladungsträger aus den mit 25 bezeichneten Paaren sammeln. Es bilden also jeweils zwei Sensorelemente 10 ein Pixel, wobei die Position der Pixel je- weils periodisch um eine halbe Pixelbreite schwankt bzw. die Zuordnung der Sensorelemente 10 zu einem Pixel in Abhängigkeit davon variiert, an welchen Elektroden das Abziehpotential anliegt. Mit einer solchen Sensoranordnung können zwar sehr hoch auflösende Bilder, insbesondere in einem Halbbild- modus, erzeugt werden; um diese Bilder für eine ortsauflösende Entfernungsmessung einzusetzen, ist jedoch ein größerer Verarbeitungsaufwand erforderlich als bei stationären Pixeln gemäß der Ausgestaltung der Fig. 3.In the sensor arrangement shown in FIG. 4, each individual doping zone 15 or 16 surrounding an insulated electrode 13 or 14 is provided with its own signal line 24. This means that when the electrodes 13 are connected to the pull-off potential, the doping zones 15 surrounding them each collect charge carriers from the two sensor elements which are combined in the figure under the reference numeral 24, while when the electrodes 14 receive the pull-off potential, they each Collect load carriers from the pairs labeled 25. Two sensor elements 10 each form a pixel, the position of the pixels fluctuating periodically by half a pixel width or the assignment of the sensor elements 10 to a pixel varying depending on which electrodes have the pull-off potential. With such a sensor arrangement, very high-resolution images can be generated, especially in a field mode; In order to use these images for a spatially resolving distance measurement, however, a greater processing outlay is required than with stationary pixels according to the embodiment in FIG. 3.
Kleine stationäre Pixel können mit der Ausgestaltung der Fig.Small stationary pixels can be created with the design of FIG.
5 erhalten werden. Das in dieser Fig. dargestellte Sensorelement 10' unterscheidet sich von dem Sensorelement 10 der Fig. 2 dadurch, dass die Oxidschicht 12 der isolierten Elektroden 13, 14 jeweils am Boden 26 des Grabens, in dem die Elektroden angeordnet sind, deutlich breiter gemacht ist als an dessen Seitenflanken 27. Infolgedessen ist die elektrische Feldstärke in dem an die Oxidschicht 12 angrenzenden Halbleitermate- rial jeweils am Boden 26 geringer als an den Seitenflanken 27. Dadurch ist es möglich, ein Abziehpotential an eine der Elektroden 13, 14 anzulegen, dass zwar stark genug ist, zwei Kanäle 19 auf beiden Seiten der Elektrode zu erzeugen, nicht aber einen den Boden 26 überbrückenden Kanal, der diese zwei Kanäle 19 kurzschließen würde. Da bei dieser Ausgestaltung die Dotierungszonen 15, 16 beiderseits einer isolierten E- lektrode 13 , 14 auch nicht auf der Substratoberfläche miteinander verbunden sind, beeinflussen sich benachbarte Sensor- elemente 10' gegenseitig nicht, so dass jedes Sensorelement 10' ein von den anderen unabhängiges Pixel darstellt.5 can be obtained. The sensor element 10 ′ shown in this figure differs from the sensor element 10 in FIG. 2 in that the oxide layer 12 of the insulated electrodes 13, 14 is in each case made significantly wider at the bottom 26 of the trench in which the electrodes are arranged than on its side flanks 27. As a result, the electric field strength in the semiconductor material adjacent to the oxide layer 12 is rial in each case lower on the bottom 26 than on the side flanks 27. This makes it possible to apply a pull-off potential to one of the electrodes 13, 14 that is strong enough to produce two channels 19 on both sides of the electrode, but not one the bottom 26 bridging channel that would short these two channels 19. Since in this embodiment the doping zones 15, 16 on both sides of an isolated electrode 13, 14 are also not connected to one another on the substrate surface, adjacent sensor elements 10 'do not influence one another, so that each sensor element 10' is a pixel that is independent of the other represents.
Eine andere Möglichkeit, benachbarte Sensorelemente zu entkoppeln, um sie jeweils jedes für sich als ein Pixel zu nut- zen, ist in Fig. 6 gezeigt. Die einzelnen Sensorelemente 10 sind hier mit denen aus Fig. 2 identisch, doch anders als in Fig. 3 gehört jede isolierte Elektrode 13, 14 genau einem Sensorelement 10 an, und zwischen einander benachbarten E- lektroden 13, 14 verschiedener Sensorelemente 10 befindet sich eine isolierende Schicht 28, hier in Form von Material des Halbleitersubstrats 1.Another possibility of decoupling neighboring sensor elements in order to use them each as a pixel is shown in FIG. 6. The individual sensor elements 10 here are identical to those from FIG. 2, but unlike in FIG. 3, each insulated electrode 13, 14 belongs to exactly one sensor element 10, and there is one between adjacent electrodes 13, 14 of different sensor elements 10 insulating layer 28, here in the form of material of the semiconductor substrate 1.
Um die Kapazität der gesamten Sensoranordnung zu verringern, kann die isolierende Schicht auch ein weiterer Graben sein, der die Gräben benachbarter Elektroden 13, 14 elektrisch voneinander trennt . Ein solcher Graben kann das gesamte Pixel umgeben und so zur optischen und elektrischen Trennung der einzelnen Pixel voneinander beitragen.In order to reduce the capacitance of the entire sensor arrangement, the insulating layer can also be a further trench, which electrically separates the trenches of adjacent electrodes 13, 14 from one another. Such a trench can surround the entire pixel and thus contribute to the optical and electrical separation of the individual pixels from one another.
In der Fig.7 wird entsprechend der Fig.2 ein einzelnes erfindungsgemäßes Sensorelement gezeigt. Das in der Fig. 7 gezeigte Sensorelement unterscheidet sich dabei von dem in Fig. 2 gezeigten Sensorelement darin, dass im geätzten Graben 11 anstelle einem Metall -Oxid-Semiconductor (MOS) eine einfache Metall-Halbleiterstruktur 31 eingebracht ist. Statt einer O- xidschicht werden hierbei die in den lichtempfindlichen Bereich 18 geätzten Gräben 11, analog zu dem hochdotierten Po- ly-Silizium 14, mit einem Metall aufgefüllt. Hierbei ist die in der Fig.2 gezeigte Oxidschicht 12 nicht vorhanden. Bei den mit dem Metall aufgefüllten Gräben 11 handelt es sich um Metall-Halbleiter-Kontakte, welche gegenüber dem Silizium des lichtempfindlichen Bereichs 18 Schottky-Barrieren 30 bilden. Die im Silizium erzeugten Ladungsträger werden phasengerecht, d.h. die beiden Schottky-Dioden werden um 180° Phasenverscho- ben angesteuert, über die beiden vertikalen Schottky-Dioden aus dem Silizium herausgezogen und an die Sammelkondensatoren weitergeleitet. In besonders vorteilhafter Weise weist das Sensorelement hierbei keine Dotierungszonen (15,16) auf. Dadurch kann das Sensorelement einfach hergestellt werden, wo- bei weniger Arbeitsschritte benötigt werden.A single sensor element according to the invention is shown in FIG. 7 in accordance with FIG. The sensor element shown in FIG. 7 differs from the sensor element shown in FIG. 2 in that a simple metal semiconductor structure 31 is introduced in the etched trench 11 instead of a metal oxide semiconductor (MOS). Instead of an O In this case, the trenches 11 etched into the photosensitive region 18 are filled with a metal layer, analogously to the highly doped polysilicon 14. The oxide layer 12 shown in FIG. 2 is not present here. The trenches 11 filled with the metal are metal-semiconductor contacts which form Schottky barriers 30 with respect to the silicon in the photosensitive region 18. The charge carriers generated in silicon become phase-correct, ie the two Schottky diodes are driven by a phase shift of 180 °, pulled out of the silicon via the two vertical Schottky diodes and passed on to the collecting capacitors. In a particularly advantageous manner, the sensor element has no doping zones (15, 16). As a result, the sensor element can be manufactured easily, with fewer work steps being required.
Fig. 8 zeigt mehrere erfindungsgemäße Sensorelemente mit an der Oberfläche der lichtempfindlichen Bereiche 18 eindiffundierten p+-Kontakten 32. Mittels der breiten Ohmschen p+- Kontakte 32 kann das Gleichlicht, z.B. Sonnenlicht in der Umgebung, eliminiert werden. An der Oberfläche der lichtempfindlichen Bereiche 18 werden neben den Signalphotonen auch Photonen aus dem Gleichlicht der Umgebung absorbiert. Dabei besitzt der kurzwellige Anteil der Gleichlichtphotonen nur eine geringe Eindringtiefe in Silizium und wird daher an der Oberfläche des lichtempfindlichen Bereichs 18 absorbiert. Signalphotonen des nahen Infraroten Wellenlängenbereichs dringen dagegen tiefer in das Silizium ein. Durch Anlegen einer RückwärtsSpannung an den mit der Leiterbahn 33 verbundenen eindiffundierten p+-Kontakten werden diejenigen Ladungsträger abtransportiert, welche durch die kurzwellige Gleichlichtstrahlung in der Nähe der Oberfläche des lichtempfindlichen Bereichs 18 erzeugt werden und nichts zum Signal beitragen. Fig. 8 shows a plurality of sensor elements according to the invention with the surface of the light-sensitive areas 18-diffused p + contact closure 32. By means of the wide ohmic p + - contacts 32 can direct the light, such as sunlight in the environment, are eliminated. In addition to the signal photons, photons from the ambient light of the surroundings are also absorbed on the surface of the light-sensitive areas 18. The short-wave portion of the constant light photons has only a small penetration depth in silicon and is therefore absorbed on the surface of the photosensitive region 18. Signal photons of the near infrared wavelength range, however, penetrate deeper into the silicon. By applying a reverse voltage to the diffused p + contacts connected to the conductor track 33, those charge carriers are removed which are generated by the short-wave direct light radiation near the surface of the photosensitive region 18 and do not contribute to the signal.

Claims

Patentansprüche claims
1. Optisches Sensorelement (10), bei dem in einem Halbleitersubstrat (1) ein lichtempfindlicher Bereich (18) , in dem durch Belichtung Ladungsträger freisetzbar sind, und zwei Dotierungszonen (15, 16) zum Aufnehmen von im lichtempfindlichen Bereich (18) f eigesetzten Ladungsträgern gebildet sind, sowie mit gegen den lichtempfindlichen Bereich (18) isolierten Elektroden (13, 14) zum Erzeugen eines Feldgradienten in dem lichtempfindlichen Bereich (18) , d a d u r c h g e k e n n z e i c h n e t , dass die isolierten Elektroden (13, 14) in in der Oberfläche des Substrats (1) gebildeten Gräben angebracht sind.1. Optical sensor element (10), in which in a semiconductor substrate (1) a light-sensitive area (18) in which charge carriers can be released by exposure, and two doping zones (15, 16) for recording in the light-sensitive area (18) Charge carriers are formed, and with electrodes (13, 14) insulated against the photosensitive region (18) for generating a field gradient in the photosensitive region (18), characterized in that the insulated electrodes (13, 14) in the surface of the substrate ( 1) formed trenches are attached.
2. Optisches Sensorelement nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass jede Dotierungszone (15, 16) eine Isolationsschicht (12) einer der isolierten Elektroden (13, 14) berührt.2. Optical sensor element according to claim 1, so that each doping zone (15, 16) touches an insulation layer (12) of one of the insulated electrodes (13, 14).
3. Optisches Sensorelement nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass an jeder Dotierungszone (15, 16) ein ohmscher Kontakt gebildet ist.3. An optical sensor element according to claim 1 or 2, so that an ohmic contact is formed at each doping zone (15, 16).
4. Optisches Sensorelement nach einem der vorhergehenden An- sprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Tiefe der Gräben größer ist als die Dicke der Dotierungszonen (15, 16).4. Optical sensor element according to one of the preceding claims, characterized in that that the depth of the trenches is greater than the thickness of the doping zones (15, 16).
5. Optisches Sensorelement nach einem der vorhergehenden An- sprüche , d a d u r c h g e k e n n z e i c h n e t , dass die Tiefe der Gräben zwischen 5 und 40 μm, vorzugsweise zwischen 12 und 25 μm tief sind.5. Optical sensor element according to one of the preceding claims, that the depths of the trenches are between 5 and 40 μm, preferably between 12 and 25 μm deep.
6. Optisches Sensorelement nach einem der vorhergehenden Ansprüche , d a d u r c h g e k e n n z e i c h n e t , dass jeder Dotierungszone (15, 16) ein Sammelkondensator zum Sammeln von aus der Dotierungszone (15, 16) abgezoge- nen Ladungsträgern zugeordnet ist.6. Optical sensor element according to one of the preceding claims, so that each doping zone (15, 16) is assigned a collecting capacitor for collecting charge carriers drawn from the doping zone (15, 16).
7. Optisches Sensorelement nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t , dass jeder Sammelkondensator zwei leitfähige Platten um- fasst, die in Gr ben des Substrats angeordnet sind.7. The optical sensor element as claimed in claim 6, so that each collecting capacitor comprises two conductive plates which are arranged in trenches of the substrate.
8. Optisches Sensorelement nach einem der vorhergehenden Ansprüche , d a d u r c h g e k e n n z e i c h n e t , dass anstelle isolierter Elektroden (13,14) aus Metall- Halbleiterstrukturen (31) aufgebaute Elektroden vorhanden sind, welche gegenüber dem lichtempfindlichen Bereich (18) Schottky-Barrieren (30) bilden.8. Optical sensor element according to one of the preceding claims, d a d u r c h g e k e n n z e i c h n e t that instead of isolated electrodes (13, 14) made of metal semiconductor structures (31) electrodes are present, which form Schottky barriers (30) with respect to the light-sensitive region (18).
9. Optisches Sensorelement nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , dass das Sensorelement keine Dotierungszonen (15,16) aufweist .9. The optical sensor element as claimed in claim 8, so that the sensor element has no doping zones (15, 16).
10. Optisches Sensorelement nach einem der vorhergehenden Ansprüche , d a d u r c h g e k e n n z e i c h n e t , dass an der Oberfläche des lichtempfindlichen Bereichs (18) ein ohmscher p-Kontakt (32) eindiffundiert ist.10. Optical sensor element according to one of the preceding claims, characterized in that an ohmic p-contact (32) has diffused into the surface of the photosensitive region (18).
11. Optische Sensoranordnung mit einer Mehrzahl von Sensoren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass jeweils zwei in einer ersten Richtung benachbarte Sensorelemente (10) beiderseits einer gemeinsamen isolierten Elektrode (13') angeordnet sind.11. Optical sensor arrangement with a plurality of sensors according to one of the preceding claims, so that two sensor elements (10) adjacent in a first direction are arranged on both sides of a common insulated electrode (13 ').
12. Optische Sensoranordnung nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass an die gemeinsame isolierte Elektrode (13') angrenzende Dotierungszonen (15, 16) der zwei Sensorelemente (10) elektrisch leitend verbunden sind.12. Optical sensor arrangement according to claim 11, so that doping zones (15, 16) of the two sensor elements (10) adjoining the common insulated electrode (13 ') are electrically conductively connected.
13. Optische Sensoranordnung nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass die zwei Sensorelemente (10) zu einem Pixel zusam- mengefasst sind.13. An optical sensor arrangement according to claim 12, so that the two sensor elements (10) are combined to form a pixel.
14. Optische Sensoranordnung nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t , dass an die gemeinsame isolierte Elektrode (13') angren- zende Dotierungszonen (15, 16) der zwei Sensorelemente (10, 10') elektrisch voneinander isoliert sind.14. An optical sensor arrangement according to claim 11, so that doping zones (15, 16) of the two sensor elements (10, 10 ') adjoining the common insulated electrode (13') are electrically insulated from one another.
15. Optische Sensoranordnung nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , dass eine Isolierschicht (12) einer der isolierten Elektroden (13, 14) am Boden (26) ihres Grabens dicker als an dessen Seitenwänden (27) ist.15. Optical sensor arrangement according to claim 14, so that an insulating layer (12) of one of the insulated electrodes (13, 14) is thicker on the bottom (26) of its trench than on its side walls (27).
16. Optische Sensoranordnung mit einer Mehrzahl von Sensoren nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t , dass zwischen einander benachbarten isolierten Elektroden (13, 14) von zwei in einer ersten Richtung benachbarten Sensorelementen (10) eine die Elektroden (13, 14) gegeneinander isolierende Zone (28) gebildet ist.16. Optical sensor arrangement with a plurality of sensors according to one of claims 1 to 7, characterized in that between adjacent insulated electrodes (13, 14) is formed by two adjacent sensor elements (10) in a first direction, a zone (28) isolating the electrodes (13, 14) from each other.
17. Optische Sensoranordnung nach Anspruch 16, d a d u r c h g e k e n n z e i c h n e t , dass die isolierende Zone (28) durch das Halbleitersubstrat (1) oder einen Graben gebildet ist. 17. Optical sensor arrangement according to claim 16, so that the insulating zone (28) is formed by the semiconductor substrate (1) or a trench.
PCT/EP2004/006247 2003-06-11 2004-06-09 Optical sensor element and sensor array WO2004109235A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/560,498 US20060284275A1 (en) 2003-06-11 2004-06-09 Optical sensor element and sensor array

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10326640.2 2003-06-11
DE10326640 2003-06-11
DE10340906A DE10340906A1 (en) 2003-06-11 2003-09-02 Optical sensor element and sensor arrangement
DE10340906.8 2003-09-02

Publications (2)

Publication Number Publication Date
WO2004109235A2 true WO2004109235A2 (en) 2004-12-16
WO2004109235A3 WO2004109235A3 (en) 2005-08-25

Family

ID=33512396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/006247 WO2004109235A2 (en) 2003-06-11 2004-06-09 Optical sensor element and sensor array

Country Status (1)

Country Link
WO (1) WO2004109235A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011056369A1 (en) * 2011-12-13 2013-06-13 Pmdtechnologies Gmbh Semiconductor device with trench gate
JPWO2020017342A1 (en) * 2018-07-18 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 Light receiving element and ranging module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760273A (en) * 1986-05-13 1988-07-26 Mitsubishi Denki Kabushiki Kaisha Solid-state image sensor with groove-situated transfer elements
EP0627771A1 (en) * 1992-12-21 1994-12-07 The Furukawa Electric Co., Ltd. Distorted superlattice semiconductor photodetecting element with side-contact structure
EP0651448A1 (en) * 1993-10-28 1995-05-03 Hitachi Europe Limited Improved metal-semiconductor-metal photodetector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133660A (en) * 1984-12-03 1986-06-20 Olympus Optical Co Ltd Solid state image sensor
JPS61204966A (en) * 1985-03-08 1986-09-11 Fuji Photo Film Co Ltd Solid image sensor device
JPS61260672A (en) * 1985-05-15 1986-11-18 Nec Corp Solid-state image pickup device
JPS62269354A (en) * 1986-05-16 1987-11-21 Mitsubishi Electric Corp Solid-state image sensing element
JPH0714050B2 (en) * 1986-06-09 1995-02-15 富士写真フイルム株式会社 Charge transfer device
JPS6327057A (en) * 1986-07-18 1988-02-04 Nec Corp Solid stage image sensing device
JPH07142757A (en) * 1993-11-17 1995-06-02 Fuji Electric Co Ltd Manufacture of semiconductor light sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4760273A (en) * 1986-05-13 1988-07-26 Mitsubishi Denki Kabushiki Kaisha Solid-state image sensor with groove-situated transfer elements
EP0627771A1 (en) * 1992-12-21 1994-12-07 The Furukawa Electric Co., Ltd. Distorted superlattice semiconductor photodetecting element with side-contact structure
EP0651448A1 (en) * 1993-10-28 1995-05-03 Hitachi Europe Limited Improved metal-semiconductor-metal photodetector

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN Bd. 010, Nr. 325 (E-451), 6. November 1986 (1986-11-06) -& JP 61 133660 A (OLYMPUS OPTICAL CO LTD), 20. Juni 1986 (1986-06-20) *
PATENT ABSTRACTS OF JAPAN Bd. 011, Nr. 036 (E-477), 3. Februar 1987 (1987-02-03) -& JP 61 204966 A (FUJI PHOTO FILM CO LTD), 11. September 1986 (1986-09-11) *
PATENT ABSTRACTS OF JAPAN Bd. 011, Nr. 113 (E-497), 9. April 1987 (1987-04-09) -& JP 61 260672 A (NEC CORP), 18. November 1986 (1986-11-18) *
PATENT ABSTRACTS OF JAPAN Bd. 012, Nr. 153 (E-607), 11. Mai 1988 (1988-05-11) -& JP 62 269354 A (MITSUBISHI ELECTRIC CORP), 21. November 1987 (1987-11-21) *
PATENT ABSTRACTS OF JAPAN Bd. 012, Nr. 187 (E-615), 31. Mai 1988 (1988-05-31) -& JP 62 290175 A (FUJI PHOTO FILM CO LTD), 17. Dezember 1987 (1987-12-17) *
PATENT ABSTRACTS OF JAPAN Bd. 012, Nr. 234 (E-629), 5. Juli 1988 (1988-07-05) -& JP 63 027057 A (NEC CORP), 4. Februar 1988 (1988-02-04) *
PATENT ABSTRACTS OF JAPAN Bd. 1995, Nr. 09, 31. Oktober 1995 (1995-10-31) -& JP 07 142757 A (FUJI ELECTRIC CO LTD), 2. Juni 1995 (1995-06-02) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011056369A1 (en) * 2011-12-13 2013-06-13 Pmdtechnologies Gmbh Semiconductor device with trench gate
JPWO2020017342A1 (en) * 2018-07-18 2021-08-12 ソニーセミコンダクタソリューションズ株式会社 Light receiving element and ranging module

Also Published As

Publication number Publication date
WO2004109235A3 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
DE102016223568B3 (en) Optical sensor device with deep and flat control electrodes
EP1584904B1 (en) Photonic mixing device (PMD)
EP0179102B1 (en) Depleted semi-conductor element with a potential minimum for majority carriers
DE2611338C3 (en) Field effect transistor with a very short channel length
DE3889477T2 (en) Radiation sensitive semiconductor device.
DE102006035005A1 (en) Photodetector for detecting megavolt radiation comprises a semiconductor conversion layer, electrodes coupled with surfaces of the conversion layer and a substrate coupled with one electrode opposite the conversion layer
DE102016209319A1 (en) Pixel cell for a sensor and corresponding sensor
EP0007384B1 (en) One-dimensional ccd-sensor with overflow device
EP1431779B1 (en) Semiconductor detector with an optimised entrance window
DE2849511A1 (en) PHOTODETECTOR ARRANGEMENT
DE2107022A1 (en) Information storage assembly
WO2013087608A1 (en) Semiconductor component with trench gate
DE2200455C3 (en) Charge-coupled semiconductor circuit
DE69935947T2 (en) Quantum well detector with photo-excited electron storage device
WO2004109235A2 (en) Optical sensor element and sensor array
DE10340906A1 (en) Optical sensor element and sensor arrangement
DE3330673C2 (en) Thermal radiation image sensor and method for its manufacture and operation
DE112021006393T5 (en) Photodiode device with improved properties
DE102012012296B4 (en) Device for detecting electromagnetic radiation and method for operating such a device
DE102012109548B4 (en) Readout gate
DE2811961A1 (en) COLOR IMAGE SENSOR
DE102013102061A1 (en) Semiconductor component for detecting electromagnetic radiation of photosensitive semiconductor substrate, has first and second substrate portions having read-out nodes whose charge carriers are read out and do not pass from one to other
WO2001006566A1 (en) Image cell, image sensor and production method therefor
DE102005007358A1 (en) Photosensitive component
DE68927813T2 (en) Field transfer type image pickup device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2006284275

Country of ref document: US

Ref document number: 10560498

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10560498

Country of ref document: US