WO2004108829A1 - Composition and coating film excellent in heat dissipation and heat shielding - Google Patents

Composition and coating film excellent in heat dissipation and heat shielding Download PDF

Info

Publication number
WO2004108829A1
WO2004108829A1 PCT/JP2004/007702 JP2004007702W WO2004108829A1 WO 2004108829 A1 WO2004108829 A1 WO 2004108829A1 JP 2004007702 W JP2004007702 W JP 2004007702W WO 2004108829 A1 WO2004108829 A1 WO 2004108829A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
composition
alkoxysilane
weight
film
Prior art date
Application number
PCT/JP2004/007702
Other languages
French (fr)
Japanese (ja)
Inventor
Noriyoshi Kaneko
Original Assignee
Ceramission Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ceramission Co., Ltd. filed Critical Ceramission Co., Ltd.
Publication of WO2004108829A1 publication Critical patent/WO2004108829A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/14Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which at least two but not all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • compositions and films with excellent heat dissipation and heat insulation are provided.
  • the present invention relates to a composition and a film having excellent heat dissipation and heat shielding properties. More specifically, the present invention relates to a composition and a film which are applied to an object which easily accumulates heat, forms a film, and releases the accumulated heat. Also, the present invention relates to a composition and a film having excellent heat dissipation and heat shielding properties, which have an effect of suppressing a temperature rise of an object by shielding heat.
  • the composition for far-infrared radiation such as a paint for far-infrared radiation
  • a paint or composition for enhancing the thermal efficiency of a heating body such as a far-infrared heater.
  • Many of these paints or compositions for far-infrared radiation contain a binder mixed with an oxide such as aluminum oxide, titanium, silicon, zirconium, iron, copper, cobalt, nickel, manganese, and chromium.
  • a silicone resin, a phosphate, a silicate, or the like is used as the binder.
  • Such a far-infrared radiation composition or paint is used for a heating element and is used to enhance the heating effect of the heating element.
  • Patent Document 1 describes a composition in which alumina powder or silica powder is added to an alkyl silicate or a mixture of an alkyl silicate and a metal alkoxide, and this composition is useful for forming a far-infrared radiation layer of a heater. Is described.
  • Patent Document 2 describes a coating composition for forming a highly durable electric insulating film comprising an organoalkoxysilane, manganese dioxide, and chromium trioxide. Further, Patent Document 3 describes a composition comprising a silicon alkoxide or a metal alkoxide and a mixture thereof and a far-infrared radiation pigment, and describes that this composition is applied to the surface of a protective substrate for a heater. . Patent Document 4 discloses that alkoxysilane and ceramic powder having excellent far-infrared radiation characteristics are dispersed in an alcohol solvent. The composition is described as being applied to the inner wall of a dryer to enhance the drying effect.
  • Alkoxysilane is hydrolyzed and condensed by the action of moisture, and finally forms a polymer.
  • a mixture of alkoxysilane and various powders in a solvent can be applied to an object to form a film.
  • the alkoxysilane gradually hydrolyzes and eventually becomes a polymer.
  • it becomes a polymer it has no fluidity and can no longer be applied to objects. That is, there is a problem that alkoxysilane cannot be used stably as a binder.
  • the present invention uses an alkoxysilane as a binder stably, coats an object or the like to form a film, promotes the release of heat accumulated in the object, and releases the heat from a surrounding heating element. It is intended to suppress the temperature rise of the object by shielding the heat.
  • Many electric-electronic devices generate heat during use. For example, there are various devices using a motor or a motor, various devices using a lamp or the like, various devices using a semiconductor, and the like.
  • the equipment is composed of various parts. Some types of equipment and components generate heat by themselves and increase in temperature, while others do not generate heat by themselves but receive heat from a heating element that generates heat in the surroundings and increase in temperature.
  • the present invention is applied to a device or its parts by applying a coating to form a film and releasing the heat accumulated in the device or its components, and by shielding the heat received from surrounding heating elements. It is intended to suppress the rise in temperature. By minimizing the temperature rise of equipment and parts, it is possible to easily reduce the size of the equipment.
  • Patent Document 1 JP-A-63-207868
  • Patent Document 2 Japanese Patent Application Laid-Open No. 3-47883
  • Patent Document 3 Japanese Patent Application Laid-Open No. 1-259073
  • Patent Document 4 JP-A-11-223191
  • the gist of the present invention is a composition having excellent heat dissipation and heat shielding properties, comprising a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder, and kaolin powder.
  • the alkoxysilane power may contain at least one of dialkoxysilane, trialkoxysilane and tetraalkoxysilane, and the colloidal silica (solid content) is used at a weight of 0.011 with respect to the alkoxysilane 1.
  • the colloidal silica solid content
  • a titanium alkoxide and / or an aluminum alkoxide can be mixed. Titanium alkoxide and / or aluminum alkoxide may be used alone or as a solution. When used as a solution, titanium alkoxide and Z or aluminum alkoxide may be used in a solution state of an organic solvent, or a titanium alkoxide and / or aluminum alkoxide may be further mixed with an alkoxysilane solution. .
  • the titanium alkoxide and / or aluminum alkoxide is preferably added in a ratio of 0.01 to 0.5 with respect to silicon atoms of the alkoxysilane.
  • the amount of the silicon oxide powder and the aluminum oxide powder is preferably 0.5 to 70 by weight based on the alkoxysilane 1, and the amount of kaolin is preferably based on the anorecoxy silane 1. It is preferably 0.1 to 20 by weight.
  • the present invention is a film formed from the composition having excellent heat dissipation and heat shielding properties.
  • the thickness of this coating is preferably 10-100 / im.
  • heat dissipation refers to a characteristic of releasing accumulated heat by radiation.
  • An example it refers to the characteristic of suppressing the temperature rise of a semiconductor by releasing heat generated during use to the atmosphere like a semiconductor.
  • the heat-shielding property refers to the property of blocking the heat from the surroundings and suppressing the rise in temperature when the temperature rises due to heat from surrounding heating elements, but does not generate heat by itself.
  • the basis of the present invention is a composition having excellent heat dissipation and heat shielding properties comprising a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder and kaolin powder.
  • it is a film formed from the composition and having excellent heat dissipation and heat shielding properties.
  • the alkoxysilane solution, colloidal silica aqueous dispersion, silicon oxide powder, aluminum oxide powder, and kaolin powder, which are the components of the composition are mixed immediately before use. Until use, especially the alkoxysilanes are stored in solution. This alkoxysilane solution does not substantially contain water. Keep the alkoxysilane in a solution state without water, and
  • alkoxysilane tetraalkoxysilane, trialkoxysilane (monoorganic group-substituted alkoxysilane), dialkoxysilane (diorganic group-substituted alkoxysilane) and the like can be used. These alkoxysilanes can also be used as an appropriate mixture.
  • Alkoxysilanes also called alkyl silicates
  • Alkoxysilanes are kept in the absence of water, ie, in a water-free solution, until immediately before use. Use a solvent that dissolves in water as the solvent used for the solution.
  • alkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and methyltripropoxy.
  • the solvent used for the alkoxysilane solution is a water-soluble solvent that dissolves the alkoxysilane.
  • Solvent Since the alkoxysilane needs to be dissolved in water to be mixed with the aqueous dispersion of colloidal silica, a water-soluble solvent is used. Specifically, alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone and methyl ethyl ketone, cyclic ethers such as dioxane and tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide , Methylformamide, methylacetamide and the like.
  • cyclic ethers such as dioxane and tetrahydrofuran
  • solvent powers such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylformamide, and methylacetamide.
  • the water-soluble organic solvent can be used as a solvent for titanium alkoxide and Z or aluminum alkoxide.
  • Colloidal silica can be easily obtained by hydrolyzing tetraalkoxysilane (tetraalkyl silicate) based on a known technique. It is also commercially available. For example, tetraethyl silicate is dropped into a mixture of ethyl alcohol and water containing a catalyst such as hydrochloric acid, nitric acid, and ammonia, and hydrolyzed.After the hydrolysis, ethyl alcohol and the catalyst are removed, for example, under vacuum. Thereby, an aqueous dispersion of colloidal silica is obtained. The particle size of the colloidal silica is as small as on the order of microns or less. Colloidal silica has silanol groups on the surface.
  • the amount of colloidal silica in the aqueous dispersion of colloidal silica is about 10 to 60% by weight. This amount can be appropriately adjusted based on the amount of water used at the time of hydrolysis. After hydrolysis of the silicate, it is prepared by adding water.
  • the alkoxysilane solution is mixed with an aqueous dispersion of colloidal silica, a metal oxide powder, and the like.
  • the mixing ratio of the alkoxysilane solution and the aqueous dispersion of colloidal silica is preferably such that colloidal silica (solid content) is 0.011 by weight with respect to alkoxysilane 1.
  • the water in the aqueous colloidal silica dispersion contributes to the hydrolysis of the alkoxysilane.
  • the alkoxysilane can react with the silanol groups of the colloidal silica during the hydrolysis process to form a film in a form that embraces the colloidal silica.
  • Colloidal silica contributes to film shape, film retention, heat dissipation, and heat shielding. You.
  • the composition may further contain a titanium alkoxide and / or an aluminum alkoxide.
  • a titanium alkoxide and / or aluminum alkoxide By adding titanium alkoxide and / or aluminum alkoxide, the reaction rate of hydrolysis and condensation of alkoxysilane can be adjusted. The higher the amount of titanium alkoxide and the amount of Z or aluminum alkoxide added, the faster the hydrolysis reaction rate, and the lower the amount, the lower the reaction rate. From this viewpoint, it is preferable that the titanium alkoxide and / or the aluminum alkoxide be added in a ratio of 0.01 to 0.5 with respect to the silicon atom of the alkoxysilane.
  • Titanium alkoxide and Z or aluminum alkoxide are used alone or in the form of a solution when they are mixed with a solution of alkoxysilane, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder and kaolin powder. can do. It may be added to the solution of the alkoxysilane in advance and mixed with the alkoxysilane.
  • the titanium alkoxide and / or the aluminum alkoxide can be co-hydrolyzed with water and the alkoxysilane to form a polymer containing titanium and / or aluminum in the main chain and form a film.
  • titanium alkoxides include tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium
  • aluminum alkoxides include aluminum triisopropoxide, aluminum triethoxide. You can use force S etc. However, it is not limited to these.
  • a solution containing a titanium alkoxide and / or an aluminum alkoxide or an alkoxysilane solution can be stably stored in the absence of water.
  • a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal sily force, and a metal oxide is applied to an object such as a heating element to form a film.
  • a solution of an alkoxysilane and an aqueous dispersion of colloidal silica are first mixed, and a metal oxide powder is added to the mixture to obtain a suspension.
  • an alkoxysilane solution, an aqueous dispersion of colloidal silica, a metal oxide and the like may be mixed. These mixtures become suspensions. This suspension is applied to an object such as a heating element to form a film.
  • Metal oxides and the like to be added are aluminum oxide, silicon oxide and kaolin. Add another metal oxide You can also. Specifically, zirconium oxide, titanium oxide, tin oxide, copper oxide, iron oxide, cobalt oxide, magnesium oxide, manganese oxide, zinc oxide, germanium oxide, antimony oxide, boron oxide, barium oxide, bismuth oxide, calcium oxide, It can contain at least one metal oxide such as strontium oxide. In addition to metal oxides, nitrides such as boron nitride, aluminum nitride, zirconium nitride, tin nitride, strontium nitride, titanium nitride, and barium nitride-silicon nitride can be contained.
  • the aluminum oxide, silicon oxide, kaolin, and other metal oxides and nitrides used should preferably have a particle size of 15 zm lOOnm. More preferably, those having a particle size of 10 zm 80 nm are used. The use of particles with this particle size makes the surface of the film smooth and clean and increases the efficiency of heat dissipation and heat shielding.
  • Metal oxide powders such as silicon oxide powder and aluminum oxide powder are preferably mixed with alkoxysilane 1 and added with a weight of 0.570, and added with kaolin. Is preferably 0.1 to 20 parts by weight, based on the alkoxysilane 1. This is to maintain high heat dissipation performance and heat shielding performance while maintaining film forming properties.
  • an alkoxysilane solution, an aqueous dispersion of colloidal silica, a metal oxide, and the like are mixed to obtain a suspension. If the viscosity of the suspension is high, adjust the viscosity by adding a solvent or water as needed.
  • a film By applying the suspension thus obtained to an object, a film can be obtained.
  • the suspension is applied to the object by brushing, spraying, roller, printing, etc., dried at room temperature or warming, and then, if necessary, heat-treated at 80 ° C to 300 ° C. A film having a high degree of adhesion to the surface can be obtained.
  • the suspension can be applied to quartz glass or spot welds between metals.
  • the object that forms the film is a heating element that accumulates heat. Its target is mainly electrical and electronic equipment and its components.
  • the film thickness of the present film is a certain level, the heat radiation effect is not sufficiently exhibited. Conversely, if the film thickness is too large, a heat storage effect occurs in the film, and the heat radiation effect becomes insufficient. According to the experiment of the present invention, the film thickness is preferably 100 zm or less, more preferably 10 100 zm, and particularly preferably 3080 x m.
  • composition of the present invention may be used as a coating material, an adhesive, a binder, etc. , Vehicles, cooking utensils, building materials, etc. Further, as a substrate to be coated, metals such as iron, iron, stainless steel, aluminum, copper, nickel, molybdenum, and inconel, resins, plastics, wood, stones, glass, and ceramics are preferably used.
  • the composition and film of the present invention have excellent properties such as heat shock resistance, heat resistance, heat dissipation, and heat shielding.
  • it has a high ability to emit stored energy as far-infrared rays into the air (having a high emissivity of 0.95) and has the property of shielding heat from surrounding heating elements.
  • the heat stored inside is converted into far-infrared electromagnetic waves, which are radiated efficiently, thereby suppressing the temperature rise of objects.
  • the heat of the heat source can be shielded by far-infrared radiation.
  • Efficiently radiating far-infrared rays means converting heat accumulated inside into far-infrared electromagnetic waves and radiating heat efficiently, resulting in an effect of suppressing a temperature rise. This results in efficient heat dissipation without using air convection.
  • the emissivity differs depending on the wavelength that does not have the above radiation characteristics. In many cases, the emissivity tends to decrease in the region around the 9-micron wavelength.
  • the composition provided by the present invention emits far-infrared rays at an emissivity of 0.9 or more over the entire wavelength range from 4 microns to 14 microns, and has extremely high radiation efficiency. Has become.
  • composition of the present invention for example, when applied to a metal, even when heated at a high temperature of about 500 ° C, the film is not broken (crack, peeling phenomenon, discoloration, etc.) and has excellent heat resistance. Have. In addition, even if it is dropped into chilled water from a high temperature such as 500 ° C or more and quenched, it does not suffer from film breakage phenomena such as cracking or peeling, and has excellent heat shock resistance.
  • composition of the present invention is applied to the periphery of a component to form a film having excellent heat dissipation and heat shielding properties, the internal heat generated by the component is sequentially radiated to the surroundings as far-infrared rays. As a result, the internal energy is reduced, and the heat history applied to the component can be reduced, which leads to a longer life of the component.
  • the composition of the present invention can damage or peel off a coating on a bending curved surface or a cut cross section even when a physical external force such as bending or pressing is applied to the applied metal. There is no. Utilizing such performance, the composition of the present invention was applied to a metal to form a film, and then the metal was processed.
  • the above suspension was applied to an aluminum L-shaped plate to form a film. After application of the suspension, it was air-dried in air. The film thickness was 48 / im. Subsequently, it was dried at 95 ° C for 30 minutes, and further heat-treated at 100 ° C for 60 minutes.
  • This L-shaped heat sink was mounted on a power module. In this case, the L-shaped heat sink simultaneously serves as a support for the power module and also serves as a heat sink. The operating temperature of the power module was measured at six locations on the power module body. The average value was 55.8 ° C.
  • the temperature during operation of the power module equipped with the same L-shaped heat sink except that it did not have a coating was measured at six locations on the main body in the same way, and the average value was 62.5 ° C. Was.
  • the heat accumulated in the power module body is transmitted to the heat sink by heat conduction and is radiated from the heat sink. As a result, the heat of the power module body is released, and the temperature rise of the power module body is suppressed.
  • the power module is attached by attaching the heat sink with the film formed. It was confirmed that the temperature of the main body was kept low.
  • the far-infrared emissivity of the film formed from the above composition was measured. The measurement was performed based on the laser flash method. That is, a film is formed on the surface of the metal plate, the surface on which the film is not formed is heated using a gas parner, and the amount of far-infrared radiation per unit area emitted from the film-formed surface is measured with an emissivity meter. Things. The emissivity is determined by the amount of heat energy emitted as far-infrared rays when heated at a constant temperature.
  • the amount of radiated far-infrared rays per unit area when 100% of the energy is emitted as far-infrared rays when a certain amount of heat energy is given is determined, the amount of far-infrared rays actually emitted per unit area is measured. By doing so, the emissivity can be obtained.
  • a test piece was prepared by forming a 70 ⁇ m thick film from the composition obtained in Example 1 on a 0.8 mm thick SU4 plate (150 mm ⁇ 40 mm). Using a far-infrared radiometer (600 L, manufactured by Inframetrics), measurement was performed over a wavelength range of 1.5 / i to 25 / i. The measurement temperatures were three points: 50 ° C, 100 ° C and 150 ° C. The far-infrared emissivity curves at each temperature are shown in Figs.
  • Figs. 13 to 13 an emissivity of 95% or more was measured on average over the wavelength range of 5 / i-25 / i.
  • the emissivity tends to increase as the measurement temperature increases.
  • the far-infrared emissivity described in the cited documents and the like has a high emissivity near 5 /, but as the wavelength increases, the emissivity tends to decrease particularly at wavelengths of 9 ⁇ or more.
  • the film of the present invention still maintains a high emissivity even when the wavelength is long.
  • ethyltriethoxysilane 150 parts by weight of acetylethylethoxysilane, 30 parts by weight of tetraethoxysilane, and 15 parts by weight of titanium tetrabutoxide were dissolved in 535 parts by weight of methylpyrrolidone.
  • This solution was mixed with 1000 parts by weight of an aqueous dispersion of an acidic colloidal silica having a silica solid content of 20% by weight.
  • 70 parts by weight of kaolin, 310 parts by weight of silicon oxide powder, 135 parts by weight of aluminum oxide powder, and 85 parts by weight of zirconium oxide powder were added and stirred to obtain a suspension. .
  • the suspension was applied to a motor portion of a fan motor to form a film.
  • the film thickness was 40 / im.
  • a heat gun was placed 10 mm in front of the fan motor, a temperature detection end was attached to the motor shaft on the back of the motor part of the fan motor, the heat gun was turned on without moving the fan motor, and the temperature rise of the motor shaft was measured.
  • the room temperature at the time of measurement was 25.1 ° C.
  • the temperature of the motor shaft reached an equilibrium state in about 30 minutes.
  • the temperature of the motor shaft in the equilibrium state was 64.2 ° C.
  • the temperature of the motor shaft of the fan motor without the coating was 75.4 ° C.
  • This suspension was applied on a servomotor and air-dried in the air.
  • the film thickness was 60 ⁇ m.
  • the servo motor was driven at 100V voltage.
  • the temperature of the outer wall of the servomotor in the driving state was measured. Approximately 60 minutes after driving, the temperature of the servomotor reached a steady state and reached 75.5 ° C. On the other hand, those without a film had a temperature of 99.5 ° C after 60 minutes, and the temperature tended to rise. This indicates that the film of the present invention has a heat radiation effect.
  • the film made of the composition of the present invention is free from deformation, crack, discoloration, peeling, cracking, etc., and is resistant to quenching heat shock. Heat shock resistance) and heat resistance. Furthermore, the film made of the composition of the present invention has excellent far-infrared radiation activity, releases stored heat, suppresses temperature rise of the heating element, and shields heat received from surrounding heating elements. This has the effect of suppressing the temperature rise of the object.
  • a coating can be formed by applying the composition of the present invention to an object.
  • compositions and the film that work in the present invention are excellent in heat dissipation and heat shielding, when applied to various electronic devices, for example, they can contribute to miniaturization of the devices.
  • FIG. 1 is a graph showing far-infrared emissivity at 50 ° C. of a film according to the present invention.
  • FIG. 2 is a graph showing far-infrared emissivity at 100 ° C. of a film according to the present invention.
  • FIG. 3 is a graph showing far-infrared emissivity at 150 ° C. of a film according to the present invention.

Abstract

A composition excellent in heat dissipation and heat shielding is composed of a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, a silicon oxide powder, an aluminum oxide powder and a kaolin powder. The alkoxysilane may contain at least one of dialkoxysilanes, trialkoxysilanes and tetraalkoxysilanes, and may also contain a titanium alkoxide and/or an aluminum alkoxide. The alkoxysilane solution, aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder and kaolin powder are mixed right before use.

Description

明 細 書  Specification
放熱性、遮熱性に優れた組成物及び皮膜  Compositions and films with excellent heat dissipation and heat insulation
技術分野  Technical field
[0001] 本発明は、放熱性、遮熱性に優れた組成物及び皮膜に関し、より詳しくは、熱を蓄 積しやすい物体に塗布し皮膜を形成し、その蓄積した熱を放出することにより、また は、熱の遮蔽により物体の温度上昇を抑える作用をもつ放熱性、遮熱性に優れた組 成物及び皮膜に関する。  The present invention relates to a composition and a film having excellent heat dissipation and heat shielding properties. More specifically, the present invention relates to a composition and a film which are applied to an object which easily accumulates heat, forms a film, and releases the accumulated heat. Also, the present invention relates to a composition and a film having excellent heat dissipation and heat shielding properties, which have an effect of suppressing a temperature rise of an object by shielding heat.
^景技術  ^ Scenic technology
[0002] 遠赤外線放射用塗料ないし遠赤外線放射用組成物は、古くから知られている。遠 赤外線放射用塗料なレ、し遠赤外線放射用組成物は、例えば遠赤外線ヒーターのよう な加熱体の熱効率を高めるための塗料ないし組成物である。これらの遠赤外線放射 用塗料ないし組成物は、酸化アルミニウムやチタン、珪素、ジルコニウム、鉄、銅、コ バルト、ニッケル、マンガン、クロム等の酸化物をバインダーに混合させたものが多い 。バインダーとしては、シリコーン樹脂、リン酸塩、珪酸塩等が用いられる。このような 遠赤外線放射性組成物ないし塗料は、加熱体に使用され、加熱体の加熱効果を高 めるために利用されている。  [0002] Far-infrared radiation paints or far-infrared radiation compositions have been known for a long time. The composition for far-infrared radiation, such as a paint for far-infrared radiation, is a paint or composition for enhancing the thermal efficiency of a heating body such as a far-infrared heater. Many of these paints or compositions for far-infrared radiation contain a binder mixed with an oxide such as aluminum oxide, titanium, silicon, zirconium, iron, copper, cobalt, nickel, manganese, and chromium. As the binder, a silicone resin, a phosphate, a silicate, or the like is used. Such a far-infrared radiation composition or paint is used for a heating element and is used to enhance the heating effect of the heating element.
[0003] バインダーとしては、アルコキシシラン (有機シリケート)を使用する遠赤外線放射用 組成物が知られている。例えば、特許文献 1には、アルキルシリケート又はアルキル シリケートと金属アルコキシドとの混合物にアルミナ粉末やシリカ粉末を添加した組成 物が記載され、この組成物はヒーターの遠赤外線放射物層の形成に役立つことが記 載されている。  [0003] As a binder, a composition for far-infrared radiation using an alkoxysilane (organic silicate) is known. For example, Patent Document 1 describes a composition in which alumina powder or silica powder is added to an alkyl silicate or a mixture of an alkyl silicate and a metal alkoxide, and this composition is useful for forming a far-infrared radiation layer of a heater. Is described.
[0004] また、特許文献 2には、オルガノアルコキシシランと二酸化マンガン及び三酸化クロ ムからなる耐久性の高い電気絶縁膜を形成するコーティング用組成物が記載されて いる。さらに、特許文献 3には、珪素アルコキシド又は金属アルコキシド及びこれらの 混合物と遠赤外線放射顔料とからなる組成物が記載され、この組成物をヒーター用 保護基材表面に塗布することが記載されている。また、特許文献 4には、アルコール 系溶剤中にアルコキシシランと遠赤外線放射特性に優れたセラミックス粉末を分散さ せた組成物が記載され、その組成物は乾燥機の内壁に塗布し乾燥効果を高めること が記載されている。 [0004] Patent Document 2 describes a coating composition for forming a highly durable electric insulating film comprising an organoalkoxysilane, manganese dioxide, and chromium trioxide. Further, Patent Document 3 describes a composition comprising a silicon alkoxide or a metal alkoxide and a mixture thereof and a far-infrared radiation pigment, and describes that this composition is applied to the surface of a protective substrate for a heater. . Patent Document 4 discloses that alkoxysilane and ceramic powder having excellent far-infrared radiation characteristics are dispersed in an alcohol solvent. The composition is described as being applied to the inner wall of a dryer to enhance the drying effect.
[0005] アルコキシシランは、水分の作用を受けて加水分解 ·縮合して最終的には重合体を 形成する。この作用をバインダーとして利用し、溶剤中でアルコキシシランと各種粉 末を混合したものを物体に塗布して皮膜を形成せしめることができる。し力 ながら、 水が共存した状態で長時間保存すると、アルコキシシランは、次第に加水分解が進 行し、ついには重合体になる。重合体になってしまうと、流動性が無く最早物体に塗 布することはできなくなる。即ち、アルコキシシランは、バインダーとして安定に利用で きないという問題がある。  [0005] Alkoxysilane is hydrolyzed and condensed by the action of moisture, and finally forms a polymer. By utilizing this action as a binder, a mixture of alkoxysilane and various powders in a solvent can be applied to an object to form a film. However, when stored for a long time in the presence of water, the alkoxysilane gradually hydrolyzes and eventually becomes a polymer. When it becomes a polymer, it has no fluidity and can no longer be applied to objects. That is, there is a problem that alkoxysilane cannot be used stably as a binder.
[0006] 本発明は、アルコキシシランをバインダーとして安定に使用し、かつ、物体等に塗 布し皮膜を形成せしめ、物体に蓄積した熱の放出を促進し、また、周囲の発熱体から 放出される熱を遮蔽し以て物体の温度上昇を抑制しょうとするものである。電気-電 子機器は使用中に熱を発生するものが多レ、。例えば、モータやモータを利用する各 種機器、ランプ等を使用する各種機器、半導体を使用する各種機器等々である。機 器は種々の部品から構成される。各種機器、部品には、自ら熱を発生し温度が上昇 するものもあれば、自らは熱を発生しないが周囲の熱を発生する発熱体から熱を受 けて温度が上昇するものもある。  [0006] The present invention uses an alkoxysilane as a binder stably, coats an object or the like to form a film, promotes the release of heat accumulated in the object, and releases the heat from a surrounding heating element. It is intended to suppress the temperature rise of the object by shielding the heat. Many electric-electronic devices generate heat during use. For example, there are various devices using a motor or a motor, various devices using a lamp or the like, various devices using a semiconductor, and the like. The equipment is composed of various parts. Some types of equipment and components generate heat by themselves and increase in temperature, while others do not generate heat by themselves but receive heat from a heating element that generates heat in the surroundings and increase in temperature.
[0007] 各種機器のうち、特に電子機器は、小型化に対する要望が強い。機器の小型化を 実現するためには、発生する熱の除去が大きな問題となっている。本発明は、機器 やその部品類に塗布し皮膜を形成せしめ、機器やその部品に蓄積された熱を放出 することにより、また、周囲の発熱体から受ける熱を遮蔽することにより、機器等の温 度上昇を抑えようとするものである。機器、部品等の温度上昇を抑えることにより、機 器の小型化を容易にすることができる。  [0007] Among various devices, particularly electronic devices have a strong demand for miniaturization. Removal of generated heat is a major problem in realizing miniaturization of equipment. The present invention is applied to a device or its parts by applying a coating to form a film and releasing the heat accumulated in the device or its components, and by shielding the heat received from surrounding heating elements. It is intended to suppress the rise in temperature. By minimizing the temperature rise of equipment and parts, it is possible to easily reduce the size of the equipment.
[0008] 先に述べたように、セラミックスのような遠赤外線放射性物質の粉末をバインダーと 混合し、ヒーターのような加熱体に皮膜を形成せしめることにより、加熱体の加熱効果 を高めることは広く行われている。し力 ながら、遠赤外線放射性物質の粉末をバイ ンダ一と混合し皮膜を形成せしめることにより、発熱体に蓄積される熱を放出し、又は 、発熱体力 熱を遮蔽し、以て物体の温度上昇を抑制しょうとすることは全く知られて いない。 [0008] As described above, it is widely used to enhance the heating effect of a heating element by mixing a powder of a far-infrared radiation material such as ceramics with a binder and forming a film on a heating element such as a heater. Is being done. By mixing the powder of the far-infrared radioactive substance with the binder to form a film, the heat accumulated in the heating element is released or the heat of the heating element is shielded, and the temperature of the object rises. It is completely known that we try to curb Not in.
特許文献 1 :特開昭 63 - 207868号公報  Patent Document 1: JP-A-63-207868
特許文献 2:特開平 3 - 47883号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 3-47883
特許文献 3:特開平 1 - 259073号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 1-259073
特許文献 4 :特開平 1一 223191号公報  Patent Document 4: JP-A-11-223191
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems the invention is trying to solve
[0009] 本発明の要旨は、アルコキシシランの溶液、コロイダルシリカの水分散液、酸化珪 素粉末、酸化アルミニウム粉末及びカオリン粉末との混合物からなる放熱性、遮熱性 に優れた組成物である。そして、アルコキシシラン力 ジアルコキシシラン、トリアルコ キシシラン及びテトラアルコキシシランの少なくとも一種を含有することができ、コロイ ダルシリカ(固形分)は、前記アルコキシシラン 1に対して重量で、 0. 01 1で使用す ることが好ましい。 [0009] The gist of the present invention is a composition having excellent heat dissipation and heat shielding properties, comprising a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder, and kaolin powder. The alkoxysilane power may contain at least one of dialkoxysilane, trialkoxysilane and tetraalkoxysilane, and the colloidal silica (solid content) is used at a weight of 0.011 with respect to the alkoxysilane 1. Preferably.
[0010] また、チタンアルコキシド及び/又はアルミニウムアルコキシドを混合することができ る。チタンアルコキシド及び/又はアルミニウムアルコキシドは、単体として使用しても よいし、溶液として使用することもできる。溶液として使用する場合には、チタンアルコ キシド及び Z又はアルミニウムアルコキシドの有機溶媒の溶液状態で使用してもよい し、アルコキシシランの溶液に更にチタンアルコキシド及び/又はアルミニウムアルコ キシドを混合してもよい。  [0010] A titanium alkoxide and / or an aluminum alkoxide can be mixed. Titanium alkoxide and / or aluminum alkoxide may be used alone or as a solution. When used as a solution, titanium alkoxide and Z or aluminum alkoxide may be used in a solution state of an organic solvent, or a titanium alkoxide and / or aluminum alkoxide may be further mixed with an alkoxysilane solution. .
[0011] そして、チタンアルコキシド及び/又はアルミニウムアルコキシドは、アルコキシシラ ンの珪素原子に対してチタン及び/又はアルミニウム原子が 0. 01-0. 5の割合で 添加されることが好ましい。  [0011] The titanium alkoxide and / or aluminum alkoxide is preferably added in a ratio of 0.01 to 0.5 with respect to silicon atoms of the alkoxysilane.
[0012] 酸化珪素粉末及び酸化アルミニウム粉末の量が、前記アルコキシシラン 1に対して 重量で、 0. 5— 70であること力 S好ましく、カオリンの量が、前記ァノレコキシシラン 1に 対して重量で、 0. 1— 20であることが好ましい。  [0012] The amount of the silicon oxide powder and the aluminum oxide powder is preferably 0.5 to 70 by weight based on the alkoxysilane 1, and the amount of kaolin is preferably based on the anorecoxy silane 1. It is preferably 0.1 to 20 by weight.
[0013] 更に、本発明は、上記放熱性、遮熱性に優れた組成物から形成せしめた皮膜であ る。この被膜の厚みは 10— 100 /i mが好ましい。  [0013] Further, the present invention is a film formed from the composition having excellent heat dissipation and heat shielding properties. The thickness of this coating is preferably 10-100 / im.
[0014] 本発明でいう放熱性とは、蓄積された熱を放射によって放出させる特性をいう。例 えば、半導体のように使用中に発生する熱を大気中に放出することによって半導体 の温度上昇を抑える特性をいう。また、遮熱性というのは、 自らは発熱しないが、周囲 の発熱体から熱を受けて温度が上昇するような場合、周囲からの熱を遮り温度上昇 を抑える特性をいう。 [0014] The term "heat dissipation" as used in the present invention refers to a characteristic of releasing accumulated heat by radiation. An example For example, it refers to the characteristic of suppressing the temperature rise of a semiconductor by releasing heat generated during use to the atmosphere like a semiconductor. In addition, the heat-shielding property refers to the property of blocking the heat from the surroundings and suppressing the rise in temperature when the temperature rises due to heat from surrounding heating elements, but does not generate heat by itself.
[0015] 本発明の基本は、アルコキシシランの溶液、コロイダルシリカの水分散液、酸化珪 素粉末、酸化アルミニウム粉末及びカオリン粉末との混合物からなる放熱性、遮熱性 に優れた組成物である。また、その組成物から形成せしめた放熱性、遮熱性に優れ た皮膜である。組成物の各成分であるアルコキシシランの溶液、コロイダルシリカの水 分散液、酸化珪素粉末、酸化アルミニウム粉末及びカオリン粉末は、使用する直前 に混合する。使用するまでは、特にアルコキシシランは溶液の状態で保存される。こ のアルコキシシランの溶液には実質的に水は含まなレ、。水を含まない状態に、アルコ キシシランを溶液状態に保持し、保存中のアルコキ  [0015] The basis of the present invention is a composition having excellent heat dissipation and heat shielding properties comprising a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder and kaolin powder. In addition, it is a film formed from the composition and having excellent heat dissipation and heat shielding properties. The alkoxysilane solution, colloidal silica aqueous dispersion, silicon oxide powder, aluminum oxide powder, and kaolin powder, which are the components of the composition, are mixed immediately before use. Until use, especially the alkoxysilanes are stored in solution. This alkoxysilane solution does not substantially contain water. Keep the alkoxysilane in a solution state without water, and
シシランの加水分解 ·縮合を防止する。  Prevents hydrolysis and condensation of silane.
[0016] アルコキシシランとしては、テトラアルコキシシラン、トリアルコキシシラン(モノ有機基 置換アルコキシシラン)、ジアルコキシシラン (ジ有機基置換アルコキシシラン)等を使 用すること力 Sできる。これらアルコキシシランを適宜混合して使用することもできる。ァ ルコキシシラン(アルキルシリケートとも称される)は、使用直前までは、水の存在しな い状態、即ち、水を含まない溶液の状態に保持する。溶液に使用する溶媒は、水に 溶解する溶媒を使用する。 As the alkoxysilane, tetraalkoxysilane, trialkoxysilane (monoorganic group-substituted alkoxysilane), dialkoxysilane (diorganic group-substituted alkoxysilane) and the like can be used. These alkoxysilanes can also be used as an appropriate mixture. Alkoxysilanes (also called alkyl silicates) are kept in the absence of water, ie, in a water-free solution, until immediately before use. Use a solvent that dissolves in water as the solvent used for the solution.
[0017] アルコキシシランの具体的な例としては、メチルトリメトキシシラン、メチルトリエトキシ シラン、ェチルトリメトキシシラン、ェチルトリエトキシシラン、フエニルトリメトキシシラン 、フエニルトリエトキシシラン、メチルトリプロポキシシラン、ェチルトリプロポキシシラン チノレジェトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロボキシシ ラン、テトラブトキシシラン等であり、更には、珪素置換有機基はエポキシ基、エステ ル基、カルボキシル基、水酸基等の官能基を有していてもよい。但し、これらに限定 されるものではない。 [0017] Specific examples of the alkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, and methyltripropoxy. Silane, ethyltripropoxysilane, tinolexethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and the like. It may have a functional group such as a hydroxyl group. However, it is not limited to these.
[0018] アルコキシシラン溶液に使用する溶剤は、アルコキシシランを溶解する水溶性の有 機溶剤である。アルコキシシランはコロイダルシリカの水分散液と混合するために、水 に溶解する必要があるので、水溶性の溶剤を使用する。具体的には、メチルアルコ ール、エチルアルコール等のアルコール、アセトン、メチルェチルケトン等のケトン、 ジォキサン、テトラヒドロフラン等の環状エーテル、 N—メチルピロリドン、ジメチルスル ホォキシド、ジメチルフオルムアミド、ジメチルァセトアミド、メチルフオルムアミド、メチ ルァセトアミド等の溶媒剤である。なかでも、ジォキサン、テトラヒドロフラン等の環状 エーテル、 N—メチルピロリドン、ジメチルフオルムアミド、ジメチルァセトアミド、メチル フオルムアミド、メチルァセトアミド等の溶剤力 アルコキシシランの保存、膜形生成及 び放熱効果の点から好適に使用できる。上記水溶性の有機溶剤は、チタンアルコキ シド及び Z又はアルミニウムアルコキシドの溶剤としても使用できることは言うまでもな レ、。 [0018] The solvent used for the alkoxysilane solution is a water-soluble solvent that dissolves the alkoxysilane. Solvent. Since the alkoxysilane needs to be dissolved in water to be mixed with the aqueous dispersion of colloidal silica, a water-soluble solvent is used. Specifically, alcohols such as methyl alcohol and ethyl alcohol, ketones such as acetone and methyl ethyl ketone, cyclic ethers such as dioxane and tetrahydrofuran, N-methylpyrrolidone, dimethyl sulfoxide, dimethylformamide, dimethylacetamide , Methylformamide, methylacetamide and the like. Among them, cyclic ethers such as dioxane and tetrahydrofuran, and solvent powers such as N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methylformamide, and methylacetamide. Can be suitably used. Needless to say, the water-soluble organic solvent can be used as a solvent for titanium alkoxide and Z or aluminum alkoxide.
[0019] コロイダルシリカは、周知技術に基づきテトラアルコキシシラン(テトラアルキルシリケ ート)を加水分解することにより容易に得ることができる。市販もされている。例えば、 テトラェチルシリケートを塩酸、硝酸、アンモニア等の触媒の存在するェチルアルコ ールと水の混合液中に滴下し加水分解し、加水分解後エチルアルコールと触媒を、 例えば、真空下に除去することにより、コロイダルシリカの水分散液を得る。このコロイ ダルシリカの粒径は、ミクロンオーダーないしそれ以下の小さいものである。コロイダ ルシリカは表面にシラノール基を有している。コロイダルシリカの水分散液中のコロイ ダルシリカの量は、 10— 60重量%程度である。この量は、加水分解時に使用する水 の量で適宜調製することができる。シリケートの加水分解後、水を加えて調製すること あでさる。  [0019] Colloidal silica can be easily obtained by hydrolyzing tetraalkoxysilane (tetraalkyl silicate) based on a known technique. It is also commercially available. For example, tetraethyl silicate is dropped into a mixture of ethyl alcohol and water containing a catalyst such as hydrochloric acid, nitric acid, and ammonia, and hydrolyzed.After the hydrolysis, ethyl alcohol and the catalyst are removed, for example, under vacuum. Thereby, an aqueous dispersion of colloidal silica is obtained. The particle size of the colloidal silica is as small as on the order of microns or less. Colloidal silica has silanol groups on the surface. The amount of colloidal silica in the aqueous dispersion of colloidal silica is about 10 to 60% by weight. This amount can be appropriately adjusted based on the amount of water used at the time of hydrolysis. After hydrolysis of the silicate, it is prepared by adding water.
[0020] アルコキシシラン溶液は、使用直前に、コロイダルシリカの水分散液と金属酸化物 粉末等と混合される。アルコキシシラン溶液とコロイダルシリカの水分散液との混合割 合は、コロイダルシリカ(固形分)が、アルコキシシラン 1に対して重量で、 0. 01 1と なるように混合することが好ましい。コロイダルシリカ水分散液の水は、アルコキシシラ ンの加水分解に寄与する。同時に、アルコキシシランがその加水分解の過程でコロイ ダルシリカのシラノール基と反応しコロイダルシリカを抱き込んだ形で皮膜を形成する こともできる。コロイダルシリカは、膜形性、膜の保持性及び放熱性、遮熱性に寄与す る。 [0020] Immediately before use, the alkoxysilane solution is mixed with an aqueous dispersion of colloidal silica, a metal oxide powder, and the like. The mixing ratio of the alkoxysilane solution and the aqueous dispersion of colloidal silica is preferably such that colloidal silica (solid content) is 0.011 by weight with respect to alkoxysilane 1. The water in the aqueous colloidal silica dispersion contributes to the hydrolysis of the alkoxysilane. At the same time, the alkoxysilane can react with the silanol groups of the colloidal silica during the hydrolysis process to form a film in a form that embraces the colloidal silica. Colloidal silica contributes to film shape, film retention, heat dissipation, and heat shielding. You.
[0021] 更にチタンアルコキシド及び/又はアルミニウムアルコキシドを含有することができ る。チタンアルコキシド及び/又はアルミニウムアルコキシドを添カ卩することにより、ァ ルコキシシランの加水分解.縮合の反応速度を調節することができる。チタンアルコキ シド及び Z又はアルミニウムアルコキシドの添加量が多いと加水分解の反応速度が 大きくなり、少ないと反応速度が小さくなる。この観点から、チタンアルコキシド及び/ 又はアルミニウムアルコキシドは、アルコキシシランの珪素原子に対してチタン及び /又はアルミニウム原子が 0. 01-0. 5の割合で添加するのが好ましい。  [0021] The composition may further contain a titanium alkoxide and / or an aluminum alkoxide. By adding titanium alkoxide and / or aluminum alkoxide, the reaction rate of hydrolysis and condensation of alkoxysilane can be adjusted. The higher the amount of titanium alkoxide and the amount of Z or aluminum alkoxide added, the faster the hydrolysis reaction rate, and the lower the amount, the lower the reaction rate. From this viewpoint, it is preferable that the titanium alkoxide and / or the aluminum alkoxide be added in a ratio of 0.01 to 0.5 with respect to the silicon atom of the alkoxysilane.
[0022] チタンアルコキシド及び Z又はアルミニウムアルコキシドは、アルコキシシランの溶 液、コロイダルシリカの水分散液、酸化珪素粉末、酸化アルミニウム粉末及びカオリン 粉末とを混合する際に、単体又は溶液の形態で混合使用することができる。アルコキ シシランの溶液に前もって加えておいて、アルコキシシランと共に混合使用してもよ レ、。いずれにしても、チタンアルコキシド及び/又はアルミニウムアルコキシドは、水 によりアルコキシシランとともに共加水分解し、チタン及び又はアルミニウムを主鎖に 含む重合体を生成し皮膜を形成することができる。  [0022] Titanium alkoxide and Z or aluminum alkoxide are used alone or in the form of a solution when they are mixed with a solution of alkoxysilane, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder and kaolin powder. can do. It may be added to the solution of the alkoxysilane in advance and mixed with the alkoxysilane. In any case, the titanium alkoxide and / or the aluminum alkoxide can be co-hydrolyzed with water and the alkoxysilane to form a polymer containing titanium and / or aluminum in the main chain and form a film.
[0023] チタンアルコキシドの具体的な例としては、テトラメトキシチタン、テトラエトキシチタ ン、テトラプロポキシチタン、テトラブトキシチタン、アルミニウムアルコキシドの具体的 な例としては、アルミニウムトリイソプロポキシド、アルミニウムトリエトキシド等を使用す ること力 Sできる。但し、これらに限定されるものではなレ、。チタンアルコキシド及び/又 はアルミニウムアルコキシドを含有する溶液又はアルコキシシラン溶液は、水が存在 しなければ、安定に保存することができる。  Specific examples of titanium alkoxides include tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, and specific examples of aluminum alkoxides include aluminum triisopropoxide, aluminum triethoxide. You can use force S etc. However, it is not limited to these. A solution containing a titanium alkoxide and / or an aluminum alkoxide or an alkoxysilane solution can be stably stored in the absence of water.
[0024] アルコキシシランの溶液、コロイダルシリ力の水分散液及び金属酸化物等との混合 物を発熱体等の物体に塗布し皮膜を形成せしめる。物体に塗布する直前に、アルコ キシシランの溶液とコロイダルシリカの水分散液を先ず混合し、この混合液に金属酸 化物粉末を加えて懸濁液を得る。同時に、アルコキシシランの溶液、コロイダルシリカ の水分散液及び金属酸化物等を混合してもよい。これらの混合物は懸濁液となる。こ の懸濁液を発熱体等の物体に塗布し皮膜を形成せしめる。添加する金属酸化物等 は、酸化アルミニウム、酸化珪素及びカオリンである。更に、他の金属酸化物を加え ることもできる。具体的には、酸化ジルコニウム、酸化チタン、酸化錫、酸化銅、酸化 鉄、酸化コバルト、酸化マグネシウム、酸化マンガン、酸化亜鉛、酸化ゲルマニウム、 酸化アンチモン、酸化硼素、酸化バリウム、酸化ビスマス、酸化カルシウム、酸化スト ロンチウム等の金属酸化物の少なくとも 1種を含有することができる。金属酸化物以 外に、窒化硼素、窒化アルミニウム、窒化ジルコニウム、窒化錫、窒化ストロンチウム、 窒化チタン、窒化バリウムゃ窒化珪素等の窒化物を含有することもできる。 [0024] A mixture of an alkoxysilane solution, an aqueous dispersion of colloidal sily force, and a metal oxide is applied to an object such as a heating element to form a film. Immediately before application to an object, a solution of an alkoxysilane and an aqueous dispersion of colloidal silica are first mixed, and a metal oxide powder is added to the mixture to obtain a suspension. At the same time, an alkoxysilane solution, an aqueous dispersion of colloidal silica, a metal oxide and the like may be mixed. These mixtures become suspensions. This suspension is applied to an object such as a heating element to form a film. Metal oxides and the like to be added are aluminum oxide, silicon oxide and kaolin. Add another metal oxide You can also. Specifically, zirconium oxide, titanium oxide, tin oxide, copper oxide, iron oxide, cobalt oxide, magnesium oxide, manganese oxide, zinc oxide, germanium oxide, antimony oxide, boron oxide, barium oxide, bismuth oxide, calcium oxide, It can contain at least one metal oxide such as strontium oxide. In addition to metal oxides, nitrides such as boron nitride, aluminum nitride, zirconium nitride, tin nitride, strontium nitride, titanium nitride, and barium nitride-silicon nitride can be contained.
[0025] 使用する酸化アルミニウム、酸化珪素、カオリン、更には他の金属酸化物や窒化物 は、その粒径を 15 z m lOOnmとするのがよレヽ。より好ましくは、 10 z m 80nmの 粒径のものを使用する。この粒径のものを使用することにより、皮膜の表面が滑らか で綺麗になるとともに放熱、熱遮蔽の効率が高まる。  [0025] The aluminum oxide, silicon oxide, kaolin, and other metal oxides and nitrides used should preferably have a particle size of 15 zm lOOnm. More preferably, those having a particle size of 10 zm 80 nm are used. The use of particles with this particle size makes the surface of the film smooth and clean and increases the efficiency of heat dissipation and heat shielding.
[0026] 酸化珪素粉末及び酸化アルミニウム粉末等の金属酸化物粉末は、アルコキシシラ ン 1に対して酸化物を合わせて重量で、 0. 5 70添カ卩することが好ましぐまた、カオ リンは、アルコキシシラン 1に対して重量で、 0. 1— 20添加することが好ましレ、。これ は、皮膜形成性を維持しながら、高い放熱性能、熱遮蔽性能を保持するためである。  [0026] Metal oxide powders such as silicon oxide powder and aluminum oxide powder are preferably mixed with alkoxysilane 1 and added with a weight of 0.570, and added with kaolin. Is preferably 0.1 to 20 parts by weight, based on the alkoxysilane 1. This is to maintain high heat dissipation performance and heat shielding performance while maintaining film forming properties.
[0027] 皮膜形成時に、アルコキシシラン溶液、コロイダルシリカの水分散液及び金属酸化 物等を混合し、懸濁液を得る。懸濁液の粘度が高いようであれば、必要に応じて、溶 剤や水を添加して、粘度を調整する。このようにして得た懸濁液を対象物に塗布する ことにより、皮膜を得ることができる。懸濁液を対象物に筆塗り、スプレー、ローラー、 印刷等により塗布し、常温又は加温にて乾燥後、更に、必要に応じて、 80°C— 300 °Cで熱処理することにより、金属表面との密着度の高い皮膜を得ることができる。懸 濁液の塗布は、石英ガラスや、金属同士のスポット溶接部にも行うことができる。皮膜 を形成する対象物は、熱を蓄積する発熱体である。その対象は、主として電気'電子 機器やその部品である。  At the time of film formation, an alkoxysilane solution, an aqueous dispersion of colloidal silica, a metal oxide, and the like are mixed to obtain a suspension. If the viscosity of the suspension is high, adjust the viscosity by adding a solvent or water as needed. By applying the suspension thus obtained to an object, a film can be obtained. The suspension is applied to the object by brushing, spraying, roller, printing, etc., dried at room temperature or warming, and then, if necessary, heat-treated at 80 ° C to 300 ° C. A film having a high degree of adhesion to the surface can be obtained. The suspension can be applied to quartz glass or spot welds between metals. The object that forms the film is a heating element that accumulates heat. Its target is mainly electrical and electronic equipment and its components.
[0028] 本皮膜の膜厚は、或る程度の厚さがないと放熱効果は十分に発現しない、逆に厚 さが大きすぎると皮膜に蓄熱作用が起こり、放熱効果が不十分となる。本発明の実験 によると膜厚は 100 z m以下が好ましぐ更に好ましくは 10 100 z m、特に好ましく は 30 80 x mである。  [0028] Unless the film thickness of the present film is a certain level, the heat radiation effect is not sufficiently exhibited. Conversely, if the film thickness is too large, a heat storage effect occurs in the film, and the heat radiation effect becomes insufficient. According to the experiment of the present invention, the film thickness is preferably 100 zm or less, more preferably 10 100 zm, and particularly preferably 3080 x m.
[0029] 本発明の組成物は、塗装材用、接着材用、結合材用等として、例えば、鉄鋼、弱電 、車輛、調理器具、建材等の広い分野に応用される。また、塗布対象の基材としては 、铸鉄ヽ鉄、ステンレス鋼、アルミニウム、銅、ニッケル、モリブデン、インコネル等の金 属、樹脂、プラスチック、木材、石材、ガラス、セラミック等が好適に用いられる。 [0029] The composition of the present invention may be used as a coating material, an adhesive, a binder, etc. , Vehicles, cooking utensils, building materials, etc. Further, as a substrate to be coated, metals such as iron, iron, stainless steel, aluminum, copper, nickel, molybdenum, and inconel, resins, plastics, wood, stones, glass, and ceramics are preferably used.
[0030] 本発明の組成物、皮膜は、優れた抗ヒートショック性、耐熱性、放熱性、遮熱性等 の特性を有する。また、蓄熱したエネルギーを遠赤外線として空気中に放射する能 力が高く(放射率 0. 95という高い数値を示す)、また、周囲の発熱体から受ける熱を 遮蔽する特性を有する。内部に蓄積した熱を遠赤外線という電磁波に変換して効率 よく放射し、物体の温度上昇を抑えることができる。また、遠赤外線の放射により熱源 力 熱を遮蔽することができると考えられる。  [0030] The composition and film of the present invention have excellent properties such as heat shock resistance, heat resistance, heat dissipation, and heat shielding. In addition, it has a high ability to emit stored energy as far-infrared rays into the air (having a high emissivity of 0.95) and has the property of shielding heat from surrounding heating elements. The heat stored inside is converted into far-infrared electromagnetic waves, which are radiated efficiently, thereby suppressing the temperature rise of objects. In addition, it is considered that the heat of the heat source can be shielded by far-infrared radiation.
[0031] 効率良く遠赤外線を放射するということは、内部に蓄積した熱を遠赤外線という電 磁波に変換して効率よく放熱することを意味し、結果として温度上昇を抑える効果を もたらす。これは空気対流という手段を用いずに効率よく放熱するという結果をもたら す。従来遠赤外線の放射能力が高いとされている物質 (例えば、ゼォライト、コージェ ライト、アパタイト、ドロマイト等)の遠赤外線放射特性を見ると、 4ミクロン乃至 14ミクロ ンの波長全ての領域にわたって高い遠赤外線の放射特性をもつわけではなぐ波長 によって放射率に相違がある。多くの場合、 9ミクロン波長前後の領域で放射率が下 力 ¾傾向が見られる。一方、本発明が提供する組成物の放射する遠赤外線は 4ミクロ ンから 14ミクロンに至る波長の全ての領域にわたって 0. 9以上の放射率を維持し、 非常に放射効率の高レ、ものとなっている。  [0031] Efficiently radiating far-infrared rays means converting heat accumulated inside into far-infrared electromagnetic waves and radiating heat efficiently, resulting in an effect of suppressing a temperature rise. This results in efficient heat dissipation without using air convection. Looking at the far-infrared radiation characteristics of substances that are conventionally considered to have high far-infrared radiation capabilities (eg, zeolite, cordierite, apatite, dolomite, etc.) The emissivity differs depending on the wavelength that does not have the above radiation characteristics. In many cases, the emissivity tends to decrease in the region around the 9-micron wavelength. On the other hand, the composition provided by the present invention emits far-infrared rays at an emissivity of 0.9 or more over the entire wavelength range from 4 microns to 14 microns, and has extremely high radiation efficiency. Has become.
[0032] 本発明の組成物においては、例えば、金属に塗布された場合、 500°C程度の高温 加熱によっても皮膜の破壊(ひび割れ、剥離現象、変色等)が起こらず、優れた耐熱 性を有する。また、 500°C以上のような高温から冷水に投下急冷しても、ひび割れや 剥離等の皮膜の破壊現象が発生せず、優れた抗ヒートショック性を有する。  [0032] In the composition of the present invention, for example, when applied to a metal, even when heated at a high temperature of about 500 ° C, the film is not broken (crack, peeling phenomenon, discoloration, etc.) and has excellent heat resistance. Have. In addition, even if it is dropped into chilled water from a high temperature such as 500 ° C or more and quenched, it does not suffer from film breakage phenomena such as cracking or peeling, and has excellent heat shock resistance.
[0033] 電気 ·電子機器において、使用されている部品が熱蓄積によって劣化することが知 られている。例えば、電球は発光する電線の劣化切断によって寿命をむかえ、蛍光 灯においては、放電部が熱によって黒変すると同時に、光量の低下が発生し、寿命 をむかえることになる。また、電子部品としての電解コンデンサーは、内部に存在する 電解液が加熱によって蒸発し、電解コンデンサーとしての性能を発揮できなくなる。こ の点、本発明の組成物を部品の周囲に塗布して、放熱性、遮熱性に優れた皮膜を 形成すると、部品の発生する内部の熱を逐次遠赤外線として周囲に放射していくの で、内部エネルギーの減少をひきおこし、部品に力かる熱履歴を低下することができ 、部品の長寿命化につながる。 [0033] It is known that components used in electric and electronic devices deteriorate due to heat accumulation. For example, the life of a light bulb can be extended by the deterioration and cutting of a light-emitting wire, and in a fluorescent lamp, the discharge part blackens due to heat and at the same time, the amount of light decreases, thereby extending the life. In addition, in an electrolytic capacitor as an electronic component, the electrolytic solution present therein evaporates due to heating, and the performance as an electrolytic capacitor cannot be exhibited. This However, if the composition of the present invention is applied to the periphery of a component to form a film having excellent heat dissipation and heat shielding properties, the internal heat generated by the component is sequentially radiated to the surroundings as far-infrared rays. As a result, the internal energy is reduced, and the heat history applied to the component can be reduced, which leads to a longer life of the component.
[0034] さらに、本発明の組成物は、塗布した金属に対して折り曲げ加工やプレス抜き加工 といった物理的な外力をカ卩えた場合にも、曲げ曲面や切断断面に対して皮膜の破損 や剥離がない。このような性能を利用して、本発明の組成物を金属に塗布し、皮膜を 形成した後に、金属の加工を可能にした。  [0034] Furthermore, the composition of the present invention can damage or peel off a coating on a bending curved surface or a cut cross section even when a physical external force such as bending or pressing is applied to the applied metal. There is no. Utilizing such performance, the composition of the present invention was applied to a metal to form a film, and then the metal was processed.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0035] 以下に、本発明の実施の形態について実施例に基づいて詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail based on examples.
実施例 1  Example 1
[0036] メチルトリメトキシシラン 300重量部、ジメチルジメトキシシラン 170重量部、グリシド キシプロピルトリメトキシシラン 30重量部、テトラブトキシチタン 15重量部を N—メチル ピロリドン 485重量部に溶解した溶液、シリカ固形分として 20重量%の酸性コロイダ ルシリカの水分散液 1000重量部とを混合した。この混合液の 700重量部をとり、カオ リン 110重量部、酸化珪素粉末 435重量部、酸化アルミニウム粉末 190重量部及び 酸化ジノレコニゥム粉末 120重量部をカ卩え、攪拌混合して、懸濁液を得た。  [0036] A solution prepared by dissolving 300 parts by weight of methyltrimethoxysilane, 170 parts by weight of dimethyldimethoxysilane, 30 parts by weight of glycidoxypropyltrimethoxysilane, and 15 parts by weight of tetrabutoxytitanium in 485 parts by weight of N-methylpyrrolidone, silica solids Was mixed with 1000 parts by weight of an aqueous dispersion of 20% by weight of acidic colloidal silica. Take 700 parts by weight of this mixture, 110 parts by weight of kaolin, 435 parts by weight of silicon oxide powder, 190 parts by weight of aluminum oxide powder and 120 parts by weight of dinoreconium oxide powder, and stir and mix. Obtained.
[0037] 上記懸濁液を、アルミニウム製の L字状板に塗布し皮膜を形成せしめた。懸濁液の 塗布後、大気中で風乾した。皮膜厚は 48 /i mであった。続いて 95°Cで 30分乾燥し 、更に、 100°Cで 60分熱処理した。この L字状放熱板をパワーモジュールに装着した 。この場合、 L字状放熱板が同時にパワーモジュールの支持体となり同時に放熱体と なっている。パワーモジュールの稼働中の温度を、パワーモジュール本体の 6か所で 測定した。その平均値は、 55. 8°Cであった。一方、皮膜を有しない以外は同じ L字 状放熱板を装着したパワーモジュールについて同様にして稼働中の温度を本体の 6 か所で測定したところ、その平均値は、 62. 5°Cであった。パワーモジュール本体に 蓄積された熱は、熱伝導により放熱板に伝えられ放熱板から放熱され、その結果とし てパワーモジュール本体の熱が放出され、パワーモジュール本体の温度上昇が抑え られる。この際、皮膜を形成せしめた放熱板を装着することにより、パワーモジュール 本体の温度を低く抑えることが確認された。 [0037] The above suspension was applied to an aluminum L-shaped plate to form a film. After application of the suspension, it was air-dried in air. The film thickness was 48 / im. Subsequently, it was dried at 95 ° C for 30 minutes, and further heat-treated at 100 ° C for 60 minutes. This L-shaped heat sink was mounted on a power module. In this case, the L-shaped heat sink simultaneously serves as a support for the power module and also serves as a heat sink. The operating temperature of the power module was measured at six locations on the power module body. The average value was 55.8 ° C. On the other hand, the temperature during operation of the power module equipped with the same L-shaped heat sink except that it did not have a coating was measured at six locations on the main body in the same way, and the average value was 62.5 ° C. Was. The heat accumulated in the power module body is transmitted to the heat sink by heat conduction and is radiated from the heat sink. As a result, the heat of the power module body is released, and the temperature rise of the power module body is suppressed. At this time, the power module is attached by attaching the heat sink with the film formed. It was confirmed that the temperature of the main body was kept low.
[0038] 上記組成物から形成せしめた皮膜について、遠赤外線放射率を測定した。測定は 、レーザフラッシュ法に基づいて行った。即ち、金属板表面に皮膜を形成せしめ、皮 膜が形成していない面をガスパーナを用いて加熱し、皮膜形成面から放射される単 位面積当たりの遠赤外線放射量を放射率計で測定するものである。一定の温度で加 熱したときに熱エネルギーを遠赤外線として放射する量によって放射率が求められる 。一定の熱エネルギーを与えた場合にエネルギーの 100%を遠赤外線として放出し た場合の単位面積当たりの放射遠赤外線量が決まっているので、実際に放出された 単位面積当たりの遠赤外線量を測定することにより、その放射率を求めることができ る。  [0038] The far-infrared emissivity of the film formed from the above composition was measured. The measurement was performed based on the laser flash method. That is, a film is formed on the surface of the metal plate, the surface on which the film is not formed is heated using a gas parner, and the amount of far-infrared radiation per unit area emitted from the film-formed surface is measured with an emissivity meter. Things. The emissivity is determined by the amount of heat energy emitted as far-infrared rays when heated at a constant temperature. Since the amount of radiated far-infrared rays per unit area when 100% of the energy is emitted as far-infrared rays when a certain amount of heat energy is given is determined, the amount of far-infrared rays actually emitted per unit area is measured. By doing so, the emissivity can be obtained.
[0039] 本測定においては、厚さ 0. 8mmの SU4の板(150mm X 40mm)に、実施例 1で 得た組成物から 70 μ mの厚さの皮膜を形成せしめたものを試験片とし、遠赤外線放 射計(インフラメトリックス社製 600L)を用いて、 1. 5 /i— 25 /iの波長の範囲に亘っ て測定した。測定温度は、 50°C、 100°C及び 150°Cの 3点であった。各温度に於け る遠赤外線放射率曲線を図 1一図 3に示した。  In this measurement, a test piece was prepared by forming a 70 μm thick film from the composition obtained in Example 1 on a 0.8 mm thick SU4 plate (150 mm × 40 mm). Using a far-infrared radiometer (600 L, manufactured by Inframetrics), measurement was performed over a wavelength range of 1.5 / i to 25 / i. The measurement temperatures were three points: 50 ° C, 100 ° C and 150 ° C. The far-infrared emissivity curves at each temperature are shown in Figs.
[0040] 図 1一 3から明らかなように、 5 /i— 25 /iの波長の範囲に亘り、平均して 95%以上 の放射率が測定された。測定温度が高いほど、放射率は高くなる傾向にある。引用 文献等に記載されている遠赤外線放射率は 5 / 付近の放射率は高いが、波長が長 くなるに従い、特に 9 μ以上の波長においては、放射率が低くなる傾向を示している 。これに対して本発明の皮膜は、波長が長くなつても依然として高い放射率を維持し ていることがわかる。  [0040] As is apparent from Figs. 13 to 13, an emissivity of 95% or more was measured on average over the wavelength range of 5 / i-25 / i. The emissivity tends to increase as the measurement temperature increases. The far-infrared emissivity described in the cited documents and the like has a high emissivity near 5 /, but as the wavelength increases, the emissivity tends to decrease particularly at wavelengths of 9 µ or more. On the other hand, it can be seen that the film of the present invention still maintains a high emissivity even when the wavelength is long.
実施例 2  Example 2
[0041] ェチルトリエトキシシラン 270重量部、ジェチルジェトキシシラン 150重量部、テトラ エトキシシラン 30重量部、チタンテトラブトキシド 15重量部を Ν—メチルピロリドン 535 重量部に溶解した。この溶液に、シリカ固形分として 20重量%の酸性コロイダルシリ 力の水分散液 1000重量部を混合した。混合液のうち 550重量部に、カオリン 70重 量部、酸化珪素粉末 310重量部、酸化アルミニウム粉末 135重量部及び酸化ジルコ ニゥム粉末 85重量部を加え、攪拌混合して、懸濁液を得た。 [0042] この懸濁液をファンモータのモータ部分に塗布し被膜を形成せしめた。皮膜厚は 4 0 /i mであった。ファンモータの前面 10mmの位置にヒートガンを置き、ファンモータ のモータ部分の裏面モータ軸に温度検出端を取り付け、ファンモータを動かすことな ぐヒートガンを点灯しモータ軸の温度上昇を測定した。測定時の室温は 25. 1°Cで あった。モータ軸の温度は、約 30分で平衡状態になった。平衡状態におけるモータ 軸の温度は、 64. 2°Cであった。一方、皮膜を有しないファンモータにおいては、モ ータ軸の温度は 75. 4°Cであった。このように、本発明の皮膜を形成することにより、 ファンモータの特にモータ部分の温度上昇を抑えることができた。これは、皮膜に遮 熱効果があることを示す。 270 parts by weight of ethyltriethoxysilane, 150 parts by weight of acetylethylethoxysilane, 30 parts by weight of tetraethoxysilane, and 15 parts by weight of titanium tetrabutoxide were dissolved in 535 parts by weight of methylpyrrolidone. This solution was mixed with 1000 parts by weight of an aqueous dispersion of an acidic colloidal silica having a silica solid content of 20% by weight. To 550 parts by weight of the mixture, 70 parts by weight of kaolin, 310 parts by weight of silicon oxide powder, 135 parts by weight of aluminum oxide powder, and 85 parts by weight of zirconium oxide powder were added and stirred to obtain a suspension. . [0042] The suspension was applied to a motor portion of a fan motor to form a film. The film thickness was 40 / im. A heat gun was placed 10 mm in front of the fan motor, a temperature detection end was attached to the motor shaft on the back of the motor part of the fan motor, the heat gun was turned on without moving the fan motor, and the temperature rise of the motor shaft was measured. The room temperature at the time of measurement was 25.1 ° C. The temperature of the motor shaft reached an equilibrium state in about 30 minutes. The temperature of the motor shaft in the equilibrium state was 64.2 ° C. On the other hand, the temperature of the motor shaft of the fan motor without the coating was 75.4 ° C. Thus, by forming the film of the present invention, it was possible to suppress a rise in temperature of the fan motor, particularly at the motor portion. This indicates that the coating has a thermal barrier effect.
実施例 3  Example 3
[0043] ェチルトリエトキシシラン 270重量部、ジェチルジェトキシシラン 200重量部、テトラ エトキシシラン 30重量部を N—メチルピロリドン 500重量部に溶解した。この溶液に、 シリカ固形分として 15重量%の酸性コロイダルシリカの水分散液 500重量部を混合 した。混合液のうち 500重量部に、カオリン 70重量部、酸化珪素粉末 305重量部、 酸化アルミニウム粉末 130重量部及び酸化ジルコニウム粉末 80重量部をカ卩え、攪拌 混合して、懸濁液を得た。  270 parts by weight of ethyltriethoxysilane, 200 parts by weight of acetylethylethoxysilane and 30 parts by weight of tetraethoxysilane were dissolved in 500 parts by weight of N-methylpyrrolidone. To this solution, 500 parts by weight of an aqueous dispersion of acidic colloidal silica having a silica solid content of 15% by weight was mixed. To 500 parts by weight of the mixed solution, 70 parts by weight of kaolin, 305 parts by weight of silicon oxide powder, 130 parts by weight of aluminum oxide powder and 80 parts by weight of zirconium oxide powder were mixed, stirred and mixed to obtain a suspension. .
[0044] この懸濁液をサーボモータ上に塗布し、大気中で風乾した。皮膜厚は 60 μ mであ つた。サーボモータを 100V電圧で駆動した。駆動状態におけるサーボモータ外壁 の温度を測定した。駆動後約 60分でサーボモータの温度は定常状態になり 75. 5°C になった。一方、皮膜を有しないものは、 60分後の温度は 99. 5°Cであり、尚温度は 上昇傾向にあった。これは、本発明の皮膜に放熱効果があることを示す。  This suspension was applied on a servomotor and air-dried in the air. The film thickness was 60 μm. The servo motor was driven at 100V voltage. The temperature of the outer wall of the servomotor in the driving state was measured. Approximately 60 minutes after driving, the temperature of the servomotor reached a steady state and reached 75.5 ° C. On the other hand, those without a film had a temperature of 99.5 ° C after 60 minutes, and the temperature tended to rise. This indicates that the film of the present invention has a heat radiation effect.
実施例 4  Example 4
[0045] ェチルトリエトキシシラン 265重量部、ジェチルジェトキシシラン 150重量部、テトラ エトキシシラン 20重量部、アルミニウムトリイソプロポキシド 15重量部を N—メチルピロ リドン 450重量部に溶解した。この溶液に、シリカ固形分として 20重量%の酸性コロ イダノレシリカの水分散液 900重量部を混合した。混合液 550重量部を取り、カオリン 80重量部、酸化珪素粉末 335重量部、酸化アルミニウム粉末 145重量部及び酸化 ジノレコニゥム粉末 80重量部をカ卩え、攪拌混合して、被覆材 (懸濁液)を得た。 [0046] この懸濁液をモータのケーシングに塗布し、大気中で風乾した。皮膜厚は 55 μ m であった。同様に、加熱乾燥後、熱処理した。モータを 1時間駆動させ、その間モー タケ一シングの温度を測定した。温度は 5力所で測定しその平均値を採った。 1時間 後のモータケ一シングの温度は 70. 5°Cであった。一方、皮膜を形成しない場合のモ 一タケ一シングの温度は 99. 5°Cであった。これは、本発明の皮膜が、放熱性を有す ることを示す。 [0045] 265 parts by weight of ethyltriethoxysilane, 150 parts by weight of acetylethylethoxysilane, 20 parts by weight of tetraethoxysilane, and 15 parts by weight of aluminum triisopropoxide were dissolved in 450 parts by weight of N-methylpyrrolidone. To this solution, 900 parts by weight of an aqueous dispersion of acidic colloidal silica having a silica solid content of 20% by weight was mixed. Take 550 parts by weight of the mixed solution, mix 80 parts by weight of kaolin, 335 parts by weight of silicon oxide powder, 145 parts by weight of aluminum oxide powder, and 80 parts by weight of dinoleconium oxide powder, stir and mix to obtain a coating material (suspension). Got. This suspension was applied to a casing of a motor and air-dried in the air. The film thickness was 55 μm. Similarly, after heat drying, heat treatment was performed. The motor was driven for 1 hour, during which time the motor casing temperature was measured. The temperature was measured at five places and the average was taken. One hour later, the temperature of the motor casing was 70.5 ° C. On the other hand, when the film was not formed, the temperature of the monitoring was 99.5 ° C. This indicates that the film of the present invention has heat dissipation.
[0047] 以上、具体的な実施例で詳細に説明したように、本発明の組成物からなる皮膜は、 変形、亀裂、変色、剥離、ひび割れ等がなぐまた、急冷ヒートショックにも強く(抗ヒー トショック性)、耐熱性にも優れるものである。更に、本発明の組成物からなる皮膜は、 優れた遠赤外線放射能を有し、蓄熱した熱を放出し発熱体の温度上昇を抑え、また 、周囲の発熱体から受ける熱を遮蔽し以て物体の温度上昇を抑える効果を奏する。 皮膜は、本発明の組成物を物体に塗布することに形成せしめることができる。  [0047] As described above in detail in the specific examples, the film made of the composition of the present invention is free from deformation, crack, discoloration, peeling, cracking, etc., and is resistant to quenching heat shock. Heat shock resistance) and heat resistance. Furthermore, the film made of the composition of the present invention has excellent far-infrared radiation activity, releases stored heat, suppresses temperature rise of the heating element, and shields heat received from surrounding heating elements. This has the effect of suppressing the temperature rise of the object. A coating can be formed by applying the composition of the present invention to an object.
産業上の利用可能性  Industrial applicability
[0048] 本発明に力かる組成物および皮膜は、放熱性,遮熱性に優れているので、例えば 、各種電子機器に適用すると、機器の小型化に貢献することができる。 [0048] Since the composition and the film that work in the present invention are excellent in heat dissipation and heat shielding, when applied to various electronic devices, for example, they can contribute to miniaturization of the devices.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0049] [図 1]本発明にかかる皮膜の 50°Cにおける遠赤外線放射率を示す図である。  FIG. 1 is a graph showing far-infrared emissivity at 50 ° C. of a film according to the present invention.
[図 2]本発明にかかる皮膜の 100°Cにおける遠赤外線放射率を示す図である。  FIG. 2 is a graph showing far-infrared emissivity at 100 ° C. of a film according to the present invention.
[図 3]本発明にかかる皮膜の 150°Cにおける遠赤外線放射率を示す図である。  FIG. 3 is a graph showing far-infrared emissivity at 150 ° C. of a film according to the present invention.

Claims

請求の範囲 The scope of the claims
[1] アルコキシシランの溶液、コロイダルシリカの水分散液、酸化珪素粉末、酸化アルミ ニゥム粉末及びカオリン粉末との混合物からなる放熱性、遮熱性に優れた組成物。  [1] A composition excellent in heat dissipation and heat shielding properties comprising a mixture of an alkoxysilane solution, an aqueous dispersion of colloidal silica, silicon oxide powder, aluminum oxide powder and kaolin powder.
[2] 前記アルコキシシラン力 ジアルコキシシラン、トリアルコキシシラン及びテトラアルコ キシシランの少なくとも一種を含有することを特徴とする請求項 1記載の放熱性、遮熱 性に優れた組成物。  2. The composition according to claim 1, wherein the composition has at least one of dialkoxysilane, trialkoxysilane and tetraalkoxysilane.
[3] 前記コロイダルシリカ(固形分)の量が、前記アルコキシシラン 1に対して重量で、 0 . 01— 1であることを特徴とする請求項 1または請求項 2記載の放熱性、遮熱性に優 れた組成物。  [3] The heat dissipation property and heat insulation property according to claim 1 or 2, wherein the amount of the colloidal silica (solid content) is 0.01-1 in weight with respect to the alkoxysilane 1. Excellent composition.
[4] 前記チタンアルコキシド及び/又はアルミニウムアルコキシドを更に混合することを 特徴とする請求項 1から請求項 3のレ、ずれか 1項記載の放熱性、遮熱性に優れた組 成物。  4. The composition according to claim 1, further comprising a mixture of the titanium alkoxide and / or the aluminum alkoxide.
[5] 前記チタンアルコキシド及び/又はアルミニウムアルコキシドの量力 アルコキシシ ランの珪素原子に対してチタン及び/又はアルミニウム原子が 0. 01-0. 5の割合 であることを特徴とする請求項 4に記載の放熱性、遮熱性に優れた組成物。  5. The titanium alkoxide and / or aluminum alkoxide has a titer of 0.01 to 0.5 with respect to silicon atoms of the alkoxysilane. Excellent heat radiation and heat shielding properties.
[6] 前記酸化珪素粉末及び酸化アルミニウム粉末の量が、前記アルコキシシラン 1に対 して重量で、 0. 5 70であることを特徴とする請求項 1から請求項 5のいずれか 1項 記載の放熱性、遮熱性に優れた組成物。  6. The method according to any one of claims 1 to 5, wherein the amount of the silicon oxide powder and the aluminum oxide powder is 0.570 by weight with respect to the alkoxysilane 1. Excellent heat radiation and heat shielding properties.
[7] 前記カオリンの量力 前記アルコキシシラン 1に対して重量で、 0. 1 20であること を特徴とする請求項 1から請求項 6のレ、ずれか 1項記載の放熱性、遮熱性に優れた 組成物。  [7] The capacity of the kaolin The weight of the alkoxysilane 1 is 0.120, and the heat dissipation and heat shielding properties according to any one of claims 1 to 6, Excellent composition.
[8] 請求項 1から請求項 7のいずれかに記載の放熱性、遮熱性に優れた組成物から形 成せしめた皮膜。  [8] A film formed from the composition excellent in heat dissipation and heat insulation according to any one of claims 1 to 7.
[9] 前記皮膜の厚みが、 10 lOO x mであることを特徴とする請求項 8に記載の放熱 性、遮熱性に優れた組成物から形成せしめた皮膜。  [9] The film formed from the composition having excellent heat dissipation and heat shielding properties according to claim 8, wherein the thickness of the film is 10 lOOxm.
PCT/JP2004/007702 2003-06-04 2004-06-03 Composition and coating film excellent in heat dissipation and heat shielding WO2004108829A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003159589A JP2004359811A (en) 2003-06-04 2003-06-04 Composition having excellent heat-releasing and heat-shielding properties, and film
JP2003-159589 2003-06-04

Publications (1)

Publication Number Publication Date
WO2004108829A1 true WO2004108829A1 (en) 2004-12-16

Family

ID=33508524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007702 WO2004108829A1 (en) 2003-06-04 2004-06-03 Composition and coating film excellent in heat dissipation and heat shielding

Country Status (2)

Country Link
JP (1) JP2004359811A (en)
WO (1) WO2004108829A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075277A3 (en) * 2007-12-25 2012-11-07 Nitto Denko Corporation Silicone resin composition
WO2013129677A1 (en) * 2012-03-02 2013-09-06 荒川化学工業株式会社 Heat dissipating coating composition and heat dissipating coating film

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4980589B2 (en) * 2005-07-01 2012-07-18 セラミッション株式会社 Heat dissipation film for solar cell module and solar cell module provided with the heat dissipation film
JP2008037697A (en) * 2006-08-04 2008-02-21 Yoshiki Yamashita Far-infrared radiation composite material and its manufacturing method
MY148582A (en) * 2007-07-10 2013-04-30 Aica Kogyo Co Ltd Composition, transfer sheet, melamine decorative board, and method for producing melamine decorative board
JP2009067998A (en) * 2007-08-17 2009-04-02 Shinshu Univ Paint for heat radiation film and method for forming heat radiation film
JP5070002B2 (en) * 2007-10-29 2012-11-07 芳樹 山下 Manufacturing method of far infrared radiation composite material
KR100908455B1 (en) * 2008-10-14 2009-07-20 김태웅 Non-stick inorganic coating composition and method of preparing the same
JP5102179B2 (en) * 2008-11-12 2012-12-19 日東電工株式会社 Thermally conductive composition and method for producing the same
JP5956721B2 (en) * 2010-04-01 2016-07-27 日鉄住金鋼板株式会社 Painted metal plate and architectural panel
JP2013064093A (en) * 2011-09-20 2013-04-11 Nagase Chemtex Corp Infrared absorbing coating agent composition
US10252945B2 (en) * 2012-09-26 2019-04-09 Multiple Energy Technologies Llc Bioceramic compositions
CN111840319A (en) 2014-05-05 2020-10-30 复合能源技术有限公司 Bioceramic compositions and bioregulatory uses thereof
US10368502B2 (en) 2017-09-25 2019-08-06 Multiple Energy Technologies Llc Bioceramic and carbon-based hydroponic systems, methods and devices

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493401A (en) * 1967-11-28 1970-02-03 Nasa Fire resistant coating composition
JPS5232938A (en) * 1975-09-09 1977-03-12 Re Purasuteiku Do Karumoo Sa Polyolefin composition* infrared rays absorption film material comprising composition thereof and method for increase of produce using composition thereof2
JPH0598212A (en) * 1991-10-08 1993-04-20 Nissan Chem Ind Ltd Coating composition
JPH06262694A (en) * 1993-03-10 1994-09-20 Honshu Paper Co Ltd Heat resistive sheet
JPH0826812A (en) * 1994-05-12 1996-01-30 Sekisui Chem Co Ltd Inorganic composition
JP2003309383A (en) * 2002-04-16 2003-10-31 Ceramission Kk Radiator
JP2004002813A (en) * 2002-04-16 2004-01-08 Ceramission Kk Aqueous composition and non-aqueous composition
JP2004211060A (en) * 2002-12-16 2004-07-29 Ceramission Kk Emulsion composition, coating film formed therefrom and cooling structure using the coating film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3493401A (en) * 1967-11-28 1970-02-03 Nasa Fire resistant coating composition
JPS5232938A (en) * 1975-09-09 1977-03-12 Re Purasuteiku Do Karumoo Sa Polyolefin composition* infrared rays absorption film material comprising composition thereof and method for increase of produce using composition thereof2
JPH0598212A (en) * 1991-10-08 1993-04-20 Nissan Chem Ind Ltd Coating composition
JPH06262694A (en) * 1993-03-10 1994-09-20 Honshu Paper Co Ltd Heat resistive sheet
JPH0826812A (en) * 1994-05-12 1996-01-30 Sekisui Chem Co Ltd Inorganic composition
JP2003309383A (en) * 2002-04-16 2003-10-31 Ceramission Kk Radiator
JP2004002813A (en) * 2002-04-16 2004-01-08 Ceramission Kk Aqueous composition and non-aqueous composition
JP2004211060A (en) * 2002-12-16 2004-07-29 Ceramission Kk Emulsion composition, coating film formed therefrom and cooling structure using the coating film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075277A3 (en) * 2007-12-25 2012-11-07 Nitto Denko Corporation Silicone resin composition
WO2013129677A1 (en) * 2012-03-02 2013-09-06 荒川化学工業株式会社 Heat dissipating coating composition and heat dissipating coating film
JP5475932B2 (en) * 2012-03-02 2014-04-16 荒川化学工業株式会社 Heat radiation coating composition and heat radiation coating film
JP2014077144A (en) * 2012-03-02 2014-05-01 Arakawa Chem Ind Co Ltd Design method of heat releasing coating material composition
JPWO2013129677A1 (en) * 2012-03-02 2015-07-30 荒川化学工業株式会社 Heat radiation coating composition and heat radiation coating film
US9346993B2 (en) 2012-03-02 2016-05-24 Arakawa Chemical Industries, Ltd. Heat dissipating coating composition and heat dissipating coating film

Also Published As

Publication number Publication date
JP2004359811A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
WO2004108829A1 (en) Composition and coating film excellent in heat dissipation and heat shielding
JP5166774B2 (en) Compound
TWI726127B (en) Photocatalyst laminate
JP2009067998A (en) Paint for heat radiation film and method for forming heat radiation film
JP4048912B2 (en) Surface antifouling composite resin film, surface antifouling article, decorative board
JP2009152536A (en) Circuit board of electronic apparatus assuring highly efficient heat radiation, and electronic controller, computer system, electrical home appliance, and industrial apparatus product including the same
WO2018042803A1 (en) Coating composition and coated article
JP2009152537A (en) Highly efficient heat sink, industrial apparatus, electronic apparatus, computer product, and automobile utilizing the same
JP2000280397A (en) Multilayer having titanium peroxide-containing titanium oxide film
JP2006193376A (en) Surface-coated hexaboride particulate and method for producing the same
JP2003277045A (en) Hexaboride particle, dispersed body with dispersed hexaboride particle and article using hexaboride particle or dispersed body
JP5640310B2 (en) Composition, antireflection film substrate, and solar cell system
KR101524728B1 (en) High heat -dissipating ceramic composite, manufacturing method therefor, and uses thereof
JP2014086526A (en) Light-emitting diode
JP2009153366A (en) Highly efficient heat dissipation coil and highly efficient heat dissipation motor employing thereof, highly efficient heat dissipation power supply device, highly efficient heat dissipation magnetron generator, and electronic apparatus, industrial apparatus, electrical home appliance, computer hard disk product, and electric vehicle employing the coil, motor and devices
JP4688020B2 (en) Solar cell module
JP2007012967A (en) Heat radiation film for solar cell module and solar cell module provided with heat radiation film
JP2004363310A (en) Heat dissipater for cpu
JP2019066839A (en) Liquid composition for infrared shield film formation, manufacturing method of infrared shield film using the same, and infrared shield film
JP4929835B2 (en) Method for producing surface-coated hexaboride particles
JP2005317742A (en) Heat radiator for closed structure
JP5087783B2 (en) Method for producing surface-coated hexaboride particle precursor, surface-coated hexaboride particle precursor, surface-coated hexaboride particle and dispersion thereof, and structure and article using surface-coated hexaboride particles
JP2004002813A (en) Aqueous composition and non-aqueous composition
KR101063927B1 (en) cooker equipped grill coated with infrared radiation layer
JPH11124543A (en) Preparation of composite material having inorganicorganic hybrid film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase