WO2004108873A1 - Process for production of fatty acid ester compositions - Google Patents

Process for production of fatty acid ester compositions Download PDF

Info

Publication number
WO2004108873A1
WO2004108873A1 PCT/JP2004/007835 JP2004007835W WO2004108873A1 WO 2004108873 A1 WO2004108873 A1 WO 2004108873A1 JP 2004007835 W JP2004007835 W JP 2004007835W WO 2004108873 A1 WO2004108873 A1 WO 2004108873A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acid
acid ester
alcohol
water
reaction
Prior art date
Application number
PCT/JP2004/007835
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Saka
Toshihiko Fukuzono
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to JP2005506797A priority Critical patent/JP4530992B2/en
Publication of WO2004108873A1 publication Critical patent/WO2004108873A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/02Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils
    • C11C1/025Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids from fats or fatty oils by saponification and release of fatty acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method and an apparatus for producing a fatty acid ester composition by reacting a fat or oil with an alcohol.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-204392
  • the supercritical alcohol method has an advantage that the problem of the method using an alkali catalyst or an acid catalyst can be solved, the fatty acid glyceride is converted into a fatty acid ester.
  • the transesterification reaction of monoglyceride, an intermediate product formed in the process is a rate-determining step, and has a disadvantage that the reaction rate is not high.
  • fatty acid glycerides contained in fats and oils are mainly triglycerides, and diglycerides and monoglycerides are produced as intermediate products during the transesterification reaction with alcohols.
  • the transesterification reaction of monoglycerides is the rate-determining step. It becomes.
  • reaction rate of the transesterification reaction between tridali ceride and alcohol is smaller than the reaction rate of the esterification reaction between fatty acid and alcohol, and there are considerable problems in practical use. Furthermore, in the conventional supercritical alcohol method, particularly in the anhydrous supercritical alcohol method in which water is removed from oils and fats as much as possible, monoesterification often remains unreacted because the transesterification reaction is the main reaction.
  • the transesterification reaction of monoglyceride is a rate-determining step
  • a reaction condition of high temperature and high pressure for example, about 350 ° C, about 40 MPa is required to reduce the residual amount of monoglyceride.
  • the fatty acid ester composition when used as a diesel fuel, particularly as a biodiesel fuel, the amount of total glycerin contained therein must be considered as an important factor influencing the quality of the biodiesel fuel. Must. In practice, increasing the total glycerin content should not produce gels or gums that could clog filters in internal combustion engines. This is because any problems arise.
  • the present invention provides a fatty acid ester composition in a relatively short reaction time under a relatively mild reaction condition, in which the total glycerin amount Gs conforms to the biodiesel fuel standard and in a shorter time and with a higher yield. It is an object to provide a manufacturing method 'apparatus.
  • a representative configuration according to the present invention for solving the above-mentioned problem is a method for producing a fatty acid ester composition by reacting an oil or fat with an alcohol, wherein the oil or fat containing fatty acid glyceride is mixed with water.
  • a first step of producing fatty acids by co-existing and reacting in a subcritical state or a supercritical state a water removal step of roughly removing water from the first step reaction product after the first step, and a residual step in the water removal step.
  • a second step of producing a fatty acid ester by reacting in a subcritical state or a supercritical state.
  • the present invention relates to a method for producing a fatty acid ester composition by reacting fats and oils with alcohols, wherein fats and oils containing fatty acid glycerides coexist with water, and fatty acids are reacted by reaction in a subcritical state or a supercritical state.
  • the temperature condition and the pressure condition in the first step are substantially the same as the temperature condition and the pressure condition in the second step.
  • the production method of the present invention for example, as compared with the reaction conditions of the supercritical alcohol method mainly involving transesterification (for example, about 350 ° C and about 40 MPa as described above), Under relatively low temperature conditions of 50 ° C to 100 ° C and pressure conditions of about 20MPa to 30MPa, these are used to promote the hydrolysis and esterification reactions. Requires very little energy. In particular, when the temperature and / or pressure is maintained in the second step, the temperature is not lowered to room temperature or normal pressure, so that the production method is more economical. Furthermore, it was confirmed that under the relatively mild reaction conditions, the above-mentioned thermal denaturation of the unsaturated fatty acid ester did not occur.
  • the transesterification reaction is not the main reaction, it is possible to sufficiently suppress the residual amount of monoglyceride' diglyceride unreacted fatty acid glyceride, which is an intermediate product. It is possible and therefore it is possible to adapt the total glycerin content to the biodiesel fuel standard.
  • the fatty acid glyceride is positively converted to a fatty acid by a hydrolysis reaction, and further, the fatty acid is obtained by esterification reaction between the fatty acid and a free fatty acid in fats and oils with an alcohol. Therefore, compared to the conventional supercritical alcohol method, Very high yield, equal to or higher.
  • the fatty acid ester can be prepared in a shorter time under milder reaction conditions than the conventional supercritical alcohol method. It is possible to obtain a composition.
  • FIG. 1 is a reaction formula in a method for producing a fatty acid ester composition of the present invention.
  • FIG. 2 is a flowchart of a manufacturing method according to the first embodiment.
  • FIG. 3 is an example of an apparatus configuration of a manufacturing apparatus according to the first embodiment.
  • FIG. 4 is a flowchart of a manufacturing method according to a second embodiment.
  • FIG. 5 is a device configuration example of a manufacturing device in a second embodiment.
  • FIG. 6 is an explanatory diagram of a reference example in which the compositions of organic media are compared.
  • the fats and oils in the present invention widely refer to fats and oils such as animal oils and fats, vegetable oils and fats. And waste oils and fats after their use. It should be noted that oils are liquid at room temperature and oils are solid at room temperature, and oils and fats are a generic term for these.
  • Animal fats and vegetable fats include sardine oil, sword oil, tuna oil, tallow, lard, sunflower oil, safflower oil, tung oil, linseed oil, soybean oil, rapeseed oil, cottonseed oil, olive oil, camellia oil, coconut oil, palm oil , Palm kernel oil, sesame oil and the like.
  • waste fats and oils include waste oils obtained after the exemplified animal fats and vegetable fats and oils have been used as trape oil. Further, a mixture of two or more of these forces, butter, margarine and the like may be used.
  • Fats and oils are rich in fatty acid glycerides.
  • natural fats and oils are mixtures of esters (fatty acid glycerides) of glycerin, a trihydric alcohol, and fatty acids, various monocarboxylic acids.
  • fatty acid glycerides are classified into the above-mentioned monoglycerides (MG), diglycerides (DG), and triglycerides (TG) according to the number of the three hydroxyl groups of glycerin substituted by the same or different functional groups.
  • Examples of the fatty acid include unsaturated fatty acids such as oleic acid, linoleic acid, and linoleic acid, such as saturated fatty acids such as capryprilic acid, lauric acid, norremitic acid, and stearic acid.
  • unsaturated fatty acids such as oleic acid, linoleic acid, and linoleic acid
  • saturated fatty acids such as capryprilic acid, lauric acid, norremitic acid, and stearic acid.
  • the type of fatty acid ester-linked to glycerin differs depending on the fat or oil.
  • the alcohol used in the present invention is not particularly limited, and may be any of a monohydric alcohol, a dihydric alcohol, and a trihydric alcohol. In general, it is preferable to use a monohydric alcohol from the viewpoint of the reaction rate, the yield of the fatty acid ester, and the like, while the alcohol having a small number of carbon atoms is more preferable. Examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-octanol. The lower alcohol exemplified here is, of course, not a saturated monohydric alcohol, and is not intended to be limited to a saturated alcohol. Unsaturated monohydric or unsaturated polyhydric alcohols are acceptable.
  • FIG. 1 shows a reaction formula in the method for producing a fatty acid ester composition of the present invention
  • FIG. 2 shows a flowchart of the production method in the present embodiment
  • FIG. 1 shows an example of an apparatus configuration of a manufacturing apparatus in a state.
  • the above-mentioned fats and oils and water are coexistently accommodated in a reactor.
  • fats and oils must be made into a single kind, not fats.
  • sardine oil may be a mixture of rapeseed oil, beef tallow, etc., which is not a single kind of sardine oil.
  • Coexisting with water implies both active and passive coexistence.
  • the active coexistence means that water is actively added separately from fats and oils.
  • passive coexistence means that water contained in fats and oils is not removed.
  • fats and oils particularly natural fats and oils
  • used sesame oil after use which is waste fats and oils
  • water contained in the foodstuffs used as the material for the sesame.
  • waste oils and fats contain a considerable amount of water.
  • water and “water” are used synonymously unless otherwise specified. Strictly speaking, “water” is still water as a substance, and “moisture” is still water, which is the water contained in an object.
  • the state of the reactor is changed from the housed state to the subcritical state or the supercritical state.
  • the subcritical state or supercritical state refers to a state for water. Preferably, it transitions to a subcritical state for water.
  • high temperature and high pressure near the critical point critical temperature of water is about 374 ° C and critical pressure is about 22.
  • IMPa Means the state. Therefore, for example, heating and pressing are performed at about 300 ° C. and about 17 MPa.
  • oils and fats and water are first stored in the reactor and then heating and pressurization are described, but this is not necessarily the case.
  • they may be heated and pressurized to a subcritical state or a supercritical state or a state close to these, and then stored in the reactor.
  • the hydrolysis reaction of the fatty acid glyceride contained in the fats and oils with water proceeds, and the fatty acid is generated. Specifically, the reaction shown in FIG. 1 (a) proceeds.
  • R attached with a number represents a hydrocarbon group. This reaction has a significantly higher reaction rate than the transesterification reaction under the same conditions.
  • the temperature of the first-step reactant that has passed through the first step (the first-step reactant mainly contains a fatty acid according to the reaction formula shown) is lowered.
  • the temperature condition does not need to be lowered to room temperature. Rather, it is preferable not to lower the temperature to room temperature. Because it is necessary to change the state to the supercritical state (or subcritical state) in the subsequent second step described later, the first step is to heat to the subcritical state, and in the water removal step, it is cooled to room temperature, Furthermore, in the second step, the reheating to the supercritical state is because it is uneconomic from the viewpoint of energy economy such as electric power supplied to the operation of the devices in each step.
  • the water removal step water is removed at a lower temperature than in the first step. That is, the liquid is separated into a light liquid containing fatty acids and a heavy liquid containing water by decantation, for example, and the aqueous phase, which is a heavy liquid, is removed.
  • This aqueous phase contains glycerin dissolved in water. Therefore, by removing the aqueous phase, the residual phase (light liquid), which is the residue of the water removal step, mainly contains high fatty acids.
  • the decantation is used, but there is no particular limitation as long as the method can separate the fatty acid and water generated in the first step.
  • this draining step it is not necessary to change the pressure conditions. Of course, this does not preclude lowering the pressure to, for example, normal pressure, but it is necessary to transition the state to a supercritical state (or subcritical state) in the second step described below. Pressurizing to a subcritical state, depressurizing to normal pressure in the water draining step, and repressurizing to the supercritical state in the second step is the energy economy such as electric power input to the operation of equipment in each step Because it is uneconomical from the viewpoint of
  • the temperature condition is preferably 50 350 ° C and the pressure condition is preferably 0.2 MPa 45 MPa. More preferably, the temperature condition is 100 ° C 300 ° C, the pressure condition is 5MPa 30MPa, and still more preferably, the temperature condition is 120 ° C 200 ° C, pressure condition is about lOMPa-22MPa.
  • the state is further transited to a subcritical state or a supercritical state to progress the reaction.
  • the subcritical state or supercritical state refers to a state for alcohol.
  • the transition is made to a supercritical state for the alcohol.
  • the critical temperature is about 239 ° C and the critical pressure is about 8. IMPa. Therefore, heating and pressurizing are performed at about 270 ° C to 300 ° C and about 1 OMPa-17MPa.
  • the esterification reaction of the alcohol added with the fatty acid highly contained in the residue of the water removal step and the esterification of the free fatty acid contained in the fats and oils with the added alcohol are carried out.
  • the reaction proceeds to produce fatty acid esters. Specifically, the reaction shown in FIG. 1 (b) proceeds. Furthermore, even if diglyceride-monoglyceride is contained in trace amounts in the residue of the water removal step as an intermediate product, they are converted into fatty acid esters by the esterification reaction with methanol.
  • the quantitative ratio of the fats and oils to water and alcohol is preferably 1 to 1000 moles of water per 1 mole of the fatty acid glyceride contained in the fats and oils in the first step.
  • the amount of water is preferably as large as possible. And since most of this water is removed in the draining process, there is no particular effect on the second process due to the large amount of water. However, it is not advisable to increase the amount of water unnecessarily from the viewpoint of miniaturization and cost performance of the apparatus for implementing the manufacturing method of the present invention. Therefore, the amount of water is preferably about 3 to 1000 mol per mol of the fatty acid glyceride.
  • the amount of alcohol in the second step is preferably 3200 mol per 1 mol of fatty acid glyceride contained in fats and oils.
  • the apparatus for performing the production method of the present embodiment is also reduced in size and cost performance. It is not wise to increase alcohol unnecessarily from the point of view. In the production method of the present invention, about 3 to 200 mol of alcohol is required and sufficient for 1 mol of fatty acid dalyceride.
  • the reaction treatment time in the first step and / or the second step is the above-mentioned temperature- Under pressure conditions, between about 1 minute and about 10 hours is preferred. More preferably, it is about 1 minute to 3 hours, and still more preferably, about 1 minute to 1 hour.
  • the reaction time usually varies depending on the type of fats and oils and alcohols and the temperature and pressure conditions, and therefore can be changed as appropriate. Exclude the case where the reaction time is 10 hours or more. Not something.
  • reaction product in the second step after the second step is purified (removal of dalyserin generated as shown in the above reaction formula, water remaining in the water removal step, alcohol added in the second step, and the like).
  • a fatty acid ester composition containing a high content of fatty acid ester there is no particular limitation on the purification method, for example, a method such as decantation or distillation.
  • the fatty acid ester composition produced by the production method of the present embodiment contains a high content of fatty acid ester
  • the total glycerin amount is set to be equal to or less than the upper limit of the biodiesel fuel standard in the EU and the United States. It is possible to use it as a biodiesel fuel.
  • the apparatus for producing a fatty acid ester composition by the above-described production method produces fatty acids by a reaction in a subcritical state or a supercritical state in which oils and fats containing fatty acid glycerides coexist with water.
  • a second processing apparatus 13 is provided that obtains a fatty acid ester by adding alcohol and reacting in a subcritical state or a supercritical state.
  • the first treatment device 11, the water removal treatment device 12, and the second treatment device 13 are not particularly limited, and may be, for example, a heat-resistant pressure-resistant tank, a tubular reactor, or the like.
  • the first treatment device 11 and the second treatment device 13 are used in a subcritical state or a supercritical state of water and Z or an alcohol, it is preferable that they have appropriate resistance.
  • the drainage treatment device 12 there is no particular limitation, for example, a flasher, a decanter, an evaporator, or the like can be used. Further, for example, by providing a separation device such as the evaporator 15, the water removed by the water removal treatment device 12 may be separated into water and glycerin.
  • a purification device 14 for purifying the fatty acid ester composition by roughly removing alcohol and / or moisture from the reaction product generated in the second treatment device 13 may be provided. .
  • a purification device 14 for example, a flasher, a distillation device, or the like can be used.
  • a heating device that can heat and pressurize the first processing device 11 and the second processing device 13 to a subcritical state or a supercritical state of water and / or alcohol.
  • a temperature control device and / or a pressure control device capable of performing appropriate temperature control and pressure control as well as heating and pressing.
  • Such a temperature control device and a pressure control device may be additionally provided in the drainage treatment device 12.
  • the apparatus may be provided with a preheating apparatus capable of heating oils and fats, water, and alcohol to a temperature equal to or close to the temperature condition of the first processing apparatus 11 and / or the second processing apparatus 13 in advance. Les ,. This is economical because it is possible to eliminate waste such as lowering the temperature of the reactant and reheating. Further, a precompression device capable of pressurizing oils and fats, water, and alcohol to a pressure equal to or close to the pressure condition of the first treatment device 11 and / or the second treatment device 13 in advance may be provided.
  • the raw materials such as fats and oils, water, and alcohol are heated and pressurized in advance to a subcritical state or a supercritical state or a state close to them, and then continuously subjected to the first pressure.
  • the fatty acid ester composition is suitable for efficient production.
  • the reactant generated in the first processing apparatus 11 is also possible to process the reactant generated in the first processing apparatus 11 with a preheating / preloading apparatus. That is, for example, even when each of the first treatment device 11, the water removal treatment device 12, and the second treatment device 13 is provided with a temperature control device and a pressure control device, in the case of the oils and fats, water, alcohol, and the first treatment device 11,
  • the device configuration may be such that the generated reactant is heated and pressurized by a preheating / preloading device.
  • the supply devices a, b, and c capable of continuously supplying fats and oils, water, and alcohol. Fatty acids, water, and alcohol are appropriately preheated from the supply devices a , b, and c to the precompression device, the first treatment device 11, and the second treatment device 13, so that a fatty acid ester composition is continuously obtained. It becomes possible.
  • the supply devices a, b, and c are provided with adjusting valves such as valves that can adjust the amount of supply from the supply devices a, b, and c. It may be provided with a supply amount control device capable of controlling the supply amount separately from the supply devices a, b, and c.
  • oils and fats and water are continuously supplied from the supply devices b and c, respectively, to a preheating device (not shown).
  • the fats and oils and water are heated and pressurized by the preheating / preloading device until the temperature and pressure conditions in the first processing device 11, respectively, and then sent to the first processing device 11.
  • the hydrolysis reaction between oils and fats and water proceeds, and fatty acids and dalyserin are obtained.
  • the reactant generated in the first treatment device 11 is sent to a water removal treatment device 12 to remove water. At this time, glycerin is also removed as described above. Then, the reaction product that has passed through the water removal treatment device 12 is fed into the second treatment device 13 after being heated and pressurized as necessary.
  • the alcohol is continuously sent to a preheating / preloading device (not shown) by the supply device a, and heated and pressurized to the temperature and pressure conditions in the second processing device 13. Sent to.
  • the esterification reaction between the fatty acid and the alcohol proceeds, and a fatty acid ester is obtained.
  • the reaction product containing the obtained fatty acid ester and passing through the second treatment device 13 is appropriately fed to a purification device 14 such as a distillation device to remove alcohol, moisture, etc., so that the fatty acid ester is highly contained.
  • the resulting fatty acid ester composition is obtained.
  • FIG. 1 shows a reaction formula in the method for producing a fatty acid ester composition of the present invention
  • FIG. 4 shows a flowchart of the production method in the present embodiment
  • FIG. 5 shows an example of an apparatus configuration of a production apparatus in the present embodiment.
  • the manufacturing method of the present embodiment will be specifically described.
  • the above-mentioned fats and oils and water are coexistently accommodated in a reactor. Then, by heating and pressurizing the reactor in which oils and fats coexist with water, the state of the reactor is changed from the state in which it is contained to the subcritical state or the supercritical state.
  • the hydrolysis reaction between the fatty acid glyceride contained in the fats and oils and water proceeds under such conditions to produce fatty acids. Specifically, the reaction shown in FIG. 1 (a) proceeds.
  • the reaction product of the first step after the first step (as shown in the reaction formula shown in the figure, the reaction product of the first step mainly contains fatty acid glycerin, and further contains water, intermediate product The product contains a small amount of monoglyceride, etc.) and alcohol.
  • the reaction proceeds in a subcritical state or a supercritical state.
  • the subcritical state or supercritical state refers to the state of the added alcohol.
  • a supercritical state is established for the added alcohol.
  • the temperature condition and the pressure condition in the first step and / or the second step it is preferable that the temperature condition is 200 ° C to 400 ° C and the pressure condition is 2MPa to 45MPa. More preferably, the temperature condition is 240 ° C to 380 ° C, and the pressure condition is 7MPa to 30MPa. More preferably, the temperature condition is 250 ° C to 300 ° C, and the pressure condition is about 8MPa to 22MPa.
  • the reaction conditions are approximately the same. This is because the manufacturing method of the present embodiment does not perform the dehydration treatment between the first step and the second step.Furthermore, there is a difference in the critical temperature and critical pressure between water and alcohol. Focusing on this, the temperature condition and the pressure condition in the first step and the second step can be set more preferably. In other words, the temperature and pressure conditions in the first and second steps are approximately the same as the temperature and pressure conditions under which the water becomes a subcritical state and the alcohol becomes a supercritical state.
  • the critical temperature of methanol is about 239 ° C and the critical pressure is about 8.
  • the critical temperature of water is about 374 ° C. Since the pressure is about 22.
  • IMPa set the temperature condition in the first and second steps between about 239 ° C and about 374 ° C, and the pressure condition from about 8 MPa to about 22 MPa. Is preferred.
  • the amount of water is preferably as large as possible. However, it is not advisable to increase the amount of water unnecessarily from the viewpoint of miniaturization and cost performance of the apparatus for performing the manufacturing method of the present embodiment.
  • the amount of water is preferably about 3 to 200 mol per 1 mol of the fatty acid dalyceride.
  • the amount of alcohol in the second step is preferably 3200 mol per 1 mol of fatty acid glyceride contained in fats and oils.
  • the amount of alcohol is larger, but from the viewpoint of reducing the size of the apparatus for performing the production method of the present embodiment and reducing cost performance. It is not wise to use alcohol unnecessarily.
  • about 3-200 mol of alcohol is necessary and sufficient for 1 mol of fatty acid glyceride.
  • the reaction treatment time in the first step and / or the second step is preferably between about 1 minute and about 10 hours under the above-described temperature and pressure conditions. More preferably, it is about 1 minute to 3 hours, and still more preferably, about 1 minute to 1 hour.
  • this reaction treatment time usually varies depending on the type of fats and oils, alcohols, and temperature and pressure conditions, and thus can be changed as appropriate, and does not exclude the case where the reaction treatment time is 10 hours or more.
  • R and a number-added R represent a hydrocarbon group, and ROH may be a monohydric alcohol or an unsaturated and saturated polyhydric alcohol.
  • the fatty acid ester can be increased.
  • the resulting fatty acid ester composition is obtained.
  • the purification method such as decantation or distillation.
  • the alcohol can be separated by evaporation by distillation. Since glycerin has any solubility in water, decantation can separate glycerin together with water in the second step reaction.
  • the fatty acid ester composition produced by the production method of the present embodiment contains a high content of fatty acid ester, it is possible to make the total glycerin amount equal to or less than the upper limit of the biodiesel fuel standard. Useful as a diesel fuel.
  • the fatty acid ester composition produced by the production method of the present embodiment is used as a diesel fuel, it is required to be practically suitable for use in cold regions. This is because, in a low temperature condition such as a cold region, if the diesel fuel solidifies or loses its fluidity, clogging of an internal combustion engine system filter and malfunction of ignition occur.
  • the freezing point generally tends to decrease as the length of the hydrocarbon group derived from alcohol becomes longer. That is, the alcohol added in the second step is preferably an alcohol having a large number of carbon atoms.
  • the reaction rate of the transesterification reaction is reduced, and the method using a conventional alkali catalyst or an acid catalyst or the conventional method described above is used.
  • a practical problem arises in a typical (critical transesterification) supercritical alcohol method.
  • the production method according to the present embodiment obtains a fatty acid ester (composition) through the hydrolysis reaction and the esterification reaction, as described above. Since the reaction rate is higher than the reaction, it is particularly effective when an alcohol having a large number of carbon atoms is used.
  • the production method of the present embodiment is characterized in that the reaction proceeds without using a catalyst under the condition of a subcritical or supercritical state, but it is not necessary to exclude the use of a catalyst.
  • a catalyst e.g., an alkali catalyst or an acid catalyst, or an enzyme catalyst such as lipase phosphpholipase A2, which is an enzyme for decomposing fats and oils, may be used.
  • an apparatus for producing a fatty acid ester composition by the above-described production method causes fatty acids containing fatty acid glycerides to coexist with water and to produce fatty acids by a reaction in a subcritical state or a supercritical state.
  • a first processing apparatus 1 that performs the reaction in a subcritical state or a supercritical state by adding an alcohol to a reaction product generated in the first processing apparatus 1 to generate a fatty acid ester. It is.
  • the first processing device 1 and the second processing device 2 there is no need to perform a step of substantially removing water from the reactant generated in the first processing device 1, so that the first processing device 1 and the second processing device 2 There is no need to install a moisture removal device between them.
  • the first processing apparatus 1 and the second processing apparatus 2 are not particularly limited, and may be, for example, a heat-resistant pressure-resistant tank, a tubular reactor, or the like. Since the first treatment device 1 and the second treatment device 2 are used in a subcritical state or a supercritical state of water and / or alcohol, it is preferable that they have appropriate resistance.
  • a purification device for purifying the fatty acid ester composition by removing alcohol and / or moisture from the reaction product generated in the second treatment device 2 may be provided.
  • a purification device for example, a flasher, a decanter, an evaporator, or the like can be used.
  • alcohol and water are volatilized from the reaction product generated in the second processing apparatus 2 by the flasher 4, and then water containing glycerin is removed by the decanter 5. Furthermore, the alcohol / water remaining in the distillation device 6 is sufficiently removed to obtain a fatty acid ester composition.
  • the water removed in the decanter 5 is separated into water and glycerin.
  • a separate separation device for example, an evaporator 7 may be provided.
  • a heating device and a pressurizing device that can heat and pressurize the first processing device 1 and the second processing device 2 to a subcritical state or a supercritical state of water and / or alcohol.
  • a temperature control device and / or a pressure control device capable of performing appropriate temperature control and pressure control as well as heating and pressing.
  • the alcohol to be added is heated in advance to the temperature condition in the second processing apparatus 2. Since it is possible to eliminate waste such as lowering the temperature of the reactants and reheating, oils, fats, water, and alcohol are heated in advance to a temperature similar to or close to the temperature conditions of the first processing unit 1 and the second processing unit 2. It may be provided with a possible preheating device. Further, a pre-pressurizing device may be provided which can pressurize oils, fats, water and alcohol to a pressure equal to or close to the pressure condition of the first processing device 1 and the second processing device 2 in advance.
  • the raw materials such as fats, oils, water, and alcohol are heated and pressurized in advance to a subcritical state or supercritical state or a state close to them, and then the first By feeding into the processing apparatus 1 and the second processing apparatus 2, it becomes suitable for efficient production of the fatty acid ester composition.
  • the first processing apparatus 1 and the second processing apparatus 2 may be the same reactor.
  • the reaction conditions of the first processing apparatus 1 and the second processing apparatus 2 are almost the same, and between the first step and the second step, the reaction conditions are generated in the first step. Since alcohol is added to the reaction product, an operation such as transferring the reaction product generated in the first step to another device is not required. Therefore, as a manufacturing apparatus, the first process is performed in this reactor as a reactor which is the same device without distinguishing the first processing device 1 and the second processing device 2, and subsequently, the reactor is subjected to the first process.
  • the second step may be performed by adding alcohol.
  • the processing apparatus may be a single reactor including a first processing section corresponding to the first processing apparatus and a second processing section corresponding to the second processing apparatus.
  • the same reactor is not only a physical entity whose function is to perform batch processing, but also has the same reactor as the physical entity but has the first process processing unit and the The function may be to perform a flow process approximately by having a two-step processing unit.
  • a processing apparatus as the same reactor including a first processing section corresponding to the first processing apparatus and a second processing section corresponding to the second processing apparatus is suitable for continuous production of the fatty acid ester composition. It is. This makes it possible to reduce the number of devices and reduce the size of the fatty acid ester composition manufacturing device.
  • the fatty acid ester composition is continuously produced, it is preferable to provide supply devices a, b, and c capable of continuously supplying fats and oils, water, and alcohol. Fatty acids, water, and alcohol are appropriately preheated from the supply devices a , b, and c to the precompression device, the first treatment device 1, and the second treatment device 2 to continuously obtain a fatty acid ester composition. It becomes possible.
  • the supply devices a, b, and c may be provided with an adjusting valve such as a valve capable of adjusting the supply amount from the supply devices a, b, and c, or the supply devices a, b, and c Separately, a device provided with a supply amount control device capable of controlling the supply amount may be used.
  • oils and fats and water are continuously supplied from supply devices b and c, respectively, to a preheating device (not shown).
  • the fats and oils and water are sent to the first treatment device 1 after being preheated * heated by the preload device * pressurized until the temperature and pressure conditions in the first treatment device 1 respectively.
  • the reactant generated in the first processing device 1 is sent to the second processing device 2.
  • the alcohol is continuously sent to the preheating / preloading device (not shown) by the supply device a , and is heated to the temperature and pressure conditions in the second processing device 2 and then sent to the second processing device 2 after being pressurized. .
  • the esterification reaction between the fatty acid and the alcohol proceeds, and a fatty acid ester is obtained (see Fig. 1 (b)). Then, the reaction product containing the obtained fatty acid ester through the second treatment device 2 is appropriately fed to a purification device such as a distillation device 6 to remove alcohol, moisture and the like, thereby containing a high content of fatty acid ester. A fatty acid ester composition is obtained.
  • a purification device such as a distillation device 6 to remove alcohol, moisture and the like, thereby containing a high content of fatty acid ester.
  • a fatty acid ester composition is obtained.
  • the production method 'apparatus of the present embodiment compared to the reaction conditions (for example, about 350 ° C and about 40MPa, as described above) of the supercritical alcohol method in which the transesterification reaction is the main reaction.
  • a relatively mild reaction condition such as a temperature condition of about 50-100 ° C and a pressure condition of about 20MPa-30MPa, may be used to promote the hydrolysis reaction and the esterification reaction.
  • Energy ie, power for operating the preheating device, the device that heats and cools the first and / or second treatment device, and the device that pressurizes and decompresses it, is considerably less. Do it.
  • the temperature is not lowered to room temperature and / or normal pressure, so that the production method is more economical.
  • the transesterification reaction is not the main reaction, it is possible to sufficiently suppress the residual amount of monoglyceride' diglyceride, an unreacted fatty acid glyceride, which is an intermediate product. It is therefore possible to adapt the total glycerin level to the biodiesel standards in the EU and the United States.
  • fatty acid glycerides are positively converted into fatty acids by a hydrolysis reaction, and furthermore, the fatty acids and the free fatty acids in the fats and oils undergo an esterification reaction with alcohol to obtain fatty acid esters. The yield is very high, equivalent to or better than the conventional supercritical alcohol method.
  • the fatty acid can be prepared in a shorter time under milder reaction conditions than the conventional supercritical alcohol method. It is possible to obtain an ester composition.
  • Example 1 As Example 1, an example using a method (two-step method) corresponding to the above-described first embodiment will be described.
  • the reaction product obtained in the first step is cooled to a temperature of 150 ° C and transferred to a decanter (water drainage treatment device 12).
  • the liquid is separated into a heavy liquid mainly containing water, and a light liquid mainly containing fatty acids is transferred to the next second treatment device 13.
  • the fatty acid ester-containing composition obtained in the second step is separated into a fatty acid ester composition and a water-methanol-glycerin-containing composition by, for example, a purifying apparatus 14 in a purification step.
  • the yield of the resulting fatty acid ester composition (fatty acid ester composition / triglyceride in the raw material) is 93%, and the total glycerin (Gs) is 0.18%, which satisfies biodiesel fuel standards in the EU and the United States. Was something.
  • Comparative Example 1 an example in which a conventional method (one-step method) is performed at a reaction temperature of 350 ° C is shown.
  • raw materials 1. Okg of rapeseed oil and 4.7 kg of methanol were reacted at 350 ° C and 20 MPa for about 10 minutes.
  • the yield of the resulting fatty acid ester composition (fatty acid ester composition / triglyceride in the raw material) is 96%, the total glycerin content (Gs) is 0.25%, and the biodiesel fuel standards in the EU and the United States are met. It was at last fulfilling.
  • Example 2 is an example using a method (two-step method) corresponding to the above-described second embodiment. Show.
  • the fatty acid ester-containing composition obtained in the second step is passed through the flasher 4 and transferred to the decanter 5 from the bottom of the flasher 4. Alternatively, transfer directly to decanter 5 without passing through flasher 4.
  • the decanter 5 separates the light liquid mainly containing fatty acid ester and the heavy liquid mainly containing water-glycerin, and the light liquid mainly containing fatty acid ester is subjected to, for example, distillation in the next purification step.
  • the fatty acid ester composition and the water-containing methanol composition were separated.
  • the yield of the resulting fatty acid ester composition (fatty acid ester composition / triglyceride in the raw material) is 93% and the total glycerin content (Gs) is 0.22%, which meets the biodiesel fuel standards in the EU and the United States. It was a fulfillment.
  • the water-containing methanol composition generated in this purification step is mixed with the water-containing methanol composition discharged from the upper portion of the flasher 4, and after removing water, the methanol is returned to the second step. May be reused.
  • the water 'glycerin-containing composition discharged from the bottom of the decanter 5 is separated into water and glycerin in the next evaporator 7, and the water is converted into water for the first step (hydrolysis reaction) as follows. It may be used for the reaction.
  • the processing apparatus since the reaction is performed at a high temperature of 350 ° C., the processing apparatus has a higher heat resistance and resistance to heat than the processing apparatus of the embodiment which can perform the reaction at a low temperature of 270 ° C. Expensive materials with excellent corrosiveness must be used. There is a problem that it is inferior.
  • fatty acid esters obtained at high temperatures are highly likely to undergo thermal denaturation.
  • the fluidity of the fatty acid ester decreases.
  • fatty acid esters obtained at high temperatures are highly likely to undergo structural transformation due to thermal denaturation as shown in Reference Example (FIG. 6).
  • the structural transition (isomerization) due to thermal denaturation as shown in the reference example (Fig. 6) occurs, the melting point of the fatty acid ester increases. Therefore, when a fatty acid ester obtained at a high temperature is used as a fuel, the fluidity of the fuel may be insufficient particularly in a low temperature situation such as in winter.
  • the fuel filter and the fuel nozzle are easily clogged, and unburned carbon adheres to the combustion chamber immediately, and fine particles are also contained in the exhaust gas. And problems such as clogging and reduction in catalytic activity in the exhaust gas treatment device are likely to occur.
  • the present invention can be used for a method and an apparatus for producing a fatty acid ester composition by reacting an oil or fat with an alcohol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Fats And Perfumes (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention aims at providing a process for producing a fatty acid ester composition having a total glycerin content (Gs) meeting the biodiesel fuel standards under relatively mild reaction conditions in a shorter time in a high yield; and equipment for the production of the composition. The aim is attained by a process for producing a fatty acid ester composition by reacting fats and oils with an alcohol which is characterized by comprising the first step of reacting fats and oils containing fatty acid glycerides with water in a subcritical or supercritical state to form fatty acids, the dehydration step of removing water nearly completely from the reaction mixture obtained in the first step, and the second step of adding an alcohol to the residue obtained in the dehydration step and reacting the alcohol with the residue in a subcritical or supercritical state to form fatty acid esters.

Description

明 細 書  Specification
脂肪酸エステル組成物の製造方法  Method for producing fatty acid ester composition
技術分野  Technical field
[0001] 本発明は、油脂類とアルコールとの反応によって脂肪酸エステル組成物を製造す る方法及び装置に関する。  The present invention relates to a method and an apparatus for producing a fatty acid ester composition by reacting a fat or oil with an alcohol.
[0002] この出願は、 日本国への出願日力 003年 6月 6日の特願 2003—162211及び特 願 2003—162212の外国特許出願の外国優先権利益を主張するものである。 背景技術  [0002] This application claims the benefit of foreign priority from the foreign patent applications of Japanese Patent Application No. 2003-16221 and Japanese Patent Application No. 2003-162212, filed on June 6, 003, in Japan. Background art
[0003] 脂肪酸グリセリドを含む油脂類から、脂肪酸エステル組成物を得る従来的な方法と しては、例えば、アルカリ触媒や酸触媒を用いたアルコールとのエステル交換反応に よって、脂肪酸グリセリドを脂肪酸エステルに変換することによる方法がある。しかしな がら、アルカリ触媒を用いた方法では、油脂類に含まれる遊離脂肪酸がアルカリ触媒 と反応してアルカリ石鹼を生じる問題や、酸触媒を用いた方法では、反応時間が長 レ、、油脂類に水分が含有する場合に脂肪酸エステルの収率が悪くなる(例えば、含 水率 5%の場合には、収率が 5— 10%程度である。)などの実用上の問題がある。さ らに、これらの方法においては、水は反応阻害として働くので、予め、油脂類からこれ に含まれる水分を除去しておくことが要求される。この水分の除去処理に必要な処理 装置等の稼働に必要な電力等のエネルギーは莫大なものである。  [0003] Conventional methods for obtaining a fatty acid ester composition from fats and oils containing fatty acid glyceride include, for example, transesterification of fatty acid glyceride with fatty acid ester by an ester exchange reaction with an alcohol using an alkali catalyst or an acid catalyst. There is a method by converting to. However, in the method using an alkali catalyst, the free fatty acid contained in fats and oils reacts with the alkali catalyst to produce alkali stones.In the method using an acid catalyst, the reaction time is long, There are practical problems such as a decrease in the yield of the fatty acid ester when water is contained in the class (for example, when the water content is 5%, the yield is about 5 to 10%). Furthermore, in these methods, since water acts as a reaction inhibitor, it is necessary to remove water contained in oils and fats in advance. The energy such as electric power required for operating the processing equipment and the like required for the water removal processing is enormous.
[0004] 一方、脂肪酸グリセリドを含む油脂類から、脂肪酸エステル組成物を得る従来的な 方法として、超臨界アルコール法がある。これは、アルコールの超臨界状態において 、油脂類中に含まれる脂肪酸グリセリドに対するエステル交換反応および油脂類中 に含まれる遊離脂肪酸のエステル化反応を進行させることで、 V、ずれからも脂肪酸ェ ステルを得る方法である。 (例えば、特許文献 1参照)。  [0004] On the other hand, as a conventional method for obtaining a fatty acid ester composition from fats and oils containing fatty acid glyceride, there is a supercritical alcohol method. This is because, in the supercritical state of alcohol, the transesterification reaction of fatty acid glycerides contained in fats and oils and the esterification reaction of free fatty acids contained in fats and oils progress, and the fatty acid ester is also deviated from V and deviation. How to get. (See, for example, Patent Document 1).
[0005] さらに、超臨界アルコール法においては、油脂類に含まれる脂肪酸グリセリドと遊離 脂肪酸とアルコールの反応系において、水分が多量に共存する場合であっても、脂 肪酸グリセリドとアルコールとのエステル交換反応に加え、脂肪酸グリセリドの水によ る加水分解反応により脂肪酸が生成され、さらにこの脂肪酸とアルコールとのエステ ル化反応が進行し、いずれ力らも脂肪酸エステルが得られることが知られている。こ れを、水添加系超臨界アルコール法と呼ぶ。一方これと区別して、前記の超臨界ァ ルコール法は、無水系超臨界アルコール法と呼ぶ。 [0005] Further, in the supercritical alcohol method, even when a large amount of water coexists in a reaction system between fatty acid glyceride contained in fats and oils, free fatty acid and alcohol, an ester of fatty acid glyceride and alcohol is used. In addition to the exchange reaction, a fatty acid is produced by a hydrolysis reaction of the fatty acid glyceride with water. It is known that the oxidation reaction proceeds and fatty acids are obtained. This is called a water-added supercritical alcohol method. On the other hand, in contrast to this, the above-mentioned supercritical alcohol method is called an anhydrous supercritical alcohol method.
[0006] この水分が共存する水添加系超臨界アルコール法における反応系では、水は超臨 界状態のアルコールに対して酸触媒として働いている。そして、反応系における水分 の共存率が 100%以上でも、脂肪酸エステルの収率に大きな影響を及ぼさない。  [0006] In the reaction system in the water-added supercritical alcohol method in which water coexists, water acts as an acid catalyst for the alcohol in a supercritical state. And, even if the coexistence ratio of water in the reaction system is 100% or more, it does not significantly affect the yield of the fatty acid ester.
[0007] 特許文献 1 :日本国特開 2000—204392号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-204392
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems the invention is trying to solve
[0008] し力、しながら、超臨界アルコール法によれば、アルカリ触媒や酸触媒を用いた方法 の場合の問題点を解決できるという利点があるものの、脂肪酸グリセリドから脂肪酸ェ ステルに変換される過程で生成する中間生成物であるモノグリセリドのエステル交換 反応が律速段階となるため、反応速度が大きくはないという弱点がある。具体的には 、油脂類に含まれる脂肪酸グリセリドは主にトリグリセリドであり、そのアルコールとの エステル交換反応の過程でジグリセリド、モノグリセリドが中間生成物として生成する が、このモノグリセリドのエステル交換反応が律速段階となるのである。そして、トリダリ セリドとアルコールとのエステル交換反応の反応速度は、脂肪酸とアルコールのエス テル化反応の反応速度よりも小さく実用化には少なからず問題がある。さらに、従来 的な超臨界アルコール法、とくに油脂類から水分をできる限り除去した無水系超臨界 アルコール法では、エステル交換反応が主反応であるため、モノグリセリドが未反応 のまま残存する場合が多い。 [0008] However, although the supercritical alcohol method has an advantage that the problem of the method using an alkali catalyst or an acid catalyst can be solved, the fatty acid glyceride is converted into a fatty acid ester. The transesterification reaction of monoglyceride, an intermediate product formed in the process, is a rate-determining step, and has a disadvantage that the reaction rate is not high. Specifically, fatty acid glycerides contained in fats and oils are mainly triglycerides, and diglycerides and monoglycerides are produced as intermediate products during the transesterification reaction with alcohols.The transesterification reaction of monoglycerides is the rate-determining step. It becomes. And the reaction rate of the transesterification reaction between tridali ceride and alcohol is smaller than the reaction rate of the esterification reaction between fatty acid and alcohol, and there are considerable problems in practical use. Furthermore, in the conventional supercritical alcohol method, particularly in the anhydrous supercritical alcohol method in which water is removed from oils and fats as much as possible, monoesterification often remains unreacted because the transesterification reaction is the main reaction.
[0009] また、モノグリセリドのエステル交換反応が律速段階となるため、モノグリセリドの残 存量を減少させるために、高温高圧(例えば、約 350°C、約 40MPa)という反応条件 が必要である。 [0009] Further, since the transesterification reaction of monoglyceride is a rate-determining step, a reaction condition of high temperature and high pressure (for example, about 350 ° C, about 40 MPa) is required to reduce the residual amount of monoglyceride.
[0010] ところで、脂肪酸エステル組成物がディーゼル燃料、とくにバイオディーゼル燃料と して用いられる場合、ノくィォディーゼル燃料の品質を左右する重要な要素として、そ れに含まれる全グリセリン量を考慮しなければならない。実用上、全グリセリン量が増 加すると内燃機関系フィルタの目詰まりを引き起こすゲル状物やガム質が生成するな どの問題が生じるからである。 [0010] By the way, when the fatty acid ester composition is used as a diesel fuel, particularly as a biodiesel fuel, the amount of total glycerin contained therein must be considered as an important factor influencing the quality of the biodiesel fuel. Must. In practice, increasing the total glycerin content should not produce gels or gums that could clog filters in internal combustion engines. This is because any problems arise.
[0011] 全グリセリン量 Gsは、 Gs = 0. 2591MG + 0. 1488DG + 0. 1044TG + G (MG はモノグリセリド、 DGはジグリセリド、 TGはトリグリセリド、 Gは遊離グリセリンを表す。) で規定され、上記実用上の問題点から、 EU規格案では Gsく 0. 25%、アメリカ合衆 国では Gsく 0. 24%をバイオディーゼル燃料規格として定めている。  [0011] The total glycerin amount Gs is defined as Gs = 0.2591MG + 0.1488DG + 0.10444TG + G (MG represents monoglyceride, DG represents diglyceride, TG represents triglyceride, and G represents free glycerin). Due to practical issues, the proposed EU standard specifies Gs 0.25% and the United States Gs 0.24% Gs.
[0012] 既述の従来的な無水系超臨界アルコール法では、エステル交換反応を主反応とす るためモノグリセリドの残存量が多ぐ EU及び米国でのバイオディーゼル燃料規格( 全グリセリン量 (Gs)く 0. 25%及び 0. 24%)に適合することは困難である。すなわち 、この燃料規格に適合する反応には、油脂/メタノールのモル比 1Z42にて 350°C、 40MPa、 10分の条件が必要であるが、この条件で不飽和脂肪酸エステルが熱変性 し、実際上、高品位なバイオディーゼル燃料は得られないことを明らかにしている。  [0012] In the conventional anhydrous supercritical alcohol method described above, since the transesterification reaction is the main reaction, the residual amount of monoglyceride is large, and biodiesel fuel standards in EU and US (total glycerin amount (Gs) (0.25% and 0.24%) are difficult to meet. In other words, a reaction conforming to this fuel standard requires the conditions of 350 ° C, 40 MPa, and 10 minutes at a fat / methanol molar ratio of 1Z42, under which the unsaturated fatty acid ester is thermally denatured. In addition, it is clear that high-grade biodiesel fuel cannot be obtained.
[0013] 一方、既述の水分を共存した水添加系超臨界アルコール法では、水と脂肪酸ダリ セリドとの加水分解反応が行われるので、モノグリセリドの残存量が低下し、上述のバ ィォディーゼル燃料規格 (全グリセリン量 (Gs)く 0· 25%及び 0· 24%)に十分に近 づくものの(Gs = 0. 29%)、やはりバイオディーゼル燃料規格に適合するには今一 歩及ばない。燃料規格を満足させるためには、より長時間の処理を行うことを必要と し、このとき、既述の通り不飽和脂肪酸エステルの熱変性をまねくことになる。  [0013] On the other hand, in the above-described water-added supercritical alcohol method coexisting with water, a hydrolysis reaction between water and fatty acid dalyceride is performed, so that the residual amount of monoglyceride is reduced, and the above-mentioned biodiesel fuel standard is not used. (Total glycerin amount (Gs)-0.25% and 0.24%), which is close enough (Gs = 0.29%), but still far from meeting the biodiesel standard. In order to satisfy the fuel specifications, it is necessary to perform the treatment for a longer time, and at this time, as described above, the thermal denaturation of the unsaturated fatty acid ester is caused.
[0014] また、水添加系超臨界アルコール法として、例えば、国際公開 03/106604号パ ンフレットのようなものもある。  [0014] Further, as a water-added supercritical alcohol method, for example, there is a method such as WO 03/106604 brochure.
[0015] 本発明は、上記問題点に鑑みて、比較的緩やかな反応条件において、全グリセリ ン量 Gsがバイオディーゼル燃料規格に適合するとともに、より短時間かつ高収率で 脂肪酸エステル組成物を製造する方法'装置を提供することを課題とする。  [0015] In view of the above problems, the present invention provides a fatty acid ester composition in a relatively short reaction time under a relatively mild reaction condition, in which the total glycerin amount Gs conforms to the biodiesel fuel standard and in a shorter time and with a higher yield. It is an object to provide a manufacturing method 'apparatus.
課題を解決するための手段  Means for solving the problem
[0016] 前記課題を解決するための本発明に係る代表的な構成は、油脂類とアルコールと の反応によって、脂肪酸エステル組成物を製造する方法であって、脂肪酸グリセリド を含む油脂類を水と共存させ、亜臨界状態または超臨界状態における反応によって 脂肪酸を生成する第 1工程と、前記第 1工程を経た第 1工程反応物から水分をおよそ 除去する水抜き工程と、前記水抜き工程において残留した水抜き工程残留物にアル コールを添加し、亜臨界状態または超臨界状態における反応によって脂肪酸エステ ルを生成する第 2工程と、を含むことを特徴とする。 [0016] A representative configuration according to the present invention for solving the above-mentioned problem is a method for producing a fatty acid ester composition by reacting an oil or fat with an alcohol, wherein the oil or fat containing fatty acid glyceride is mixed with water. A first step of producing fatty acids by co-existing and reacting in a subcritical state or a supercritical state, a water removal step of roughly removing water from the first step reaction product after the first step, and a residual step in the water removal step. To the residue of the draining process A second step of producing a fatty acid ester by reacting in a subcritical state or a supercritical state.
[0017] また、油脂類とアルコールとの反応によって、脂肪酸エステル組成物の製造方法で あって、脂肪酸グリセリドを含む油脂類を水と共存させ、亜臨界状態または超臨界状 態における反応によって脂肪酸を生成する第 1工程と、第 1工程を経た第 1工程反応 物にアルコールを添加し、亜臨界状態または超臨界状態における反応によって脂肪 酸エステルを生成する第 2工程と、を有することを特徴とする。  [0017] Further, the present invention relates to a method for producing a fatty acid ester composition by reacting fats and oils with alcohols, wherein fats and oils containing fatty acid glycerides coexist with water, and fatty acids are reacted by reaction in a subcritical state or a supercritical state. A first step of producing, and a second step of adding an alcohol to a reaction product of the first step after the first step to produce a fatty acid ester by a reaction in a subcritical state or a supercritical state. I do.
[0018] また、前記第 1工程における温度条件'圧力条件と前記第 2工程における温度条件 •圧力条件がおよそ同一であることを特徴とする。  Further, the temperature condition and the pressure condition in the first step are substantially the same as the temperature condition and the pressure condition in the second step.
発明の効果  The invention's effect
[0019] 本発明の製造方法によれば、エステル交換反応を主反応とする超臨界アルコール 法の反応条件(既述のとおり、例えば、約 350°C、約 40MPa)に比して、例えば約 50 °C一 100°C程低い温度条件と、約 20MPa— 30MPa程低い圧力条件という比較的 緩やかな反応条件であればょレ、ので、加水分解反応およびエステル化反応を進行 させるために投入されるエネルギーは相当少なくて済む。とくに、第 2工程において、 温度及び/又は圧力を維持すると、室温又は常圧まで低下させることがないので、よ り一層経済的な製造方法である。さらに、この比較的緩やかな反応条件では、上述 の不飽和脂肪酸エステルの熱変性は起こらなレ、ことを確認してレ、る。  [0019] According to the production method of the present invention, for example, as compared with the reaction conditions of the supercritical alcohol method mainly involving transesterification (for example, about 350 ° C and about 40 MPa as described above), Under relatively low temperature conditions of 50 ° C to 100 ° C and pressure conditions of about 20MPa to 30MPa, these are used to promote the hydrolysis and esterification reactions. Requires very little energy. In particular, when the temperature and / or pressure is maintained in the second step, the temperature is not lowered to room temperature or normal pressure, so that the production method is more economical. Furthermore, it was confirmed that under the relatively mild reaction conditions, the above-mentioned thermal denaturation of the unsaturated fatty acid ester did not occur.
[0020] また、油脂類に水分の共存した状態で反応を行うことが可能なので、油脂類から水 分を除去する処理装置等の稼働に必要な莫大な電力等のエネルギーが必要な脱水 処理という前処理が不要となるので、この観点力 も経済的な製造方法といえる。 [0020] In addition, since the reaction can be performed in a state in which water is present in fats and oils, a dehydration treatment that requires energy such as enormous electric power required for operation of a treatment device or the like that removes water from fats and oils is called. Since no pretreatment is required, this viewpoint is an economical manufacturing method.
[0021] また、本発明の製造方法'装置によれば、エステル交換反応を主反応としないため 、中間生成物であるモノグリセリド 'ジグリセリドゃ未反応の脂肪酸グリセリドの残存量 を十分に抑制することが可能であり、従って、全グリセリン量をバイオディーゼル燃料 規格に適合させることが可能である。 [0021] Further, according to the production method 'apparatus of the present invention, since the transesterification reaction is not the main reaction, it is possible to sufficiently suppress the residual amount of monoglyceride' diglyceride unreacted fatty acid glyceride, which is an intermediate product. It is possible and therefore it is possible to adapt the total glycerin content to the biodiesel fuel standard.
[0022] また、収率については、加水分解反応によって脂肪酸グリセリドを積極的に脂肪酸 に変換し、さらにこの脂肪酸と油脂類中の遊離脂肪酸がアルコールとエステル化反 応をすることで脂肪酸エステルを得るので、従来の超臨界アルコール法に比して同 等かそれ以上と極めて高収率である。 [0022] Regarding the yield, the fatty acid glyceride is positively converted to a fatty acid by a hydrolysis reaction, and further, the fatty acid is obtained by esterification reaction between the fatty acid and a free fatty acid in fats and oils with an alcohol. Therefore, compared to the conventional supercritical alcohol method, Very high yield, equal to or higher.
[0023] さらに、エステル交換反応に比して反応速度の大きい加水分解反応とエステル化 反応を経過するため、従来的な超臨界アルコール法に比してより緩やかな反応条件 で短時間に脂肪酸エステル組成物を得ることが可能である。  [0023] Furthermore, since the hydrolysis reaction and the esterification reaction have a higher reaction rate than the transesterification reaction, the fatty acid ester can be prepared in a shorter time under milder reaction conditions than the conventional supercritical alcohol method. It is possible to obtain a composition.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0024] [図 1]本発明の脂肪酸エステル組成物の製造方法における反応式である。  FIG. 1 is a reaction formula in a method for producing a fatty acid ester composition of the present invention.
[図 2]第 1実施形態における製造方法のフローチャートである。  FIG. 2 is a flowchart of a manufacturing method according to the first embodiment.
[図 3]第 1実施形態における製造装置の装置構成例である。  FIG. 3 is an example of an apparatus configuration of a manufacturing apparatus according to the first embodiment.
[図 4]第 2実施形態における製造方法のフローチャートである。  FIG. 4 is a flowchart of a manufacturing method according to a second embodiment.
[図 5]第 2実施形態における製造装置の装置構成例である。  FIG. 5 is a device configuration example of a manufacturing device in a second embodiment.
[図 6]有機媒体の組成を比較した参考例の説明図である。  FIG. 6 is an explanatory diagram of a reference example in which the compositions of organic media are compared.
符号の説明  Explanation of reference numerals
[0025] a 供給装置 [0025] a Supply device
b 供給装置  b Supply device
c 供給装置  c Supply device
1 第 1処理装置  1 First processing unit
2 第 2処理装置  2 Second processing unit
4 フラッシャ  4 Flasher
5 デカンタ  5 Decanter
6 蒸留装置  6 Distillation equipment
7 エノくポレータ  7 Enokuku Poreta
11 第 1処理装置  11 First processing unit
12 水抜き処理装置  12 Drainage treatment equipment
13 第 2処理装置  13 Second processing unit
14 精製装置  14 Purification equipment
15 エノくポレータ  15 Enoch Porator
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明における油脂類とは、広く動物油および脂、植物油および脂などの油脂お よびそれらの使用後の廃油脂などをいう。なお、常温において液体状のものが油で あり、一方、常温で固体状のものが脂であり、油脂とはこれらの総称である。動物油脂 や植物油脂としては、鰯油、秋刀魚油、鮪油、牛脂、豚脂、向日葵油、紅花油、桐油 、亜麻仁油、大豆油、菜種油、綿実油、ォリーブ油、椿油、椰子油、パーム油、パー ム核油、胡麻油などが挙げられる。また、廃油脂は、これら例示した動物油脂や植物 油脂が、例えば天ぶら油として使用された後の廃油が挙げられる。さらには、これら力 2種類以上混合したものや、バター、マーガリンなどであってもよい。 [0026] The fats and oils in the present invention widely refer to fats and oils such as animal oils and fats, vegetable oils and fats. And waste oils and fats after their use. It should be noted that oils are liquid at room temperature and oils are solid at room temperature, and oils and fats are a generic term for these. Animal fats and vegetable fats include sardine oil, sword oil, tuna oil, tallow, lard, sunflower oil, safflower oil, tung oil, linseed oil, soybean oil, rapeseed oil, cottonseed oil, olive oil, camellia oil, coconut oil, palm oil , Palm kernel oil, sesame oil and the like. Examples of waste fats and oils include waste oils obtained after the exemplified animal fats and vegetable fats and oils have been used as trape oil. Further, a mixture of two or more of these forces, butter, margarine and the like may be used.
[0027] 油脂類には、豊富に脂肪酸グリセリドが含有されている。例えば、天然油脂は、 3価 アルコールであるグリセリンと種々の 1価カルボン酸である脂肪酸とのエステル (脂肪 酸グリセリド)の混合物である。また、脂肪酸グリセリドは、グリセリンの 3つの水酸基の うち、同じあるいは異なる官能基によって置換されている個数に応じて、上述のモノグ リセリド(MG)、ジグリセリド(DG)、トリグリセリド (TG)に分かれる。  [0027] Fats and oils are rich in fatty acid glycerides. For example, natural fats and oils are mixtures of esters (fatty acid glycerides) of glycerin, a trihydric alcohol, and fatty acids, various monocarboxylic acids. In addition, fatty acid glycerides are classified into the above-mentioned monoglycerides (MG), diglycerides (DG), and triglycerides (TG) according to the number of the three hydroxyl groups of glycerin substituted by the same or different functional groups.
[0028] 脂肪酸としては、飽和脂肪酸である力プリル酸、ラウリン酸、ノ^レミチン酸、ステアリ ン酸など、不飽和脂肪酸であるォレイン酸、リノール酸、リノレイン酸などが挙げられる 。油脂によって、グリセリンとエステル結合している脂肪酸の種類は異なる。  [0028] Examples of the fatty acid include unsaturated fatty acids such as oleic acid, linoleic acid, and linoleic acid, such as saturated fatty acids such as capryprilic acid, lauric acid, norremitic acid, and stearic acid. The type of fatty acid ester-linked to glycerin differs depending on the fat or oil.
[0029] 本発明に使用するアルコールには、 1価アルコール、 2価アルコール、 3価アルコー ルいずれでもよぐ格別の限定はなレ、。し力しながら、反応速度、脂肪酸エステルの 収率などの点から、一般的には、 1価アルコールを用いるのが好適であり、さらには、 炭素数が少ないアルコールがより好ましレ、。例えば、メタノーノレ、エタノール、 1一プロ パノール、 2-プロパノール、 1ーブタノール、 2—ブタノール、 1ーォクタノールなどが挙 げられる。なお、ここに例示した低級アルコールは、飽和 1価アルコールである力 無 論、飽和アルコールに限定する趣旨のものではなレ、。不飽和 1価あるいは不飽和多 価アルコールでも良レ、。  [0029] The alcohol used in the present invention is not particularly limited, and may be any of a monohydric alcohol, a dihydric alcohol, and a trihydric alcohol. In general, it is preferable to use a monohydric alcohol from the viewpoint of the reaction rate, the yield of the fatty acid ester, and the like, while the alcohol having a small number of carbon atoms is more preferable. Examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol and 1-octanol. The lower alcohol exemplified here is, of course, not a saturated monohydric alcohol, and is not intended to be limited to a saturated alcohol. Unsaturated monohydric or unsaturated polyhydric alcohols are acceptable.
[0030] 〔第 1実施形態〕  [First Embodiment]
以下、本発明の第 1実施形態を、図面に基づいて説明する。但し、以下の実施形 態は本発明を限定するものではない。実施形態は、本発明の趣旨を逸脱しない限り 適宜変更可能である。図 1に本発明の脂肪酸エステル組成物の製造方法における 反応式を、図 2に本実施形態における製造方法のフローチャートを、図 3に本実施形 態における製造装置の装置構成例を示す。 Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. However, the following embodiments do not limit the present invention. The embodiments can be appropriately modified without departing from the spirit of the present invention. FIG. 1 shows a reaction formula in the method for producing a fatty acid ester composition of the present invention, FIG. 2 shows a flowchart of the production method in the present embodiment, and FIG. 1 shows an example of an apparatus configuration of a manufacturing apparatus in a state.
[0031] 以下に、第 1実施形態の製造方法について具体的に説述する。  Hereinafter, the manufacturing method of the first embodiment will be specifically described.
[0032] まず、適宜反応器に、上記油脂類と水とを共存させて収容させる。ここで、油脂類 は単一種にしなければならなレ、ものではなレ、。つまり、上記動物油である鰯油を例に 取れば、鰯油単一種としなければならないものではなぐ他の油脂である菜種油、牛 脂などを混合したものでもよいのである。また、水を共存させるとは、積極的、消極的 共存という両者の意味を包含する。ここに、積極的共存とは、油脂類とは別に積極的 に水を添加するということである。一方、消極的共存とは、油脂類に含有される水分を 除去しないということである。一般的に、油脂、特に天然油脂には水分が含まれ、また 、例えば、廃油脂である使用後の天ぶら油には天ぶらの材料となった食材に含まれ てレ、た水分が含まれてレ、ることから理解できるように、廃油脂には相当の水分が含有 されているのである。 [0032] First, the above-mentioned fats and oils and water are coexistently accommodated in a reactor. Here, fats and oils must be made into a single kind, not fats. In other words, taking sardine oil as an example of the above-mentioned animal oil as an example, sardine oil may be a mixture of rapeseed oil, beef tallow, etc., which is not a single kind of sardine oil. Coexisting with water implies both active and passive coexistence. Here, the active coexistence means that water is actively added separately from fats and oils. On the other hand, passive coexistence means that water contained in fats and oils is not removed. In general, fats and oils, particularly natural fats and oils, contain moisture, and for example, used sesame oil after use, which is waste fats and oils, contains water contained in the foodstuffs used as the material for the sesame. As can be understood from the fact, waste oils and fats contain a considerable amount of water.
[0033] なお、「水」と「水分」は特に断りのない限り同義で用いることにする。厳密には、「水 」とは物質としての水のこと、「水分」とは物の中に含まれている水のことである力 水 であることに変わりはない。  [0033] Note that "water" and "water" are used synonymously unless otherwise specified. Strictly speaking, "water" is still water as a substance, and "moisture" is still water, which is the water contained in an object.
[0034] 油脂類と水が共存した反応器を加熱'加圧することによって、収容したときの状態か ら、亜臨界状態または超臨界状態に遷移させる。ここに亜臨界状態または超臨界状 態とは、水にとっての状態をいうものである。好ましくは、水にとっての亜臨界状態に まで遷移する。なお、亜臨界状態における温度 ·圧力の明確な定義はなレ、ものの、臨 界点(水の臨界温度は約 374°C、臨界圧力は約 22. IMPaである。)近傍での高温' 高圧状態を意味する。従って、例えば、 300°C、 17MPa程度に加熱'加圧する。  [0034] By heating and pressurizing the reactor in which oils and fats coexist with water, the state of the reactor is changed from the housed state to the subcritical state or the supercritical state. Here, the subcritical state or supercritical state refers to a state for water. Preferably, it transitions to a subcritical state for water. Although the temperature and pressure in the subcritical state are not clearly defined, high temperature and high pressure near the critical point (critical temperature of water is about 374 ° C and critical pressure is about 22. IMPa) Means the state. Therefore, for example, heating and pressing are performed at about 300 ° C. and about 17 MPa.
[0035] ここでは、まず反応器に油脂類と水とを収容し、その後加熱'加圧を行う手順を示し て説明したが、必ずしもこの手順によるものではない。例えば、反応器に油脂類、水 を収容する前処理として、これらを亜臨界状態または超臨界状態ないしこれらに近い 状態までに加熱'加圧した上で反応器に収容するものでもよい。とくに、脂肪酸エス テル組成物を連続的に生産させるプラントなどにおいては、逐一油脂類と水を反応 器に収容して加熱 *加圧するよりも、予め予熱装置などによって加熱 *加圧した上で 連続的に反応器に送り込む方が、生産効率が著しく向上する。 [0036] 以上第 1工程においては、油脂類に含まれる脂肪酸グリセリドと水との加水分解反 応が進行し、脂肪酸が生成される。具体的には、図 1 (a)に示す反応が進行する。尚 、反応式中、数字添えの Rは炭化水素基を表す。この反応は、およそ同一条件下で の比較で、エステル交換反応よりも格段に反応速度が大きレ、。 [0035] Here, the procedure in which oils and fats and water are first stored in the reactor and then heating and pressurization are described has been described, but this is not necessarily the case. For example, as a pretreatment for storing oils and fats and water in the reactor, they may be heated and pressurized to a subcritical state or a supercritical state or a state close to these, and then stored in the reactor. Particularly in plants that continuously produce fatty acid ester compositions, rather than heat and pressurize oils and fats in a reactor one by one, instead of heating and pressurizing, If it is sent to the reactor, the production efficiency is significantly improved. [0036] In the first step as described above, the hydrolysis reaction of the fatty acid glyceride contained in the fats and oils with water proceeds, and the fatty acid is generated. Specifically, the reaction shown in FIG. 1 (a) proceeds. In addition, in the reaction formula, R attached with a number represents a hydrocarbon group. This reaction has a significantly higher reaction rate than the transesterification reaction under the same conditions.
[0037] 続く水抜き工程においては、第 1工程を経た第 1工程反応物(図示の反応式のとお り、この第 1工程反応物には主として脂肪酸が含まれる。)の温度を低下させる。  [0037] In the subsequent water removal step, the temperature of the first-step reactant that has passed through the first step (the first-step reactant mainly contains a fatty acid according to the reaction formula shown) is lowered.
[0038] 温度条件は、室温まで低下させる必要はなレ、。むしろ、室温まで低下させなレ、こと が好ましい。なぜなら、続く後述の第 2工程において、超臨界状態(ないし亜臨界状 態)まで状態を遷移する必要があるので、第 1工程で亜臨界状態まで加熱し、水抜き 工程で室温まで冷却し、さらに第 2工程で、超臨界状態まで再加熱するのは、各ェ 程の装置等の稼働に投入される電力等のエネルギー経済の観点から不経済である からである。  [0038] The temperature condition does not need to be lowered to room temperature. Rather, it is preferable not to lower the temperature to room temperature. Because it is necessary to change the state to the supercritical state (or subcritical state) in the subsequent second step described later, the first step is to heat to the subcritical state, and in the water removal step, it is cooled to room temperature, Furthermore, in the second step, the reheating to the supercritical state is because it is uneconomic from the viewpoint of energy economy such as electric power supplied to the operation of the devices in each step.
[0039] そして、水抜き工程においては、第 1工程に比して低温状態において水分の除去 を行う。即ち、例えばデカンテーシヨンによって、脂肪酸を含む軽液と水を含む重液 に分離して、重液である水相部を除去する。この水相部には水に溶解したグリセリン が含まれている。従って、水相部を除去することによって、水抜き工程残留物である 残留相(軽液)には主として脂肪酸が高含有されることになる。ここではデカンテーシ ヨンによるものとしたが、およそ第 1工程で生成した脂肪酸と水とを分離可能な方法で あればよぐ格別の限定はない。  [0039] Then, in the water removal step, water is removed at a lower temperature than in the first step. That is, the liquid is separated into a light liquid containing fatty acids and a heavy liquid containing water by decantation, for example, and the aqueous phase, which is a heavy liquid, is removed. This aqueous phase contains glycerin dissolved in water. Therefore, by removing the aqueous phase, the residual phase (light liquid), which is the residue of the water removal step, mainly contains high fatty acids. Here, the decantation is used, but there is no particular limitation as long as the method can separate the fatty acid and water generated in the first step.
[0040] なお、この水抜き工程においては、圧力条件を変更する必要はない。勿論、圧力を 例えば常圧まで低下させることを排除するものではなレ、が、後述の第 2工程において 超臨界状態(ないし亜臨界状態)まで状態を遷移する必要があるので、第 1工程で亜 臨界状態まで加圧し、水抜き工程で常圧まで減圧し、さらに第 2工程で、超臨界状態 まで再加圧するのは、各工程の装置等の稼働に投入される電力等のエネルギー経 済の観点から不経済だからである。  [0040] In this draining step, it is not necessary to change the pressure conditions. Of course, this does not preclude lowering the pressure to, for example, normal pressure, but it is necessary to transition the state to a supercritical state (or subcritical state) in the second step described below. Pressurizing to a subcritical state, depressurizing to normal pressure in the water draining step, and repressurizing to the supercritical state in the second step is the energy economy such as electric power input to the operation of equipment in each step Because it is uneconomical from the viewpoint of
[0041] 以上、水抜き工程における、温度条件としては、 50 350°C、圧力条件としては、 0 . 2MPa 45MPaとするのが好ましレ、。より好ましくは、温度条件が 100°C 300°C 、圧力条件が 5MPa 30MPaであり、さらに好ましくは、温度条件が 120°C 200 °C、圧力条件が lOMPa— 22MPa程度である。 [0041] As described above, in the water removal step, the temperature condition is preferably 50 350 ° C and the pressure condition is preferably 0.2 MPa 45 MPa. More preferably, the temperature condition is 100 ° C 300 ° C, the pressure condition is 5MPa 30MPa, and still more preferably, the temperature condition is 120 ° C 200 ° C, pressure condition is about lOMPa-22MPa.
[0042] 続く第 2工程において、上記水抜き工程において残留した水抜き工程残留物にァ ルコールを添カ卩して、さらに亜臨界状態ないし超臨界状態に遷移して反応を進行さ せる。ここに亜臨界状態または超臨界状態とは、アルコールにとっての状態をいうも のである。好ましくは、アルコールにとっての超臨界状態にまで遷移させる。例えば、 メタノーノレの場合、臨界温度は約 239°C、臨界圧力は約 8. IMPaであるので、 270 °C一 300°C、 1 OMPa— 17MPa程度に加熱加圧する。  [0042] In the subsequent second step, alcohol is added to the residue of the water removal step remaining in the water removal step, and the state is further transited to a subcritical state or a supercritical state to progress the reaction. Here, the subcritical state or supercritical state refers to a state for alcohol. Preferably, the transition is made to a supercritical state for the alcohol. For example, in the case of methanol, the critical temperature is about 239 ° C and the critical pressure is about 8. IMPa. Therefore, heating and pressurizing are performed at about 270 ° C to 300 ° C and about 1 OMPa-17MPa.
[0043] この第 2工程においては、水抜き工程残留物に高含有される脂肪酸と添加されたァ ルコールのエステル化反応および油脂類に含有される遊離脂肪酸と添加されたアル コールとのエステル化反応が進行し、脂肪酸エステルが生成される。具体的には、図 1 (b)に示す反応が進行する。さらに、中間生成物として、ジグリセリドゃモノグリセリド が仮に水抜き工程残留物に微量含有されていても、これらはメタノーノレとのエステノレ 交換反応で脂肪酸エステルとなる。  In the second step, the esterification reaction of the alcohol added with the fatty acid highly contained in the residue of the water removal step and the esterification of the free fatty acid contained in the fats and oils with the added alcohol are carried out. The reaction proceeds to produce fatty acid esters. Specifically, the reaction shown in FIG. 1 (b) proceeds. Furthermore, even if diglyceride-monoglyceride is contained in trace amounts in the residue of the water removal step as an intermediate product, they are converted into fatty acid esters by the esterification reaction with methanol.
[0044] 油脂類と、水、アルコールの量的割合としては、第 1工程においては油脂類に含ま れる脂肪酸グリセリド 1モルに対して、水を 3— 1000モルとするのが好ましレ、。第 1ェ 程において加水分解反応を十分に促進するためには、水は多いほど好ましい。そし てこの水の殆どは水抜き工程において除去されるので、水が多いことによる第 2工程 への影響は格別無い。しかし、本発明である製造方法を実施する装置の小規模化や コストパフォーマンスの観点からは、水を不必要なまでに多くすることは賢明ではなレヽ 。従って、水は、脂肪酸グリセリド 1モルに対して、 3— 1000モル程度が好ましいので ある。また、第 2工程におけるアルコールの量は、油脂類に含まれる脂肪酸グリセリド 1モルに対して、 3 200モルとするのが好適である。  [0044] The quantitative ratio of the fats and oils to water and alcohol is preferably 1 to 1000 moles of water per 1 mole of the fatty acid glyceride contained in the fats and oils in the first step. In order to sufficiently promote the hydrolysis reaction in the first step, the amount of water is preferably as large as possible. And since most of this water is removed in the draining process, there is no particular effect on the second process due to the large amount of water. However, it is not advisable to increase the amount of water unnecessarily from the viewpoint of miniaturization and cost performance of the apparatus for implementing the manufacturing method of the present invention. Therefore, the amount of water is preferably about 3 to 1000 mol per mol of the fatty acid glyceride. The amount of alcohol in the second step is preferably 3200 mol per 1 mol of fatty acid glyceride contained in fats and oils.
[0045] 第 2工程における脂肪酸のエステルイ匕反応を十分に促進するためには、アルコー ルは多いほど好ましいのであるが、やはり、本実施形態の製造方法を実施する装置 の小規模化やコストパフォーマンスの観点からは、アルコールを不必要なまでに多く することは賢明ではない。本発明の製造方法においては、アルコールは、脂肪酸ダリ セリド 1モルに対して、 3— 200モル程度で必要にして十分である。  [0045] In order to sufficiently promote the esterification reaction of the fatty acid in the second step, it is preferable to use a larger amount of alcohol. However, the apparatus for performing the production method of the present embodiment is also reduced in size and cost performance. It is not wise to increase alcohol unnecessarily from the point of view. In the production method of the present invention, about 3 to 200 mol of alcohol is required and sufficient for 1 mol of fatty acid dalyceride.
[0046] また、第 1工程及び/又は第 2工程における反応処理時間は、上記のような温度- 圧力条件においては、およそ 1分からおよそ 10時間の間が好ましい。より好ましくは およそ 1分から 3時間程度であり、さらに好ましくは、およそ 1分から 1時間程度である 。勿論、この反応処理時間は、油脂類、アルコールの種類や、温度'圧力条件によつ て異なるのが通常であるので適宜変更可能であり、反応処理時間が 10時間以上で ある場合を排除するものではない。 [0046] Further, the reaction treatment time in the first step and / or the second step is the above-mentioned temperature- Under pressure conditions, between about 1 minute and about 10 hours is preferred. More preferably, it is about 1 minute to 3 hours, and still more preferably, about 1 minute to 1 hour. Of course, the reaction time usually varies depending on the type of fats and oils and alcohols and the temperature and pressure conditions, and therefore can be changed as appropriate. Exclude the case where the reaction time is 10 hours or more. Not something.
[0047] さらに、第 2工程を経た第 2工程反応物を精製する(上記反応式の如く生成するダリ セリンや水抜き工程で残留した水分、第 2工程で添加したアルコール等の除去)こと によって、脂肪酸エステルを高含有する脂肪酸エステル組成物が得られる。精製方 法に格別の限定はなぐ例えばデカンテーシヨン、蒸留などの方法でよい。  [0047] Further, the reaction product in the second step after the second step is purified (removal of dalyserin generated as shown in the above reaction formula, water remaining in the water removal step, alcohol added in the second step, and the like). And a fatty acid ester composition containing a high content of fatty acid ester. There is no particular limitation on the purification method, for example, a method such as decantation or distillation.
[0048] 本実施形態の製造方法によって製造された脂肪酸エステル組成物には、脂肪酸ェ ステルが高含有される一方、全グリセリン量を EU及び米国でのバイオディーゼル燃 料規格の上限値以下にすることが可能であり、バイオディーゼル燃料として用いるこ とが有益である。  [0048] While the fatty acid ester composition produced by the production method of the present embodiment contains a high content of fatty acid ester, the total glycerin amount is set to be equal to or less than the upper limit of the biodiesel fuel standard in the EU and the United States. It is possible to use it as a biodiesel fuel.
[0049] 図 3に示すように、上記製造方法によって脂肪酸エステル組成物を製造する装置 は、脂肪酸グリセリドを含む油脂類を水と共存させ、亜臨界状態または超臨界状態に おける反応によって脂肪酸を生成する第 1処理装置 11と、第 1処理装置 11において 生成した反応物から水分をおよそ除去する水抜き処理装置 12と、水抜き処理装置 12 におレ、て残留した第 2処理装置残留相にアルコールを添加し、亜臨界状態または超 臨界状態における反応によって脂肪酸エステルを得る第 2処理装置 13とを備えるも のである。  [0049] As shown in Fig. 3, the apparatus for producing a fatty acid ester composition by the above-described production method produces fatty acids by a reaction in a subcritical state or a supercritical state in which oils and fats containing fatty acid glycerides coexist with water. A first treatment device 11 for removing water, a water removal treatment device 12 for substantially removing water from the reaction product generated in the first treatment device 11, and a second treatment device residual phase remaining in the water removal treatment device 12. A second processing apparatus 13 is provided that obtains a fatty acid ester by adding alcohol and reacting in a subcritical state or a supercritical state.
[0050] 第 1処理装置 11、水抜き処理装置 12、第 2処理装置 13としては、格別の限定はなく 、例えば耐熱耐圧タンク、管型反応器などでよい。特に第 1処理装置 11、第 2処理装 置 13は水及び Z又はアルコールの亜臨界状態あるいは超臨界状態で使用されるの で、相応の耐性を有するのが好ましい。  [0050] The first treatment device 11, the water removal treatment device 12, and the second treatment device 13 are not particularly limited, and may be, for example, a heat-resistant pressure-resistant tank, a tubular reactor, or the like. In particular, since the first treatment device 11 and the second treatment device 13 are used in a subcritical state or a supercritical state of water and Z or an alcohol, it is preferable that they have appropriate resistance.
[0051] 水抜き処理装置 12としては、格別の限定はなぐ例えば、フラッシャ、デカンタ、ェ バポレータなどを用いることができる。また、例えばエバポレータ 15のような分別装置 を備えることで、水抜き処理装置 12によって除去された水分を、水とグリセリンに分別 するようにしてもよい。 [0052] また、第 2処理装置 13において生成した反応物からアルコール及び/又は水分な どをおよそ除去することによって、脂肪酸エステル組成物を精製する精製装置 14を備 えるようにしてもよレ、。このような精製装置 14には、格別の限定はなレ、が、例えば、フ ラッシャ、蒸留装置などを用いることができる。 [0051] As the drainage treatment device 12, there is no particular limitation, for example, a flasher, a decanter, an evaporator, or the like can be used. Further, for example, by providing a separation device such as the evaporator 15, the water removed by the water removal treatment device 12 may be separated into water and glycerin. [0052] Further, a purification device 14 for purifying the fatty acid ester composition by roughly removing alcohol and / or moisture from the reaction product generated in the second treatment device 13 may be provided. . Although there is no particular limitation for such a purification device 14, for example, a flasher, a distillation device, or the like can be used.
[0053] また、第 1処理装置 11、第 2処理装置 13を水及び/又はアルコールの亜臨界状態 あるいは超臨界状態にまで加熱'加圧できる加熱装置'加圧装置を備えるのが好まし レ、。無論、加熱'加圧だけではなぐ適宜温度調節や圧力調節が可能な温度調節装 置及び/又は圧力調節装置を備えるのが好ましい。このような温度調節装置、圧力 調節装置は、水抜き処理装置 12にも付帯的に備えてよい。  [0053] Further, it is preferable to provide a heating device that can heat and pressurize the first processing device 11 and the second processing device 13 to a subcritical state or a supercritical state of water and / or alcohol. ,. Needless to say, it is preferable to provide a temperature control device and / or a pressure control device capable of performing appropriate temperature control and pressure control as well as heating and pressing. Such a temperature control device and a pressure control device may be additionally provided in the drainage treatment device 12.
[0054] さらには、油脂類、水、アルコールを予め第 1処理装置 11及び/又は第 2処理装置 13の温度条件と同じかそれに近い温度まで加熱可能な予熱装置を備えるものであつ てもよレ、。このようにすることによって、反応物の温度低下や再加熱といった無駄を省 くことが可能になるので経済的である。また、油脂類、水、アルコールを予め第 1処理 装置 11及び/又は第 2処理装置 13の圧力条件と同じかそれに近い圧力まで加圧可 能な予圧装置を備えてもよい。このような予熱 ·予圧装置を備えることによって、原料 となる油脂類、水、アルコールを、予め亜臨界状態または超臨界状態ないしこれらに 近い状態までに加熱'加圧した上で連続的に第 1処理装置 11、第 2処理装置 13に送 り込むことで、脂肪酸エステル組成物の効率的な生産に適するようになる。  [0054] Further, the apparatus may be provided with a preheating apparatus capable of heating oils and fats, water, and alcohol to a temperature equal to or close to the temperature condition of the first processing apparatus 11 and / or the second processing apparatus 13 in advance. Les ,. This is economical because it is possible to eliminate waste such as lowering the temperature of the reactant and reheating. Further, a precompression device capable of pressurizing oils and fats, water, and alcohol to a pressure equal to or close to the pressure condition of the first treatment device 11 and / or the second treatment device 13 in advance may be provided. By providing such a preheating / precompression device, the raw materials such as fats and oils, water, and alcohol are heated and pressurized in advance to a subcritical state or a supercritical state or a state close to them, and then continuously subjected to the first pressure. By sending the fatty acid ester composition to the treatment device 11 and the second treatment device 13, the fatty acid ester composition is suitable for efficient production.
[0055] 勿論、第 1処理装置 11において生成した反応物を予熱 '予圧装置で処理することも 可能である。つまり、例えば、第 1処理装置 11、水抜き処理装置 12、第 2処理装置 13 それぞれに温度調節装置、圧力調節装置を備える場合においても、油脂類、水、ァ ルコール、第 1処理装置 11において生成した反応物の加熱、加圧を予熱'予圧装置 で行う装置構成であってよいのである。  [0055] Of course, it is also possible to process the reactant generated in the first processing apparatus 11 with a preheating / preloading apparatus. That is, for example, even when each of the first treatment device 11, the water removal treatment device 12, and the second treatment device 13 is provided with a temperature control device and a pressure control device, in the case of the oils and fats, water, alcohol, and the first treatment device 11, The device configuration may be such that the generated reactant is heated and pressurized by a preheating / preloading device.
[0056] 連続的に脂肪酸エステル組成物を製造する場合には、油脂類、水、アルコールを 連続的に供給できる供給装置 a、 b、 cを設けるのがよい。この供給装置 a、 b、 cから油 脂類、水、アルコールを適宜予熱 '予圧装置、第 1処理装置 11、第 2処理装置 13に供 給することで、連続的に脂肪酸エステル組成物を得ることが可能となる。また、供給装 置 a、 b、 cには、供給装置 a、 b、 cからの供給量を調節可能なバルブ等の調整弁を設 けてもよいし、あるいは、供給装置 a、 b、 cとは別途、供給量を制御可能な供給量制 御装置を備えるものでもよレ、。 When the fatty acid ester composition is continuously produced, it is preferable to provide supply devices a, b, and c capable of continuously supplying fats and oils, water, and alcohol. Fatty acids, water, and alcohol are appropriately preheated from the supply devices a , b, and c to the precompression device, the first treatment device 11, and the second treatment device 13, so that a fatty acid ester composition is continuously obtained. It becomes possible. In addition, the supply devices a, b, and c are provided with adjusting valves such as valves that can adjust the amount of supply from the supply devices a, b, and c. It may be provided with a supply amount control device capable of controlling the supply amount separately from the supply devices a, b, and c.
[0057] 以下に、油脂類、水、アルコール力 脂肪酸エステル組成物を得るまでの一例を、 図 3を参照に説明する。  Hereinafter, an example of obtaining a fatty acid ester composition of oils and fats, water, and alcohol will be described with reference to FIG.
[0058] まず、油脂類と水をそれぞれ供給装置 b、 cから連続的に図示しない予熱'予圧装 置に供給する。油脂類と水は、それぞれ第 1処理装置 11における温度 ·圧力条件ま で、予熱 '予圧装置によって加熱 '加圧された後、第 1処理装置 11に送り込まれる。第 1処理装置 11において、油脂類と水との加水分解反応が進行し、脂肪酸およびダリ セリンが得られる。この第 1処理装置 11において生成した反応物は水抜き処理装置 12に送り込まれ、水分が除去される。この際、グリセリンも併せて除去されることは既 述のとおりである。そして、水抜き処理装置 12を経た反応物は、必要に応じて加熱- 加圧された後第 2処理装置 13に送り込まれる。  First, oils and fats and water are continuously supplied from the supply devices b and c, respectively, to a preheating device (not shown). The fats and oils and water are heated and pressurized by the preheating / preloading device until the temperature and pressure conditions in the first processing device 11, respectively, and then sent to the first processing device 11. In the first treatment device 11, the hydrolysis reaction between oils and fats and water proceeds, and fatty acids and dalyserin are obtained. The reactant generated in the first treatment device 11 is sent to a water removal treatment device 12 to remove water. At this time, glycerin is also removed as described above. Then, the reaction product that has passed through the water removal treatment device 12 is fed into the second treatment device 13 after being heated and pressurized as necessary.
[0059] 一方、アルコールは、供給装置 aによって連続的に図示しない予熱 ·予圧装置に送 られ、第 2処理装置 13における温度 ·圧力条件まで加熱 '加圧された後、第 2処理装 置 13に送り込まれる。第 2処理装置 13においては、脂肪酸とアルコールとのエステル 化反応が進行し、脂肪酸エステルが得られる。そして、適宜、この得られた脂肪酸ェ ステルを含む第 2処理装置 13を経た反応物を蒸留装置などの精製装置 14に送り込 み、アルコール、水分等を除去することによって、脂肪酸エステルを高含有する脂肪 酸エステル組成物を得るのである。  On the other hand, the alcohol is continuously sent to a preheating / preloading device (not shown) by the supply device a, and heated and pressurized to the temperature and pressure conditions in the second processing device 13. Sent to. In the second treatment device 13, the esterification reaction between the fatty acid and the alcohol proceeds, and a fatty acid ester is obtained. The reaction product containing the obtained fatty acid ester and passing through the second treatment device 13 is appropriately fed to a purification device 14 such as a distillation device to remove alcohol, moisture, etc., so that the fatty acid ester is highly contained. The resulting fatty acid ester composition is obtained.
[0060] 本実施形態については、後述する実施例 1によって数値を挙げ、更に詳細に説明 する。  The present embodiment will be described in more detail by giving numerical values according to Example 1 described later.
[0061] 〔第 2実施形態〕  [Second Embodiment]
以下、本発明の第 2実施形態を、図面に基づいて説明する。但し、以下の実施形 態は本発明を限定するものではない。尚、第 1実施形態と同様の構成については説 明を省略し、図面においては同符号を付す。実施形態は、本発明の趣旨を逸脱しな い限り適宜変更可能である。図 1に本発明の脂肪酸エステル組成物の製造方法にお ける反応式を、図 4に本実施形態における製造方法のフローチャートを、図 5に本実 施形態における製造装置の装置構成例を示す。 [0062] 以下に、本実施形態の製造方法について具体的に説明する。 Hereinafter, a second embodiment of the present invention will be described with reference to the drawings. However, the following embodiments do not limit the present invention. The description of the same configuration as that of the first embodiment is omitted, and the same reference numerals are given in the drawings. The embodiments can be appropriately modified without departing from the gist of the present invention. FIG. 1 shows a reaction formula in the method for producing a fatty acid ester composition of the present invention, FIG. 4 shows a flowchart of the production method in the present embodiment, and FIG. 5 shows an example of an apparatus configuration of a production apparatus in the present embodiment. Hereinafter, the manufacturing method of the present embodiment will be specifically described.
[0063] まず、第 1工程においては、適宜反応器に、上記油脂類と水とを共存させて収容さ せる。そして、油脂類と水が共存した反応器を加熱加圧することによって、収容したと きの状態から、亜臨界状態または超臨界状態に遷移させる。第 1工程においては、こ のような条件下において油脂類に含まれる脂肪酸グリセリドと水との加水分解反応が 進行し、脂肪酸が生成される。具体的には、図 1 (a)に示す反応が進行する。  [0063] First, in the first step, the above-mentioned fats and oils and water are coexistently accommodated in a reactor. Then, by heating and pressurizing the reactor in which oils and fats coexist with water, the state of the reactor is changed from the state in which it is contained to the subcritical state or the supercritical state. In the first step, the hydrolysis reaction between the fatty acid glyceride contained in the fats and oils and water proceeds under such conditions to produce fatty acids. Specifically, the reaction shown in FIG. 1 (a) proceeds.
[0064] 続く第 2工程において、第 1工程を経た第 1工程反応物(図示の反応式のとおり、こ の第 1工程反応物には主として脂肪酸'グリセリンが含まれ、さらに、水、中間生成物 である若干量のモノグリセリド等が含まれる。 )にアルコールを添カ卩する。  [0064] In the subsequent second step, the reaction product of the first step after the first step (as shown in the reaction formula shown in the figure, the reaction product of the first step mainly contains fatty acid glycerin, and further contains water, intermediate product The product contains a small amount of monoglyceride, etc.) and alcohol.
[0065] そして、この第 2工程においては、亜臨界状態または超臨界状態において反応を 進行させる。ここに、亜臨界状態または超臨界状態とは添加されたアルコールにとつ ての状態をレ、うものである。好ましくは、この添加されたアルコールにとっての超臨界 状態とする。  [0065] In the second step, the reaction proceeds in a subcritical state or a supercritical state. Here, the subcritical state or supercritical state refers to the state of the added alcohol. Preferably, a supercritical state is established for the added alcohol.
[0066] 第 1工程及び/又は第 2工程における温度条件'圧力条件としては、温度条件が 2 00°C— 400°C、圧力条件が 2MPa— 45MPaとするのが好ましい。より好ましくは、温 度条件が 240°C— 380°C、圧力条件が 7MPa— 30MPaであり、さらに好ましくは、 温度条件が 250°C— 300°C、圧力条件が 8MPa— 22MPa程度である。  [0066] As the temperature condition and the pressure condition in the first step and / or the second step, it is preferable that the temperature condition is 200 ° C to 400 ° C and the pressure condition is 2MPa to 45MPa. More preferably, the temperature condition is 240 ° C to 380 ° C, and the pressure condition is 7MPa to 30MPa. More preferably, the temperature condition is 250 ° C to 300 ° C, and the pressure condition is about 8MPa to 22MPa.
[0067] ここで、第 1工程と第 2工程において、その反応条件はおよそ同じとするのが好まし レ、。なぜなら、本実施形態の製造方法は、第 1工程と第 2工程の間において、脱水処 理を行わないからである、さらに、水とアルコーノレとで、その臨界温度、臨界圧力に差 異があることに着眼し、第 1工程および第 2工程の温度条件'圧力条件をより好ましく 設定できる。つまり、第 1工程および第 2工程における温度条件および圧力条件を、 水にとっては亜臨界状態、アルコールにとっては超臨界状態となる温度条件 ·圧カ条 件としておよそ同じとするのである。  Here, in the first step and the second step, it is preferable that the reaction conditions are approximately the same. This is because the manufacturing method of the present embodiment does not perform the dehydration treatment between the first step and the second step.Furthermore, there is a difference in the critical temperature and critical pressure between water and alcohol. Focusing on this, the temperature condition and the pressure condition in the first step and the second step can be set more preferably. In other words, the temperature and pressure conditions in the first and second steps are approximately the same as the temperature and pressure conditions under which the water becomes a subcritical state and the alcohol becomes a supercritical state.
[0068] 具体的には、例えばアルコールにメタノールを用いる場合には、メタノールの臨界 温度が約 239°C、臨界圧力が約 8. IMPaであり、一方水の臨界温度が約 374°C、 臨界圧力が約 22. IMPaであるので、第 1工程および第 2工程における温度条件を 、約 239°C力 約 374°Cの間に、圧力条件を約 8MPaから約 22MPaに設定するの が好ましいのである。 [0068] Specifically, for example, when methanol is used as the alcohol, the critical temperature of methanol is about 239 ° C and the critical pressure is about 8. IMPa, while the critical temperature of water is about 374 ° C. Since the pressure is about 22. IMPa, set the temperature condition in the first and second steps between about 239 ° C and about 374 ° C, and the pressure condition from about 8 MPa to about 22 MPa. Is preferred.
[0069] 油脂類と、水、アルコールの量的割合としては、第 1工程においては油脂類に含ま れる脂肪酸グリセリド 1モルに対して、水を 3— 200モルとするのが好ましい。第 1工程 において加水分解反応を十分に促進するためには、水は多いほど好ましい。しかし、 本実施形態の製造方法を実施する装置の小規模化やコストパフォーマンスの観点か らは、水を不必要なまでに多くすることは賢明ではない。また、第 1工程反応物から水 分を除去することなぐ第 1工程に続いて第 2工程に進むため、水が多すぎると、第 2 工程において生成した脂肪酸エステルの加水分解反応も同時に起こりほんのわずか ながらもエステルイ匕反応を阻害することになり好ましくない。従って、水は、脂肪酸ダリ セリド 1モルに対して、 3— 200モル程度が好ましいのである。  [0069] Regarding the quantitative ratio of fats and oils, water and alcohol, in the first step, it is preferable that water is 3-200 moles with respect to 1 mole of fatty acid glyceride contained in the fats and oils. In order to sufficiently promote the hydrolysis reaction in the first step, the amount of water is preferably as large as possible. However, it is not advisable to increase the amount of water unnecessarily from the viewpoint of miniaturization and cost performance of the apparatus for performing the manufacturing method of the present embodiment. In addition, since the process proceeds to the second step after the first step without removing water from the reaction product of the first step, if there is too much water, the hydrolysis reaction of the fatty acid ester generated in the second step will occur at the same time, and It is not preferable because the esterification reaction is slightly inhibited. Therefore, the amount of water is preferably about 3 to 200 mol per 1 mol of the fatty acid dalyceride.
[0070] また、第 2工程におけるアルコールの量は、油脂類に含まれる脂肪酸グリセリド 1モ ルに対して、 3 200モルとするのが好適である。第 2工程における脂肪酸のエステ ル化反応を十分に促進するためには、アルコールは多いほど好ましいのであるが、 やはり、本実施形態の製造方法を実施する装置の小規模化やコストパフォーマンス の観点からは、アルコールを不必要なまでに多くすることは賢明ではない。本実施形 態の製造方法においては、アルコールは、脂肪酸グリセリド 1モルに対して、 3— 200 モル程度で必要にして十分である。  [0070] The amount of alcohol in the second step is preferably 3200 mol per 1 mol of fatty acid glyceride contained in fats and oils. In order to sufficiently promote the esterification reaction of fatty acids in the second step, it is preferable that the amount of alcohol is larger, but from the viewpoint of reducing the size of the apparatus for performing the production method of the present embodiment and reducing cost performance. It is not wise to use alcohol unnecessarily. In the production method of the present embodiment, about 3-200 mol of alcohol is necessary and sufficient for 1 mol of fatty acid glyceride.
[0071] また、第 1工程及び/又は第 2工程における反応処理時間は、上記のような温度 · 圧力条件においては、およそ 1分からおよそ 10時間の間が好ましい。より好ましくは およそ 1分から 3時間程度であり、さらに好ましくはおよそ 1分から 1時間程度である。 勿論、この反応処理時間は、油脂類、アルコールの種類や、温度 ·圧力条件によって 異なるのが通常であるので適宜変更可能であり、反応処理時間が 10時間以上であ る場合を排除するものではなレ、。  [0071] The reaction treatment time in the first step and / or the second step is preferably between about 1 minute and about 10 hours under the above-described temperature and pressure conditions. More preferably, it is about 1 minute to 3 hours, and still more preferably, about 1 minute to 1 hour. Of course, this reaction treatment time usually varies depending on the type of fats and oils, alcohols, and temperature and pressure conditions, and thus can be changed as appropriate, and does not exclude the case where the reaction treatment time is 10 hours or more. Nare,
[0072] 本実施形態の製造方法は、第 1工程と第 2工程の間において、脱水処理を行わな いので、第 1工程と第 2工程において反応条件を異なるものとする必要がない。つまり 、加熱'冷却、加圧 *減圧という操作が不要であり、ひいては、その操作に投入される エネルギー、即ち加熱'冷却装置や加圧'減圧装置を稼働させる電力等のエネルギ 一が不要なのである。 [0073] この第 2工程においては、第 1工程において生成した脂肪酸と添加されたアルコー ルのエステルィヒ反応および油脂類に含有される遊離脂肪酸と添加されたアルコール とのエステルィヒ反応が進行し、脂肪酸エステルが生成する。 [0072] In the production method of the present embodiment, since no dehydration treatment is performed between the first step and the second step, it is not necessary to make the reaction conditions different between the first step and the second step. In other words, there is no need for the operation of heating / cooling, pressurization * decompression, and thus energy required for the operation, that is, energy such as electric power for operating the heating / cooling device or pressurization / decompression device, is unnecessary. . [0073] In the second step, the Esterich reaction between the fatty acid generated in the first step and the added alcohol and the Esterich reaction between the free fatty acid contained in the fats and oils and the added alcohol proceed, and the fatty acid ester Is generated.
[0074] 具体的には、図 1 (b)に示す反応が進行する。この反応は、およそ同一条件下での 比較で、エステル交換反応よりも格段に反応速度が大きい。尚、反応式中、 Rおよび 数字添えの Rは、炭化水素基を表すと同時に、 ROHは 1価アルコールまたは不飽和 及び飽和の多価アルコールでもかまわなレ、。 [0074] Specifically, the reaction shown in FIG. 1 (b) proceeds. This reaction is much faster than the transesterification reaction under approximately the same conditions. In the reaction formulas, R and a number-added R represent a hydrocarbon group, and ROH may be a monohydric alcohol or an unsaturated and saturated polyhydric alcohol.
[0075] さらに、第 2工程を経た第 2工程反応物を精製する(添加された水、アルコール、さ らには上記反応式の如く生成するグリセリンなどの除去)ことによって、脂肪酸エステ ルを高含有する脂肪酸エステル組成物が得られるのである。 Further, by purifying the reaction product of the second step after the second step (removal of added water, alcohol, and glycerin generated as in the above reaction formula), the fatty acid ester can be increased. The resulting fatty acid ester composition is obtained.
[0076] 精製方法に格別の限定はなぐ例えばデカンテーシヨン、蒸留などでよい。アルコ ールは、蒸留によって蒸発分離可能である。また、グリセリンは水に対して任意の溶 解性を有するので、デカンテーシヨンによって、水とともにグリセリンを第 2工程反応物 力 分離可能である。 [0076] There is no particular limitation on the purification method, such as decantation or distillation. The alcohol can be separated by evaporation by distillation. Since glycerin has any solubility in water, decantation can separate glycerin together with water in the second step reaction.
[0077] 本実施形態の製造方法によって製造された脂肪酸エステル組成物には、脂肪酸ェ ステルが高含有される一方、全グリセリン量をバイオディーゼル燃料規格の上限値以 下にすることが可能であり、ノくィォディーゼル燃料として用いることが有益である。  [0077] While the fatty acid ester composition produced by the production method of the present embodiment contains a high content of fatty acid ester, it is possible to make the total glycerin amount equal to or less than the upper limit of the biodiesel fuel standard. Useful as a diesel fuel.
[0078] 本実施形態の製造方法によって製造された脂肪酸エステル組成物をディーゼル燃 料として用いる場合に、実用上、寒冷地における使用に適することが求められること 力 Sある。なぜなら、寒冷地といった温度の低い状況において、ディーゼル燃料が固化 又は流動性を失うと、内燃機関系フィルタの目詰まりや点火の不具合などが生じるか らである。  [0078] When the fatty acid ester composition produced by the production method of the present embodiment is used as a diesel fuel, it is required to be practically suitable for use in cold regions. This is because, in a low temperature condition such as a cold region, if the diesel fuel solidifies or loses its fluidity, clogging of an internal combustion engine system filter and malfunction of ignition occur.
[0079] 脂肪酸エステルにおいて、一般的には、アルコール由来の炭化水素基が長鎖にな るほど凝固点が下がる傾向にある。つまり、第 2工程において添加するアルコールは 、炭素数の多いアルコールほど好ましい。しかしながら、炭素数の多いアルコールを 用いる場合には、一般的にエステル交換反応の反応速度が小さくなることが知られ ており、従来的なアルカリ触媒や酸触媒を用いた方法や、既述の従来的な (エステル 交換反応を主反応とする)超臨界アルコール法では実用上問題が生じる。 [0080] し力しながら、本実施形態の製造方法は、既に明らかにしたように、加水分解反応 とエステル化反応を経過させることで脂肪酸エステル (組成物)を得るものであってェ ステル交換反応に比して反応速度が大きいので、炭素数の多いアルコールを用いた 場合には特に有効である。 [0079] In fatty acid esters, the freezing point generally tends to decrease as the length of the hydrocarbon group derived from alcohol becomes longer. That is, the alcohol added in the second step is preferably an alcohol having a large number of carbon atoms. However, when an alcohol having a large number of carbon atoms is used, it is generally known that the reaction rate of the transesterification reaction is reduced, and the method using a conventional alkali catalyst or an acid catalyst or the conventional method described above is used. A practical problem arises in a typical (critical transesterification) supercritical alcohol method. As described above, the production method according to the present embodiment obtains a fatty acid ester (composition) through the hydrolysis reaction and the esterification reaction, as described above. Since the reaction rate is higher than the reaction, it is particularly effective when an alcohol having a large number of carbon atoms is used.
[0081] 本実施形態の製造方法は、亜臨界または超臨界状態という条件下において触媒を 用いずに反応を進行させることに特色があるが、触媒を用いることを排除するもので はなぐ適宜必要に応じて、アルカリ触媒や酸触媒、さらには油脂の分解酵素である リパーゼゃホスフオリパーゼ A2などの酵素触媒を用いてもょレ、。  [0081] The production method of the present embodiment is characterized in that the reaction proceeds without using a catalyst under the condition of a subcritical or supercritical state, but it is not necessary to exclude the use of a catalyst. Depending on the reaction, an alkali catalyst or an acid catalyst, or an enzyme catalyst such as lipase phosphpholipase A2, which is an enzyme for decomposing fats and oils, may be used.
[0082] 図 5に示すように、上記製造方法によって脂肪酸エステル組成物を製造する装置 は、脂肪酸グリセリドを含む油脂類を水と共存させ、亜臨界状態または超臨界状態に おける反応によって脂肪酸を生成する第 1処理装置 1と、この第 1処理装置 1におい て生成した反応物にアルコールを添加して、亜臨界状態または超臨界状態における 反応によって脂肪酸エステルを生成する第 2処理装置 2を備えるものである。第 1処 理装置 1から第 2処理装置 2の間では、第 1処理装置 1において生成した反応物から 水分をおよそ除去する工程は必要ないので、第 1処理装置 1と第 2処理装置 2の間に 水分除去装置は設けることは要しない。  [0082] As shown in Fig. 5, an apparatus for producing a fatty acid ester composition by the above-described production method causes fatty acids containing fatty acid glycerides to coexist with water and to produce fatty acids by a reaction in a subcritical state or a supercritical state. A first processing apparatus 1 that performs the reaction in a subcritical state or a supercritical state by adding an alcohol to a reaction product generated in the first processing apparatus 1 to generate a fatty acid ester. It is. Between the first processing device 1 and the second processing device 2, there is no need to perform a step of substantially removing water from the reactant generated in the first processing device 1, so that the first processing device 1 and the second processing device 2 There is no need to install a moisture removal device between them.
[0083] 第 1処理装置 1、第 2処理装置 2としては、格別の限定はなぐ例えば耐熱耐圧タン ク、管型反応器などでよい。第 1処理装置 1、第 2処理装置 2は水及び/又はアルコ 一ルの亜臨界状態又は超臨界状態で使用されるので、相応の耐性を有するのが好 ましい。 [0083] The first processing apparatus 1 and the second processing apparatus 2 are not particularly limited, and may be, for example, a heat-resistant pressure-resistant tank, a tubular reactor, or the like. Since the first treatment device 1 and the second treatment device 2 are used in a subcritical state or a supercritical state of water and / or alcohol, it is preferable that they have appropriate resistance.
[0084] また、第 2処理装置 2において生成した反応物からアルコール及び/又は水分など をおよそ除去することによって、脂肪酸エステル組成物を精製する精製装置を備える ようにしてもよい。このような精製装置には、格別の限定はないが、例えば、フラッシャ 、デカンタ、エバポレータなどを用いることができる。  [0084] Further, a purification device for purifying the fatty acid ester composition by removing alcohol and / or moisture from the reaction product generated in the second treatment device 2 may be provided. Although there is no particular limitation on such a purification device, for example, a flasher, a decanter, an evaporator, or the like can be used.
[0085] 具体的には、例えば、第 2処理装置 2において生成した反応物から、フラッシャ 4で アルコール.水を揮発させ、その後、デカンタ 5でグリセリンを含有した水分を除去す る。さらに、蒸留装置 6で残留しているアルコール ·水等を十分に除去して脂肪酸エス テル組成物を得るのである。また、デカンタ 5で除去された水分を水とグリセリンに分 別する分別装置、例えばエバポレータ 7を設けてもよい。 [0085] Specifically, for example, alcohol and water are volatilized from the reaction product generated in the second processing apparatus 2 by the flasher 4, and then water containing glycerin is removed by the decanter 5. Furthermore, the alcohol / water remaining in the distillation device 6 is sufficiently removed to obtain a fatty acid ester composition. The water removed in the decanter 5 is separated into water and glycerin. A separate separation device, for example, an evaporator 7 may be provided.
[0086] 第 1処理装置 1、第 2処理装置 2を水及び/又はアルコールの亜臨界状態あるいは 超臨界状態にまで加熱'加圧できる加熱装置 ·加圧装置を備えるのが好ましい。無論 、加熱'加圧だけではなぐ適宜温度調節や圧力調節が可能な温度調節装置及び /又は圧力調節装置を備えるのが好ましい。  [0086] It is preferable to provide a heating device and a pressurizing device that can heat and pressurize the first processing device 1 and the second processing device 2 to a subcritical state or a supercritical state of water and / or alcohol. Of course, it is preferable to provide a temperature control device and / or a pressure control device capable of performing appropriate temperature control and pressure control as well as heating and pressing.
[0087] さらには、例えば、第 1処理装置 1によって生成された反応物にアルコールを添カロ する場合に、この添加されるアルコールを第 2処理装置 2における温度条件に予め加 熱しておくことで、反応物の温度低下や再加熱といった無駄を省くことが可能になる ので、油脂類、水、アルコールを予め第 1処理装置 1、第 2処理装置 2の温度条件と 同じかそれに近い温度まで加熱可能な予熱装置を備えるものであってもよい。また、 油脂類、水、アルコールを予め第 1処理装置 1、第 2処理装置 2の圧力条件と同じか それに近い圧力まで加圧可能な予圧装置を備えてもよい。このような予熱 *予圧装置 を備えることによって、原料となる油脂類、水、アルコールを、予め亜臨界状態または 超臨界状態ないしこれらに近い状態までに加熱'加圧した上で連続的に第 1処理装 置 1、第 2処理装置 2に送り込むことで、脂肪酸エステル組成物の効率的な生産に適 するようになる。  [0087] Further, for example, when alcohol is added to the reaction product generated by the first processing apparatus 1, the alcohol to be added is heated in advance to the temperature condition in the second processing apparatus 2. Since it is possible to eliminate waste such as lowering the temperature of the reactants and reheating, oils, fats, water, and alcohol are heated in advance to a temperature similar to or close to the temperature conditions of the first processing unit 1 and the second processing unit 2. It may be provided with a possible preheating device. Further, a pre-pressurizing device may be provided which can pressurize oils, fats, water and alcohol to a pressure equal to or close to the pressure condition of the first processing device 1 and the second processing device 2 in advance. By providing such a preheating * preloading device, the raw materials such as fats, oils, water, and alcohol are heated and pressurized in advance to a subcritical state or supercritical state or a state close to them, and then the first By feeding into the processing apparatus 1 and the second processing apparatus 2, it becomes suitable for efficient production of the fatty acid ester composition.
[0088] ところで、第 1処理装置 1と第 2処理装置 2は同一反応器であってもよい。上記の製 造方法においても説明したとおり、第 1処理装置 1と第 2処理装置 2の反応条件はお よそ同一でよぐまた、第 1工程と第 2工程の間では、第 1工程において生成した反応 物にアルコールを添加するので、第 1工程において生成した反応物を他の装置に移 し換える等の操作が不要である。従って、製造装置としては、第 1処理装置 1と第 2処 理装置 2を区別することなく同一装置である反応器として、この反応器において第 1 工程を行レ、、続いてこの反応器にアルコールを添加して第 2工程を行うようにしてもよ いのである。  Incidentally, the first processing apparatus 1 and the second processing apparatus 2 may be the same reactor. As described in the above-mentioned manufacturing method, the reaction conditions of the first processing apparatus 1 and the second processing apparatus 2 are almost the same, and between the first step and the second step, the reaction conditions are generated in the first step. Since alcohol is added to the reaction product, an operation such as transferring the reaction product generated in the first step to another device is not required. Therefore, as a manufacturing apparatus, the first process is performed in this reactor as a reactor which is the same device without distinguishing the first processing device 1 and the second processing device 2, and subsequently, the reactor is subjected to the first process. The second step may be performed by adding alcohol.
[0089] さらには、第 1処理装置に相当する第 1工程処理部と第 2処理装置に相当する第 2 工程処理部とからなる同一反応器としての処理装置であってもよい。つまり、同一反 応器は、およそバッチ処理を行うことをその機能とする物理的実体のみならず、物理 的実体としては同一反応器でありながらも、その内部において、第 1工程処理部と第 2工程処理部とを有することでおよそフロー処理を行うことをその機能とするものであ つてよい。とくに、第 1処理装置に相当する第 1工程処理部と第 2処理装置に相当す る第 2工程処理部とからなる同一反応器としての処理装置は、脂肪酸エステル組成 物の連続的製造に好適である。このようにすることで、装置の個数を減らして、脂肪 酸エステル組成物の製造装置を小規模化することが可能になる。 Further, the processing apparatus may be a single reactor including a first processing section corresponding to the first processing apparatus and a second processing section corresponding to the second processing apparatus. In other words, the same reactor is not only a physical entity whose function is to perform batch processing, but also has the same reactor as the physical entity but has the first process processing unit and the The function may be to perform a flow process approximately by having a two-step processing unit. In particular, a processing apparatus as the same reactor including a first processing section corresponding to the first processing apparatus and a second processing section corresponding to the second processing apparatus is suitable for continuous production of the fatty acid ester composition. It is. This makes it possible to reduce the number of devices and reduce the size of the fatty acid ester composition manufacturing device.
[0090] 連続的に脂肪酸エステル組成物を製造する場合には、油脂類、水、アルコールを 連続的に供給できる供給装置 a、 b、 cを設けるのがよい。この供給装置 a、 b、 cから油 脂類、水、アルコールを適宜予熱 '予圧装置、第 1処理装置 1、第 2処理装置 2に供 給することで、連続的に脂肪酸エステル組成物を得ることが可能となる。また、供給装 置 a、 b、 cには、供給装置 a、 b、 cからの供給量を調節可能なバルブ等の調整弁を設 けてもよいし、あるいは、供給装置 a、 b、 cとは別途、供給量を制御可能な供給量制 御装置を備えるものでもよレ、。 [0090] When the fatty acid ester composition is continuously produced, it is preferable to provide supply devices a, b, and c capable of continuously supplying fats and oils, water, and alcohol. Fatty acids, water, and alcohol are appropriately preheated from the supply devices a , b, and c to the precompression device, the first treatment device 1, and the second treatment device 2 to continuously obtain a fatty acid ester composition. It becomes possible. In addition, the supply devices a, b, and c may be provided with an adjusting valve such as a valve capable of adjusting the supply amount from the supply devices a, b, and c, or the supply devices a, b, and c Separately, a device provided with a supply amount control device capable of controlling the supply amount may be used.
[0091] 以下に、油脂類、水、アルコール力 脂肪酸エステル組成物を得るまでの一例を、 図 5を参照して説明する。  [0091] Hereinafter, an example of obtaining a fatty acid ester composition of oils and fats, water, and alcohol will be described with reference to FIG.
[0092] まず、油脂類と水をそれぞれ供給装置 b、 cから連続的に図示しない予熱'予圧装 置に供給する。油脂類と水は、それぞれ第 1処理装置 1における温度'圧力条件まで 、予熱 *予圧装置によって加熱 *加圧された後、第 1処理装置 1に送り込まれる。  [0092] First, oils and fats and water are continuously supplied from supply devices b and c, respectively, to a preheating device (not shown). The fats and oils and water are sent to the first treatment device 1 after being preheated * heated by the preload device * pressurized until the temperature and pressure conditions in the first treatment device 1 respectively.
[0093] 第 1処理装置 1において、油脂類と水との加水分解反応が進行し、脂肪酸およびグ リセリンが得られる(図 1 (a)参照)。  [0093] In the first treatment apparatus 1, the hydrolysis reaction between oils and fats and water proceeds, and fatty acids and glycerin are obtained (see Fig. 1 (a)).
[0094] この第 1処理装置 1において生成した反応物は第 2処理装置 2に送り込まれる。一 方、アルコールは、供給装置 aによって連続的に図示しない予熱 ·予圧装置に送られ 、第 2処理装置 2における温度 ·圧力条件まで加熱 '加圧された後、第 2処理装置 2に 送り込まれる。 [0094] The reactant generated in the first processing device 1 is sent to the second processing device 2. On the other hand, the alcohol is continuously sent to the preheating / preloading device (not shown) by the supply device a , and is heated to the temperature and pressure conditions in the second processing device 2 and then sent to the second processing device 2 after being pressurized. .
[0095] 第 2処理装置 2においては、脂肪酸とアルコールとのエステル化反応が進行し、脂 肪酸エステルが得られる(図 1 (b)参照)。そして、適宜、この得られた脂肪酸エステル を含む第 2処理装置 2を経た反応物を蒸留装置 6などの精製装置に送り込み、アルコ ール、水分等を除去することによって、脂肪酸エステルを高含有する脂肪酸エステル 組成物を得る。 [0096] 本実施形態の製造方法'装置によれば、エステル交換反応を主反応とする超臨界 アルコール法の反応条件(既述のとおり、例えば、約 350°C、約 40MPa)に比して、 例えば約 50— 100°C程低い温度条件と、約 20MPa— 30MPa程低い圧力条件とい う比較的緩やかな反応条件であればよいので、加水分解反応およびエステル化反 応を進行させるために投入されるエネルギー、即ち具体的には、予熱装置や、第 1処 理装置及び/又は第 2処理装置を加熱'冷却する装置、加圧'減圧する装置などを 稼働させる電力等のエネルギーは相当少なくて済む。とくに、第 2工程において、室 温及び/又は常圧まで低下させることがないのでより一層経済的な製造方法である 。また、油脂類に水分の共存した状態で反応を行うことが可能なので、油脂類から水 分を除去する処理装置等の稼働に必要な莫大な電力等のエネルギーが必要な脱水 処理という前処理が不要となるので、この観点力 も経済的な製造方法といえる。 [0095] In the second processing apparatus 2, the esterification reaction between the fatty acid and the alcohol proceeds, and a fatty acid ester is obtained (see Fig. 1 (b)). Then, the reaction product containing the obtained fatty acid ester through the second treatment device 2 is appropriately fed to a purification device such as a distillation device 6 to remove alcohol, moisture and the like, thereby containing a high content of fatty acid ester. A fatty acid ester composition is obtained. [0096] According to the production method 'apparatus of the present embodiment, compared to the reaction conditions (for example, about 350 ° C and about 40MPa, as described above) of the supercritical alcohol method in which the transesterification reaction is the main reaction. For example, a relatively mild reaction condition, such as a temperature condition of about 50-100 ° C and a pressure condition of about 20MPa-30MPa, may be used to promote the hydrolysis reaction and the esterification reaction. Energy, ie, power for operating the preheating device, the device that heats and cools the first and / or second treatment device, and the device that pressurizes and decompresses it, is considerably less. Do it. In particular, in the second step, the temperature is not lowered to room temperature and / or normal pressure, so that the production method is more economical. In addition, since the reaction can be carried out in the presence of water in fats and oils, the pre-treatment of dehydration, which requires enormous electricity and other energy required for the operation of processing equipment that removes water from fats and oils, is not possible. This perspective is also an economical manufacturing method because it is not necessary.
[0097] また、本実施形態の製造方法'装置によれば、エステル交換反応を主反応としない ため、中間生成物であるモノグリセリド 'ジグリセリドゃ未反応の脂肪酸グリセリドの残 存量を十分に抑制することが可能であり、従って、全グリセリン量を EU及び米国での バイオディーゼル燃料規格に適合させることが可能である。また、収率については、 加水分解反応によって脂肪酸グリセリドを積極的に脂肪酸に変換し、さらにこの脂肪 酸と油脂類中の遊離脂肪酸がアルコールとエステル化反応をすることで脂肪酸エス テルを得るので、従来の超臨界アルコール法に比して同等かそれ以上と極めて高収 率である。  [0097] Further, according to the production method 'apparatus of the present embodiment, since the transesterification reaction is not the main reaction, it is possible to sufficiently suppress the residual amount of monoglyceride' diglyceride, an unreacted fatty acid glyceride, which is an intermediate product. It is therefore possible to adapt the total glycerin level to the biodiesel standards in the EU and the United States. In addition, regarding the yield, fatty acid glycerides are positively converted into fatty acids by a hydrolysis reaction, and furthermore, the fatty acids and the free fatty acids in the fats and oils undergo an esterification reaction with alcohol to obtain fatty acid esters. The yield is very high, equivalent to or better than the conventional supercritical alcohol method.
[0098] さらに、エステル交換反応に比して反応速度の大きい、加水分解反応とエステル化 反応を経過するため、従来的な超臨界アルコール法に比してより緩やかな反応条件 で短時間に脂肪酸エステル組成物を得ることが可能である。  [0098] Furthermore, since the hydrolysis reaction and the esterification reaction progress at a higher reaction rate than the transesterification reaction, the fatty acid can be prepared in a shorter time under milder reaction conditions than the conventional supercritical alcohol method. It is possible to obtain an ester composition.
[0099] 本実施形態については、後述する実施例 2によって数値を挙げ、更に詳細に説明 する。  [0099] This embodiment will be described in further detail by giving numerical values according to Example 2 described later.
[0100] 〔実施例 1〕  [Example 1]
実施例 1として、前述した第 1実施形態に対応する方法 (二段法)による一実施例を 示す。  Example 1 As Example 1, an example using a method (two-step method) corresponding to the above-described first embodiment will be described.
[0101] 図 3に示される製造装置において、原料として菜種油: 1. Okgと、水: 4. 4kg{水/ トリグリセリド = 217/1 (モル比) }を第 1処理装置 11中に送入し、温度: 270°C、圧力 : 17MPaの条件にて、約 30分間、加水分解反応を行なわせる(第 1工程)。 [0101] In the production apparatus shown in Fig. 3, rapeseed oil: 1. Okg and water: 4.4 kg {water / Triglyceride = 217/1 (molar ratio) is fed into the first treatment apparatus 11 and is subjected to a hydrolysis reaction at a temperature of 270 ° C and a pressure of 17 MPa for about 30 minutes (first step). ).
[0102] 前記の第 1工程にて得られる反応物を温度: 150°Cに冷却してデカンタ(水抜き処 理装置 12)へ移送し、圧力: 17MPaにて、主に脂肪酸を含有する軽液と、主に水を 含有する重液とに分離し、主に脂肪酸を含有する軽液は、次の第 2処理装置 13へ移 送する。 [0102] The reaction product obtained in the first step is cooled to a temperature of 150 ° C and transferred to a decanter (water drainage treatment device 12). The liquid is separated into a heavy liquid mainly containing water, and a light liquid mainly containing fatty acids is transferred to the next second treatment device 13.
[0103] 次いで、エステル化反応を行うため第 2処理装置 13に移送された反応物(脂肪酸含 有組成物)中に予め予備加熱、加圧されたメタノール: 4. 7kg (メタノール/脂肪酸 = 42/1 (モル比)を送入し、温度: 270°C、圧力: 17MPaの条件にて、約 30分間ェ ステル化反応を行なわせる(第 2工程)。  [0103] Next, the pre-heated and pressurized methanol: 4.7 kg (methanol / fatty acid = 42) in the reactant (fatty acid-containing composition) transferred to the second processing apparatus 13 for performing the esterification reaction. / 1 (molar ratio), and the esterification reaction is carried out for about 30 minutes at a temperature of 270 ° C and a pressure of 17 MPa (second step).
[0104] 次いで、前記の第 2工程にて得られる脂肪酸エステル含有組成物を精製工程にて 、例えば精製装置 14により、脂肪酸エステル組成物と水'メタノール ·グリセリン含有 組成物に分離する。得られる脂肪酸エステル組成物の収率 (脂肪酸エステル組成物 /原料中のトリグリセリド)は、 93%で、全グリセリン量(Gs)は 0. 18%で EU及び米 国でのバイオディーゼル燃料規格を充たすものだった。  [0104] Next, the fatty acid ester-containing composition obtained in the second step is separated into a fatty acid ester composition and a water-methanol-glycerin-containing composition by, for example, a purifying apparatus 14 in a purification step. The yield of the resulting fatty acid ester composition (fatty acid ester composition / triglyceride in the raw material) is 93%, and the total glycerin (Gs) is 0.18%, which satisfies biodiesel fuel standards in the EU and the United States. Was something.
[0105] 〔比較例 1〕  [Comparative Example 1]
比較例 1として、従来の方法(一段法)を反応温度 350°Cで行う際の一例を示す。 原料として菜種油 1. Okgとメタノーノレ 4. 7kgを 350°C、 20MPaの条件下で約 10分 間反応させた。得られる脂肪酸エステル組成物の収率 (脂肪酸エステル組成物/原 料中のトリグリセリド)は、 96%で、全グリセリン量(Gs)は 0. 25%で、 EU及び米国で のバイオディーゼル燃料規格をやっと充たすものだった。  As Comparative Example 1, an example in which a conventional method (one-step method) is performed at a reaction temperature of 350 ° C is shown. As raw materials, 1. Okg of rapeseed oil and 4.7 kg of methanol were reacted at 350 ° C and 20 MPa for about 10 minutes. The yield of the resulting fatty acid ester composition (fatty acid ester composition / triglyceride in the raw material) is 96%, the total glycerin content (Gs) is 0.25%, and the biodiesel fuel standards in the EU and the United States are met. It was at last fulfilling.
[0106] 〔比較例 2〕  [Comparative Example 2]
比較例 2として、従来の方法 (一段法)を反応温度 270°Cで行う際の一例を示す。 原料として菜種?由 1. Okgとメタノーノレ 4. 7kgを 270°C、 17MPaの条件下で糸勺 60分 間反応させた。得られる脂肪酸エステル組成物の収率 (脂肪酸エステル組成物 Z原 料中のトリグリセリド)は、 70%で非常に低かった。  As Comparative Example 2, an example in which a conventional method (one-step method) is performed at a reaction temperature of 270 ° C. is shown. Rapeseed as raw material 1. Okg and 4.7 kg of methanol were reacted at 270 ° C and 17MPa for 60 minutes. The yield of the resulting fatty acid ester composition (triglyceride in the fatty acid ester composition Z raw material) was very low at 70%.
[0107] 〔実施例 2〕  [Example 2]
実施例 2として、前述した第 2実施形態に対応する方法 (二段法)による一実施例を 示す。図 5に示される製造装置において、原料として菜種油: 1. Okgと、水: 4. 4kg { 水/トリグリセリド = 217/1 (モル比) }を第 1処理装置 1中に送入し、温度: 270°C、 圧力: 17MPaの条件にて、約 30分間加水分解反応を行なわせた(第 1工程)。 Example 2 is an example using a method (two-step method) corresponding to the above-described second embodiment. Show. In the production apparatus shown in FIG. 5, rapeseed oil: 1. Okg and water: 4.4 kg {water / triglyceride = 217/1 (molar ratio)} are fed into the first treatment apparatus 1 as raw materials, and the temperature is: The hydrolysis reaction was carried out for about 30 minutes under the conditions of 270 ° C. and pressure: 17 MPa (first step).
[0108] 前記の第 1工程にて得られる反応物を次いで第 2処理装置 2内に移送し、移送され た反応物中に予め予備加熱、加圧されたメタノール: 5. 5kg (メタノール/脂肪酸 = 50/1 (モル比)を送入し、温度: 270°C、圧力: 17MPaの条件にて、約 30分間エス テル化反応を行なわせる(第 2工程)。  [0108] The reactant obtained in the first step is then transferred into the second processing apparatus 2, and the transferred reactant is preliminarily heated and pressurized with methanol: 5.5 kg (methanol / fatty acid). = 50/1 (molar ratio), and the esterification reaction is carried out for about 30 minutes at a temperature of 270 ° C and a pressure of 17 MPa (second step).
[0109] 次いで、前記の第 2工程にて得られる脂肪酸エステル含有組成物を、フラッシャ 4に 通し、フラッシャ 4底部からデカンタ 5に移送する。若しくはフラッシャ 4を経ず、直接デ カンタ 5に移送する。デカンタ 5にて主に脂肪酸エステルを含有する軽液と、主に水- グリセリンを含有する重液とに分離し、主に脂肪酸エステルを含有する軽液は、次の 精製工程にて、例えば蒸留装置 6により、脂肪酸エステル組成物と、水含有メタノー ル組成物とに分離した。得られる脂肪酸エステル組成物の収率 (脂肪酸エステル組 成物/原料中のトリグリセリド)は、 93%で、全グリセリン量(Gs)は 0. 22%で EU及 び米国でのバイオディーゼル燃料規格を充たすものであった。  Next, the fatty acid ester-containing composition obtained in the second step is passed through the flasher 4 and transferred to the decanter 5 from the bottom of the flasher 4. Alternatively, transfer directly to decanter 5 without passing through flasher 4. The decanter 5 separates the light liquid mainly containing fatty acid ester and the heavy liquid mainly containing water-glycerin, and the light liquid mainly containing fatty acid ester is subjected to, for example, distillation in the next purification step. By the device 6, the fatty acid ester composition and the water-containing methanol composition were separated. The yield of the resulting fatty acid ester composition (fatty acid ester composition / triglyceride in the raw material) is 93% and the total glycerin content (Gs) is 0.22%, which meets the biodiesel fuel standards in the EU and the United States. It was a fulfillment.
[0110] この精製工程にて生成する水含有メタノール組成物は、フラッシャ 4の上部から排 出される水含有のメタノール組成物と混合し、水を除去した後、メタノールは前記の 第 2工程に戻して再利用してもよい。  [0110] The water-containing methanol composition generated in this purification step is mixed with the water-containing methanol composition discharged from the upper portion of the flasher 4, and after removing water, the methanol is returned to the second step. May be reused.
[0111] デカンタ 5の底部より排出される水 'グリセリン含有組成物は、次のエバポレータ 7に おいて水とグリセリンに分離され、水は、第 1工程 (加水分解反応)用の水として次の 反応に使用してもよい。  [0111] The water 'glycerin-containing composition discharged from the bottom of the decanter 5 is separated into water and glycerin in the next evaporator 7, and the water is converted into water for the first step (hydrolysis reaction) as follows. It may be used for the reaction.
[0112] 〔実施例と比較例 1との比較〕  [Comparison of Example and Comparative Example 1]
本発明の実施例と比較例 1とを比較すると、得られる脂肪酸エステル組成物の収率 に関しては双方とも高レ、。また、 EU及び米国でのバイオディーゼル燃料規格 (全ダリ セリン量(Gs)く 0. 25%及び 0. 24%)を充たすものを得ることができる。  Comparing Example of the present invention with Comparative Example 1, the yield of the obtained fatty acid ester composition was both high. It is also possible to obtain biodiesel fuels that meet the EU and US biodiesel fuel standards (total dalyserine (Gs), 0.25% and 0.24%).
[0113] し力 ながら、 350°Cという高温で反応を行うため、処理装置には、 270°Cという低 温で反応を行うことができる実施例の処理装置と比較して、耐熱性ゃ耐腐食性に優 れた高価な材質を用いなくてはならないし、加熱エネルギーを多く必要とし、経済性 に劣るという問題がある。 However, since the reaction is performed at a high temperature of 350 ° C., the processing apparatus has a higher heat resistance and resistance to heat than the processing apparatus of the embodiment which can perform the reaction at a low temperature of 270 ° C. Expensive materials with excellent corrosiveness must be used. There is a problem that it is inferior.
[0114] また、重要なこととして、高温で得られる脂肪酸エステルは熱変性を受けるおそれ が高い。熱変性によって三次元の架橋構造が形成されると、脂肪酸エステルの流動 性が低下する。更に、高温で得られる脂肪酸エステルは、参考例(図 6)に示すような 熱変性による構造転移を起こすおそれが高い。参考例(図 6)に示すような熱変性に よる構造転移 (異性化)が起こると、脂肪酸エステルの融点が上昇する。このため、高 温で得られる脂肪酸エステルを燃料として使用する際には、特に冬季等の低温度の 状況下において燃料の流動性が不足する恐れがある。即ち、このような高温反応で 得られた脂肪酸エステルを燃料として使用すると、燃料フィルタや燃料ノズルが詰ま り易ぐまた、燃焼室において未燃のカーボンが付着しやすぐまた排ガス中にも微 粒子が増し、排ガス処理装置で詰まりや触媒活性低下などの問題が生じ易くなる。  [0114] Importantly, fatty acid esters obtained at high temperatures are highly likely to undergo thermal denaturation. When a three-dimensional crosslinked structure is formed by heat denaturation, the fluidity of the fatty acid ester decreases. Furthermore, fatty acid esters obtained at high temperatures are highly likely to undergo structural transformation due to thermal denaturation as shown in Reference Example (FIG. 6). When the structural transition (isomerization) due to thermal denaturation as shown in the reference example (Fig. 6) occurs, the melting point of the fatty acid ester increases. Therefore, when a fatty acid ester obtained at a high temperature is used as a fuel, the fluidity of the fuel may be insufficient particularly in a low temperature situation such as in winter. That is, when the fatty acid ester obtained by such a high-temperature reaction is used as a fuel, the fuel filter and the fuel nozzle are easily clogged, and unburned carbon adheres to the combustion chamber immediately, and fine particles are also contained in the exhaust gas. And problems such as clogging and reduction in catalytic activity in the exhaust gas treatment device are likely to occur.
[0115] このような高温反応での問題を避けるために、より低温条件で反応させ脂肪酸エス テルを得ることが好ましい。参考としてリノレン酸メチルを高温条件と低温条件とによ つて生成した例を示す。図 6 (a)は 270°Cでリノレン酸メチルを得た時の FT— IRスぺク トルであり、図 6 (b)は 350°Cでリノレン酸メチルを得た時の FT— IRスペクトルである。 図 6において、二重結合部のトランス型とシス型のスペクトル量を比較すると、 270°C の反応条件で得られたものではシス型からトランス型への転移が殆ど見られないのに 対して、 350°Cの反応条件において得られたものは、 270°Cの反応条件で得られた ものよりもトランス型への転移(異性化)が非常に多く見られる。トランス型の二重結合 を多く有する脂肪酸鎖は、シス型の二重結合を多く有するものよりも、融点が高くなり 、低温域で固化しやすくなる。従って、トランス型へのへの転移を少なくするために、 より低温条件で脂肪酸エステルを得ることが好ましぐ 270°Cではそのような異性化は 起こらない。  [0115] In order to avoid such a problem in the high-temperature reaction, it is preferable to obtain the fatty acid ester by reacting at a lower temperature condition. For reference, an example is shown in which methyl linolenate was produced under high and low temperature conditions. Figure 6 (a) is the FT-IR spectrum when methyl linolenate was obtained at 270 ° C, and Figure 6 (b) is the FT-IR spectrum when methyl linolenate was obtained at 350 ° C. It is. In Fig. 6, when comparing the spectral amount of the trans-form and the cis-form of the double bond, the transition from the cis-form to the trans-form was hardly observed in the one obtained under the reaction conditions of 270 ° C. However, those obtained under the reaction conditions of 350 ° C show much more transition to the trans form (isomerization) than those obtained under the reaction conditions of 270 ° C. Fatty acid chains having many trans-type double bonds have a higher melting point than those having many cis-type double bonds, and are easily solidified in a low temperature region. Thus, at 270 ° C., where it is preferred to obtain the fatty acid ester at lower temperatures to reduce the trans-transformation, such isomerization does not occur.
[0116] 〔実施例と比較例 2との比較〕  [Comparison between Example and Comparative Example 2]
本発明の実施例と比較例 2とを比較すると、同温度条件で同じ時間で得られる脂肪 酸エステル組成物の収率は、本実施例が 93%に対して比較例 2では 70%と非常に 低いし、全グリセリン量 (Gs)は非常に多レ、。このため、本発明の実施例の方が優れ ているといえる。 [0117] これらのことを考慮すると、本発明によれば、脂肪酸エステル組成物を 270°Cという 低温の反応条件で行ったとしても、高い収率を達成できる。また、得られる脂肪酸ェ ステル組成物は熱変性が少なく流動性が良レ、ため、低温度の状況下流動性に富む バイオディーゼル燃料が得られ、ノズルや燃料フィルタを詰まらせる要因を軽減する こと力 Sできる。 Comparing the Example of the present invention with Comparative Example 2, the yield of the fatty acid ester composition obtained at the same temperature and the same time in the same time was 93% in this example, and 70% in Comparative Example 2, which was very low. And the total glycerin level (Gs) is very high. Therefore, it can be said that the embodiment of the present invention is superior. [0117] Considering these facts, according to the present invention, a high yield can be achieved even when the fatty acid ester composition is performed under a low-temperature reaction condition of 270 ° C. In addition, the resulting fatty acid ester composition has low thermal denaturation and good fluidity, so that biodiesel fuel with high fluidity under low temperature conditions can be obtained, and the factors that clog nozzles and fuel filters can be reduced. Power S can.
産業上の利用可能性  Industrial applicability
[0118] 本発明は、油脂類とアルコールとの反応によって脂肪酸エステル組成物を製造す る方法及び装置について利用することができる。 [0118] The present invention can be used for a method and an apparatus for producing a fatty acid ester composition by reacting an oil or fat with an alcohol.

Claims

請求の範囲 The scope of the claims
[1] 油脂類とアルコールとの反応によって、脂肪酸エステル組成物の製造方法であつ て、  [1] A method for producing a fatty acid ester composition by reacting an oil or fat with an alcohol,
脂肪酸グリセリドを含む油脂類を水と共存させ、亜臨界状態または超臨界状態にお ける反応によって脂肪酸を生成する第 1工程と、  A first step of causing fatty acids containing fatty acid glycerides to coexist with water and producing fatty acids by a reaction in a subcritical or supercritical state;
前記第 1工程を経た第 1工程反応物から水分をおよそ除去する水抜き工程と、 前記水抜き工程において残留した水抜き工程残留物にアルコールを添加し、亜臨 界状態または超臨界状態における反応によって脂肪酸エステルを生成する第 2工程 と、を含むことを特徴とする脂肪酸エステル組成物の製造方法。  A water removal step of approximately removing water from the first step reaction product after the first step; and alcohol in a water removal step residue remaining in the water removal step, and a reaction in a subcritical state or a supercritical state. And a second step of producing a fatty acid ester by the method.
[2] 前記第 1工程及び/又は前記第 2工程における温度条件'圧力条件が、 [2] The temperature condition and the pressure condition in the first step and / or the second step are as follows:
圧力条件: 2. 0— 45MPa  Pressure condition: 2.0—45MPa
温度条件: 200— 400°C  Temperature condition: 200—400 ° C
の範囲にあり、かつ前記水抜き工程における温度条件'圧力条件が、  And in the water removal step temperature conditions' pressure conditions,
圧力条件: 0. 2— 45MPa  Pressure condition: 0.2—45MPa
温度条件: 50— 350°C  Temperature condition: 50-350 ° C
の範囲にあることを特徴とする請求の範囲第 1項に記載の脂肪酸エステル組成物の 製造方法。  2. The method for producing a fatty acid ester composition according to claim 1, wherein the method is characterized in that:
[3] 油脂類に含まれる脂肪酸グリセリド 1モルに対して、水が 3 1000モル、アルコー ノレが 3 200モルであることを特徴とする請求の範囲第 1項に記載の脂肪酸エステル 組成物の製造方法。  [3] The production of the fatty acid ester composition according to claim 1, wherein water is 31,000 mol and alcohol is 3200 mol per 1 mol of the fatty acid glyceride contained in the fats and oils. Method.
[4] 油脂類とアルコールとの反応によって、脂肪酸エステル組成物の製造方法であつ て、  [4] A method for producing a fatty acid ester composition by reacting an oil or fat with an alcohol,
脂肪酸グリセリドを含む油脂類を水と共存させ、亜臨界状態または超臨界状態にお ける反応によって脂肪酸を生成する第 1工程と、  A first step of causing fatty acids containing fatty acid glycerides to coexist with water and producing fatty acids by a reaction in a subcritical or supercritical state;
第 1工程を経た第 1工程反応物にアルコールを添加し、亜臨界状態または超臨界 状態における反応によって脂肪酸エステルを生成する第 2工程と、  A second step in which alcohol is added to the reaction product of the first step after the first step and a fatty acid ester is produced by a reaction in a subcritical state or a supercritical state;
を有することを特徴とする脂肪酸エステル組成物の製造方法。  A method for producing a fatty acid ester composition, comprising:
[5] 前記第 1工程及び/又は前記第 2工程における温度条件'圧力条件が、 圧力条件: 2· 0— 45MPa [5] The temperature condition and the pressure condition in the first step and / or the second step are as follows: Pressure condition: 2.0-45MPa
温度条件: 200— 400°C  Temperature condition: 200—400 ° C
の範囲にあることを特徴とする請求の範囲第 4項に記載の脂肪酸エステル組成物の 製造方法。  5. The method for producing a fatty acid ester composition according to claim 4, wherein the method is in the range of:
[6] 第 1工程および第 2工程における温度条件および圧力条件を、水にとっては亜臨 界状態、アルコールにとっては超臨界状態となる温度条件及び圧力条件としておよ そ同じとすることを特徴とする請求の範囲第 4項に記載の脂肪酸エステル組成物の 製造方法。  [6] The temperature and pressure conditions in the first step and the second step are approximately the same as the temperature and pressure conditions in which the water is in a subcritical state and the alcohol is in a supercritical state. The method for producing a fatty acid ester composition according to claim 4, wherein
[7] 油脂類に含まれる脂肪酸グリセリド 1モルに対して、水が 3 200モル、アルコール 力 ¾一 200モルであることを特徴とする請求の範囲第 4項に記載の脂肪酸エステル組 成物の製造方法。  [7] The fatty acid ester composition according to claim 4, wherein water is 3200 moles and alcohol power is 200 moles per mole of fatty acid glyceride contained in fats and oils. Production method.
[8] 前記第 1工程における温度条件 ·圧力条件と前記第 2工程における温度条件 *圧力 条件がおよそ同一であることを特徴とする請求の範囲第 1項又は第 4項に記載の脂 肪酸エステル組成物の製造方法。  [8] The fatty acid according to claim 1, wherein the temperature condition and the pressure condition in the first step and the temperature condition * pressure condition in the second step are substantially the same. A method for producing an ester composition.
[9] 前記第 2工程に続いて、第 2工程反応物に含まれるアルコール及び/又は水分を およそ除去することによって、脂肪酸エステル組成物を精製する精製工程を有するこ とを特徴とする請求の範囲第 1項又は第 4項に記載の脂肪酸エステル組成物の製造 方法。  [9] The method according to claim 2, further comprising, following the second step, a purification step of purifying the fatty acid ester composition by substantially removing alcohol and / or water contained in the reaction product of the second step. Item 5. The method for producing a fatty acid ester composition according to Item 1 or 4.
[10] 前記アルコールは 1価アルコールであることを特徴とする請求の範囲第 1項又は第 [10] The method according to claim 1, wherein the alcohol is a monohydric alcohol.
4項に記載の脂肪酸エステル組成物の製造方法。 Item 5. The method for producing a fatty acid ester composition according to Item 4.
[11] 前記第 1工程及び/又は前記第 2工程における反応処理時間が、およそ 1分から およそ 10時間の間であることを特徴とする請求の範囲第 1項又は第 4項に記載の脂 肪酸エステル組成物の製造方法。 [11] The fat according to claim 1 or 4, wherein the reaction treatment time in the first step and / or the second step is between about 1 minute and about 10 hours. A method for producing an acid ester composition.
[12] 油脂類に脂肪酸が含まれることを特徴とする請求の範囲第 1項又は第 4項に記載 の脂肪酸エステル組成物の製造方法。 12. The method for producing a fatty acid ester composition according to claim 1, wherein the fat or oil contains a fatty acid.
[13] 油脂類が、動物油脂または植物油脂あるいは廃油脂類であることを特徴とする請 求の範囲第 1項又は第 4項に記載の脂肪酸エステル組成物の製造方法。 [13] The method for producing a fatty acid ester composition according to claim 1, wherein the fats and oils are animal fats or vegetable fats or waste fats and oils.
[14] 脂肪酸エステルが、ディーゼル燃料の成分となることを特徴とする請求の範囲第 1 項又は第 4項に記載の脂肪酸エステル組成物の製造方法。 [14] The first aspect of the present invention, wherein the fatty acid ester is a component of a diesel fuel. Item 5. The method for producing a fatty acid ester composition according to item 4 or 4.
[15] 請求の範囲第 1項又は第 4項に記載の製造方法によって製造された脂肪酸エステ ル組成物を含有するディーゼル燃料。 [15] A diesel fuel containing the fatty acid ester composition produced by the production method according to claim 1 or 4.
[16] 油脂類とアルコールとの反応によって、脂肪酸エステル組成物を製造する装置であ つて、 [16] An apparatus for producing a fatty acid ester composition by a reaction between fats and oils and alcohol,
脂肪酸グリセリドを含む油脂類を水と共存させ、亜臨界状態または超臨界状態にお ける反応によって脂肪酸を生成する第 1処理装置と、  A first treatment device that causes fatty acids containing fatty acid glycerides to coexist with water and generates fatty acids by a reaction in a subcritical or supercritical state;
前記第 1処理装置において生成した反応物にアルコールを添加し、亜臨界状態ま たは超臨界状態における反応によって脂肪酸エステルを生成する第 2処理装置と、 を有することを特徴とする脂肪酸エステル組成物の製造装置。  A fatty acid ester composition, characterized by comprising: a second processing device that adds an alcohol to a reaction product generated in the first processing device and generates a fatty acid ester by a reaction in a subcritical state or a supercritical state. Manufacturing equipment.
[17] 油脂類とアルコールとの反応によって、脂肪酸エステル組成物を製造する装置であ つて、 [17] An apparatus for producing a fatty acid ester composition by a reaction between a fat or oil and an alcohol,
脂肪酸グリセリドを含む油脂類を水と共存させ、亜臨界状態または超臨界状態にお ける反応によって脂肪酸を生成する第 1処理装置と、  A first treatment device that causes fatty acids containing fatty acid glycerides to coexist with water and generates fatty acids by a reaction in a subcritical or supercritical state;
前記第 1処理装置において生成した反応物から水分をおよそ除去する水抜き処理 装置と、  A water removal treatment device for approximately removing water from the reaction product generated in the first treatment device;
前記水抜き処理装置において残留した水抜き処理装置残留物にアルコールを添 加し、亜臨界状態または超臨界状態における反応によって脂肪酸エステルを生成す る第 2処理装置と、を有することを特徴とする脂肪酸エステル組成物の製造装置。  A second treatment device that adds an alcohol to a residue of the water removal treatment device remaining in the water removal treatment device and generates a fatty acid ester by a reaction in a subcritical state or a supercritical state. An apparatus for producing a fatty acid ester composition.
[18] 前記処理装置の少なくとも 1つには、温度調節可能な温度調節装置及び/又は圧 力調節可能な圧力調節装置を備えることを特徴とする請求の範囲第 16項又は第 17 項に記載の脂肪酸エステル組成物の製造装置。  18. The method according to claim 16, wherein at least one of the processing devices includes a temperature control device capable of controlling a temperature and / or a pressure control device capable of controlling a pressure. For producing a fatty acid ester composition.
[19] 前記第 2処理装置にぉレ、て生成した反応物からアルコール及び/又は水分をおよ そ除去することによって、脂肪酸エステル組成物を精製する精製装置を有することを 特徴とする請求の範囲第 16項又は第 17項に記載の脂肪酸エステル組成物の製造 装置。  [19] The second treatment apparatus further includes a purifying apparatus for purifying the fatty acid ester composition by removing alcohol and / or water from the reaction product generated in the second processing apparatus. Item 18. An apparatus for producing a fatty acid ester composition according to Item 16 or 17.
[20] 前記第 1処理装置と前記第 2処理装置が同一反応器であることを特徴とする請求の 範囲第 16項又は第 17項に記載の脂肪酸エステル組成物の製造装置。 油脂類、水、アルコールをそれぞれ連続的に供給可能な供給装置と、 20. The apparatus for producing a fatty acid ester composition according to claim 16, wherein the first processing apparatus and the second processing apparatus are the same reactor. A supply device capable of continuously supplying oils and fats, water, and alcohol, respectively,
油脂類、水、アルコールを、水及び/又はアルコールの亜臨界状態または超臨界 状態あるいはその状態に近い温度 ·圧力状態まで加熱 ·加圧可能な予熱 *予圧装置 とを備え、油脂類、水、アルコール、前記第 1処理装置において生成した反応物のい ずれかあるいは全てを、前記第 1処理装置及び/又は前記第 2処理装置において処 理する前に予熱 '予圧装置において処理することを特徴とする請求の範囲第 16項又 は第 17項に記載の脂肪酸エステル組成物の製造装置。  Heating fats and oils, water and alcohol to a temperature and pressure close to or near the subcritical or supercritical state of water and / or alcohol.Preheating that can be pressurized. Any or all of the alcohol and the reactants generated in the first processing apparatus are processed in a preheating / preloading apparatus before being processed in the first processing apparatus and / or the second processing apparatus. 18. The apparatus for producing a fatty acid ester composition according to claim 16 or 17, wherein:
PCT/JP2004/007835 2003-06-06 2004-06-04 Process for production of fatty acid ester compositions WO2004108873A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005506797A JP4530992B2 (en) 2003-06-06 2004-06-04 Method for producing fatty acid ester composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003162211 2003-06-06
JP2003-162212 2003-06-06
JP2003-162211 2003-06-06
JP2003162212 2003-06-06

Publications (1)

Publication Number Publication Date
WO2004108873A1 true WO2004108873A1 (en) 2004-12-16

Family

ID=33513391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007835 WO2004108873A1 (en) 2003-06-06 2004-06-04 Process for production of fatty acid ester compositions

Country Status (2)

Country Link
JP (1) JP4530992B2 (en)
WO (1) WO2004108873A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007003025A2 (en) * 2005-07-05 2007-01-11 Intecnial S.A Biodiesel production process without catalyst in continuous conditions
JP2007009017A (en) * 2005-06-29 2007-01-18 Kyoto Univ Method for producing fatty acid alkyl ester
CN100344732C (en) * 2005-07-06 2007-10-24 中国科学院山西煤炭化学研究所 Method of making biodiesel oil by subcritical methanol phase solid acid alkali catalytic oil fat ester exchange
JP2008162973A (en) * 2006-12-28 2008-07-17 Univ Nihon Ring closure reaction of polyenes
JP2009523866A (en) * 2006-01-23 2009-06-25 ヴルフェニア ベタイリグングス ゲーエムベーハー Method for obtaining fuel from vegetable and animal fat waste and plant for carrying out the method
US9382491B2 (en) 2012-07-03 2016-07-05 Sartec Corporation Hydrocarbon synthesis methods, apparatus, and systems
US9388345B2 (en) 2012-07-03 2016-07-12 Sartec Corporation Hydrocarbon synthesis methods, apparatus, and systems
JP2017501213A (en) * 2013-11-18 2017-01-12 ローディア オペレーションズ Method for producing amino ester
US10239812B2 (en) 2017-04-27 2019-03-26 Sartec Corporation Systems and methods for synthesis of phenolics and ketones
US10544381B2 (en) 2018-02-07 2020-01-28 Sartec Corporation Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid
US10696923B2 (en) 2018-02-07 2020-06-30 Sartec Corporation Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104935A (en) * 2001-09-28 2003-04-09 Sumitomo Chem Co Ltd Method for producing fatty acid ester and device for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104935A (en) * 2001-09-28 2003-04-09 Sumitomo Chem Co Ltd Method for producing fatty acid ester and device for producing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FUKUDA H. ET AL.: "Biodiesel fuel production by transesterification of oils", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 92, no. 5, 2001, pages 405 - 416, XP002983530 *
SAKA S.: "Chorinkai ryutai no post seikyu kagaku eno oyo (2) -2 dankai chorinkai methanol-ho ni yoru yushi kara no biodiesel nenryo-", JASCO REP., vol. 7, 1 November 2003 (2003-11-01), pages 10 - 17, XP002983529 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009017A (en) * 2005-06-29 2007-01-18 Kyoto Univ Method for producing fatty acid alkyl ester
WO2007003025A2 (en) * 2005-07-05 2007-01-11 Intecnial S.A Biodiesel production process without catalyst in continuous conditions
CN100344732C (en) * 2005-07-06 2007-10-24 中国科学院山西煤炭化学研究所 Method of making biodiesel oil by subcritical methanol phase solid acid alkali catalytic oil fat ester exchange
WO2007003025A3 (en) * 2005-07-06 2009-04-23 Intecnial S A Biodiesel production process without catalyst in continuous conditions
US7524982B2 (en) 2005-07-06 2009-04-28 Intecnial S/A Process for the production of biodiesel in continuous mode without catalysts
JP2009523866A (en) * 2006-01-23 2009-06-25 ヴルフェニア ベタイリグングス ゲーエムベーハー Method for obtaining fuel from vegetable and animal fat waste and plant for carrying out the method
JP2008162973A (en) * 2006-12-28 2008-07-17 Univ Nihon Ring closure reaction of polyenes
US9382491B2 (en) 2012-07-03 2016-07-05 Sartec Corporation Hydrocarbon synthesis methods, apparatus, and systems
US9388345B2 (en) 2012-07-03 2016-07-12 Sartec Corporation Hydrocarbon synthesis methods, apparatus, and systems
US10144879B2 (en) 2012-07-03 2018-12-04 Sartec Corporation Hydrocarbon synthesis methods, apparatus, and systems
JP2017501213A (en) * 2013-11-18 2017-01-12 ローディア オペレーションズ Method for producing amino ester
US10239812B2 (en) 2017-04-27 2019-03-26 Sartec Corporation Systems and methods for synthesis of phenolics and ketones
US10544381B2 (en) 2018-02-07 2020-01-28 Sartec Corporation Methods and apparatus for producing alkyl esters from a reaction mixture containing acidified soap stock, alcohol feedstock, and acid
US10696923B2 (en) 2018-02-07 2020-06-30 Sartec Corporation Methods and apparatus for producing alkyl esters from lipid feed stocks, alcohol feedstocks, and acids

Also Published As

Publication number Publication date
JPWO2004108873A1 (en) 2006-11-09
JP4530992B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
US20090131711A1 (en) Single-stage esterification of oils and fats
KR101073721B1 (en) Method of making alkyl esters using glycerin
EP1894913A1 (en) Production of esters of fatty acids and lower alcohols
US7718833B2 (en) Purification of glycerin obtained as a bioproduct from the transesterification of triglycerides in the synthesis of biofuel
CN106753812B (en) Process for producing biodiesel and related products
EP2114851B1 (en) Process for separating saturated and unsaturated fatty acids
WO2004108873A1 (en) Process for production of fatty acid ester compositions
AU4734699A (en) Method for preparing fatty acid esters and fuel comprising fatty acid esters
FR2772756A1 (en) PROCESS FOR THE MANUFACTURE OF FATTY ESTERS AND THE HIGH PURITY ESTERS OBTAINED
MX2008003068A (en) Method for making fatty acid ethyl esters from triglycerides and alcohols.
JP2009502812A (en) Process for producing carboxylic acid alkyl ester
CN100569912C (en) A kind of processing method for preparing biofuel
JP2009523866A (en) Method for obtaining fuel from vegetable and animal fat waste and plant for carrying out the method
JP2005350632A (en) Method for producing biodiesel fuel
JP2007077347A (en) Method for producing fatty acid alkyl ester, and fuel
WO2006129435A1 (en) Process for producing lower alkyl ester of fatty acid, lower alkyl ester of fatty acid, and substitute fuel for gas oil
EP1892232A1 (en) Production of esters of fatty acids and lower alcohols
JP2009040979A (en) High speed production of methanol extraction type biodiesel fuel with liquefied dimethyl ether
JPWO2006016492A1 (en) Method for producing composition for biodiesel fuel and apparatus for producing biodiesel fuel
JP4936605B2 (en) Method for producing fatty acid alkyl ester
JP3934630B2 (en) Process for producing biodiesel fuel from acidic oils and fats
GB2457023A (en) Transesterification of vegetable oils
CN1900224B (en) Process for preparing biological diesel oil
EP2028260A1 (en) Esterification process
US20080287697A1 (en) Process for preparing fatty acid esters from pre-treated glyceride oils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506797

Country of ref document: JP

122 Ep: pct application non-entry in european phase