WO2004109082A1 - Internal combustion engine with variable intake valve - Google Patents

Internal combustion engine with variable intake valve Download PDF

Info

Publication number
WO2004109082A1
WO2004109082A1 PCT/JP2003/006996 JP0306996W WO2004109082A1 WO 2004109082 A1 WO2004109082 A1 WO 2004109082A1 JP 0306996 W JP0306996 W JP 0306996W WO 2004109082 A1 WO2004109082 A1 WO 2004109082A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
valve
intake valve
fuel
period
Prior art date
Application number
PCT/JP2003/006996
Other languages
French (fr)
Japanese (ja)
Inventor
Yuusuke Kihara
Yoshihiro Sukegawa
Toshiharu Nogi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2003/006996 priority Critical patent/WO2004109082A1/en
Priority to JP2005500529A priority patent/JPWO2004109082A1/en
Publication of WO2004109082A1 publication Critical patent/WO2004109082A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • F02D13/0226Variable control of the intake valves only changing valve lift or valve lift and timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D2013/0292Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation in the start-up phase, e.g. for warming-up cold engine or catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0015Controlling intake air for engines with means for controlling swirl or tumble flow, e.g. by using swirl valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an internal combustion engine provided with a variable intake valve capable of changing an opening timing, an opening period, and a lift amount of an intake valve, and in particular, to an internal combustion engine provided with a variable intake valve suitable for being applied to control at a cold start. About the institution.
  • the purification capacity is low in an inactive state where the catalyst temperature is low at the time of cold start, and unburned fuel discharged from the engine is directly discharged into the atmosphere, which causes a deterioration in the environment. Therefore, it is necessary to minimize this unburned fuel to reduce emissions.
  • the opening timing of the intake valve is retarded at the time of starting when the water temperature is 50 ° C or lower, and the flow rate of the intake air is reduced.
  • the fuel injection timing is set so that the fuel reaches the intake valve when the intake valve opens, and the amount of fuel adhering to the intake pipe is reduced by the air flow generated when the intake valve opens. ing. Disclosure of the invention
  • An object of the present invention is to provide an internal combustion engine equipped with a variable intake valve capable of preventing fuel from adhering to a wall surface, enabling atomization of fuel spray, and reducing unburned fuel.
  • the present invention relates to an internal combustion engine having a variable intake valve capable of changing the opening timing, the opening period, and the amount of lift of an intake valve.
  • the opening period of the intake valve is longer than the opening period of the intake valve, the fuel injection amount per unit time or the intake air amount is changed so that the fuel injection period of the fuel injection valve is controlled to be shorter than the opening period of the intake valve.
  • control means With this configuration, the fuel injection period of the fuel injection valve is shorter than the opening period of the intake valve, preventing fuel from adhering to the wall surface, enabling atomization of fuel spray, and reducing unburned fuel. .
  • the control means sets an opening timing of the intake valve to an intake stroke, and controls an opening period and a lift amount of the intake valve. Adjusting the intake air amount; and further increasing the fuel injection amount per unit time of the fuel injection valve provided with the injection rate variable mechanism capable of changing the fuel injection rate.
  • the fuel injection period is controlled so as to be shorter than the opening period of the intake valve.
  • the injection rate variable mechanism capable of changing the fuel injection rate is a mechanism capable of changing a lift amount of a valve body of a fuel injection valve for controlling fuel discharge
  • the control means increases the lift amount of the valve body to increase the fuel injection amount per unit time of the fuel injection valve.
  • the injection rate variable mechanism capable of changing the fuel injection rate is a mechanism capable of changing the fuel pressure of a high-pressure fuel feed pump
  • the control means includes: The fuel pressure is increased to increase the fuel injection amount per unit time of the fuel injection valve.
  • the control means sets an opening timing of the intake valve to an intake stroke, and sets an opening period and a lift amount of the intake valve and an intake pipe.
  • the amount of intake air per unit time is reduced by controlling the degree of opening of a throttle valve provided upstream, and the fuel injection period of the fuel injection valve is controlled by the opening of the intake valve.
  • the control is performed so as to be equal to or less than the mouth period.
  • control means sets the fuel injection end timing to a timing earlier than the closing timing of the intake valve by a time required for the injected fuel spray to reach the intake valve. It was done.
  • FIG. 1 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating an operation of the internal combustion engine including the variable intake valve according to the first embodiment of the present invention.
  • Figure 3 is an explanatory diagram of the valve opening / closing timing and lift.
  • FIG. 4 is an explanatory diagram of a relationship between a ball valve lift amount FVL of a fuel injection valve having a lift amount variable mechanism used in an internal combustion engine according to an embodiment of the present invention and a fuel injection rate IRT.
  • FIG. 5 is a timing chart showing the operation at the time of cranking of the internal combustion engine provided with the variable intake valve according to the first embodiment of the present invention.
  • FIG. 6 is a timing chart showing the operation of the internal combustion engine equipped with the variable intake valve according to the first embodiment of the present invention at the time of a complete explosion.
  • FIG. 7 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the second embodiment of the present invention.
  • FIG. 8 is a flowchart showing an operation of the internal combustion engine including the variable intake valve according to the second embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of the relationship between the fuel pressure RP of the fuel injection valve used in the internal combustion engine according to one embodiment of the present invention and the fuel injection rate IRT.
  • FIG. 10 is an explanatory diagram of the relationship between the fuel pressure RP of the fuel injection valve used in the internal combustion engine according to the embodiment of the present invention and the average spray velocity VF.
  • FIG. 11 is a timing chart showing an operation at the time of a complete explosion of an internal combustion engine equipped with a variable intake valve according to the second embodiment of the present invention.
  • FIG. 12 shows a configuration of an internal combustion engine having a variable intake valve according to the third embodiment of the present invention.
  • FIG. 13 is a flowchart showing the operation of an internal combustion engine equipped with a variable intake valve according to the third embodiment of the present invention.
  • FIG. 14 is a timing chart showing the operation of the internal combustion engine equipped with the variable intake valve according to the third embodiment of the present invention at the time of a complete explosion.
  • MPI multipoint injection
  • FIG. 1 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the first embodiment of the present invention.
  • the combustion chamber 4 is formed by a cylinder head 1, a cylinder block 2, and a piston 3 inserted into the cylinder block 2.
  • An ignition plug 31 is provided at the upper center of the combustion chamber 4.
  • the piston 3 is connected to a crankshaft 18 via a connecting rod 17.
  • the crankshaft 18 is provided with a crank angle sensor 19 capable of detecting a crank angle and an engine speed.
  • the cylinder block 2 is provided with a water temperature sensor 12 for detecting the temperature of the cooling water.
  • a water temperature sensor 12 for detecting the temperature of the cooling water.
  • an intake pipe 5 and an exhaust pipe 6 are opened.
  • the accelerator pedal 9 is provided with an accelerator opening sensor (S ACC) 10 for detecting the amount of depression of the driver.
  • the intake pipe 5 is provided with a fuel injection valve 11 that injects fuel toward the intake valve 7 and a throttle valve 13 that can adjust the amount of air to be taken into the combustion chamber 4.
  • the exhaust pipe 6 is provided with a three-way catalyst 14, an air-fuel ratio sensor 15 is provided on the upstream side, and a ⁇ 2 sensor 16 is provided on the downstream side.
  • the intake valve 7 has a variable valve mechanism (VV) 26 that can change the valve opening timing, opening period, and lift amount.
  • VV variable valve mechanism
  • a low pressure pump (PL) 30 installed in a fuel tank 29 is connected to the fuel injection valve 11 by a fuel pipe 28.
  • a fuel pressure sensor (SFU) 27 capable of detecting a fuel pressure is provided in the middle of the fuel pipe 28.
  • An electronic control unit (ECU) 20 is a central processing unit (CPU) that executes arithmetic processing according to a set program, and a read-only memory (ROM) that stores control programs and data necessary for arithmetic operations. ) 22, a random access memory (RAM) 23 for temporarily storing the calculation results, an input circuit (IN) 24 for receiving signals from each sensor, and transmitting signals to each device from the calculation results Output circuit
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • a valve body that controls the fuel injection amount by moving up and down is provided inside the fuel injection valve 11.
  • the amount of fuel injection is controlled by changing the valve lift and opening period.
  • the valve body is made of magnetostrictive material, and the length of the valve body can be changed by generating a magnetic field.
  • the fuel injection valve 11 is provided with a lift amount variable mechanism (VL) 32 for controlling the strength of the magnetic field, so that the fuel injection amount can be changed while the opening period is constant.
  • VL lift amount variable mechanism
  • the variable valve mechanism 26 mechanically moves the camshaft of the intake valve to control the valve opening timing, opening period, and lift amount.
  • FIG. 2 is a flowchart showing the operation of the internal combustion engine provided with the variable intake valve according to the first embodiment of the present invention.
  • step s100 the ECU 20 receives the signal of the accelerator opening sensor 10 into the input circuit 24, and the CPU 21 calculates the accelerator opening ACD. .
  • step s110 the ECU 20 takes in the signal of the water temperature sensor 12 into the input circuit 24, and the CPU 21 calculates the water temperature TW.
  • step s120 the ECU 20 takes in the signal of the crank angle sensor 19 into the input circuit 24, and the CPU 21 calculates the engine speed NE.
  • step s130 the ECU 20 takes in the signal of the fuel pressure sensor 27 into the input circuit 24, and the CPU 21 calculates the fuel pressure RP.
  • step s140 the CPU 21 of the ECU 20 determines whether or not the load is low by using the accelerator opening ACD. If it is determined that the load is medium / high, the process proceeds to step s150. If it is determined that the load is low, the process proceeds to step s170.
  • the CPU 21 determines the opening timing VOT2, the lift amount VL2, and the opening period VT2 of the intake valve 7 and controls the variable valve mechanism 26 in step s150. Since the load is medium and high, the opening timing V OT2, the lift amount VL2, and the opening period VT2 of the intake valve 7 are set so as to become the preset maximum values, respectively.
  • Figure 3 is an explanatory diagram of the valve opening / closing timing and lift.
  • the horizontal axis shows the crank angle S (deg), and the vertical axis shows the valve lift.
  • the crank angle 0 is 0 to 90 degrees is the expansion stroke E XP
  • the 90 to 180 degrees is the scavenging process EXH
  • the 180 to 270 degrees is the intake stroke INT
  • the 270 to 360 degrees is the compression stroke COM.
  • the solid line IN indicates the lift of the intake valve
  • the dotted line EX indicates the lift of the exhaust valve.
  • the intake valve opening timing VOT2 is 360 degrees
  • the lift amount VL2 is the amount shown
  • the opening period VT2 is 210 degrees.
  • step s160 the CPU 21 calculates the target fuel injection amount MF2, the air-fuel ratio AZF2, the throttle valve opening THA2, and the fuel injection timing FI from the accelerator opening A CD, the water temperature TW, and the engine speed NE. Calculate T2, ignition timing I GT2. Then, the CPU 21 controls the fuel injection valve 11, the throttle valve 13, and the spark plug 16 so that these calculated values are obtained.
  • the fuel injection timing FITT2 is set to a timing at which fuel injection ends during the exhaust stroke as used in a conventional MPI engine.
  • the ignition timing I GT2 is determined near TDC for the purpose of increasing the exhaust gas temperature when the water temperature TW is less than 80 ° C, and near 20 ° before TDC when the water temperature TW is 80 ° C or more.
  • the air-fuel ratio AZF 2 is determined to be 14.7, which is the theoretical mixing ratio of gasoline.
  • the air-fuel ratio during operation is detected by the air-fuel ratio sensor 15, and if an error occurs from the target air-fuel ratio A / F2, the throttle valve opening THA2 is corrected.
  • the lift amount and the operating angle of the exhaust valve are fixed, but the exhaust valve Alternatively, a variable valve mechanism may be attached.
  • step s170 the CPU 21 determines whether the throttle valve 13 has the maximum opening degree (full open). Set the opening to THAI. Also, the CPU 21 calculates the target fuel injection amount MF1, the air-fuel ratio A / F1, and the ignition timing IGT1 from the water temperature TW, the engine speed NE, and the accelerator opening ACD.
  • step s180 the CPU 21 determines the opening timing VOT1, the opening period VT1, and the lift amount VL1 of the intake valve 7 from the air amount calculated from the fuel injection amount MF1 and the air-fuel ratio A / F1. calculate.
  • the air-fuel ratio during operation is detected by the air-fuel ratio sensor 15, and if an error occurs with the air-fuel ratio AZF1, the opening period VT1 and the valve lift VL1 are corrected.
  • step s190 the CPU 21 calculates a fuel injection rate ⁇ RT which is a fuel injection amount per unit time of the fuel injection valve 11.
  • FIG. 4 is an explanatory diagram of a relationship between a ball valve lift amount FVL of a fuel injection valve having a lift amount variable mechanism used in an internal combustion engine according to an embodiment of the present invention and a fuel injection rate IRT.
  • the horizontal axis shows the ball valve lift FVL
  • the vertical axis shows the fuel injection rate I RT.
  • the origin N in FIG. 4 indicates the state of the standard value.
  • the standard value indicates a state in which a magnetic field is generated in the valve element of the ball valve and the valve element is extended, and is normally used in this state.
  • the fuel injection rate I RT also increases linearly from the standard value.
  • step s190 the initial value of the ball valve lift amount L F1 is the minimum standard value, and the fuel injection rate I RT is also set to the standard value.
  • step s200 the CPU 21 calculates a fuel injection period T1 from the fuel injection rate IRT and the fuel injection amount MF1.
  • step s210 the CPU 21 calculates the injection timing correction time T2.
  • the injection timing correction time T2 is set after fuel is injected from the fuel injection valve 11. This is the time required for the fuel to reach the combustion chamber 4.
  • the injection timing correction time T 2 is determined by the spray speed VF and the distance L from the tip of the fuel injection valve to the intake valve.
  • the average speed VF of the fuel spray is obtained from the fuel pressure RP and is determined by the performance of the fuel pump P L.
  • the fuel pressure RP is kept constant. Since the distance L between the fuel injection valve and the intake valve is determined by the configuration of the engine, if the fuel pressure RP is constant, the injection timing correction time T2 can use a value previously stored in the ROM22.
  • the fuel pressure RP is detected by the fuel pressure sensor 27, a map of the relationship between the fuel pressure RP and the injection timing correction time T2 is stored in the ROM 22 in advance, and the injection timing is corrected using the map.
  • the correct time T2 can also be calculated.
  • step s220 the CPU 21 determines whether or not the valve opening period VT1 'of the intake valve 7 is equal to or longer than the fuel injection period T1. If the opening period VT1 is equal to or longer than the fuel injection period T1, the process proceeds to step s230. In the following cases, the process proceeds to step s240. If the opening period VT1 is shorter than the fuel injection period T1, the valve is still injected even if the valve is closed because the opening period of the valve is shorter than the fuel injection period. Accordingly, since the injected fuel adheres to the intake pipe 5, a process for preventing this is executed in step s240 and thereafter.
  • step s230 the CPU 21 sets the end timing of the fuel injection period T1 earlier than the end timing of the opening period VT1 by the injection timing correction time T2.
  • the fuel injection timing FIT 1 is calculated.
  • step s240 the CPU 21 calculates the fuel injection rate IRT to be the same as the fuel injection period T1 and the opening period VT1.
  • step s250 the CPU 21 determines whether the fuel injection period Recalculate the fuel injection period T1 so that it becomes equal to the mouth period VTl.
  • step s260 the CPU 21 obtains the ball valve lift amount L FI from the fuel injection rate I RT obtained in step s240 using the characteristics shown in FIG.
  • step s230 the CPU 21 calculates the fuel injection timing FI T1 such that the end time of the fuel injection period T1 is earlier than the end time of the opening period VT1 by the injection timing correction time T2. I do.
  • the CPU 21 controls the fuel injection valve 11, the throttle valve 13, the ignition plug 16, the valve variable mechanism 26, and the lift amount variable mechanism 32 so that these calculated values are obtained.
  • FIG. 5 is a timing chart showing an operation at the time of cranking of the internal combustion engine including the variable intake valve according to the first embodiment of the present invention.
  • FIG. 6 is a timing chart showing an operation at the time of a complete explosion of the internal combustion engine provided with the variable intake valve according to the first embodiment of the present invention.
  • the horizontal axis in Figs. 5 and 6 indicates the time T (ms).
  • the crank angle is shown in parentheses.
  • the upper side of FIGS. 5 and 6 shows the lift amount FV L (/ m) of the fuel injection valve.
  • the lower part of FIGS. 5 and 6 shows the lift amount VL (mm) of the intake valve.
  • step s130 When the engine starts and enters the cranking state, signals from the accelerator opening sensor 10, the water temperature sensor 12, and the crank angle sensor 19 are input to the input circuit 24 through the processing of steps si00, s110, and si20 in FIG. Is input to Since the fuel pressure RP is kept constant, the processing in step s130 is not performed.
  • the accelerator opening ACD 0 degrees
  • the water temperature ⁇ " ⁇ 20 ⁇
  • step s170 where the fuel injection amount MF1 is calculated from the accelerator opening ACD.
  • the intake air amount is calculated so that the air-fuel ratio AZF 1 becomes 14.7 for the injection amount MF 1.
  • the engine is a 500-cc single cylinder engine
  • the fuel amount is 12 mg
  • the air amount is 176 mg.
  • a signal is output from the output circuit 25 to the throttle valve 13 to control the throttle valve opening THAI to be fully opened.
  • the ignition timing I GT 1 is set at the top dead center for the purpose of increasing the temperature of the exhaust gas, and is controlled to output a signal to the ignition plug 31 when the crank angle reaches the top dead center.
  • the opening timing V ⁇ T1, the opening period VT1, and the maximum lift amount VL1 of the intake valve are determined from the target intake air amount by referring to a map stored in the ROM 22 in advance. I do.
  • the opening timing of the intake valve VOT 1 is 60 ° ATDC
  • the opening period is 50 ° crank angle
  • the maximum lift is 0.8mm. That is, as shown in the lower part of Fig. 5, the intake valve starts to open at 60 ° ATDC, and opens for 50 ° up to 110 ° ATDC, and the maximum lift at that time is 0.8 mm.
  • the opening timing V OT 1 is set so that the difference between the speed of the fuel spray and the speed of the air generated during intake is 20 Om / sec or less for a fuel spray having an average particle diameter of 50 m or more. Within this range, it is less susceptible to the effects of airflow during intake.
  • the initial value of the pole valve lift amount LF1 is the minimum standard value
  • the fuel injection period T1 is calculated from the standard value of the fuel injection rate IRT. Is done.
  • the fuel injection period T 1 is 1 Oms from the fuel amount of 12 mg obtained in step s 170.
  • the injection timing correction time T2 is set to 2.5 ms from the average spray velocity VF and the distance L from the tip of the fuel injection valve to the intake valve. This is because the average diameter of the fuel droplets injected from the fuel injector 1 1 is 60 m, the average spray velocity V F was 4 OmZsec, and the distance L from the tip of the fuel injection valve to the intake valve was 0.1 lm. At a rotational speed of 200 r / min, this corresponds to a crank angle of 3 degrees.
  • the injection timing correction time T2 is stored in the ROM 22 in advance.
  • step s220 at a rotational speed of 200 r / min, the crank angle 50 °, which is the opening period of the intake valve, becomes 42 ms, and the opening period VT1 (42 ms) is determined by the fuel injection obtained in step 200. Since it is longer than the period T 1 (10 ms), it is determined that the fuel injection rate IRT does not need to be changed, and the process proceeds to step s210.
  • the fuel injection valve 11 starts the injection at 95 ° ATDC, performs the injection for 12 °, and ends the injection at 107 ° ATDC.
  • the 107 ° ADTC at the end of injection is 3 ° earlier than the 110 ° ATDC at which the intake valve closes.
  • the lift FVL of the fuel injector is 40 m.
  • the above-described result is calculated by the CPU 21 and the intake stroke starts at the same time.
  • the intake valve 7 and the exhaust valve 8 are both closed.
  • the pressure in the combustion chamber 4 decreases because the intake valve 7 is closed.
  • the intake valve 7 opens at 60 ° ATDC, but since the pressure in the combustion chamber 4 is lower than the pressure in the intake pipe 5, immediately after the intake valve opens, the intake valve 7 A high-speed airflow is generated in the combustion chamber 4. Further, by making the lift amount of the intake valve 7 very small, the speed of the airflow sucked into the combustion chamber 4 by lowering the piston 3 can be maintained at 40 to 50 m / sec.
  • fuel is injected from the fuel injection valve 11, and the fuel spray reaches the vicinity of the intake valve 7 in about 2.5 ms and is generated by making a minute lift It flows into the combustion chamber 4 by the high-speed airflow. At this time, the particles pass through the gap between the intake valve 7 and the combustion chamber 4 and are atomized by the shearing force of the high-speed airflow.
  • the fuel injection ends.
  • the intake valve 7 closes.
  • the spray atomized by the high-speed airflow is vaporized and easy to ride on the flow of air, so it does not adhere to the cylinder wall, and a homogeneous air-fuel mixture is formed.
  • the compression stroke is completed and the piston reaches the top dead center, it is ignited by the spark plug 31 and the engine completely explodes, and starts rotating regardless of the speed.
  • the solid line B indicates the lift amount of the fuel injection valve when the correction of steps s240 to s260 in FIG. 2 is performed
  • the broken line A indicates the lift amount before the correction is performed. Is shown.
  • the intake air volume is determined by the opening timing and the opening period, and the influence of the engine speed is small. Therefore, as in the above example, the intake valve opening timing VOT1 is 60 ° ATDC, the opening period is 50 ° crank angle, and the maximum lift is 0. . 5 mm. That is, as shown in the lower part of Fig. 6, the intake valve starts to open at 60 ° ATDC, and opens for 50 ° up to 110 ° ATDC, and the maximum lift at that time is 0.8 mm.
  • step s220 at a rotational speed of 1200 r / min, the crank angle 50 °, which is the opening period of the intake valve, becomes 6.94 ms, and the opening period VT 1 (6.92 ms) becomes the fuel injection period. Since it is shorter than T l (10 ms) and the fuel injection rate I RT needs to be changed, the process proceeds to step s240.
  • the CPU 21 resets the fuel injection rate IRT so that the fuel injection period T1 becomes the same as the opening period VT1 by the processes of steps s240 and s250. Since the opening period is 6.94 ms and the fuel injection amount is 12 mg, the target fuel injection rate I RT is 1.73 mg ms.
  • the ball valve lift amount FVL that satisfies the target fuel injection rate IRT is derived from the map stored in the ROM 22 by the process of step s260.
  • the ball valve lift FVL is controlled by the lift variable mechanism 32 so that the fuel injection period T1 becomes 6.94 ms.
  • the injection timing correction time T 2 is 2.5 ms, which corresponds to a crank angle of 18 degrees at a rotational speed of 1200 r / min.
  • the fuel injection period T1 is 6.94 ms, which corresponds to a crank angle of 50 degrees at a rotational speed of 1200 r / min.
  • the intake valve closing timing is 110 ° ATDC
  • the fuel injection timing is set to 42 ° ATDC by CPU21
  • the output circuit 25 is controlled to output a signal from the output circuit 25 to the fuel injection valve 11 when the crank angle is 42 ° ATDC. .
  • the 92 ° ADTC at the end of the injection is 18 ° earlier than the 110 ° ATDC at which the intake valve closes.
  • the lift FVL of the fuel injector is 58 m.
  • fuel is injected from the fuel injection valve 11 as shown in the upper part of Fig. 6, and the fuel spray reaches the vicinity of the intake valve 7 in about 2.5 ms, causing a slight lift. It flows into the combustion chamber 4 by the high-speed airflow generated by this. At this time, fine particles are formed by the shearing force of the high-speed airflow where the gas passes through the gap between the intake valve 7 and the combustion chamber 4.
  • the fuel injection ends at 92 ° ATDC, and at 110 ° the intake valve 7 closes when the last part of the fuel spray flows into the combustion chamber 4.
  • the spray atomized by the high-speed airflow is vaporized and chewy, and easily adheres to the flow of air, so that it does not adhere to the cylinder wall, and a homogeneous mixture is formed. Therefore, when the piston reaches the top dead center, it is stably burned by the spark plug 31 after ignition.
  • the fuel injection period T1 is set to be equal to or less than the opening period VT1 of the intake valve, there is no adhesion to the cylinder wall, and a homogeneous air-fuel mixture is formed to perform combustion. By doing so, the amount of unburned fuel discharged can be reduced.
  • MPI multipoint injection
  • FIG. 7 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 indicate the same parts.
  • the present embodiment differs from the configuration shown in FIG. 1 in the following points. That is, a high-pressure pump (PH) 33 is used as the fuel pump. Further, the fuel pipe 28 is provided with a fuel pressure variable mechanism (VFP) 34 which can change the fuel pressure by adjusting the flow rate in the pipe.
  • VFP fuel pressure variable mechanism
  • the fuel injection valve is provided with a conventionally used fuel injection valve 35 having no mechanism for changing the lift amount.
  • FIG. 8 shows the operation of an internal combustion engine equipped with a variable intake valve according to the second embodiment of the present invention. It is a flowchart shown. The same step numbers as those in FIG. 2 indicate the same processing contents.
  • steps s100 to s180 are the same as those in FIG.
  • step s19OA the CPU 21 calculates the fuel injection rate IRT.
  • the fuel injection rate I RT is determined from the characteristic diagram of the fuel pressure RP and the fuel injection rate IR shown in FIG.
  • FIG. 9 is an explanatory diagram showing the relationship between the fuel pressure RP of the fuel injection valve used in the internal combustion engine according to the embodiment of the present invention and the fuel injection rate IRT.
  • the horizontal axis shows the fuel pressure RP
  • the vertical axis shows the fuel injection rate IRT.
  • the origin N in FIG. 9 indicates the state of the standard value.
  • the standard value indicates the lowest fuel pressure.
  • the fuel injection rate I RT also increases from the standard value.
  • step s19OA the initial value of the fuel pressure RP is the minimum standard value, and the fuel injection rate IRT is also set to the standard value.
  • step s200 the CPU 21 calculates the fuel injection period T1 from the fuel injection rate IRT and the fuel injection amount MF1.
  • step s205 the CPU 21 calculates the spray average velocity VF. Since the average spray speed VF changes depending on the fuel pressure RP, the average spray speed VF can be obtained from the characteristic diagram of the fuel pressure RP and the average spray speed VF shown in FIG.
  • FIG. 10 is an explanatory diagram of the relationship between the fuel pressure RP of the fuel injection valve used in the internal combustion engine according to the embodiment of the present invention and the average spray velocity VF.
  • the horizontal axis represents the spray average velocity VF
  • the vertical axis represents the fuel injection rate IRT.
  • the origin N in FIG. 10 indicates the state of the standard value.
  • the standard value indicates the lowest fuel pressure.
  • the average spray velocity VF also increases from the standard value.
  • the CPU 21 calculates the injection timing correction time T2.
  • the injection timing correction time ⁇ 2 is determined by the spray speed VF and the distance L from the tip of the fuel injection valve to the intake valve, and is calculated by the following equation (1).
  • Injection timing correction time T 2 L / VF... (1)
  • Injection timing correction time T 2 is determined by the spray speed VF and the distance L from the tip of the fuel injection valve to the intake valve, but since the spray speed VF changes with the fuel pressure RP, it is stored in ROM22. Is stored, and the distance L to the intake valve is stored in the ROM 22. During operation, the average spray velocity VF is calculated from the result of the fuel pressure sensor 27, and the CPU 21 calculates the injection timing correction time T2 according to equation (1).
  • step s240 the CPU 21 determines whether the fuel injection period T1 is equal to the opening period VT1. Calculate the injection rate IRT. Then, in step s270, the CPU 21 again calculates the target fuel pressure RP from FIG. 9 so as to reach the calculated fuel injection rate IRT.
  • step s275 the CPU 21 obtains the spray average velocity VF again.
  • step s280 the CPU 21 calculates the injection timing correction time T2 again.
  • the CPU 21 controls the fuel injection valve 11, the throttle valve 13, the spark plug 16, the variable valve mechanism 26, and the variable fuel pressure mechanism 34 so that these calculated values are obtained.
  • FIG. 11 is a timing chart showing an operation at the time of a complete explosion of an internal combustion engine equipped with a variable intake valve according to the second embodiment of the present invention.
  • the horizontal axis in FIG. 11 indicates time T (ms).
  • the crank angle is shown in parentheses.
  • the upper side of FIG. 11 shows the lift amount FVL ( ⁇ ) of the fuel injection valve.
  • Fig. 11 Lower part of the intake valve The amount (mm).
  • the CPU 21 calculates the intake air amount from the accelerator opening ACD so that the fuel injection amount MF 1 and the air-fuel ratio A / F 1 become 14.7.
  • the fuel amount is 12 mg and the air amount is 176 mg.
  • a signal is output from the output circuit 25 to the throttle valve 13, and the throttle valve opening THAI is controlled to be fully opened.
  • the ignition timing I GT1 is set at the top dead center for the purpose of increasing the temperature of the exhaust gas, and is controlled to output a signal to the ignition plug 31 when the crank angle reaches the top dead center.
  • the standard value of the fuel pressure RP is a value that can secure the minimum flow rate, and the initial value is this standard value, and the fuel injection rate IRT is calculated from the fuel pressure RP. Then, the fuel injection period T1 is calculated by the CPU 21 from the calculated fuel injection rate IRT.
  • solid line B indicates the lift amount of the fuel injection valve when the correction of steps s240 to s280 in FIG. 8 is performed
  • dashed line A indicates the value before the correction is performed. The lift amount is shown.
  • the opening timing of the intake valve VOT1 is 60 ° ATDC
  • the opening period is 50 ° crank angle
  • the maximum lift is 0.8mm.
  • the intake valve starts to open at 60 ° ATDC, opens for 50 ° to 110 ° ATDC, and The maximum lift at the time of is 0.8 mm.
  • step s240 the CPU 21 resets the fuel injection rate IRT so that the fuel injection period T1 becomes the same as the opening period VT1. Since the opening period is 6.94 ms and the fuel injection amount is 12 mg, the target fuel injection rate I RT is 1.73 mg / ms.
  • step s270 the CPU 21 refers to the fuel pressure RP from the map stored in the ROM 22, and obtains the fuel pressure RP that becomes the target fuel injection rate IRT.
  • the fuel pressure RP is, for example, 620 kPa.
  • step s275 the CPU 21 refers to the spray average speed VF from the map stored in the ROM 22.
  • the average spray velocity V F is 58 m / sec.
  • the injection timing correction time T2 is 1.7 ms from the distance L from the tip of the fuel injection valve to the intake valve, and corresponds to a crank angle of 12 degrees at a rotational speed of 1200 r / min.
  • the fuel injection period T1 is 6.94 ms, which corresponds to a crank angle of 50 degrees at a rotational speed of 1200 r / min.
  • the intake valve closing timing is 110 ° A TDC
  • the fuel injection timing is set to 48 ° ATDC by the CPU 21, and the output circuit 25 is controlled to output a signal from the output circuit 25 to the fuel injection valve 11 when the crank angle is 48 ° ATDC.
  • the fuel injection valve 11 starts injection at 48 ° ATDC, injects fuel for 50 °, and ends injection at 98 ° ATDC.
  • the 98 ° ADTC at the end of the injection is 12 ° earlier than the 1 10 ° ATDC when the intake valve closes.
  • the lift amount FVL of the fuel injection valve does not change at 40 iim, but a predetermined fuel injection amount can be obtained by increasing the fuel pressure RP.
  • the intake valve 7 opens at 60 ° ATDC, but since the pressure in the combustion chamber 4 is lower than the pressure in the intake pipe 5, immediately after the intake valve opens, A high-speed airflow is generated from the intake pipe 5 to the combustion chamber 4. Further, by making the lift amount of the intake valve 7 small, the velocity of the airflow sucked into the combustion chamber 4 by lowering the piston 3 can be kept at 2 OOSS OmZs ec.
  • the fuel injection ends at 98 ° AT DC, and the intake valve 7 closes when the last part of the fuel spray flows into the combustion chamber 4 at 110 °.
  • the spray atomized by the high-speed airflow is easy to vaporize, and because it is easy to ride on the flow of air, there is no adhesion to the cylinder wall, and a homogeneous mixture is formed. Therefore, when the piston reaches the top dead center, it is stably burned after ignition by the spark plug 31.
  • the fuel injection period T1 is set to be equal to or less than the opening period VT1 of the intake valve, there is no adhesion to the cylinder wall, and a homogeneous mixture is formed and burned. As a result, the amount of unburned fuel discharged can be reduced.
  • MPI multipoint injection
  • FIG. 12 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the third embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 indicate the same parts.
  • the present embodiment differs from the configuration shown in FIG. 1 in the following points. That is, the fuel injection valve 35 is a conventionally used injection valve without a mechanism for varying the lift amount. Otherwise, the configuration is the same as in FIG. Next, the operation of the internal combustion engine including the variable intake valve according to the present embodiment will be described with reference to FIG.
  • FIG. 13 is a flowchart illustrating an operation of the internal combustion engine including the variable intake valve according to the third embodiment of the present invention.
  • the same step numbers as those in FIG. 2 indicate the same processing contents.
  • the opening period VT1 is shorter than the fuel injection period T1
  • the opening degree THAI of the throttle valve 13 is reduced to generate a negative pressure in the intake pipe 5, thereby reducing the amount of intake air per unit time.
  • the opening THA1 of the throttle valve 13 is controlled so that the period VT1 becomes equal to the fuel injection period T1.
  • steps s100 to s170, s180, and s230 are the same as those in FIG.
  • step s170 when the CPU 21 determines that the accelerator opening ACD is low load in the determination in step s140, in step s170, the CPU 21 determines that the opening of the throttle valve 13 is the maximum (full open). Throttle valve opening THAI. Further, the CPU 21 calculates a target fuel injection amount MF1, an air-fuel ratio A / F1, and an ignition timing IGT1 from the water temperature TW, the engine speed NE, and the accelerator opening ACD.
  • step s175 the CPU 21 calculates a fuel injection rate IRT which is a fuel injection amount of the fuel injection valve 11 per unit time. Since the fuel injection valve 11 does not have a mechanism capable of changing the lift amount, the fuel injection rate I RT is a preset value. Further, the CPU 21 calculates a fuel injection period T1 from the fuel injection rate IRT and the fuel injection amount MF1. Further, the CPU 21 calculates an injection timing correction time T2. The injection timing correction time T2 is determined by the spray speed VF and the distance L from the tip of the fuel injection valve to the intake valve, and is calculated by the above equation (1).
  • step s180 the CPU 21 calculates the opening timing VOT1, the opening period VT1, and the lift amount VL1 of the intake valve 7 from the air amount calculated from the fuel injection amount MF1 and the air-fuel ratio A / F1. I do.
  • the air-fuel ratio during operation is detected by the air-fuel ratio sensor 15, and if an error occurs with the air-fuel ratio A / F1, the opening period VT1 and the valve lift VL1 are corrected.
  • step s220 the CPU 21 determines whether or not the valve opening period VT1 of the intake valve 7 is equal to or longer than the fuel injection period T1. If the opening period VT1 is equal to or longer than the fuel injection period T1, the process proceeds to step s230.
  • step s240 When the opening period VT 1 is shorter than the fuel injection period T 1, fuel is injected even when the valve is closed because the opening period of the valve is shorter than the fuel injection period. Therefore, since the injected fuel adheres to the intake pipe 5, a process for preventing this is performed in step s240 and thereafter.
  • step s230 the CPU 21 sets the end timing of the fuel injection period T1 earlier than the end timing of the opening period VT1 by the injection timing correction time T2.
  • the fuel injection timing FIT 1 is calculated.
  • step s290 the CPU 21 sets the opening period VT1 of the intake valve to be the same as the fuel injection period T1 and the opening period VT1. Recalculate. Also, the valve lift amount VL1 is calculated.
  • step s295 the CPU 21 reduces the opening of the throttle valve by the length of the opening period VT1 of the intake valve, and reduces the opening of the throttle valve THAI so that the amount of air to be sucked is the same. Is calculated again.
  • step s230 the CPU 21 calculates the fuel injection timing FIT1 such that the end time of the fuel injection period T1 is earlier than the end time of the opening period VT1 by the injection timing correction time T2. I do.
  • the CPU 21 controls the fuel injection valve 11, the throttle valve 13, the spark plug 16, and the variable valve mechanism 26 so that these calculated values are obtained.
  • FIG. 14 is a timing chart showing an operation at the time of a complete explosion of an internal combustion engine equipped with a variable intake valve according to the third embodiment of the present invention.
  • the horizontal axis indicates time T (ms).
  • the crank angle is shown in parentheses.
  • the upper part of Fig. 14 shows the fuel injection valve 6 Indicates the lift amount FVL (um).
  • the lower part of FIG. 14 shows the lift amount VL (mm) of the intake valve.
  • the solid line B indicates the opening period of the intake valve when the correction of steps s290 to s29.5 in FIG. 2 is performed, and the broken line A indicates the opening period before the correction is performed. ing.
  • the signals from the accelerator opening sensor 10, the water temperature sensor 12, and the crank angle sensor 19 are input to the input circuit 24 by the processing of steps s100 to s120, and the CPU 21 uses these signals to input the accelerator opening, water temperature TW, and engine rotation.
  • the number NE is calculated. Since the fuel pressure RP is kept constant, the process in step s130 is not performed.
  • the accelerator opening ACD 0 degree
  • the water temperature TW 20t :
  • the engine speed NE 1200 r / min. This result is stored in the RAM 23 and updated sequentially.
  • the intake air amount is determined by the opening timing and the opening period, and since the influence of the engine speed is small, the opening timing of the intake valve V ⁇ T 1 is set to 60 ° AT DC, and the opening period is set to the crank angle of 50 °, the maximum lift is lmm. That is, as shown in the lower part of Fig. 14, the intake valve starts to open at 60 ° ATDC and opens for 50 ° up to 110 ° A TJDC, and the maximum lift at that time is assumed to be 0.8 mm. You.
  • step s220 at a rotational speed of 1200 rZmin, the crank angle 50 °, which is the opening period of the intake valve, becomes 6.94 ms, and the opening period VT 1 (6.92 ms) becomes the fuel injection period T l (10 ms), and it is necessary to change the opening period VT 1 of the intake valve. Therefore, the process proceeds to step s290.
  • step s290 the CPU 21 controls the opening period VT1 and the valve lift amount VL1 so that the opening time is constant and the opening period VT1 is the same as the fuel injection period T1.
  • the throttle valve opening T The HA 1 is closed and a negative pressure is generated in the intake pipe 5 to control the throttle valve opening THAI so that the intake air amount MF 1 becomes the target value.
  • the opening period VT 1 is a crank angle of 72 °
  • the lift amount VL 1 is 1 mm
  • the throttle valve opening THAI is closed by 40 °.
  • the relationship between the opening period VT 1 and the throttle valve opening TH A 1 uses a force stored in the ROM 22 as a map and feedback control by the air-fuel ratio sensor 15.
  • the CPU 21 sets the fuel injection timing to 20 ° ATDC and outputs a signal from the output circuit 25 to the fuel injection valve 11 when the crank angle is 20 ° ATDC. Is controlled as follows.
  • the pressure in the combustion chamber 4 decreases because the intake valve 7 is closed. Then, as shown in the lower part of FIG. 14, the intake valve ⁇ opens at 38 ° ATDC, but since the pressure in the combustion chamber 4 is lower than the pressure in the intake pipe 5, the intake A high-speed airflow is generated from the pipe 5 to the combustion chamber 4. Further, by making the lift amount of the intake valve 7 small, the speed of the airflow sucked into the combustion chamber 4 by lowering the piston 3 can be maintained at 180 to 200 m / sec.
  • the spray atomized by the high-speed air flow is easy to vaporize, and because it is easy to get on the air flow, it does not adhere to the cylinder wall, and a homogeneous mixture is formed. Therefore, when the piston reaches the top dead center, the ignition plug 31 stably burns after ignition.
  • the opening period VT 1 of the intake valve is set to be equal to or less than the fuel injection period T 1
  • a homogeneous mixture is formed without combustion on the cylinder wall and burned.
  • the amount of unburned fuel discharged can be reduced.
  • the same effect can be obtained by using an electromagnetic variable valve instead of a mechanical valve as the magnetic valve.
  • the fuel injection period is made shorter than the opening period of the intake valve to prevent the fuel from adhering to the wall surface at the time of supplying the fuel, and the fuel spray can be atomized to reduce unburned fuel. Become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

An internal combustion engine provided with a variable intake valve in which unburnt fuel can be reduced by preventing adhesion of fuel to the wall face thereby making it possible to atomize fuel spray. An engine control unit (20) sets the open period of an intake valve (7) in the intake stroke at the time of low load operation and controls the intake air volume by controlling the open interval and the lift of the intake valve (7). When the fuel injection period of a fuel injection valve (31) is longer than the open period of the intake valve (7), the engine control unit (20) controls the fuel injection period of a fuel injection valve (11) to be shorter than the open period of the intake valve (7) by increasing the fuel injection amount per unit time of the fuel injection valve having a variable injection rate mechanism (32) capable of altering the fuel injection rate.

Description

可変吸気弁を備えた内燃機関 技術分野 Internal combustion engine with variable intake valve
本発明は、 吸気弁の開時期, 開口期間, リフト量を変更可能な可変吸気弁を備 えた内燃機関に係り、 特に、 冷機始動時の制御に適用するに好適な可変吸気弁を 備えた内燃機関に関する。  The present invention relates to an internal combustion engine provided with a variable intake valve capable of changing an opening timing, an opening period, and a lift amount of an intake valve, and in particular, to an internal combustion engine provided with a variable intake valve suitable for being applied to control at a cold start. About the institution.
明 背景技術  Akira Background technology
 book
従来の内燃機関においては、 冷機始動時の触媒温度が低い未活性状態では浄化 能力が小さく、 エンジンから排出される未燃燃料がそのまま大気中に排出され環 境悪化の要因となる。 そのため、 排気低減にはこの未燃燃料を最小限に抑えるこ とが必要である。  In a conventional internal combustion engine, the purification capacity is low in an inactive state where the catalyst temperature is low at the time of cold start, and unburned fuel discharged from the engine is directly discharged into the atmosphere, which causes a deterioration in the environment. Therefore, it is necessary to minimize this unburned fuel to reduce emissions.
しかし、 排気行程中に燃料を噴射するポート噴射エンジンの場合、.噴射された 燃料の殆どが吸気管や吸気弁に付着するが、 冷機時は壁面からの受熱が殆ど無い ため燃料の気化が悪く、 壁面に付着した燃料が壁流となって燃焼室に流入したも のがエンジンオイルに希釈され気化が不十分となって未燃燃料として排出される。 そこで、 例えば、 特開 2 0 0 2— 2 4 2 7 1 3号公報に記載のように、 水温が 5 0 °C以下の始動時において吸気弁の開時期を遅角して吸入空気の流速を上げ、 吸気弁が開く時期に燃料が吸気弁に到達するように燃料噴射時期を設定し、 吸気 弁が開いた時に生成される空気流動によって吸気管に付着する燃料を少なくする ものが知られている。 発明の開示  However, in the case of a port injection engine that injects fuel during the exhaust stroke, most of the injected fuel adheres to the intake pipes and intake valves.However, when cold, there is almost no heat received from the wall, and fuel vaporization is poor. However, the fuel adhering to the wall surface and flowing into the combustion chamber as a wall flow is diluted with engine oil, is insufficiently vaporized, and is discharged as unburned fuel. Thus, for example, as described in Japanese Patent Application Laid-Open No. 2002-224727, the opening timing of the intake valve is retarded at the time of starting when the water temperature is 50 ° C or lower, and the flow rate of the intake air is reduced. The fuel injection timing is set so that the fuel reaches the intake valve when the intake valve opens, and the amount of fuel adhering to the intake pipe is reduced by the air flow generated when the intake valve opens. ing. Disclosure of the invention
しかしながら、 特開 2 0 0 2— 2 4 2 7 1 3号公報に記載されたものでは、 吸 気弁の開口期間より燃料噴射時期が長くなった場合には、 燃料の一部が燃焼室に 入りきらずに吸気弁に付着して液膜を形成することにより壁流が生じて排気が悪 化し、 また気流との間に生じるせん断力による微粒化が無いため気化が悪く不均 質な混合気が形成され燃焼性が悪化するといつた問題があつた。 However, according to the technique described in Japanese Patent Application Laid-Open No. 2002-224727, when the fuel injection timing is longer than the opening period of the intake valve, a part of the fuel enters the combustion chamber. If the liquid does not enter, it adheres to the intake valve and forms a liquid film, causing a wall flow and deteriorating the exhaust.In addition, since there is no atomization due to the shear force generated between the gas and the air flow, the vaporization is poor and uneven. There was a problem that a high quality air-fuel mixture was formed and the flammability deteriorated.
本発明の目的は、 壁面への燃料付着を防止し、 燃料噴霧微粒化を可能として、 未燃燃料を低減できる可変吸気弁を備えた内燃機関を提供することにある。  An object of the present invention is to provide an internal combustion engine equipped with a variable intake valve capable of preventing fuel from adhering to a wall surface, enabling atomization of fuel spray, and reducing unburned fuel.
( 1 ) 上記目的を達成するために、 本発明は、 吸気弁の開時期, 開口期間, リ フト量を変更可能な可変吸気弁を備えた内燃機関において、 燃料噴射弁の燃料噴 射期間が前記吸気弁の開口期間よりも長い場合に、 単位時間当たりの燃料噴射量 若しくは吸入空気量を可変して、 前記燃料噴射弁の燃料噴射期間が前記吸気弁の 開口期間以下となるように制御する制御手段を備えるようにしたものである。 かかる構成により、 燃料噴射弁の燃料噴射期間が前記吸気弁の開口期間以下と なり、 壁面への燃料付着を防止し、 燃料噴霧微粒化を可能として、 未燃燃料を低 減し得るものとなる。  (1) In order to achieve the above object, the present invention relates to an internal combustion engine having a variable intake valve capable of changing the opening timing, the opening period, and the amount of lift of an intake valve. When the opening period of the intake valve is longer than the opening period of the intake valve, the fuel injection amount per unit time or the intake air amount is changed so that the fuel injection period of the fuel injection valve is controlled to be shorter than the opening period of the intake valve. This is provided with control means. With this configuration, the fuel injection period of the fuel injection valve is shorter than the opening period of the intake valve, preventing fuel from adhering to the wall surface, enabling atomization of fuel spray, and reducing unburned fuel. .
( 2 ) 上記 (1 ) において、 好ましくは、 前記制御手段は、 低負荷運転時には、 前記吸気弁の開時期を吸気行程に設定して、 前記吸気弁の開口期間とリフト量を 制御することにより吸入空気量を調節し、 さらに、 前記制御手段は、 燃料の噴射 率を変更可能な噴射率可変機構を備えた燃料噴射弁の単位時間当たりの燃料噴射 量を大きくして、 前記燃料噴射弁の燃料噴射期間が前記吸気弁の開口期間以下と なるように制御するようにしたものである。  (2) In the above (1), preferably, at the time of low load operation, the control means sets an opening timing of the intake valve to an intake stroke, and controls an opening period and a lift amount of the intake valve. Adjusting the intake air amount; and further increasing the fuel injection amount per unit time of the fuel injection valve provided with the injection rate variable mechanism capable of changing the fuel injection rate. The fuel injection period is controlled so as to be shorter than the opening period of the intake valve.
( 3 ) 上記 (2 ) において、 好ましくは、 前記燃料の噴射率を変更可能な噴射 率可変機構は、 燃料の吐出を制御する燃料噴射弁の弁体のリフト量を変更可能な 機構であり、 前記制御手段は、 この弁体のリフト量を大きくして、 燃料噴射弁の 単位時間当たりの燃料噴射量を大きくするようにしたものである。  (3) In the above (2), preferably, the injection rate variable mechanism capable of changing the fuel injection rate is a mechanism capable of changing a lift amount of a valve body of a fuel injection valve for controlling fuel discharge, The control means increases the lift amount of the valve body to increase the fuel injection amount per unit time of the fuel injection valve.
( 4 ) 上記 (2 ) において、 好ましくは、 前記燃料の噴射率を変更可能な噴射 率可変機構は、 高圧の燃料フィ一ドポンプの燃料圧力を変更可能な機構であり、 前記制御手段は、 この燃料圧力を大きくして、 燃料噴射弁の単位時間当たりの燃 料噴射量を大きくするようにしたものである。  (4) In the above (2), preferably, the injection rate variable mechanism capable of changing the fuel injection rate is a mechanism capable of changing the fuel pressure of a high-pressure fuel feed pump, and the control means includes: The fuel pressure is increased to increase the fuel injection amount per unit time of the fuel injection valve.
( 5 ) 上記 (1 ) において、 好ましくは、 前記制御手段は、 低負荷運転時には、 前記吸気弁の開時期を吸気行程に設定して、 前記吸気弁の開口期間とリフト量お よび吸気管の上流に設けられた絞り弁の開度を制御することにより単位時間当た りの吸入空気量を小さくして、 前記燃料噴射弁の燃料噴射期間が前記吸気弁の開 口期間以下となるように制御するようにしたものである。 (5) In the above (1), preferably, at the time of a low load operation, the control means sets an opening timing of the intake valve to an intake stroke, and sets an opening period and a lift amount of the intake valve and an intake pipe. The amount of intake air per unit time is reduced by controlling the degree of opening of a throttle valve provided upstream, and the fuel injection period of the fuel injection valve is controlled by the opening of the intake valve. The control is performed so as to be equal to or less than the mouth period.
( 6 ) 上記 (1 ) において、 好ましくは、 前記制御手段は、 燃料噴射終了時期 を、 吸気弁の閉時期に対し、 噴射された燃料噴霧が吸気弁に到達するのに要する 時間だけ早い時期としたものである。 図面の簡単な説明  (6) In the above (1), preferably, the control means sets the fuel injection end timing to a timing earlier than the closing timing of the intake valve by a time required for the injected fuel spray to reach the intake valve. It was done. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施形態による可変吸気弁を備えた内燃機関の構成を 示す構成図である。  FIG. 1 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the first embodiment of the present invention.
図 2は、 本発明の第 1の実施形態による可変吸気弁を備えた内燃機関の動作を 示すフローチャートである。  FIG. 2 is a flowchart illustrating an operation of the internal combustion engine including the variable intake valve according to the first embodiment of the present invention.
図 3は、 バルブの開閉時期, リフト量の説明図である。  Figure 3 is an explanatory diagram of the valve opening / closing timing and lift.
図 4は、 本発明の一実施形態による内燃機関に用いられるリフト量可変機構を 備えた燃料噴射弁のボ一ル弁リフト量 F V Lと燃料噴射率 I R Tの関係の説明図 である。  FIG. 4 is an explanatory diagram of a relationship between a ball valve lift amount FVL of a fuel injection valve having a lift amount variable mechanism used in an internal combustion engine according to an embodiment of the present invention and a fuel injection rate IRT.
図 5は、 本発明の第 1の実施形態による可変吸気弁を備えた内燃機関のクラン キング時の動作を示すタイミングチヤ一トである。  FIG. 5 is a timing chart showing the operation at the time of cranking of the internal combustion engine provided with the variable intake valve according to the first embodiment of the present invention.
図 6は、 本発明の第 1の実施形態による可変吸気弁を備えた内燃機関の完爆時 の動作を示すタイミングチヤ一トである。  FIG. 6 is a timing chart showing the operation of the internal combustion engine equipped with the variable intake valve according to the first embodiment of the present invention at the time of a complete explosion.
図 7は、 本発明の第 2の実施形態による可変吸気弁を備えた内燃機関の構成を 示す構成図である。  FIG. 7 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the second embodiment of the present invention.
図 8は、 本発明の第 2の実施形態による可変吸気弁を備えた内燃機関の動作を 示すフローチャートである。  FIG. 8 is a flowchart showing an operation of the internal combustion engine including the variable intake valve according to the second embodiment of the present invention.
図 9は、 本発明の一実施形態による内燃機関に用いられる燃料噴射弁の燃料圧 力 R Pと燃料噴射率 I R Tの関係の説明図である。  FIG. 9 is an explanatory diagram of the relationship between the fuel pressure RP of the fuel injection valve used in the internal combustion engine according to one embodiment of the present invention and the fuel injection rate IRT.
図 1 0は、 本発明の一実施形態による内燃機関に用いられる燃料噴射弁の燃料 圧力 R Pと噴霧平均速度 V Fの関係の説明図である。  FIG. 10 is an explanatory diagram of the relationship between the fuel pressure RP of the fuel injection valve used in the internal combustion engine according to the embodiment of the present invention and the average spray velocity VF.
図 1 1は、 本発明の第 2の実施形態による可変吸気弁を備えた内燃機関の完爆 時の動作を示すタイミングチャートである。  FIG. 11 is a timing chart showing an operation at the time of a complete explosion of an internal combustion engine equipped with a variable intake valve according to the second embodiment of the present invention.
図 1 2は、 本発明の第 3の実施形態による可変吸気弁を備えた内燃機関の構成 を示す構成図である。 FIG. 12 shows a configuration of an internal combustion engine having a variable intake valve according to the third embodiment of the present invention. FIG.
図 1 3は、 本発明の第 3の実施形態による可変吸気弁を備えた内燃機関の動作 を示すフローチヤ一トである。  FIG. 13 is a flowchart showing the operation of an internal combustion engine equipped with a variable intake valve according to the third embodiment of the present invention.
図 1 4は、 本発明の第 3の実施形態による可変吸気弁を備えた内燃機関の完爆 時の動作を示すタイミングチヤ一トである。 発明を実施するための最良の形態  FIG. 14 is a timing chart showing the operation of the internal combustion engine equipped with the variable intake valve according to the third embodiment of the present invention at the time of a complete explosion. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図 1〜図 6を用いて、 本発明の第 1の実施形態による可変吸気弁を備え た内燃機関の構成及び動作について説明する。  Hereinafter, the configuration and operation of the internal combustion engine including the variable intake valve according to the first embodiment of the present invention will be described with reference to FIGS.
最初に、 図 1を用いて、 本実施形態による可変吸気弁を備えた内燃機関の構成 について説明する。 なお、 本実施形態では、 気筒毎に燃料噴射弁を設けたマルチ ポイントインジェクション (MPI) を用いている。  First, the configuration of an internal combustion engine having a variable intake valve according to the present embodiment will be described with reference to FIG. In this embodiment, multipoint injection (MPI) in which a fuel injection valve is provided for each cylinder is used.
図 1は、 本発明の第 1の実施形態による可変吸気弁を備えた内燃機関の構成を 示す構成図である。  FIG. 1 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the first embodiment of the present invention.
燃焼室 4は、 シリンダヘッド 1と、 シリンダブロック 2と、 シリンダブロック 2に挿入されたピストン 3とにより形成される。 燃焼室 4の中心上部には、 点火 プラグ 3 1が設けられている。 ピストン 3は、 コンロッド 1 7を介してクランク 軸 1 8と連結されている。 クランク軸 1 8には、 クランク角度とエンジン回転数 を検出可能なクランク角センサ 1 9が設置されている。  The combustion chamber 4 is formed by a cylinder head 1, a cylinder block 2, and a piston 3 inserted into the cylinder block 2. An ignition plug 31 is provided at the upper center of the combustion chamber 4. The piston 3 is connected to a crankshaft 18 via a connecting rod 17. The crankshaft 18 is provided with a crank angle sensor 19 capable of detecting a crank angle and an engine speed.
シリンダブロック 2には、 冷却水の温度を検出する水温センサ 1 2が設置され ている。 燃焼室 4には、 吸気管 5と排気管 6がそれぞれ開口している。 吸気管 5 及び排気管 6の開口部を、 それぞれ開閉する吸気弁 7と排気弁 8が設けられてい る。  The cylinder block 2 is provided with a water temperature sensor 12 for detecting the temperature of the cooling water. In the combustion chamber 4, an intake pipe 5 and an exhaust pipe 6 are opened. An intake valve 7 and an exhaust valve 8 for opening and closing the openings of the intake pipe 5 and the exhaust pipe 6, respectively, are provided.
アクセルペダル 9には、 運転者の踏み込み量を検出するアクセル開度センサ ( S ACC) 1 0を備えている。 吸気管 5には、 吸気弁 7に向けて燃料を噴射する燃 料噴射弁 1 1と、 燃焼室 4へ吸入する空気量を調節可能な絞り弁 1 3が設けられ ている。 排気管 6には、 三元触媒 1 4を備えており、 その上流側には空燃比セン サ 1 5を、 下流には〇2センサ 1 6が設けられている。 吸気弁 7には、 バルブの 開時期, 開口期間, リフト量を変更可能なバルブ可変機構 (VV) 2 6を備えてい る。 燃料噴射弁 1 1には、 燃料配管 28によって燃料タンク 29内に設置された 低圧ポンプ (PL) 30が接続されている。 燃料配管 28の途中には、 燃料圧力を 検出可能な燃料圧力センサ (SFU) 27が設置されている。 The accelerator pedal 9 is provided with an accelerator opening sensor (S ACC) 10 for detecting the amount of depression of the driver. The intake pipe 5 is provided with a fuel injection valve 11 that injects fuel toward the intake valve 7 and a throttle valve 13 that can adjust the amount of air to be taken into the combustion chamber 4. The exhaust pipe 6 is provided with a three-way catalyst 14, an air-fuel ratio sensor 15 is provided on the upstream side, and a 〇2 sensor 16 is provided on the downstream side. The intake valve 7 has a variable valve mechanism (VV) 26 that can change the valve opening timing, opening period, and lift amount. You. A low pressure pump (PL) 30 installed in a fuel tank 29 is connected to the fuel injection valve 11 by a fuel pipe 28. A fuel pressure sensor (SFU) 27 capable of detecting a fuel pressure is provided in the middle of the fuel pipe 28.
電子制御装置 (ECU) 20は、 設定されたプログラムに従って演算処理を実 行する中央処理装置 (CPU). 21と、 制御プログラムや演算に必要なデータを 記憶しているリ一ドオンリーメモリ (ROM) 22と、 演算結果を一時的に格納 するためのランダムアクセスメモリ (RAM) 23と、 各センサからの信号を受 信する入力回路 (I N) 24と、 演算結果から各装置に信号を送信する出力回路 An electronic control unit (ECU) 20 is a central processing unit (CPU) that executes arithmetic processing according to a set program, and a read-only memory (ROM) that stores control programs and data necessary for arithmetic operations. ) 22, a random access memory (RAM) 23 for temporarily storing the calculation results, an input circuit (IN) 24 for receiving signals from each sensor, and transmitting signals to each device from the calculation results Output circuit
(OUT) 25で構成されている。 (OUT) 25.
燃料噴射弁 11の内部には、 上下することによって燃料噴射量を制御する弁体 が設けられている。 弁体のリフト量と開口期間を変えることによって、 燃料噴射 量が制御される。 弁体は磁歪材料で作られており、 磁界を発生させることにより 弁体の長さを変える事ができる。 燃料噴射弁 11には磁界の強弱を制御するリフ ト量可変機構 (VL) 32が設けられおり、 これにより開口期間一定で燃料噴射量 を変えることが可能である。 バルブ可変機構 26は、 機械的に吸気弁のカム軸を 動かし、 バルブの開時期, 開口期間, リフト量を制御する機構となっている。 次に、 図 2〜図 6を用いて、 本実施形態による可変吸気弁を備えた内燃機関の 動作について説明する。  Inside the fuel injection valve 11, a valve body that controls the fuel injection amount by moving up and down is provided. The amount of fuel injection is controlled by changing the valve lift and opening period. The valve body is made of magnetostrictive material, and the length of the valve body can be changed by generating a magnetic field. The fuel injection valve 11 is provided with a lift amount variable mechanism (VL) 32 for controlling the strength of the magnetic field, so that the fuel injection amount can be changed while the opening period is constant. The variable valve mechanism 26 mechanically moves the camshaft of the intake valve to control the valve opening timing, opening period, and lift amount. Next, the operation of the internal combustion engine provided with the variable intake valve according to the present embodiment will be described with reference to FIGS.
図 2は、 本発明の第 1の実施形態による可変吸気弁を備えた内燃機関の動作を 示すフロ一チヤ一トである。  FIG. 2 is a flowchart showing the operation of the internal combustion engine provided with the variable intake valve according to the first embodiment of the present invention.
ィダニッシヨンスィッチがォンになりェンジンが始動すると、 ステップ s 10 0において、 ECU 20は、 アクセル開度センサ 10の信号を入力回路 24を取 り込み、 CPU21はアクセル開度 ACDを算出する。  When the ignition switch is turned on and the engine starts, in step s100, the ECU 20 receives the signal of the accelerator opening sensor 10 into the input circuit 24, and the CPU 21 calculates the accelerator opening ACD. .
次に、 ステップ s 1 10において、 ECU 20は、 水温センサ 12の信号を入 力回路 24を取り込み、 CPU 21は水温 TWを算出する。  Next, in step s110, the ECU 20 takes in the signal of the water temperature sensor 12 into the input circuit 24, and the CPU 21 calculates the water temperature TW.
次に、 ステップ s 120において、 ECU20は、 クランク角センサ 19の信 号を入力回路 24を取り込み、 CPU21はエンジン回転数 NEを算出する。 次に、 ステップ s 130において、 ECU 20は、 燃料圧力センサ 27の信号 を入力回路 24を取り込み、 CPU21は燃料圧力 RPを算出する。 次に、 ステップ s 140において、 ECU20の CPU21は、 アクセル開度 ACDを用いて、 低負荷か否かを判定する。 中高負荷と判定されるとステップ s 150に進み、 低負荷と判定されるとステップ s 170に進む。 Next, in step s120, the ECU 20 takes in the signal of the crank angle sensor 19 into the input circuit 24, and the CPU 21 calculates the engine speed NE. Next, in step s130, the ECU 20 takes in the signal of the fuel pressure sensor 27 into the input circuit 24, and the CPU 21 calculates the fuel pressure RP. Next, in step s140, the CPU 21 of the ECU 20 determines whether or not the load is low by using the accelerator opening ACD. If it is determined that the load is medium / high, the process proceeds to step s150. If it is determined that the load is low, the process proceeds to step s170.
中高負荷であると CPU 21が判定すると、 ステップ s 150において、 CP U21は、 吸気弁 7の開時期 VOT2, リフト量 VL2, 開口期間 VT2を決定 し、 バルブ可変機構 26を制御する。 中高負荷であるので、 吸気弁 7の開時期 V OT2, リフト量 VL2, 開口期間 VT2は、 それぞれ予め設定されている最大 値となるように、 設定される。  When the CPU 21 determines that the load is medium to high, the CPU 21 determines the opening timing VOT2, the lift amount VL2, and the opening period VT2 of the intake valve 7 and controls the variable valve mechanism 26 in step s150. Since the load is medium and high, the opening timing V OT2, the lift amount VL2, and the opening period VT2 of the intake valve 7 are set so as to become the preset maximum values, respectively.
ここで、 図 3を用いて、 バルブの開閉時期, リフト量について説明する。  Here, the opening / closing timing of the valve and the lift amount will be described with reference to FIG.
図 3は、 バルブの開閉時期, リフト量の説明図である。 図 3において、 横軸は クランク角 S (deg) を示し、 縦軸はバルブのリフト量を示している。 クランク角 0が 0 ~ 90度が膨張行程 E XPであり、 90〜 180が掃気工程 E XHであり、 180〜270度が吸気行程 I NTであり、 270〜360度が圧縮行程 COM である。 図中、 実線 I Nが吸気弁のリフト量を示し、 点線 EXが排気弁のリフト 量を示している。 中高負荷の時は、 例えば、 吸気弁の開時期 VOT2は 360度 とし、 リフト量 VL 2は図示する量とし、 開口期間 VT2は 210度となる。 次に、 ステップ s 160において、 CPU 21は、 アクセル開度 A CDと水温 TWとエンジン回転数 NEから、 目標となる燃料噴射量 MF 2, 空燃比 AZF2, 絞り弁開度 THA2, 燃料噴射時期 F I T2, 点火時期 I GT 2を算出する。 そ して、 CPU21は、 これらの算出値となるように、 燃料噴射弁 1 1、 絞り弁 1 3、 点火プラグ 16を制御する。  Figure 3 is an explanatory diagram of the valve opening / closing timing and lift. In FIG. 3, the horizontal axis shows the crank angle S (deg), and the vertical axis shows the valve lift. The crank angle 0 is 0 to 90 degrees is the expansion stroke E XP, the 90 to 180 degrees is the scavenging process EXH, the 180 to 270 degrees is the intake stroke INT, and the 270 to 360 degrees is the compression stroke COM. In the figure, the solid line IN indicates the lift of the intake valve, and the dotted line EX indicates the lift of the exhaust valve. At medium to high loads, for example, the intake valve opening timing VOT2 is 360 degrees, the lift amount VL2 is the amount shown, and the opening period VT2 is 210 degrees. Next, in step s160, the CPU 21 calculates the target fuel injection amount MF2, the air-fuel ratio AZF2, the throttle valve opening THA2, and the fuel injection timing FI from the accelerator opening A CD, the water temperature TW, and the engine speed NE. Calculate T2, ignition timing I GT2. Then, the CPU 21 controls the fuel injection valve 11, the throttle valve 13, and the spark plug 16 so that these calculated values are obtained.
ここで、 燃料噴射時期 F I T2は、 従来の MP Iエンジンに用いられるような 排気行程中に燃料噴射が終了する時期に設定される。 点火時期 I GT2は、 水温 TWが 80°C未満の場合は排気温度の上昇を目的に上死点付近に、 また水温 TW が 80°C以上の場合は上死点前 20° 付近に決定される。 空燃比 AZF 2は、 ガ ソリンの理論混合比である 14. 7になるように決定される。 運転中の空燃比は 空燃比センサ 15により検出され、 目標空燃比 A/F 2と誤差が生じた場合は絞 り弁開度 THA 2を補正する。  Here, the fuel injection timing FITT2 is set to a timing at which fuel injection ends during the exhaust stroke as used in a conventional MPI engine. The ignition timing I GT2 is determined near TDC for the purpose of increasing the exhaust gas temperature when the water temperature TW is less than 80 ° C, and near 20 ° before TDC when the water temperature TW is 80 ° C or more. You. The air-fuel ratio AZF 2 is determined to be 14.7, which is the theoretical mixing ratio of gasoline. The air-fuel ratio during operation is detected by the air-fuel ratio sensor 15, and if an error occurs from the target air-fuel ratio A / F2, the throttle valve opening THA2 is corrected.
なお、 上述の例では、 排気弁のリフト量と作動角は一定としているが、 排気弁 にもバルブ可変機構を取り付けてもよいものである。 In the above example, the lift amount and the operating angle of the exhaust valve are fixed, but the exhaust valve Alternatively, a variable valve mechanism may be attached.
一方、 ステップ s 140の判定により、 アクセル開度 ACDが低負荷であると CPU 21が判定すると、 ステップ s 170において、 CPU 21は、 絞り弁 1 3の開度が最大 (全開) となる絞り弁開度 THAIに設定する。 また、 CPU2 1は、 水温 TW, エンジン回転数 NE, アクセル開度 ACDから、 目標となる燃 料噴射量 MF 1, 空燃比 A/F 1, 点火時期 I GT1を算出する。  On the other hand, when the CPU 21 determines in step s140 that the accelerator opening ACD has a low load, in step s170, the CPU 21 determines whether the throttle valve 13 has the maximum opening degree (full open). Set the opening to THAI. Also, the CPU 21 calculates the target fuel injection amount MF1, the air-fuel ratio A / F1, and the ignition timing IGT1 from the water temperature TW, the engine speed NE, and the accelerator opening ACD.
次に、 ステップ s 180において、 CPU 21は、 燃料噴射量 MF 1と空燃比 A/F 1から計算された空気量から吸気弁 7の開時期 VOT 1, 開口期間 VT 1, リフト量 VL 1を算出する。 運転中の空燃比は空燃比センサ 15により検出され、 空燃比 AZF 1と誤差が生じた場合は、 開口期間 VT 1とバルプリフト量 VL 1 を補正する。  Next, in step s180, the CPU 21 determines the opening timing VOT1, the opening period VT1, and the lift amount VL1 of the intake valve 7 from the air amount calculated from the fuel injection amount MF1 and the air-fuel ratio A / F1. calculate. The air-fuel ratio during operation is detected by the air-fuel ratio sensor 15, and if an error occurs with the air-fuel ratio AZF1, the opening period VT1 and the valve lift VL1 are corrected.
次に、 ステップ s 190において、 CPU21は、 燃料噴射弁 11の単位時間 当たりの燃料噴射量である燃料噴封率 Γ R Tを算出する。  Next, in step s190, the CPU 21 calculates a fuel injection rate Γ RT which is a fuel injection amount per unit time of the fuel injection valve 11.
ここで、 図 4を用いて、 リフト量可変機構 21を備えた燃料噴射弁 11のボ一 ル弁リフト量 FVLと燃料噴射率 I RTの関係について説明する。  Here, the relationship between the ball valve lift amount FVL of the fuel injection valve 11 having the variable lift amount mechanism 21 and the fuel injection rate IRT will be described with reference to FIG.
図 4は、 本発明の一実施形態による内燃機関に用いられるリフト量可変機構を 備えた燃料噴射弁のボール弁リフト量 FVLと燃料噴射率 I RTの関係の説明図 である。  FIG. 4 is an explanatory diagram of a relationship between a ball valve lift amount FVL of a fuel injection valve having a lift amount variable mechanism used in an internal combustion engine according to an embodiment of the present invention and a fuel injection rate IRT.
図 4において、 横軸はボール弁リフト量 FVLを示し、 縦軸は燃料噴射率 I R Tを示している。 図 4の原点 Nは、 標準値の状態を示している。 標準値とはボー ル弁の弁体に磁界が発生し弁体が伸びている状態を表し、 通常はこの状態で使用 する。 ボール弁リフト量 FVLが標準値から増加するに従って、 燃料噴射率 I R Tも標準値から直線的に増加する。  In FIG. 4, the horizontal axis shows the ball valve lift FVL, and the vertical axis shows the fuel injection rate I RT. The origin N in FIG. 4 indicates the state of the standard value. The standard value indicates a state in which a magnetic field is generated in the valve element of the ball valve and the valve element is extended, and is normally used in this state. As the valve valve lift FVL increases from the standard value, the fuel injection rate I RT also increases linearly from the standard value.
ステップ s 190では、 ボ一ル弁リフト量 L F 1の初期値は最小である標準値 となっており、 燃料噴射率 I RTも標準値に設定される。  In step s190, the initial value of the ball valve lift amount L F1 is the minimum standard value, and the fuel injection rate I RT is also set to the standard value.
次に、 ステップ s 200において、 CPU21は、 燃料噴射率 I RTと燃料噴 射量 MF 1から燃料噴射期間 T 1を算出する。  Next, in step s200, the CPU 21 calculates a fuel injection period T1 from the fuel injection rate IRT and the fuel injection amount MF1.
次に、 ステップ s 210において、 CPU21は、 噴射時期補正時間 T2を算 出する。 噴射時期補正時間 T 2は、 燃料噴射弁 11から燃料が噴射された後、 こ の燃料が燃焼室 4に到着するまでの時間である。 噴射時期補正時間 T 2は、 噴霧 速度 V Fと燃料噴射弁の先端から吸気弁までの距離 Lによって決まり、 次式 Next, in step s210, the CPU 21 calculates the injection timing correction time T2. The injection timing correction time T2 is set after fuel is injected from the fuel injection valve 11. This is the time required for the fuel to reach the combustion chamber 4. The injection timing correction time T 2 is determined by the spray speed VF and the distance L from the tip of the fuel injection valve to the intake valve.
(1) によって算出される。  It is calculated by (1).
T2 = L/VF … (1) ここで、 燃料噴霧の平均速度 VFは、 燃料圧力 RPから求められ、 燃料ポンプ P Lの性能によって決定される。 通常、 燃料圧カレギ;!レ一タを用いる構成では燃料 圧力 RPは一定保たれている。 燃料噴射弁と吸気弁までの距離 Lはエンジンの構 成によって決まるため、 燃料圧力 RPが一定ならば、 噴射時期補正時間 T 2は R OM22に予め記憶した値を用いることができる。 なお、 燃料圧力センサ 27に よって燃料圧力 RPを検出する場合には、 燃料圧力 RPと噴射時期補正時間 T 2 の関係のマップを ROM22に予め記億しておき、 マップを用いて、 噴射時期補 正時間 T 2を算出することもできる。 T2 = L / VF ... (1) Here, the average speed VF of the fuel spray is obtained from the fuel pressure RP and is determined by the performance of the fuel pump P L. Normally, fuel pressure caregis! In the configuration using a writer, the fuel pressure RP is kept constant. Since the distance L between the fuel injection valve and the intake valve is determined by the configuration of the engine, if the fuel pressure RP is constant, the injection timing correction time T2 can use a value previously stored in the ROM22. When the fuel pressure RP is detected by the fuel pressure sensor 27, a map of the relationship between the fuel pressure RP and the injection timing correction time T2 is stored in the ROM 22 in advance, and the injection timing is corrected using the map. The correct time T2 can also be calculated.
次に、 ステップ s 220において、 CPU21は、 吸気弁 7のバルブの開口期 間 VT 1'が燃料噴射期間 T 1以上か否かを判定する。 開口期間 VT 1が燃料噴射 期間 T 1以上の場合にはステップ s 230に進み、 以下の場合はステップ s 24 0に進む。 開口期間 VT1が燃料噴射期間 T1以下の場合、 バルブの開口期間が 燃料噴射期間より短いため、 バルブが閉じても燃料が噴射されることになる。 し たがって、 噴射された燃料が吸気管 5に付着するため、 これを防止するための処 理をステップ s 240以降にて実行する.。  Next, in step s220, the CPU 21 determines whether or not the valve opening period VT1 'of the intake valve 7 is equal to or longer than the fuel injection period T1. If the opening period VT1 is equal to or longer than the fuel injection period T1, the process proceeds to step s230. In the following cases, the process proceeds to step s240. If the opening period VT1 is shorter than the fuel injection period T1, the valve is still injected even if the valve is closed because the opening period of the valve is shorter than the fuel injection period. Accordingly, since the injected fuel adheres to the intake pipe 5, a process for preventing this is executed in step s240 and thereafter.
開口期間 VT1が燃料噴射期間 T1以上の場合には、 ステップ s 230におい て、 CPU21は、 燃料噴射期間 T1の終了時期が、 開口期間 VT1の終了時期 に対し、 噴射時期補正時間 T 2だけ早くなるように、 燃料噴射時期 F I T 1を算 出する。  If the opening period VT1 is longer than the fuel injection period T1, in step s230, the CPU 21 sets the end timing of the fuel injection period T1 earlier than the end timing of the opening period VT1 by the injection timing correction time T2. Thus, the fuel injection timing FIT 1 is calculated.
一方、 開口期間 VT1が燃料噴射期間 T1未満の場合、 ステップ s 240にお いて、 CPU21は、 燃料噴射期間 T1と開口期間 VT1と同じとなるための燃 料噴射率 I RTを算出する。  On the other hand, if the opening period VT1 is shorter than the fuel injection period T1, in step s240, the CPU 21 calculates the fuel injection rate IRT to be the same as the fuel injection period T1 and the opening period VT1.
また、 ステップ s 250において、 CPU 21は、 燃料噴射期間がバルブの開 口期間 VTlと等しくなるように、 燃料噴射期間 T 1を再算出する。 In step s250, the CPU 21 determines whether the fuel injection period Recalculate the fuel injection period T1 so that it becomes equal to the mouth period VTl.
そして、 ステップ s 260において、 CPU 21は、 図 4に示した特性を用い て、 ステップ s 240で求められた燃料噴射率 I RTから、 ボール弁リフト量 L F Iを求める。  Then, in step s260, the CPU 21 obtains the ball valve lift amount L FI from the fuel injection rate I RT obtained in step s240 using the characteristics shown in FIG.
次に、 ステップ s 230において、 CPU 21は、 燃料噴射期間 T1の終了時 期が、 開口期間 VT1の終了時期に対し、 噴射時期補正時間 T 2だけ早くなるよ うに、 燃料噴射時期 F I T1を算出する。  Next, in step s230, the CPU 21 calculates the fuel injection timing FI T1 such that the end time of the fuel injection period T1 is earlier than the end time of the opening period VT1 by the injection timing correction time T2. I do.
そして、 CPU21は、 これらの算出値となるように、 燃料噴射弁 11、 絞り 弁 13、 点火ブラグ 16, バルブ可変機構 26, リフト量可変機構 32を制御す る。  Then, the CPU 21 controls the fuel injection valve 11, the throttle valve 13, the ignition plug 16, the valve variable mechanism 26, and the lift amount variable mechanism 32 so that these calculated values are obtained.
次に、 図 5及び図 6を用いて、 本実施形態による可変吸気弁を備えた内燃機関 の具体的な動作について説明する。 なお、 以下の説明においては、 冷機始動時と し、 エンジン始動直後はアクセルを開かない運転条件とする。  Next, a specific operation of the internal combustion engine including the variable intake valve according to the present embodiment will be described with reference to FIGS. In the following description, it is assumed that the engine is operating at the time of cold start and that the accelerator is not opened immediately after the engine is started.
図 5は、 本発明の第 1の実施形態による可変吸気弁を備えた内燃機関のクラン キング時の動作を示すタイミングチャートである。 図 6は、 本発明の第 1の実施 形態による可変吸気弁を備えた内燃機関の完爆時の動作を示すタイミングチヤ一 トである。 図 5, 図 6の横軸は、 時間 T (ms) を示している。 なお、 括弧書き でクランク角を示している。 図 5及び図 6の上側は、 燃料噴射弁のリフト量 FV L (/ m) を示している。 図 5及び図 6の下側は、 吸気弁のリフト量 VL (m m) を示している。  FIG. 5 is a timing chart showing an operation at the time of cranking of the internal combustion engine including the variable intake valve according to the first embodiment of the present invention. FIG. 6 is a timing chart showing an operation at the time of a complete explosion of the internal combustion engine provided with the variable intake valve according to the first embodiment of the present invention. The horizontal axis in Figs. 5 and 6 indicates the time T (ms). The crank angle is shown in parentheses. The upper side of FIGS. 5 and 6 shows the lift amount FV L (/ m) of the fuel injection valve. The lower part of FIGS. 5 and 6 shows the lift amount VL (mm) of the intake valve.
最初に、 図 2及び図 5を用いて、 スター夕によるクランキング状態での動作を 説明する。  First, the operation in the cranking state by star evening will be described with reference to Figs.
エンジンが始動し、 クランキング状態になると、 図 2のステップ s i 00, s 1 10, s i 20の処理により、 アクセル開度センサ 10, 水温センサ 12, ク ランク角センサ 19からの信号が入力回路 24に入力される。 なお、 燃料圧力 R Pは一定に保たれているものとするので、 ステップ s 130の処理は行わないも のとする。 ここで、 例えば、 アクセル開度 ACD=0度、 水温 Τ"νν=20Τ、 ェ ンジン回転数 ΝΕ = 200 r/m i nが算出されたものとする。 この結果は RA M23に保存され、 逐次更新される。 エンジン始動直後はアクセルを開かない運転条件としているので、 図 2のステ ップ s 140の判定からステップ s 170に進み、 アクセル開度 A CDから燃料 噴射量 MF 1が算出され、 また、 この燃料噴射量 MF 1に対して、 空燃比 AZF 1が 14. 7となるよう吸入空気量が計算される。 ここでは、 例えば、 一気筒 5 00 c cのエンジンとし燃料量 12mg、 空気量 1 76mgとする。 絞り弁 1 3 には出力回路 25から信号が出力され、 絞り弁開度 THAIが全開になるよう制 御される。 点火時期 I GT 1は排気ガスの温度上昇を目的に上死点に設定され、 クランク角度が上死点になったときに点火プラグ 3 1に信号を出力するよう制御 する。 When the engine starts and enters the cranking state, signals from the accelerator opening sensor 10, the water temperature sensor 12, and the crank angle sensor 19 are input to the input circuit 24 through the processing of steps si00, s110, and si20 in FIG. Is input to Since the fuel pressure RP is kept constant, the processing in step s130 is not performed. Here, for example, it is assumed that the accelerator opening ACD = 0 degrees, the water temperature Τ "νν = 20Τ, and the engine speed ΝΕ = 200 r / min. The results are stored in the RAM M23 and updated successively. You. Since the operating condition is such that the accelerator is not opened immediately after the engine is started, the process proceeds from step s140 in FIG. 2 to step s170, where the fuel injection amount MF1 is calculated from the accelerator opening ACD. The intake air amount is calculated so that the air-fuel ratio AZF 1 becomes 14.7 for the injection amount MF 1. Here, for example, it is assumed that the engine is a 500-cc single cylinder engine, the fuel amount is 12 mg, and the air amount is 176 mg. A signal is output from the output circuit 25 to the throttle valve 13 to control the throttle valve opening THAI to be fully opened. The ignition timing I GT 1 is set at the top dead center for the purpose of increasing the temperature of the exhaust gas, and is controlled to output a signal to the ignition plug 31 when the crank angle reaches the top dead center.
次に、 ステップ s 180の処理により、 目標吸入空気量から予め ROM22に 記憶されたマップを参照することにより、 吸気弁の開時期 V〇T 1, 開口期間 V T 1, 最大リフト量 VL 1を決定する。 ここでは、 吸気弁の開時期 VOT 1を 6 0° ATDC、 開口期間をクランク角 50° 、 最大リフトを 0. 8mmとする。 すなわち、 図 5の下側に示すように、 吸気弁は、 60° ATDCで開き始め、 1 10° ATDCまでの 50° の間開いており、 そのときの最大リフトを 0. 8m mとする。  Next, in the processing of step s180, the opening timing V〇T1, the opening period VT1, and the maximum lift amount VL1 of the intake valve are determined from the target intake air amount by referring to a map stored in the ROM 22 in advance. I do. Here, it is assumed that the opening timing of the intake valve VOT 1 is 60 ° ATDC, the opening period is 50 ° crank angle, and the maximum lift is 0.8mm. That is, as shown in the lower part of Fig. 5, the intake valve starts to open at 60 ° ATDC, and opens for 50 ° up to 110 ° ATDC, and the maximum lift at that time is 0.8 mm.
なお、 吸気時に発生する空気流動が非常に高速な場合、 吸気管を飛翔中の燃料 噴霧がその流れの影響を受け吸気管に付着することになる。 そのため、 開時期 V OT 1はザウタ一平均粒径 50 m以上の燃料噴霧において、 燃料噴霧の速度と 吸気時に発生する空気の速度差が 20 Om/s e c以下になる設定とする。 この 範囲であれば吸気時の気流の影響を受けにくいものである。  If the air flow generated at the time of intake is very high, the fuel spray flying in the intake pipe will adhere to the intake pipe under the influence of the flow. For this reason, the opening timing V OT 1 is set so that the difference between the speed of the fuel spray and the speed of the air generated during intake is 20 Om / sec or less for a fuel spray having an average particle diameter of 50 m or more. Within this range, it is less susceptible to the effects of airflow during intake.
次に、 ステップ s 190, s 200の処理により、 ポール弁リフト量 LF 1の 初期値は最小である標準値となっており、 標準値の燃料噴射率 I RTから燃料噴 射期間 T 1が計算される。 ここでは、 標準値の燃料噴射率 I RT=1. 2mg/ msをすると、 ステップ s 1 70で求めた燃料量 12mgから、 燃料噴射期間 T 1は 1 Omsとなる。  Next, due to the processing of steps s190 and s200, the initial value of the pole valve lift amount LF1 is the minimum standard value, and the fuel injection period T1 is calculated from the standard value of the fuel injection rate IRT. Is done. Here, assuming that the standard value of the fuel injection rate I RT is 1.2 mg / ms, the fuel injection period T 1 is 1 Oms from the fuel amount of 12 mg obtained in step s 170.
次に、 ステップ s 2 10の処理により、 噴霧平均速度 VFと燃料噴射弁の先端 から吸気弁までの距離 Lから噴射時期補正時間 T 2は 2. 5msとする。 これは、 燃料噴射弁 1 1から噴射される燃料液滴の平均粒径は 60 m, 噴霧平均速度 V Fは 4 OmZs e cとし、 燃料噴射弁の先端から吸気弁までの距離 Lが 0. lm としたためである。 回転数 200 r/mi nではクランク角 3度に相当する。 な お、 噴射時期補正時間 T2は、 予め ROM22に記憶されている。 Next, by the processing in step s210, the injection timing correction time T2 is set to 2.5 ms from the average spray velocity VF and the distance L from the tip of the fuel injection valve to the intake valve. This is because the average diameter of the fuel droplets injected from the fuel injector 1 1 is 60 m, the average spray velocity V F was 4 OmZsec, and the distance L from the tip of the fuel injection valve to the intake valve was 0.1 lm. At a rotational speed of 200 r / min, this corresponds to a crank angle of 3 degrees. The injection timing correction time T2 is stored in the ROM 22 in advance.
次に、 ステップ s 220の判定において、 回転数 200 r/mi nで吸気弁の 開口期間であるクランク角 50° は 42msになり、 開口期間 VT1 (42m s) が、 ステップ 200で求めた燃料噴射期間 T 1 (10ms) より長くなつて おり、 燃料噴射率 I RTの変更は必要ないと判断され、 ステップ s 210の処理 に進む。  Next, in the determination of step s220, at a rotational speed of 200 r / min, the crank angle 50 °, which is the opening period of the intake valve, becomes 42 ms, and the opening period VT1 (42 ms) is determined by the fuel injection obtained in step 200. Since it is longer than the period T 1 (10 ms), it is determined that the fuel injection rate IRT does not need to be changed, and the process proceeds to step s210.
ステップ s 230の処理において、 燃料噴射期間 T 1は 1 Omsであり回転数 200 rZm i nでクランク角 12度に相当する。 吸気弁閉時期は 110° AT DCであるため、 燃料噴射時期は、 吸気弁閉時期は 1 10° ATDCから燃料噴 射期間 T l (10ms = 12° ) と、 噴射時期補正時間 T 2 (2. 5 m s = 3 。 ) を引いて、 95 ° ATDCに設定され、 クランク角が 95° ATDCにおい て、 出力回路 25から燃料噴射弁 11に信号を出力するよう制御される。 すなわ ち、 図 5の上側に示すように、 燃料噴射弁 11からは、 95° ATDCから噴射 を開始し、 12° の間噴射して、 107° ATDCに噴射を終了する。 噴射終了 時の 107° ADTCは、 吸気弁が閉弁する 110° ATDCよりも、 3° 早い 時期である。 また、 燃料噴射弁のリフト量 FVLは 40 mである。  In the processing of step s230, the fuel injection period T1 is 1 Oms, which corresponds to a crank angle of 12 degrees at a rotational speed of 200 rZmin. Since the intake valve closing timing is 110 ° AT DC, the fuel injection timing is as follows: the intake valve closing timing is 110 ° ATDC, the fuel injection period T l (10 ms = 12 °), and the injection timing correction time T 2 (2 5 ms = 3.) is subtracted to set 95 ° ATDC, and the crank angle is controlled to output a signal from the output circuit 25 to the fuel injection valve 11 at 95 ° ATDC. That is, as shown in the upper part of FIG. 5, the fuel injection valve 11 starts the injection at 95 ° ATDC, performs the injection for 12 °, and ends the injection at 107 ° ATDC. The 107 ° ADTC at the end of injection is 3 ° earlier than the 110 ° ATDC at which the intake valve closes. The lift FVL of the fuel injector is 40 m.
CPU 21により上記結果が演算されると同時に吸気行程が始まる。 ピストン 3が上死点に位置する状態では、 吸気弁 7, 排気弁 8はどちらも閉じている状態 である。 ピストン 3が上死点位置から下がり始めると、 吸気弁 7が閉じているた め燃焼室 4内の圧力は減少していく。  The above-described result is calculated by the CPU 21 and the intake stroke starts at the same time. When the piston 3 is located at the top dead center, the intake valve 7 and the exhaust valve 8 are both closed. When the piston 3 starts to fall from the top dead center position, the pressure in the combustion chamber 4 decreases because the intake valve 7 is closed.
そして、 図 5に示すように、 60° ATDCになると吸気弁 7が開くが、 燃焼 室 4内の圧力が吸気管 5内の圧力より低くなつているため、 吸気弁開口直後は吸 気管 5から燃焼室 4へ高速の気流が発生する。 また、 吸気弁 7のリフト量を微小 にすることで、 ピストン 3が下がることにより燃焼室 4へ吸入される気流の速度 を 40〜 50 m/ s e cに保つことができる。  Then, as shown in FIG. 5, the intake valve 7 opens at 60 ° ATDC, but since the pressure in the combustion chamber 4 is lower than the pressure in the intake pipe 5, immediately after the intake valve opens, the intake valve 7 A high-speed airflow is generated in the combustion chamber 4. Further, by making the lift amount of the intake valve 7 very small, the speed of the airflow sucked into the combustion chamber 4 by lowering the piston 3 can be maintained at 40 to 50 m / sec.
95° ATDCになると燃料噴射弁 11から燃料が噴射され、 燃料噴霧は 2. 5 m s前後で吸気弁 7付近に到達し、 微小リフトにすることによって生成された 高速気流によって燃焼室 4へ流入する。 この時、 吸気弁 7と燃焼室 4の隙間を通 過するところで高速気流とのせん断力により微粒化する。 At 95 ° ATDC, fuel is injected from the fuel injection valve 11, and the fuel spray reaches the vicinity of the intake valve 7 in about 2.5 ms and is generated by making a minute lift It flows into the combustion chamber 4 by the high-speed airflow. At this time, the particles pass through the gap between the intake valve 7 and the combustion chamber 4 and are atomized by the shearing force of the high-speed airflow.
107° ATDCで燃料噴射が終了し、 1 10° において燃料噴霧最後尾が燃 焼室 4に流入したところで吸気弁 7が閉じる。 高速気流によつて微粒化された噴 霧は気化しゃすく、 また空気の流れに乗りやすいことからシリンダ壁面への付着 が無く、 均質な混合気が形成される。 圧縮行程が終了し、 ピストンが上死点へ到 達したところで点火プラグ 31により点火されエンジンが完爆し、 ス夕一夕によ らずに回転を始める。  At 107 ° ATDC, the fuel injection ends. At 110 °, when the last part of the fuel spray flows into the combustion chamber 4, the intake valve 7 closes. The spray atomized by the high-speed airflow is vaporized and easy to ride on the flow of air, so it does not adhere to the cylinder wall, and a homogeneous air-fuel mixture is formed. When the compression stroke is completed and the piston reaches the top dead center, it is ignited by the spark plug 31 and the engine completely explodes, and starts rotating regardless of the speed.
次に、 図 2及び図 6を用いて、 完爆直後の持続運転時の動作を説明する。 なお、 図 6の上側において、 実線 Bが図 2のステツプ s 240〜s 260の補正が行わ れた場合の燃料噴射弁のリフト量を示し、 破線 Aは、 補正が行われる前のリフト 量を示している。  Next, the operation during continuous operation immediately after the complete explosion will be described with reference to Figs. In the upper part of FIG. 6, the solid line B indicates the lift amount of the fuel injection valve when the correction of steps s240 to s260 in FIG. 2 is performed, and the broken line A indicates the lift amount before the correction is performed. Is shown.
アクセル開度センサ 10, 水温センサ 12, クランク角センサ 19からの信号 が入力回路 24に入力され、 これら信号から CPU21によりアクセル開度 AC D=0, 水温 TW=20°C, エンジン回転数 NE= 1200 rZm i nが算出さ れる。 負荷は一定のため燃料量と空気量は上述の例と同じである。 吸入空気量は 開時期と開口期間によって決まり、 エンジン回転数の影響は小さいため、 上述の 例と同じく、 吸気弁の開時期 VOT1を 60° ATDC, 開口期間をクランク角 50° , 最大リフトを 0. 5 mmとする。 すなわち、 図 6の下側に示すように、 吸気弁は、 60° ATDCで開き始め、 1 10° ATDCまでの 50° の間開い ており、 そのときの最大リフト量を 0. 8mmとする。  The signals from the accelerator opening sensor 10, the water temperature sensor 12, and the crank angle sensor 19 are input to the input circuit 24, and from these signals, the accelerator opening AC D = 0, water temperature TW = 20 ° C, engine speed NE = 1200 rZmin is calculated. Since the load is constant, the amount of fuel and the amount of air are the same as in the above example. The intake air volume is determined by the opening timing and the opening period, and the influence of the engine speed is small. Therefore, as in the above example, the intake valve opening timing VOT1 is 60 ° ATDC, the opening period is 50 ° crank angle, and the maximum lift is 0. . 5 mm. That is, as shown in the lower part of Fig. 6, the intake valve starts to open at 60 ° ATDC, and opens for 50 ° up to 110 ° ATDC, and the maximum lift at that time is 0.8 mm.
ボ一ル弁リフト量 LF 1の初期値は標準値になっており、 燃料噴射率 I RT = 1. 2mgZms、 燃料噴射期間 T1は 10msとなる。  The initial value of the ball valve lift LF1 is a standard value, the fuel injection rate I RT = 1.2mgZms, and the fuel injection period T1 is 10ms.
次に、 ステップ s 220の判定において、 回転数 1200 r/mi nで吸気弁 の開口期間であるクランク角 50° は 6. 94msになり、 開口期間 VT 1 (6. 92ms) が、 燃料噴射期間 T l (10ms) より短くなつており、 燃料噴射率 I RTの変更が必要となるため、 ステップ s 240の処理に進む。  Next, in the determination of step s220, at a rotational speed of 1200 r / min, the crank angle 50 °, which is the opening period of the intake valve, becomes 6.94 ms, and the opening period VT 1 (6.92 ms) becomes the fuel injection period. Since it is shorter than T l (10 ms) and the fuel injection rate I RT needs to be changed, the process proceeds to step s240.
そして、 ステップ s 240, s 250の処理により、 CPU 21は、 燃料噴射 期間 T 1が開口期間 V T 1と同じになるように燃料噴射率 I R Tを再設定する。 開口期間 6. 94ms, 燃料噴射量 12mgなので、 目標燃料噴射率 I RTは 1. 73mg msとなる。 Then, the CPU 21 resets the fuel injection rate IRT so that the fuel injection period T1 becomes the same as the opening period VT1 by the processes of steps s240 and s250. Since the opening period is 6.94 ms and the fuel injection amount is 12 mg, the target fuel injection rate I RT is 1.73 mg ms.
また、 ステップ s 260の処理により、 目標燃料噴射率 I RTを満足するボー ル弁リフト量 FVLが ROM 22に記憶されたマップから導き出される。 燃料噴 射期間 T 1が 6. 94 m sになるようボール弁リフト量 F V Lがリフト量可変機 構 32により制御される。  Further, the ball valve lift amount FVL that satisfies the target fuel injection rate IRT is derived from the map stored in the ROM 22 by the process of step s260. The ball valve lift FVL is controlled by the lift variable mechanism 32 so that the fuel injection period T1 becomes 6.94 ms.
噴霧平均速度 V Fと燃料噴射弁の先端から吸気弁までの距離 Lから噴射時期補 正時間 T 2は 2. 5msとなり、 回転数 1200 r/m i nではクランク角 18 度に相当する。 燃料噴射期間 T 1は 6. 94msであり回転数 1200 r/m i nでクランク角 50度に相当する。 吸気弁閉時期は 110° ATDCであり CP U21により燃料噴射時期が 42° ATDCに設定され、 クランク角が 42° A TDCにおいて出力回路 25から燃料噴射弁 11に信号を出力するよう制御され. る。  From the average spray velocity V F and the distance L from the tip of the fuel injection valve to the intake valve, the injection timing correction time T 2 is 2.5 ms, which corresponds to a crank angle of 18 degrees at a rotational speed of 1200 r / min. The fuel injection period T1 is 6.94 ms, which corresponds to a crank angle of 50 degrees at a rotational speed of 1200 r / min. The intake valve closing timing is 110 ° ATDC, the fuel injection timing is set to 42 ° ATDC by CPU21, and the output circuit 25 is controlled to output a signal from the output circuit 25 to the fuel injection valve 11 when the crank angle is 42 ° ATDC. .
ステップ s 230の処理において、 燃料噴射期間 T1は 6. 94msであり回 転数 1200 rZm i nでクランク角 50度に相当する。 吸気弁閉時期は 110 ° ATDCであるため、 燃料噴射時期は、 吸気弁閉時期は 110° ATDCから 燃料噴射期間 T1 (6. 94ms = 50° ) と、 噴射時期補正時間 T2 (2. 5 ms = 18° ) を引いて、 42 ° ATDCに設定され、 クランク角が 42° AT DCにおいて、 出力回路 25から燃料噴射弁 11に信号を出力するよう制御され る。 すなわち、 図 6の上側に示すように、 燃料噴射弁 1 1からは、 42° ATD Cから噴射を開始し、 50° の間噴射して、 92° ATDCに噴射を終了する。 噴射終了時の 92° ADTCは、 吸気弁が閉弁する 110° ATDCよりも、 1 8° 早い時期である。 また、 燃料噴射弁のリフト量 FVLは 58 mである。 吸気行程が始まり、 ピストン 3が上死点位置から下がり始めると、 吸気弁 7が 閉じているため燃焼室 4内の圧力は減少していく。 そして、 図 6の下側に示すよ うに、 60° ATDCになると吸気弁 7が開くが、 燃焼室 4内の圧力が吸気管 5 内の圧力より低くなつているため、 吸気弁開口直後は吸気管 5から燃焼室 4へ高 速の気流が発生する。 また、 吸気弁 7のリフト量を微小にすることで、 ピストン 3が下がることにより燃焼室 4へ吸入される気流の速度を 20 Om/s e cに保 つことができる。 In the processing in step s230, the fuel injection period T1 is 6.94 ms, which corresponds to a crank angle of 50 degrees at a rotational speed of 1200 rZmin. Since the intake valve closing timing is 110 ° ATDC, the fuel injection timing is as follows: The intake valve closing timing is 110 ° ATDC, the fuel injection period T1 (6.94ms = 50 °) = 18 °), and is set to 42 ° ATDC. At a crank angle of 42 ° ATDC, the output circuit 25 is controlled to output a signal to the fuel injection valve 11. That is, as shown in the upper part of FIG. 6, the fuel injection valve 11 starts the injection from the 42 ° ATDC, injects the fuel for 50 °, and ends the injection at the 92 ° ATDC. The 92 ° ADTC at the end of the injection is 18 ° earlier than the 110 ° ATDC at which the intake valve closes. The lift FVL of the fuel injector is 58 m. When the intake stroke starts and the piston 3 starts to fall from the top dead center position, the pressure in the combustion chamber 4 decreases because the intake valve 7 is closed. Then, as shown in the lower part of Fig. 6, the intake valve 7 opens when the temperature reaches 60 ° ATDC, but since the pressure in the combustion chamber 4 is lower than the pressure in the intake pipe 5, the intake A high-speed airflow is generated from the pipe 5 to the combustion chamber 4. Also, by minimizing the lift amount of the intake valve 7, the velocity of the airflow sucked into the combustion chamber 4 by lowering the piston 3 is maintained at 20 Om / sec. I can.
4 2 ° AT D Cになると、 図 6の上側に示すように、 燃料噴射弁 1 1から燃料 が噴射され、 燃料噴霧は 2 . 5 m s前後で吸気弁 7付近に到達し、 微小リフトに することによって生成された高速気流によって燃焼室 4へ流入する。 この時、 吸 気弁 7と燃焼室 4の隙間を通過するところで高速気流とのせん断力により微粒ィ匕 する。  At 42 ° AT DC, fuel is injected from the fuel injection valve 11 as shown in the upper part of Fig. 6, and the fuel spray reaches the vicinity of the intake valve 7 in about 2.5 ms, causing a slight lift. It flows into the combustion chamber 4 by the high-speed airflow generated by this. At this time, fine particles are formed by the shearing force of the high-speed airflow where the gas passes through the gap between the intake valve 7 and the combustion chamber 4.
9 2 ° A T D Cで燃料噴射が終了し、 1 1 0 ° において燃料噴霧最後尾が燃焼 室 4に流入したところで吸気弁 7が閉じる。 高速気流によって微粒化された噴霧 は気化しゃすく、 また空気の流れに乗りやすいことからシリンダ壁面への付着が 無く、 均質な混合気が形成される。 そのため、 ピストンが上死点へ到達したとこ ろで点火プラグ 3 1により点火後に安定して燃焼する。  The fuel injection ends at 92 ° ATDC, and at 110 ° the intake valve 7 closes when the last part of the fuel spray flows into the combustion chamber 4. The spray atomized by the high-speed airflow is vaporized and chewy, and easily adheres to the flow of air, so that it does not adhere to the cylinder wall, and a homogeneous mixture is formed. Therefore, when the piston reaches the top dead center, it is stably burned by the spark plug 31 after ignition.
以上説明したように、 本実施形態によれば、 燃料噴射期間 T 1を吸気弁の開期 間 V T 1以下とすることにより、 シリンダ壁面への付着が無く、 均質な混合気を 形成して燃焼させることにより、 排出される未燃燃料を低減することができる。 次に、 図 7〜図 1 1を用いて、 本発明の第 2の実施形態による可変吸気弁を備 えた内燃機関の構成及び動作について説明する。  As described above, according to the present embodiment, by setting the fuel injection period T1 to be equal to or less than the opening period VT1 of the intake valve, there is no adhesion to the cylinder wall, and a homogeneous air-fuel mixture is formed to perform combustion. By doing so, the amount of unburned fuel discharged can be reduced. Next, the configuration and operation of an internal combustion engine provided with a variable intake valve according to the second embodiment of the present invention will be described with reference to FIGS.
最初に、 図 7を用いて、 本実施形態による可変吸気弁を備えた内燃機関の構成 について説明する。 なお、 本実施形態では、 気筒毎に燃料噴射弁を設けたマルチ ポイントインジェクション (MPI) を用いている。  First, the configuration of the internal combustion engine including the variable intake valve according to the present embodiment will be described with reference to FIG. In this embodiment, multipoint injection (MPI) in which a fuel injection valve is provided for each cylinder is used.
図 7は、 本発明の第 2の実施形態による可変吸気弁を備えた内燃機関の構成を 示す構成図である。 なお、 図 1と同一符号は、 同一部分を示している。  FIG. 7 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the second embodiment of the present invention. The same reference numerals as those in FIG. 1 indicate the same parts.
本実施形態において、 図 1に示した構成と異なる点は、 次の点である。 すなわ ち、 燃料ポンプとしては、 高圧ポンプ (PH) 3 3を用いている。 また、 燃料配管 2 8に、 配管内の流量を調節することにより燃料圧力を変更することが可能な燃 料圧力可変機構 (VFP) 3 4が備えられている。 燃料噴射弁はリフト量の可変機 構が無い従来用いられている燃料噴射弁 3 5が備えられている。  The present embodiment differs from the configuration shown in FIG. 1 in the following points. That is, a high-pressure pump (PH) 33 is used as the fuel pump. Further, the fuel pipe 28 is provided with a fuel pressure variable mechanism (VFP) 34 which can change the fuel pressure by adjusting the flow rate in the pipe. The fuel injection valve is provided with a conventionally used fuel injection valve 35 having no mechanism for changing the lift amount.
次に、 図 8〜図 1 1を用いて、 本実施形態による可変吸気弁を備えた内燃機関 の動作について説明する。  Next, the operation of the internal combustion engine including the variable intake valve according to the present embodiment will be described with reference to FIGS.
図 8は、 本発明の第 2の実施形態による可変吸気弁を備えた内燃機関の動作を 示すフローチャートである。 なお、 図 2と同一ステップ番号は、 同一処理内容を 示している。 FIG. 8 shows the operation of an internal combustion engine equipped with a variable intake valve according to the second embodiment of the present invention. It is a flowchart shown. The same step numbers as those in FIG. 2 indicate the same processing contents.
ステップ s 100〜s 180の処理内容は、 図 2と同一である。  The processing contents of steps s100 to s180 are the same as those in FIG.
ステップ s 19 OAにおいて、 CPU 21は、 燃料噴射率 I RTを算出する。 ここで、 本実施形態においては、 図 9に示す燃料圧力 RPと燃料噴射率 I R丁の 特性図から燃料噴射率 I RTを求めるようにしている。  In step s19OA, the CPU 21 calculates the fuel injection rate IRT. Here, in the present embodiment, the fuel injection rate I RT is determined from the characteristic diagram of the fuel pressure RP and the fuel injection rate IR shown in FIG.
ここで、 図 9を用いて、 燃料圧力 RPと燃料噴射率 I RTの関係について説明 する。  Here, the relationship between the fuel pressure RP and the fuel injection rate IRT will be described with reference to FIG.
図 9は、 本発明の一実施形態による内燃機関に用いられる燃料 射弁の燃料圧 力 RPと燃料噴射率 I RTの関係の説明図である。  FIG. 9 is an explanatory diagram showing the relationship between the fuel pressure RP of the fuel injection valve used in the internal combustion engine according to the embodiment of the present invention and the fuel injection rate IRT.
図 9において、 横軸は燃料圧力 RPを示し、 縦軸は燃料噴射率 I RTを示して いる。 図 9の原点 Nは、 標準値の状態を示している。 標準値とは最低燃料圧力時 を示している。 燃料圧力 RPが標準値から増加するに従って、 燃料噴射率 I RT も標準値から増加する。 '  In FIG. 9, the horizontal axis shows the fuel pressure RP, and the vertical axis shows the fuel injection rate IRT. The origin N in FIG. 9 indicates the state of the standard value. The standard value indicates the lowest fuel pressure. As the fuel pressure RP increases from the standard value, the fuel injection rate I RT also increases from the standard value. '
ステップ s 19 OAでは、 燃料圧力 RPの初期値は最小である標準値となって おり、 燃料噴射率 I RTも標準値に設定される。  In step s19OA, the initial value of the fuel pressure RP is the minimum standard value, and the fuel injection rate IRT is also set to the standard value.
次に、 ステップ s 200において、 C P U 21は、 燃料噴射率 I R Tと燃料噴 射量 MF 1から燃料噴射期間 T 1を算出する。  Next, in step s200, the CPU 21 calculates the fuel injection period T1 from the fuel injection rate IRT and the fuel injection amount MF1.
次に、 ステップ s 205において、 CPU21は、 噴霧平均速度 VFを求める。 噴霧平均速度 V Fは燃料圧力 R Pによつて変化するため、 噴霧平均速度 V Fは図 10に示す燃料圧力 R Pと噴霧平均速度 V Fの特性図から求められる。  Next, in step s205, the CPU 21 calculates the spray average velocity VF. Since the average spray speed VF changes depending on the fuel pressure RP, the average spray speed VF can be obtained from the characteristic diagram of the fuel pressure RP and the average spray speed VF shown in FIG.
ここで、 図 10を用いて、 燃料圧力 RPと噴霧平均速度 VFの関係について説 明する。 ,  Here, the relationship between the fuel pressure RP and the average spray velocity VF will be described with reference to FIG. ,
図 10は、 本発明の一実施形態による内燃機関に用いられる燃料噴射弁の燃料 圧力 R Pと噴霧平均速度 V Fの関係の説明図である。  FIG. 10 is an explanatory diagram of the relationship between the fuel pressure RP of the fuel injection valve used in the internal combustion engine according to the embodiment of the present invention and the average spray velocity VF.
図 10において、 横軸は噴霧平均速度 VFを示し、 縦軸は燃料噴射率 I RTを - 示している。 図 10の原点 Nは、 標準値の状態を示している。 標準値とは最低燃 料圧力時を示している。 燃料圧力 RPが標準値から増加するに従って、 噴霧平均 速度 V Fも標準値から増加する。 次に、 ステップ s 21 OAにおいて、 CPU2 1は、 噴射時期補正時間 T2を 算出する。 噴射時期補正時間 Τ 2は、 噴霧速度 V Fと燃料噴射弁の先端から吸気 弁までの距離 Lによって決まり、 次式 (1) によって算出される。 In FIG. 10, the horizontal axis represents the spray average velocity VF, and the vertical axis represents the fuel injection rate IRT. The origin N in FIG. 10 indicates the state of the standard value. The standard value indicates the lowest fuel pressure. As the fuel pressure RP increases from the standard value, the average spray velocity VF also increases from the standard value. Next, in step s21OA, the CPU 21 calculates the injection timing correction time T2. The injection timing correction time Τ2 is determined by the spray speed VF and the distance L from the tip of the fuel injection valve to the intake valve, and is calculated by the following equation (1).
T 2 = L/VF … (1) 噴射時期補正時間 T 2は噴霧速度 VFと燃料噴射弁の先端から吸気弁までの距 離 Lによって決まるが、 噴霧速度 VFは燃圧 RPにより変化するため ROM22 には記憶せず、 吸気弁までの距離 Lを ROM 22に記憶する。 運転時には燃料圧 力センサ 27の結果から噴霧平均速度 VFを算出し、 CPU2 1は式 (1) によ り噴射時期補正時間 T 2を算出する。 T 2 = L / VF… (1) Injection timing correction time T 2 is determined by the spray speed VF and the distance L from the tip of the fuel injection valve to the intake valve, but since the spray speed VF changes with the fuel pressure RP, it is stored in ROM22. Is stored, and the distance L to the intake valve is stored in the ROM 22. During operation, the average spray velocity VF is calculated from the result of the fuel pressure sensor 27, and the CPU 21 calculates the injection timing correction time T2 according to equation (1).
ステップ s 220の判定により、 開口期間 VT 1が燃料噴射期間 T1未満と判 定されると、 ステップ s 240において、 CPU2 1は、 燃料噴射期間 T1が開 口期間 VT 1と同じとなるための燃料噴射率 I RTを算出する。 そして、 ステツ プ s 270において、 CPU21は、 算出された燃料噴射率 I RTになるよう図 9より目標燃料圧力 R Pを再度求める。  If it is determined in step s220 that the opening period VT1 is shorter than the fuel injection period T1, in step s240, the CPU 21 determines whether the fuel injection period T1 is equal to the opening period VT1. Calculate the injection rate IRT. Then, in step s270, the CPU 21 again calculates the target fuel pressure RP from FIG. 9 so as to reach the calculated fuel injection rate IRT.
次に、 ステップ s 275において、 CPU 21は、 再度、 噴霧平均速度 VFを 求める。 また、 ステップ s 280において、 CPU 21は、 再度、 噴射時期補正 時間 T 2を算出する'。  Next, in step s275, the CPU 21 obtains the spray average velocity VF again. In step s280, the CPU 21 calculates the injection timing correction time T2 again.
そして、 CPU21は、 これらの算出値となるように、 燃料噴射弁 1 1、 絞り 弁 1 3、 点火プラグ 16, バルブ可変機構 26, 燃料圧力可変機構 34を制御す る。  Then, the CPU 21 controls the fuel injection valve 11, the throttle valve 13, the spark plug 16, the variable valve mechanism 26, and the variable fuel pressure mechanism 34 so that these calculated values are obtained.
次に、 図 1 1を用いて、 本実施形態による可変吸気弁を備えた内燃機関の具体 的な動作について説明する。 なお、 以下の説明においては、 冷機始動時とし、 ェ ンジン始動直後はアクセルを開かない運転条件とする。  Next, a specific operation of the internal combustion engine including the variable intake valve according to the present embodiment will be described with reference to FIG. In the following description, it is assumed that the engine is operating at the time of cold start and that the accelerator is not opened immediately after the engine is started.
図 1 1は、 本発明の第 2の実施形態による可変吸気弁を備えた内燃機関の完爆 時の動作を示すタイミングチャートである。 図 1 1の横軸は、 時間 T (ms) を 示している。 なお、 括弧書きでクランク角を示している。 図 1 1の上側は、 燃料 噴射弁のリフト量 FVL ( ΐη) を示している。 図 1 1の下側は、 吸気弁のリフ ト量 (mm) を示している。 FIG. 11 is a timing chart showing an operation at the time of a complete explosion of an internal combustion engine equipped with a variable intake valve according to the second embodiment of the present invention. The horizontal axis in FIG. 11 indicates time T (ms). The crank angle is shown in parentheses. The upper side of FIG. 11 shows the lift amount FVL (ΐη) of the fuel injection valve. Fig. 11 Lower part of the intake valve The amount (mm).
最初に、 スター夕によるクランキング状態での動作を説明す ¾。 なお、 このと きの動作は、 図 5に示したものと同様になる。  First, the operation in the cranking state by star evening will be described. The operation at this time is the same as that shown in FIG.
エンジンが始動し、 クランキング状態になると、 アクセル開度センサ 10, 水 温センサ 12, クランク角センサ 19からの信号が入力回路 24に入力され、 こ れら信号から CPU21によりアクセル開度 ACD=0, 水温 TW=20°C, ェ ンジン回転数 NE=200 r /m i nが算出される。  When the engine starts and enters the cranking state, signals from the accelerator opening sensor 10, the water temperature sensor 12, and the crank angle sensor 19 are input to the input circuit 24, and the accelerator opening ACD = 0 by the CPU 21 based on these signals. , Water temperature TW = 20 ° C, engine speed NE = 200 r / min.
次に、 CPU21は、 アクセル開度 ACDから燃料噴射量 MF 1と、 空燃比 A /F 1が 14. 7となるよう吸入空気量を計算する。 ここで燃料量 12mg, 空 気量 176mgとする。 絞り弁 13には出力回路 25から信号が出力され、 絞り 弁開度 THAIが全開になるよう制御される。 点火時期 I GT1は排気ガスの温 度上昇を目的に上死点に設定され、 クランク角度が上死点になったときに点火プ ラグ 31に信号を出力するよう制御する。  Next, the CPU 21 calculates the intake air amount from the accelerator opening ACD so that the fuel injection amount MF 1 and the air-fuel ratio A / F 1 become 14.7. Here, the fuel amount is 12 mg and the air amount is 176 mg. A signal is output from the output circuit 25 to the throttle valve 13, and the throttle valve opening THAI is controlled to be fully opened. The ignition timing I GT1 is set at the top dead center for the purpose of increasing the temperature of the exhaust gas, and is controlled to output a signal to the ignition plug 31 when the crank angle reaches the top dead center.
燃料圧力 RPの標準値は最小流量が確保できる数値とし、 初期値はこの標準値 となっており、 燃料圧力 RPから燃料噴射率 I RTが算出される。 そして、 算出 された燃料噴射率 I RTから燃料噴射期間 T 1が CPU 21により計算される。 ここでは初期値として燃料圧力 RP= 300 kP a, 燃料噴射率 I RT=1. 2 mg/msを用い、 燃料噴射期間 T1は 1 Omsとなる。  The standard value of the fuel pressure RP is a value that can secure the minimum flow rate, and the initial value is this standard value, and the fuel injection rate IRT is calculated from the fuel pressure RP. Then, the fuel injection period T1 is calculated by the CPU 21 from the calculated fuel injection rate IRT. Here, the fuel pressure RP = 300 kPa and the fuel injection rate I RT = 1.2 mg / ms are used as the initial values, and the fuel injection period T1 is 1 Oms.
次に、 図 8及び図 11を用いて、 完爆直後の持続運転時の動作を説明する。 な お、 図 1 1の上側において、 実線 Bが図 8のステップ s 240〜s 280の補正 が行われた場合の燃料噴射弁のリフト量を示し、 破線 Aは、 捕正が行われる前の リフト量を示している。  Next, the operation during continuous operation immediately after the complete explosion will be described with reference to FIGS. In the upper part of FIG. 11, solid line B indicates the lift amount of the fuel injection valve when the correction of steps s240 to s280 in FIG. 8 is performed, and dashed line A indicates the value before the correction is performed. The lift amount is shown.
アクセル開度センサ 10, 水温センサ 12, クランク角センサ 19からの信号 が入力回路 24に入力され、 これら信号から CPU21によりアクセル開度 AC D=0, 水温丁 =20° エンジン回転数 NE= 1200 r/m i nが算出さ れる。 ここで、 負荷は一定のため燃料量と空気量はクランキング時と同じとし、 吸気弁の開時期 VOT1を 60° ATDC, 開口期間をクランク角 50° , 最大 リフトを 0. 8mmとする。 すなわち、 図 11の下側に示すように、 吸気弁は、 60° ATDCで開き始め、 110° ATDCまでの 50° の間開いており、 そ のときの最大リフト量を 0. 8mmとする。 The signals from the accelerator opening sensor 10, the water temperature sensor 12, and the crank angle sensor 19 are input to the input circuit 24. From these signals, the accelerator opening AC D = 0, water temperature = 20 ° Engine speed NE = 1200 r / min is calculated. Here, since the load is constant, the fuel amount and air amount are the same as during cranking, the opening timing of the intake valve VOT1 is 60 ° ATDC, the opening period is 50 ° crank angle, and the maximum lift is 0.8mm. In other words, as shown in the lower part of Fig. 11, the intake valve starts to open at 60 ° ATDC, opens for 50 ° to 110 ° ATDC, and The maximum lift at the time of is 0.8 mm.
ボール弁リフト量 LF 1は 40 としており、 燃料噴射率 I RT=1. 2m g/ms, 燃料噴射期間 T 1は 1 Omsとなるが、 回転数 1200 r /m i nで は開口期間であるクランク角 50° は 6. 94msになり、 ステップ s 220の 判定により、 1200 r/m i nでは開口期間 VT 1が燃料噴射期間 T 1より短 いと判断される。  The ball valve lift LF 1 is set to 40, the fuel injection rate I RT = 1.2 mg / ms, the fuel injection period T 1 is 1 Oms, but the crank angle is the opening period at 1200 r / min. 50 ° is 6.94 ms, and it is determined that the opening period VT 1 is shorter than the fuel injection period T 1 at 1200 r / min by the determination in step s 220.
そこで、 ステップ s 240において、 CPU21は、 燃料噴射期間 T1が開口 期間 VT 1と同じになるように燃料噴射率 I RTを再設定する。 開口期間 6. 9 4ms, 燃料噴射量 12mgなので、 目標燃料噴射率 I R Tは 1. 73mg/m sとなる。  Therefore, in step s240, the CPU 21 resets the fuel injection rate IRT so that the fuel injection period T1 becomes the same as the opening period VT1. Since the opening period is 6.94 ms and the fuel injection amount is 12 mg, the target fuel injection rate I RT is 1.73 mg / ms.
次に、 ステップ s 270において、 CPU21は、 ROM22に記憶されたマ ップから燃料圧力 RPを参照して、 目標燃料噴射率 I RTとなる燃料圧力 RPを 求める。 燃料圧力 RPは、 例えば、 620 kP aとなる。  Next, in step s270, the CPU 21 refers to the fuel pressure RP from the map stored in the ROM 22, and obtains the fuel pressure RP that becomes the target fuel injection rate IRT. The fuel pressure RP is, for example, 620 kPa.
次に、 ステップ s 275において、 CPU 21は、 ROM 22に記憶されたマ ップから噴霧平均速度 V Fを参照する。 燃料圧力 R Pが 620 k P aの場合、 噴 霧平均速度 V Fは 58 m/ s e cとする。  Next, in step s275, the CPU 21 refers to the spray average speed VF from the map stored in the ROM 22. When the fuel pressure R P is 620 kPa, the average spray velocity V F is 58 m / sec.
そして、 ステップ s 280において、 燃料噴射弁の先端から吸気弁までの距離 Lから噴射時期補正時間 T 2は 1. 7 m sとなり、 回転数 1200 r /m i nで はクランク角 12度に相当する。 燃料噴射期間 T1は 6. 94msであり回転数 1200 r/m i nでクランク角 50度に相当する。 吸気弁閉時期は 1 10° A TDCであり CPU 21により燃料噴射時期が 48° ATDCに設定され、 クラ ンク角が 48° ATDCにおいて出力回路 25から燃料噴射弁 11に信号を出力 するよう制御される。  Then, in step s280, the injection timing correction time T2 is 1.7 ms from the distance L from the tip of the fuel injection valve to the intake valve, and corresponds to a crank angle of 12 degrees at a rotational speed of 1200 r / min. The fuel injection period T1 is 6.94 ms, which corresponds to a crank angle of 50 degrees at a rotational speed of 1200 r / min. The intake valve closing timing is 110 ° A TDC, the fuel injection timing is set to 48 ° ATDC by the CPU 21, and the output circuit 25 is controlled to output a signal from the output circuit 25 to the fuel injection valve 11 when the crank angle is 48 ° ATDC. You.
すなわち、 図 11の上側に示すように、 燃料噴射弁 11からは、 48° ATDC から噴射を開始し、 50° の間噴射して、 98° ATDCに噴射を終了する。 噴 射終了時の 98° ADTCは、 吸気弁が閉弁する 1 10° ATDCよりも、 12 ° 早い時期である。 燃料噴射弁のリフト量 FVLは 40 iimで変わらないが、 燃 料圧力 R Pを増加することにより、 所定の燃料噴射量を得ることができる。 吸気行程が始まり、 ピストン 3が上死点位置から下がり始めると、 吸気弁 7が 閉じているため燃焼室 4内の圧力は減少する。 そして、 図 1 1の下側に示すよう に、 60° ATDCになると吸気弁 7が開くが、 燃焼室 4内の圧力が吸気管 5内 の圧力より低くなつているため、 吸気弁開口直後は吸気管 5から燃焼室 4へ高速 の気流が発生する。 また、 吸気弁 7のリフト量を微小にすることで、 ピストン 3 が下がることにより燃焼室 4へ吸入される気流の速度を 2 O O S S OmZs e cに保つことができる。 That is, as shown in the upper part of FIG. 11, the fuel injection valve 11 starts injection at 48 ° ATDC, injects fuel for 50 °, and ends injection at 98 ° ATDC. The 98 ° ADTC at the end of the injection is 12 ° earlier than the 1 10 ° ATDC when the intake valve closes. The lift amount FVL of the fuel injection valve does not change at 40 iim, but a predetermined fuel injection amount can be obtained by increasing the fuel pressure RP. When the intake stroke begins and piston 3 starts to fall from the top dead center position, intake valve 7 Since it is closed, the pressure in the combustion chamber 4 decreases. Then, as shown in the lower part of FIG. 11, the intake valve 7 opens at 60 ° ATDC, but since the pressure in the combustion chamber 4 is lower than the pressure in the intake pipe 5, immediately after the intake valve opens, A high-speed airflow is generated from the intake pipe 5 to the combustion chamber 4. Further, by making the lift amount of the intake valve 7 small, the velocity of the airflow sucked into the combustion chamber 4 by lowering the piston 3 can be kept at 2 OOSS OmZs ec.
一方、 図 1 1の上側に示すように、 48° ATDCになると燃料噴射弁 1 1か ら燃料が噴射され、 燃料噴霧は 1. 7ms前後で吸気弁 7付近に到達し、 微小リ フトにすることによって生成された高速気流によって燃焼室 4へ流入する。 この 時、 吸気弁 Ίと燃焼室 4の隙間を通過すると ろで高速気流とのせん断力により 微粒化する。 ■  On the other hand, as shown in the upper part of Fig. 11, when the temperature reaches 48 ° ATDC, fuel is injected from the fuel injection valve 11 and the fuel spray reaches the vicinity of the intake valve 7 in about 1.7 ms, causing a slight lift The resulting high-speed airflow flows into the combustion chamber 4. At this time, the particles pass through the gap between the intake valve Ί and the combustion chamber 4 and are atomized by the shearing force with the high-speed airflow. ■
そして、 98° AT DCで燃料噴射が終了し、 1 10° において燃料噴霧最後 尾が燃焼室 4に流入したところで吸気弁 7が閉じる。 高速気流によつて微粒化さ れた噴霧は気化しやすく、 また空気の流れに乗りやすいことからシリンダ壁面へ の付着が無く、 均質な混合気が形成される。 そのため、 ピストンが上死点へ到達 したところで点火プラグ 3 1により点火後に安定して燃焼する。  Then, the fuel injection ends at 98 ° AT DC, and the intake valve 7 closes when the last part of the fuel spray flows into the combustion chamber 4 at 110 °. The spray atomized by the high-speed airflow is easy to vaporize, and because it is easy to ride on the flow of air, there is no adhesion to the cylinder wall, and a homogeneous mixture is formed. Therefore, when the piston reaches the top dead center, it is stably burned after ignition by the spark plug 31.
以上説明したように、 本実施形態によれば、 燃料噴射期間 T1を吸気弁の開期 間 VT 1以下とすることにより、 シリンダ壁面への付着が無く、 均質な混合気を 形成して燃焼させることにより、 排出される未燃燃料を低減することができる。 次に、 図 12〜図 14を用いて、 本発明の第 3の実施形態による可変吸気弁を 備えた内燃機関の構成及び動作について説明する。  As described above, according to the present embodiment, by setting the fuel injection period T1 to be equal to or less than the opening period VT1 of the intake valve, there is no adhesion to the cylinder wall, and a homogeneous mixture is formed and burned. As a result, the amount of unburned fuel discharged can be reduced. Next, the configuration and operation of an internal combustion engine having a variable intake valve according to the third embodiment of the present invention will be described with reference to FIGS.
最初に、 図 12を用いて、 本実施形態による可変吸気弁を備えた内燃機関の構 成について説明する。 なお、 本実施形態では、 気筒毎に燃料噴射弁を設けたマル チポイントインジェクション (MPI) を用いている。  First, the configuration of the internal combustion engine including the variable intake valve according to the present embodiment will be described with reference to FIG. In this embodiment, multipoint injection (MPI) in which a fuel injection valve is provided for each cylinder is used.
図 12は、 本発明の第 3の実施形態による可変吸気弁を備えた内燃機関の構成 を示す構成図である。 なお、 図 1と同一符号は、 同一部分を示している。  FIG. 12 is a configuration diagram illustrating a configuration of an internal combustion engine including a variable intake valve according to the third embodiment of the present invention. The same reference numerals as those in FIG. 1 indicate the same parts.
本実施形態において、 図 1に示した構成と異なる点は、 次の点である。 すなわ ち、 燃料噴射弁 35は、 リフト量の可変機構の無い従来用いられている噴射弁で ある。 それ以外は、 図 1と同じ構成である。 次に、 図 13を用いて、 本実施形態による可変吸気弁を備えた内燃機関の動作 について説明する。 The present embodiment differs from the configuration shown in FIG. 1 in the following points. That is, the fuel injection valve 35 is a conventionally used injection valve without a mechanism for varying the lift amount. Otherwise, the configuration is the same as in FIG. Next, the operation of the internal combustion engine including the variable intake valve according to the present embodiment will be described with reference to FIG.
図 13は、 本発明の第 3の実施形態による可変吸気弁を備えた内燃機関の動作 を示すフローチャートである。 なお、 図 2と同一ステップ番号は、 同一処理内容 を示している。  FIG. 13 is a flowchart illustrating an operation of the internal combustion engine including the variable intake valve according to the third embodiment of the present invention. The same step numbers as those in FIG. 2 indicate the same processing contents.
本実施形態では、 図 1, 図 7に示した例とは異なり、 燃料噴射率 I RTを変更 する手段を有していない。 そこで、 開口期間 VT1が燃料噴射期間 T1未満の場 合、 絞り弁 13の開度 THAIを絞って吸気管 5内に負圧を発生させ、 単位時間 当たりの吸入空気量を減少させることにより、 開口期間 V T 1が燃料噴射期間 T 1と等しくなるよう絞り弁 13の開度 THA 1を制御する。  In the present embodiment, unlike the examples shown in FIGS. 1 and 7, there is no means for changing the fuel injection rate IRT. Therefore, when the opening period VT1 is shorter than the fuel injection period T1, the opening degree THAI of the throttle valve 13 is reduced to generate a negative pressure in the intake pipe 5, thereby reducing the amount of intake air per unit time. The opening THA1 of the throttle valve 13 is controlled so that the period VT1 becomes equal to the fuel injection period T1.
ステップ s 100〜s 170, s 180, s 230の処理内容は、 図 2と同一 である。  The processing contents of steps s100 to s170, s180, and s230 are the same as those in FIG.
本実施形態では、 ステップ s 140の判定により、 アクセル開度 ACDが低負 荷であると CPU 21が判定すると、 ステップ s 170において、 CPU 21は、 絞り弁 13の開度が最大 (全開) となる絞り弁開度 THAIに設定する。 また、 CPU21は、 水温 TW, エンジン回転数 NE, アクセル開度 ACDから、. 目標 となる燃料噴射量 MF 1, 空燃比 A/F 1, 点火時期 I GT1を算出する。  In the present embodiment, when the CPU 21 determines that the accelerator opening ACD is low load in the determination in step s140, in step s170, the CPU 21 determines that the opening of the throttle valve 13 is the maximum (full open). Throttle valve opening THAI. Further, the CPU 21 calculates a target fuel injection amount MF1, an air-fuel ratio A / F1, and an ignition timing IGT1 from the water temperature TW, the engine speed NE, and the accelerator opening ACD.
次に、 ステップ s 175において、 C P U 21は、 燃料噴射弁 11の単位時間 当たりの燃料噴射量である燃料噴射率 I RTを算出する。 燃料噴射弁 1 1は、 リ フト量を可変できる機構を備えていないため、 燃料噴射率 I RTは、 予め設定さ れている.値である。 また、 CPU21は、 燃料噴射率 I RTと燃料噴射量 MF 1 から燃料噴射期間 T1を算出する。 さらに、 CPU21は、 噴射時期補正時間 T 2を算出する。 噴射時期補正時間 T 2は、 噴霧速度 VFと燃料噴射弁の先端から 吸気弁までの距離 Lによって決まり、 上述の式 (1) によって算出される。  Next, in step s175, the CPU 21 calculates a fuel injection rate IRT which is a fuel injection amount of the fuel injection valve 11 per unit time. Since the fuel injection valve 11 does not have a mechanism capable of changing the lift amount, the fuel injection rate I RT is a preset value. Further, the CPU 21 calculates a fuel injection period T1 from the fuel injection rate IRT and the fuel injection amount MF1. Further, the CPU 21 calculates an injection timing correction time T2. The injection timing correction time T2 is determined by the spray speed VF and the distance L from the tip of the fuel injection valve to the intake valve, and is calculated by the above equation (1).
次に、 ステップ s 180において、 CPU21は、 燃料噴射量 MF 1と空燃比 Aノ F 1から計算された空気量から吸気弁 7の開時期 V O T 1 , 開口期間 V T 1 , リフト量 VL 1を算出する。 運転中の空燃比は空燃比センサ 15により検出され、 空燃比 A/F 1と誤差が生じた場合は、 開口期間 VT 1とバルブリフト量 VL 1 を補正する。 次に、 ステップ s 220において、 CPU21は、 吸気弁 7のバルブの開口期 間 VT 1が燃料噴射期間 T 1以上か否かを判定する。 開口期間 VT 1が燃料噴射 期間 T 1以上の場合にはステップ s 230に進み、 以下の場合はステップ s 24 0に進む。 開口期間 VT 1が燃料噴射期間 T 1以下の場合、 バルブの開口期間が 燃料噴射期間より短いため、 バルブが閉じても燃料が噴射されることになる。 し たがって、 噴射された燃料が吸気管 5に付着するため、 これを防止するための処 理をステップ s 240以降にて実 f亍する。 Next, in step s180, the CPU 21 calculates the opening timing VOT1, the opening period VT1, and the lift amount VL1 of the intake valve 7 from the air amount calculated from the fuel injection amount MF1 and the air-fuel ratio A / F1. I do. The air-fuel ratio during operation is detected by the air-fuel ratio sensor 15, and if an error occurs with the air-fuel ratio A / F1, the opening period VT1 and the valve lift VL1 are corrected. Next, in step s220, the CPU 21 determines whether or not the valve opening period VT1 of the intake valve 7 is equal to or longer than the fuel injection period T1. If the opening period VT1 is equal to or longer than the fuel injection period T1, the process proceeds to step s230. When the opening period VT 1 is shorter than the fuel injection period T 1, fuel is injected even when the valve is closed because the opening period of the valve is shorter than the fuel injection period. Therefore, since the injected fuel adheres to the intake pipe 5, a process for preventing this is performed in step s240 and thereafter.
開口期間 VT1が燃料噴射期間 T1以上の場合には、 ステップ s 230におい て、 CPU21は、 燃料噴射期間 T1の終了時期が、 開口期間 VT1の終了時期 に対し、 噴射時期補正時間 T 2だけ早くなるように、 燃料噴射時期 F I T 1を算 出する。  If the opening period VT1 is longer than the fuel injection period T1, in step s230, the CPU 21 sets the end timing of the fuel injection period T1 earlier than the end timing of the opening period VT1 by the injection timing correction time T2. Thus, the fuel injection timing FIT 1 is calculated.
一方、 開口期間 VT 1が燃料噴射期間 T1未満の場合、 ステップ s 290にお いて、 CPU 21は、 燃料噴射期間 T1と開口期間 VT 1と同じとなるための吸 気バルブの開口期間 VT 1を再算出する。 また、 バルブリフト量 VL 1を算出す る。  On the other hand, if the opening period VT1 is shorter than the fuel injection period T1, in step s290, the CPU 21 sets the opening period VT1 of the intake valve to be the same as the fuel injection period T1 and the opening period VT1. Recalculate. Also, the valve lift amount VL1 is calculated.
また、 ステップ s 295において、 CPU21は、 吸気バルブの開口期間 VT 1が長くなつた分、 絞り弁の開度を小さくして、 吸入される空気量が同じとなる ように、 絞り弁開度 THAIを再算出する。  Further, in step s295, the CPU 21 reduces the opening of the throttle valve by the length of the opening period VT1 of the intake valve, and reduces the opening of the throttle valve THAI so that the amount of air to be sucked is the same. Is calculated again.
次に、 ステップ s 230において、 CPU 21は、 燃料噴射期間 T1の終了時 期が、 開口期間 VT1の終了時期に対し、 噴射時期補正時間 T 2だけ早くなるよ うに、 燃料噴射時期 F I T 1を算出する。  Next, in step s230, the CPU 21 calculates the fuel injection timing FIT1 such that the end time of the fuel injection period T1 is earlier than the end time of the opening period VT1 by the injection timing correction time T2. I do.
そして、 CPU21は、 これらの算出値となるように、 燃料噴射弁 11、 絞り 弁 13、 点火プラグ 16, バルブ可変機構 26を制御する。  Then, the CPU 21 controls the fuel injection valve 11, the throttle valve 13, the spark plug 16, and the variable valve mechanism 26 so that these calculated values are obtained.
次に、 図 13および図 14を用いて、 具体的な動作について説明する。 ここで は、 図 1の実施形態と同様に冷機始動時とし、 エンジン始動直後はアクセルを開 かない運転条件とする。 '  Next, a specific operation will be described with reference to FIGS. Here, it is assumed that the cold start is performed as in the embodiment of FIG. 1 and the operating conditions are such that the accelerator is not opened immediately after the engine is started. '
図 14は、 本発明の第 3の実施形態による可変吸気弁を備えた内燃機関の完爆 時の動作を示すタイミングチャートである。 横軸は、 時間 T (ms) を示してい る。 なお、 括弧書きでクランク角を示している。 図 14の上側は、 燃料噴射弁の 6 リフト量 FVL (um) を示している。 図 14の下側は、 吸気弁のリフト量 VL (mm) を示している。 なお、 図 14巿側において、 実線 Bが図 2のステップ s 290〜s 29.5の補正が行われた場合の吸気弁の開口期間を示し、 破線 Aは、 補正が行われる前の開口期間を示している。 FIG. 14 is a timing chart showing an operation at the time of a complete explosion of an internal combustion engine equipped with a variable intake valve according to the third embodiment of the present invention. The horizontal axis indicates time T (ms). The crank angle is shown in parentheses. The upper part of Fig. 14 shows the fuel injection valve 6 Indicates the lift amount FVL (um). The lower part of FIG. 14 shows the lift amount VL (mm) of the intake valve. In FIG. 14, the solid line B indicates the opening period of the intake valve when the correction of steps s290 to s29.5 in FIG. 2 is performed, and the broken line A indicates the opening period before the correction is performed. ing.
スター夕によるクランキング状態での動作は、 図 1に示した実施形態と同様で ある。 次に、 完爆直後の持続運転時の動作を説明する。  The operation in the cranking state by star evening is the same as that of the embodiment shown in FIG. Next, the operation during continuous operation immediately after the complete explosion will be described.
ステップ s 100〜s 120の処理により、 アクセル開度センサ 10, 水温セ ンサ 12, クランク角センサ 19からの信号が入力回路 24に入力され、 これら 信号から CPU21によりアクセル開度, 水温 TW, エンジン回転数 NEが算出 される。 なお、 燃料圧力 RPは一定に保たれているものとするので、 ステップ s 130の処理は行わないものとする。 ここで、 例えば、 アクセル開度 ACD=0 度、 水温 TW=20t:、 エンジン回転数 NE= 1200 r/m i nが算出された ものとする。 この結果は RAM 23に保存され、 逐次更新される。  The signals from the accelerator opening sensor 10, the water temperature sensor 12, and the crank angle sensor 19 are input to the input circuit 24 by the processing of steps s100 to s120, and the CPU 21 uses these signals to input the accelerator opening, water temperature TW, and engine rotation. The number NE is calculated. Since the fuel pressure RP is kept constant, the process in step s130 is not performed. Here, for example, it is assumed that the accelerator opening ACD = 0 degree, the water temperature TW = 20t :, and the engine speed NE = 1200 r / min. This result is stored in the RAM 23 and updated sequentially.
ステップ s 175の処理が実行されるが、 燃料噴射量はクランキング時と同じ であり、 燃料噴射率 I RT= 1. 2mgZmsであり、 図 14の上側にしめすよ うに、 燃料噴射期間 T 1= 10msとなる。  The process of step s175 is executed, but the fuel injection amount is the same as that at the time of cranking, the fuel injection rate I RT = 1.2 mgZms, and the fuel injection period T 1 = 10 ms.
ステップ s 180の処理により、 吸入空気量は開時期と開口期間によって決ま り、 エンジン回転数の影響は小さいため、 吸気弁の開時期 V〇T 1を 60° AT DC, 開口期間をクランク角 50° , 最大リフト量を lmmとする。 すなわち、 図 14の下側に示すように、 吸気弁は、 60° ATDCで開き始め、 1 10° A TJDCまでの 50° の間開いており、 そのときの最大リフト量を 0. 8mmとす る。  By the process of step s180, the intake air amount is determined by the opening timing and the opening period, and since the influence of the engine speed is small, the opening timing of the intake valve V〇T 1 is set to 60 ° AT DC, and the opening period is set to the crank angle of 50 °, the maximum lift is lmm. That is, as shown in the lower part of Fig. 14, the intake valve starts to open at 60 ° ATDC and opens for 50 ° up to 110 ° A TJDC, and the maximum lift at that time is assumed to be 0.8 mm. You.
次に、 ステップ s 220の判定において、 回転数 1200 rZmi nで吸気弁 の開口期間であるクランク角 50° は 6. 94msになり、 開口期間 VT 1 (6. 92ms) が、 燃料噴射期間 T l (10ms) より短くなつており、 吸気弁の開 口期間 VT 1の変更が必要となるため、 ステップ s 290の処理に進む。  Next, in the determination of step s220, at a rotational speed of 1200 rZmin, the crank angle 50 °, which is the opening period of the intake valve, becomes 6.94 ms, and the opening period VT 1 (6.92 ms) becomes the fuel injection period T l (10 ms), and it is necessary to change the opening period VT 1 of the intake valve. Therefore, the process proceeds to step s290.
そして、 ステップ s 290の処理により、 CPU21は、 開時期は一定で、 開 口期間 VT 1が燃料噴射期間 T 1と同じになるように開口期間 VT 1, バルブリ フト量 VL 1を制御し、 同時に、 ステップ s 295の処理により、 絞り弁開度 T HA 1を閉じて吸気管 5内に負圧を生じさせて吸入空気量 MF 1が目標値になる よう絞り弁開度 THAIを制御する。 ここで、 開口期間 VT 1はクランク角 72 ° 、 リフト量 VL 1は 1mmになり、 CPU 21は、 図 14の下側に実線 Aで示 すように、 吸気弁の開時期 V〇T 1 =38° ATDC、 開口期間 VT 1=72° となるように制御する。 また、 絞り弁開度 THAIは 40° 閉じた状態となる。 開口期間 VT 1と絞り弁開度 TH A 1の関係は ROM 22にマップとして記憶レ ておく力、、 空燃比センサ 1 5によるフィードバック制御を用いる。 Then, by the processing of step s290, the CPU 21 controls the opening period VT1 and the valve lift amount VL1 so that the opening time is constant and the opening period VT1 is the same as the fuel injection period T1. And the throttle valve opening T The HA 1 is closed and a negative pressure is generated in the intake pipe 5 to control the throttle valve opening THAI so that the intake air amount MF 1 becomes the target value. Here, the opening period VT 1 is a crank angle of 72 °, the lift amount VL 1 is 1 mm, and the CPU 21 determines that the intake valve opening timing V AT 1 = Control so that 38 ° ATDC and opening period VT 1 = 72 °. In addition, the throttle valve opening THAI is closed by 40 °. The relationship between the opening period VT 1 and the throttle valve opening TH A 1 uses a force stored in the ROM 22 as a map and feedback control by the air-fuel ratio sensor 15.
また、 CPU 21は、 図 14の上側に示すように、 燃燃料噴射時期を 20° A TDCに設定し、 クランク角が 20° ATDCにおいて出力回路 25から燃料噴 射弁 1 1に信号を出力するよう制御される。  Further, as shown in the upper part of FIG. 14, the CPU 21 sets the fuel injection timing to 20 ° ATDC and outputs a signal from the output circuit 25 to the fuel injection valve 11 when the crank angle is 20 ° ATDC. Is controlled as follows.
吸気行程が始まり、 ピストン 3が上死点位置から下がり始めると、 吸気弁 7が 閉じているため燃焼室 4内の圧力は減少していく。 そして、 図 14の下側に示す ように、 38° ATDCになると吸気弁 Ίが開くが、 燃焼室 4内の圧力が吸気管 5内の圧力より低くなつているため、 吸気弁開口直後は吸気管 5から燃焼室 4へ 高速の気流が発生する。 また、 吸気弁 7のリフト量を微小にすることで、 ピスト ン 3が下がることにより燃焼室 4へ吸入される気流の速度を 180〜200m/ s e cに保つことができる。  When the intake stroke starts and the piston 3 starts to fall from the top dead center position, the pressure in the combustion chamber 4 decreases because the intake valve 7 is closed. Then, as shown in the lower part of FIG. 14, the intake valve と opens at 38 ° ATDC, but since the pressure in the combustion chamber 4 is lower than the pressure in the intake pipe 5, the intake A high-speed airflow is generated from the pipe 5 to the combustion chamber 4. Further, by making the lift amount of the intake valve 7 small, the speed of the airflow sucked into the combustion chamber 4 by lowering the piston 3 can be maintained at 180 to 200 m / sec.
一方、 図 14の上側に示すように、 20° ATDCになると燃料噴射弁 1 1か ら燃料が噴射され、 燃料噴霧は 2. 5ms前後で吸気弁 7付近に到達し、 微小リ フトにすることによって生成された高速気流によって燃焼室 4へ流入する。 この 時、 吸気弁 7と燃焼室 4の隙間を通過するところで高速気流とのせん断力により 微粒化する。 92° ATDCで燃料噴射が終了し、 1 10° において燃料噴霧最 後尾が燃焼室 4に流入したところで吸気弁 7が閉じる。 高速気流によつて微粒化 された噴霧は気化しやすく、 また空気の流れに乗りやすいことからシリンダ壁面 への付着が無く、 均質な混合気が形成される。 そのため、 ピストンが上死点へ到 達したところで点火ブラグ 3 1により点火後に安定して燃焼する。  On the other hand, as shown in the upper part of Fig. 14, when the temperature reaches 20 ° ATDC, fuel is injected from the fuel injection valve 11 and the fuel spray reaches the vicinity of the intake valve 7 in about 2.5 ms, and is set to a small lift. It flows into the combustion chamber 4 by the high-speed airflow generated by this. At this time, the particles are atomized by the shearing force with the high-speed airflow at the passage through the gap between the intake valve 7 and the combustion chamber 4. The fuel injection ends at 92 ° ATDC, and at 110 ° the intake valve 7 closes when the last part of the fuel spray flows into the combustion chamber 4. The spray atomized by the high-speed air flow is easy to vaporize, and because it is easy to get on the air flow, it does not adhere to the cylinder wall, and a homogeneous mixture is formed. Therefore, when the piston reaches the top dead center, the ignition plug 31 stably burns after ignition.
以上説明したように、 本実施形態によれば、 吸気弁の開期間 VT 1を燃料噴射 期間 T 1以下とすることにより、 シリンダ壁面への付着が無く、 均質な混合気を 形成して燃焼させることにより、 排出される未燃燃料を低減することができる。 なお、 上述の各実施形態において、 霉磁弁としては機械式でなく、 電磁式の可 変動弁を用いても同様の効果を得ることができる。 産業上の利用の可能性 As described above, according to the present embodiment, by setting the opening period VT 1 of the intake valve to be equal to or less than the fuel injection period T 1, a homogeneous mixture is formed without combustion on the cylinder wall and burned. As a result, the amount of unburned fuel discharged can be reduced. In each of the above embodiments, the same effect can be obtained by using an electromagnetic variable valve instead of a mechanical valve as the magnetic valve. Industrial potential
本発明によれば、 吸気弁の開口期間よりも燃料噴射期間を短くして燃料供給時 の壁面への燃料付着を防止し、 燃料噴霧微粒化を可能として、 未燃燃料を低減で きるものとなる。  According to the present invention, the fuel injection period is made shorter than the opening period of the intake valve to prevent the fuel from adhering to the wall surface at the time of supplying the fuel, and the fuel spray can be atomized to reduce unburned fuel. Become.

Claims

請求の範囲 The scope of the claims
1 . 吸気弁の開時期, 開口期間, リフト量を変更可能な可変吸気弁を備えた内燃 機関において、 1. In an internal combustion engine equipped with a variable intake valve that can change the opening timing, opening period, and lift of the intake valve,
燃料噴射弁 (1 1 ) の燃料噴射期間が前記吸気弁 (7 ) ) の開口期間よりも長い 場合に、 単位時間当たりの燃料噴射量若しくは吸入空気量を可変して、 前記燃料 噴射弁の燃料噴射期間が前記吸気弁の開口期間以下となるように制御する制御手 段 (2 0 ) を備えたことを特徴とする可変吸気弁を備えた内燃機関。  When the fuel injection period of the fuel injection valve (11) is longer than the opening period of the intake valve (7)), the fuel injection amount or intake air amount per unit time is varied to change the fuel of the fuel injection valve. An internal combustion engine equipped with a variable intake valve, comprising a control means (20) for controlling an injection period to be equal to or shorter than an opening period of the intake valve.
2 . 請求項 1記載の可変吸気弁を備えた内燃機関において、 2. An internal combustion engine provided with the variable intake valve according to claim 1,
前記制御手段 (2 0 ) は、 低負荷運転時には、 前記吸気弁 (7 ) の開時期を吸 気行程に設定して、 前記吸気弁の開口期間とリフト量を制御することにより吸入 空気量を調節し、  During low load operation, the control means (20) sets the opening timing of the intake valve (7) to the intake stroke, and controls the opening period and lift amount of the intake valve to reduce the intake air amount. Adjust,
さらに、 前記制御手段 (2 0 ) は、 燃料の噴射率を変更可能な噴射率可変機構 ( 3 2 ; 3 4 ) を備えた燃料噴射弁 (7 ) の単位時間当たりの燃料噴射量を大き くして、 前記燃料噴射弁の燃料噴射期間が前記吸気弁の開口期間以下となるよう に制御することを特徴とする内燃機関。  Further, the control means (20) increases a fuel injection amount per unit time of a fuel injection valve (7) provided with an injection rate variable mechanism (32; 34) capable of changing a fuel injection rate. And controlling the fuel injection period of the fuel injection valve to be equal to or shorter than the opening period of the intake valve.
3 . 請求項 2記載の可変吸気弁を備えた内燃機関において、 3. An internal combustion engine provided with the variable intake valve according to claim 2,
前記燃料の噴射率を変更可能な噴射率可変機構は、 燃料の吐出を制御する燃料 噴射弁の弁体のリフト量を変更可能な機構 (3 2 ) であり、  The injection rate variable mechanism capable of changing the fuel injection rate is a mechanism (32) capable of changing a lift amount of a valve body of a fuel injection valve that controls fuel discharge.
前記制御手段は、 この弁体のリフト量を大きくして、 燃料噴射弁の単位時間当 たりの燃料噴射量を大きくすることを特徴とする内燃機関。  The internal combustion engine, wherein the control means increases the lift amount of the valve body to increase the fuel injection amount per unit time of the fuel injection valve.
4. 請求項 2記載の可変吸気弁を備えた内燃機関において、 4. An internal combustion engine equipped with the variable intake valve according to claim 2,
前記燃料の噴射率を変更可能な噴射率可変機構は、 高圧の燃料フィ一ドポンプ の燃料圧力を変更可能な機構 (3 4 ) であり、  The injection rate variable mechanism capable of changing the fuel injection rate is a mechanism (34) capable of changing the fuel pressure of a high-pressure fuel feed pump.
前記制御手段は、 この燃料圧力を大きくして、'燃料噴射弁の単位時間当たりの 燃料噴射量を大きくすることを特徴とする内燃機関。 The internal combustion engine, wherein the control means increases the fuel pressure to increase the fuel injection amount per unit time of the fuel injection valve.
5 . 請求項 1記載の可変吸気弁を備えた内燃機関において、 5. An internal combustion engine equipped with the variable intake valve according to claim 1,
前記制御手段 (2 0 ) は、 低負荷運転時には、 前記吸気弁の開時期を吸気行程 に設定して、 前記吸気弁の開口期間とリフト量および吸気管の上流に設けられた 絞り弁 (1 3 ) の開度を制御することにより単位時間当たりの吸入空気量を小さ くして、 前記燃料噴射弁の燃料噴射期間が前記吸気弁の開口期間以下となるよう に制御することを特徴とする内燃機関。  During low load operation, the control means (20) sets the opening timing of the intake valve to the intake stroke, and sets the opening period and lift amount of the intake valve and the throttle valve (1) provided upstream of the intake pipe. 3) controlling the opening degree so as to reduce the amount of intake air per unit time so as to control the fuel injection period of the fuel injection valve to be shorter than the opening period of the intake valve. organ.
6 . 請求項 1記載の可変吸気弁を備えた内燃機関において、 6. An internal combustion engine equipped with the variable intake valve according to claim 1,
前記制御手段 (2 0 ) は、 燃料噴射終了時期を、 吸気弁の閉時期に対し、 噴射 された燃料噴霧が吸気弁に到達するのに要する時間だけ早い時期としたことを特 徵とする内燃機関。 '  The control means (20) is characterized in that the fuel injection end timing is a timing earlier than the closing timing of the intake valve by a time required for the injected fuel spray to reach the intake valve. organ. '
PCT/JP2003/006996 2003-06-03 2003-06-03 Internal combustion engine with variable intake valve WO2004109082A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2003/006996 WO2004109082A1 (en) 2003-06-03 2003-06-03 Internal combustion engine with variable intake valve
JP2005500529A JPWO2004109082A1 (en) 2003-06-03 2003-06-03 Internal combustion engine with variable intake valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/006996 WO2004109082A1 (en) 2003-06-03 2003-06-03 Internal combustion engine with variable intake valve

Publications (1)

Publication Number Publication Date
WO2004109082A1 true WO2004109082A1 (en) 2004-12-16

Family

ID=33495905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006996 WO2004109082A1 (en) 2003-06-03 2003-06-03 Internal combustion engine with variable intake valve

Country Status (2)

Country Link
JP (1) JPWO2004109082A1 (en)
WO (1) WO2004109082A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299945A (en) * 2005-04-21 2006-11-02 Toyota Motor Corp Internal combustion engine
JP2007040262A (en) * 2005-08-05 2007-02-15 Toyota Motor Corp Internal combustion engine system
CN104066961A (en) * 2012-01-26 2014-09-24 丰田自动车株式会社 Internal combustion engine control device
JP2015169171A (en) * 2014-03-10 2015-09-28 本田技研工業株式会社 Combustion control device of internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053640A (en) * 1983-08-31 1985-03-27 Toyota Motor Corp Fuel injection control device for internal-combustion engine
JPS63117149A (en) * 1986-11-04 1988-05-21 Nissan Motor Co Ltd Fuel injection controller for internal combustion engine
JPH11159373A (en) * 1997-11-27 1999-06-15 Denso Corp Air-fuel ratio control device for internal combustion engine
US6062201A (en) * 1997-05-13 2000-05-16 Denso Corporation Fuel injection control for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053640A (en) * 1983-08-31 1985-03-27 Toyota Motor Corp Fuel injection control device for internal-combustion engine
JPS63117149A (en) * 1986-11-04 1988-05-21 Nissan Motor Co Ltd Fuel injection controller for internal combustion engine
US6062201A (en) * 1997-05-13 2000-05-16 Denso Corporation Fuel injection control for internal combustion engine
JPH11159373A (en) * 1997-11-27 1999-06-15 Denso Corp Air-fuel ratio control device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299945A (en) * 2005-04-21 2006-11-02 Toyota Motor Corp Internal combustion engine
JP4525441B2 (en) * 2005-04-21 2010-08-18 トヨタ自動車株式会社 Internal combustion engine
JP2007040262A (en) * 2005-08-05 2007-02-15 Toyota Motor Corp Internal combustion engine system
JP4618039B2 (en) * 2005-08-05 2011-01-26 トヨタ自動車株式会社 Internal combustion engine system
CN104066961A (en) * 2012-01-26 2014-09-24 丰田自动车株式会社 Internal combustion engine control device
JP2015169171A (en) * 2014-03-10 2015-09-28 本田技研工業株式会社 Combustion control device of internal combustion engine

Also Published As

Publication number Publication date
JPWO2004109082A1 (en) 2006-07-20

Similar Documents

Publication Publication Date Title
JP4379479B2 (en) In-cylinder injection engine control method, control device for implementing the control method, and control circuit device used in the control device
US6062201A (en) Fuel injection control for internal combustion engine
JPH1047121A (en) Control device of in-cylinder injection type spark ignition type internal combustion engine
JPH07166922A (en) Fuel injection controller of internal combustion engine
JP4297288B2 (en) Control method of ignition timing of premixed compression ignition engine
JP2007332936A (en) Fuel supply control device of internal combustion engine
US9784205B2 (en) Method and apparatus for controlling internal-combustion engine
US6694961B2 (en) Internal combustion engine
JP2020033963A (en) Control apparatus of internal combustion engine
JP4117799B2 (en) Control method of ignition timing of premixed compression ignition engine
WO2004109082A1 (en) Internal combustion engine with variable intake valve
JP2004132314A (en) Control device for internal combustion engine
JP2016180394A (en) Evaporation fuel control device for internal combustion engine
JP4010280B2 (en) Fuel injection amount control device for internal combustion engine
JP4357685B2 (en) Direct injection engine controller
JP2020012417A (en) Control device of internal combustion engine
US20100031922A1 (en) Ignition control system for internal combustion engine
JP2014185524A (en) Control device for internal combustion engine
JP6942068B2 (en) Fuel injection control method and fuel injection device for spark-ignition internal combustion engine
JP2002332888A (en) Combustion controller of in-cylinder injection internal combustion engine
JP4120452B2 (en) In-cylinder internal combustion engine
JP2023156146A (en) Control device for internal combustion engine
JP6750321B2 (en) Control device for internal combustion engine
JP2023156147A (en) Control device for internal combustion engine
JP4053832B2 (en) Fuel injection timing control device for internal combustion engine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005500529

Country of ref document: JP

122 Ep: pct application non-entry in european phase