WO2004108329A1 - Method and device for manufacturing a blank for a tool - Google Patents
Method and device for manufacturing a blank for a tool Download PDFInfo
- Publication number
- WO2004108329A1 WO2004108329A1 PCT/SE2004/000839 SE2004000839W WO2004108329A1 WO 2004108329 A1 WO2004108329 A1 WO 2004108329A1 SE 2004000839 W SE2004000839 W SE 2004000839W WO 2004108329 A1 WO2004108329 A1 WO 2004108329A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mixture
- green body
- nozzle
- pins
- die
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C23/00—Extruding metal; Impact extrusion
- B21C23/02—Making uncoated products
- B21C23/04—Making uncoated products by direct extrusion
- B21C23/14—Making other products
- B21C23/147—Making drill blanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
- B23B51/06—Drills with lubricating or cooling equipment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/20—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/10—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P15/00—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
- B23P15/28—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
- B23P15/32—Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools twist-drills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2222/00—Materials of tools or workpieces composed of metals, alloys or metal matrices
- B23B2222/28—Details of hard metal, i.e. cemented carbide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2250/00—Compensating adverse effects during turning, boring or drilling
- B23B2250/12—Cooling and lubrication
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/04—Angles, e.g. cutting angles
- B23B2251/043—Helix angles
- B23B2251/046—Variable
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T407/00—Cutters, for shaping
- Y10T407/14—Cutters, for shaping with means to apply fluid to cutting tool
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T408/00—Cutting by use of rotating axially moving tool
- Y10T408/44—Cutting by use of rotating axially moving tool with means to apply transient, fluent medium to work or product
- Y10T408/45—Cutting by use of rotating axially moving tool with means to apply transient, fluent medium to work or product including Tool with duct
- Y10T408/455—Conducting channel extending to end of Tool
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T408/00—Cutting by use of rotating axially moving tool
- Y10T408/89—Tool or Tool with support
- Y10T408/909—Having peripherally spaced cutting edges
- Y10T408/9095—Having peripherally spaced cutting edges with axially extending relief channel
- Y10T408/9097—Spiral channel
Definitions
- the present invention relates to a method and a device for manufacturing a blank for a tool as well as a tool made by the method according to the preambles of the independent claims.
- One object of the present invention is to provide a method and a device, whereby varying pitch of the flush channels can be obtained.
- Fig. 1A shows schematically a drill in a side view.
- Figs. 1B, 1 C and 1 D show radial cross section according to lines B-B, C-C, D-D, respectively.
- Fig. 1 E shows the drill in a perspective view.
- Fig. 2A shows a device according to the present invention for generation of elongated green bodies, in a front view. Fig.
- FIG. 2B shows the device in cross section according to the line IIB-IIB in Fig. 2A.
- FIG. 2C shows the device in cross section according to the line IIC-IIC in Fig. 2A.
- FIG. 3 shows an elongated green body in a perspective view.
- Fig. 4A shows an alternative device according to the present invention for generation of elongated green bodies, in a front view.
- Fig. 4B shows the device in cross section according to line IIB-IIB in Fig. 4A.
- Fig. 4C shows the device in an end view.
- FIG. 4D shows the device in cross section according to the line IID-IID in Fig. 4A.
- FIG. 5A shows an additional alternative device according to the present invention for generation of elongated green bodies, in a front view.
- Fig. 5B shows the device in cross section according to the line IIB-IIB in Fig. 5A.
- Fig. 5C shows the device in an end view.
- Fig. 5D shows the device in cross section according to the line
- FIG. 6A shows an additional alternative device according to the present invention for generation of elongated green bodies, in a front view.
- Fig. 6B shows the device in cross section according to line IIB-IIB in Fig. 6A.
- Fig. 6C shows the device in an end view.
- Fig. 6D shows the device in cross section according to the line IID-IID in Fig. 6A.
- a tool according to invention shown in Figs. 1 A-1 E is a so-called helix drill.
- the drill 10 is made in solid hard material, such as for example extruded cemented carbide, and includes helical chip flutes 18 and these can extend through the entire body or through a part thereof.
- the drill has a shank 11 to be secured to a rotary spindle, not shown.
- the drill has two upper clearance surfaces 15. All surfaces and associated edges are made from the same material, i.e. preferably in extruded cemented carbide. Lines of intersection of the chip flutes 18 and the clearance surfaces 15 form main cutting edges 19 at the cutting end of the drill, preferably via reinforcing chamfers 12.
- the entire length of the drill is chosen from 3 to 10 times its diameter.
- Two flush channels 14 extend through the entire drill to transfer flushing medium from the spindle to the tip of the drill.
- a diametrical groove can be provided at the shank end to inter alia counteract obstruction of the holes.
- Both the flushing channels 14 and the chip flutes 18 have varying pitch.
- the variation of the pitch of the, for example two, flushing channels 14 are preferably substantially identical.
- the variation of the pitch of the, for example two, chip flutes 18 are preferably substantially identical.
- the variation of the pitch of the flushing channels 14 and of the chip flutes 18 are preferably substantially identical.
- the pitch is such that the axial angle ⁇ 1 relative to the center line CL of the drill is bigger at its cutting end 16 than the axial angle ⁇ 2 at the mid of the chip flutes in the axial direction of the drill.
- the axial angle can vary between 5 and 20° from its cutting end 16 to the axially inner end 17 of the chip flute.
- This drill can be made via one of at least four different methods.
- the unit "mm/revolution" defines the pitch.
- the pitch p is proportionally inverted relative to the axial angle ⁇ according to this formula:
- the axial angle for the axially forward part of the drill lies within the interval of 20°-45° and the rear part of the drill between 5° and 25°.
- the drill in the shown embodiment has 31 ° at the cutting end 16 and 16° at the axially inner end 17.
- the device 20 comprises a rectangular housing 21 of steel, which is intended to be fastened with for instance bolts to a machine for extrusion, not shown.
- the housing 21 has two bolts 22 to be fastened in the machine and has a rear surface 23 intended to seal against said machine.
- the housing has a central through-going recess 24 through which a mixture will be pressed.
- the recess 24 is widened in connection to the rear surface 23 to form spaces 25, 26 for feed worm ends, Fig. 3.
- the recess 24 transforms into a diameter reducing restriction 27 in a circular nozzle 28.
- the nozzle 28 is made from a wear resistant material such as cemented carbide.
- the recess 24 then continues via a cylindrical inner, centrally positioned hole 30 into a circular die 29, which is provided next to and in connection with the nozzle 28.
- the die 29 is substantially cylindrical and comprises a radially external flange 31 , which is intended to cooperate with axial bearings 32 in a lid 36.
- the external end of the die 29 is provided with a rotational device or a pinion 50, which is rigid with the die.
- the pinion is intended to be operated by a cog-wheel, not shown.
- the die can thereby be rotated a infinite number of revolutions together with the pinion 50.
- the principal feed direction of the mixture is depicted by F.
- a bar-shaped core 33 is recessed into the die.
- the core is rectangular and contains two elongate rigid pins 35.
- the pins can be made from steel.
- the pins 35 are intended to project from the core in the feed direction F to form flush channels in the green body.
- the recess 24 ends in an open hole in the outer end of the die.
- the device according to the present invention consequently comprises a rigid part 28 and a rotatable part 29.
- the drill or the end mill is manufactured as follows.
- Hard metal powder having a certain cobalt content and a carrier for example a polymer or a plastic, is mixed and shaped to pellets or granulates.
- the content of binder lies within the interval of 1-10 percent by weight.
- the expression "cobalt” shall here be understood as a metallic binder that alternatively can be exchanged for or include other metals, for example nickel, Ni.
- the mixture is preheated to a temperature suitable for the mixture and is inserted in a machine for extrusion. Then the mixture is pressed at certain pressure and certain temperature, about 180 °C, that is considerably lower than at prior art where the melting temperature of cobalt is required, into the recess 24 by means of the two feed worms, said restriction 27 will further compress the mixture or mass.
- the hot mixture reaches the core 33 and passes this on each side through the two substantially semi-circular openings formed about the core.
- the mixture fuses again to a cylindrical body except from where the pins 35 form spaces in the body, which later will constitute flush channels.
- the pins are chosen long enough to allow the mixture to cool such that fusion is avoided.
- the pins 35 do not reach the rotatable part 29, i.e. the rigid pins 35 are provided axially distant from the rotatable die 29.
- the mixture reaches the space 30 and the mixture is brought to rotate by friction between the mixture and the bore wall. Thereby, a cylindrical green body is attained the channels of which having varying pitch.
- chip flutes are sintered and ground with substantially the same varying pitch as that of the flushing channels.
- the mixture is fed into the device that comprises a rigid and a rotatable part.
- the device that comprises a rigid and a rotatable part.
- the shaping that is plastic occurs with the aid of a tool that comprises a rigid and a rotatable part.
- the mixture is fed into in the rigid part of the tool where it is compressed around a fixed core in order to be shaped to a green body with flushing holes.
- the mixture is further fed into in the rotatable part of the tool the driving of which is synchronized with the control system of the machine.
- the rotatable part has a die that compresses the mixture further and the friction between the mixture and the wall of the hole 30 forces the green body to be twisted.
- the rotational speed of the die thereby influences the pitch of the flushing holes, which means that green bodies with flushing holes that have varying pitch can be extruded.
- Figs. 4A-4D is shown an alternative embodiment of a device 20' according to the present invention for manufacture of elongated green bodies with external grooves such as is shown in Fig. 3.
- the device 20' comprises a portion 42 provided on level with the ends of the pins 35, which portion comprises two movable parts 40, 41 that project radially into the recess 24 between the nozzle 28 and the die 29 in order to emboss chip flutes in the green body.
- Each movable part 40, 41 comprises an inner rounded end.
- the end is symmetrically shaped and is provided on a bar.
- the bar runs in a hole in an intermediate part.
- a shoulder is provided on the bar in the vicinity of the end. The shoulder is intended to cooperate with a collar in the hole in order to obtain the correct projection into the space of the intermediate part.
- the extrudate is fed into the device and passes in this case first cores 33, 35 that shape flushing holes.
- the extrudate is compressed in order to again be homogenized after partition at the core.
- the extrudate now passes the part in device where the plastic shaping of the chip flutes occur.
- Two cylindrical cores or movable parts 40, 41 each having one end shaped according to the desired chip flute profile, are assembled at suitable partition, for example 180°, in the device. Said one end is preferably rounded.
- the cores are pulled back and the extrudate reverts to the roundness that is necessary to shape the drill shank.
- the extrudate is pressed further into a rotatable part of the device, which through friction twists the extrudate and then also the chip flutes. The rotational speed determines what pitch the chip flutes get. It also becomes possible to combine straight and twisted chip flutes in one and the same blank that results in better products.
- Figs. 5A-5D is shown an alternative embodiment of a device 20" according to the present invention for generation of elongated green bodies with external grooves such as is shown in Fig. 3.
- This device 20" from the device 20' is foremost the two movable parts or jaws 40', 41" of the portion 42'.
- Each jaw 40', 41' comprises an inner end provided with a cutting edge.
- the profile of the cutting edge is the same as the desired chip flute profile.
- Each jaw has chip space of its own that runs from the center of the cutting insert, through the jaw, and out from the device. The profile of the cutting edge and the motion of the jaw make that the chip flute profile in the extrudate is changed in pace with the cutting depth.
- the cutting insert can be developed such that the profile of the chip flute does not vary with the cutting depth.
- green bodies with varying chip flute depth and profile can be extruded, which results in improved products.
- optimal ends of the chip spaces can be obtained which is not always the case with the device 20'.
- the extrudate gives in this situation green bodies with straight chip flutes and flushing holes.
- the extrudate is finely calibrated and is pressed further into a rotatable die 29 that twists chip flutes and flushing holes to desired pitch.
- FIGs. 6A-6D is shown an alternative embodiment of a device 20"' according to the present invention for generation of elongated green bodies with external grooves such as is shown in Fig. 3.
- this device 20" is foremost the two movable parts or cutting inserts 40", 41" of the portion 42".
- Each cutting insert 40", 41" comprises an inner end provided with a cutting edge.
- Two cutting inserts, or more, at suitable partition are assembled on shafts which makes them possible to pivot. The shafts terminate on the upper side of the tool and is coupled to suitable control and automatic engineering.
- the noses of the cutting inserts have the desired chip flute profile at a 45° angle, relative to the center line CL1 of the recess, and when the extrudate passes the cutting inserts material is machined and chip flutes are formed. Machined material leaves the device by means of the chip flutes of the tool.
- the lower side of each cutting insert has the same radius as the green body, which makes when the cutting inserts pivot back that the device seals tightly as if no cutting insert was present. With the cutting inserts in this position the shaping of the chip flutes ceases and the extrudate surpasses to the roundness that is necessary to shape drill shanks.
- the green body When the green body comes out from the jaws it cools quickly due the surrounding temperature and the green body continues to extrude until the chip flute part is sufficiently long.
- the length of the green body is determined by how long the extrusion is continued.
- the solidified green body can then be cut or simply be broken, for example by hand, in suitable lengths in interval of 5-10 times its diameter.
- the green body When the green body has been removed from the extrusion machine it is heated in a separate furnace such that the carrier is burned off and such that the binder metal melts and binds the carbides, such that a blank is formed. Then further machining of the blank takes place, such as for example grinding of edge portions, shank portion and clearance surfaces.
- a tool can be produce whereby varying pitch can be obtained both for flush channels and chip flutes.
- the mixture is allowed pass a rotatable part 29 after the formation of the spaces in the green body. This means that the method according to the present invention creates the spaces before rotation is made.
- the advantage therefrom in both the method and the device according to the present invention is that economically advantageous modular structural design can be utilized since the portions 42, 42' and 42" easily can be mounted without interference from the rigid pins 35.
- the invention is in no way limited to the above described embodiments but can be varied freely within the scope of the appended claims.
- the invention can be used also for solid end mills.
- the tool can be coated with layers of for example AI 2 O 3 , TiN and/or TiCN.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Drilling Tools (AREA)
- Powder Metallurgy (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
- Turning (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04735437A EP1628795B1 (en) | 2003-06-04 | 2004-05-28 | Method and device for manufacturing a blank for a tool |
AT04735437T ATE477870T1 (en) | 2003-06-04 | 2004-05-28 | METHOD AND DEVICE FOR PRODUCING A CUT FOR A TOOL |
KR1020057023063A KR101084014B1 (en) | 2003-06-04 | 2004-05-28 | Method and a device for manufacturing a blank for a tool |
DE602004028726T DE602004028726D1 (en) | 2003-06-04 | 2004-05-28 | METHOD AND DEVICE FOR PRODUCING A CUTTING FOR A TOOL |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0301617A SE526650C2 (en) | 2003-06-04 | 2003-06-04 | Manufacturing method for rotary tool e.g. helix drill, end mill, involves removing green body formed by solidification of mixture from machine and sintering green body to blank to allow grinding of blank after rotation of rotatable part |
SE0301617-7 | 2003-06-04 | ||
SE0301828-0 | 2003-06-16 | ||
SE0301828A SE526937C2 (en) | 2003-06-16 | 2003-06-16 | Rotatable tool and material for tool provided with coil channels at different angles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004108329A1 true WO2004108329A1 (en) | 2004-12-16 |
Family
ID=33513466
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2004/000839 WO2004108329A1 (en) | 2003-06-04 | 2004-05-28 | Method and device for manufacturing a blank for a tool |
PCT/SE2004/000857 WO2004108334A1 (en) | 2003-06-04 | 2004-06-02 | Rotatable tool and a blank |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/SE2004/000857 WO2004108334A1 (en) | 2003-06-04 | 2004-06-02 | Rotatable tool and a blank |
Country Status (7)
Country | Link |
---|---|
US (2) | US7371344B2 (en) |
EP (2) | EP1628795B1 (en) |
KR (2) | KR101084014B1 (en) |
AT (1) | ATE477870T1 (en) |
CZ (1) | CZ301684B6 (en) |
DE (1) | DE602004028726D1 (en) |
WO (2) | WO2004108329A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006115344A1 (en) * | 2005-04-27 | 2006-11-02 | Korea Institute Of Industrial Technology | Method for manufacturing dental scaler tip using powder injection molding process, mold used therein and scaler tip manufactured by the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050227772A1 (en) * | 2004-04-13 | 2005-10-13 | Edward Kletecka | Powdered metal multi-lobular tooling and method of fabrication |
DE102006042226A1 (en) * | 2006-09-06 | 2008-03-27 | Günther & Co. GmbH | Coated twist drill |
DE102007042279A1 (en) * | 2007-09-06 | 2009-03-12 | Komet Group Holding Gmbh | Drilling tool for machine tools and method for its production |
DE102007042280A1 (en) | 2007-09-06 | 2009-03-12 | Komet Group Holding Gmbh | Drilling tool for machine tools and method for its production |
US20090274996A1 (en) * | 2008-05-05 | 2009-11-05 | Kenneth Miller | Bone cutting device and method of using same |
EP2298491B1 (en) * | 2009-09-22 | 2017-06-28 | Firma Gühring oHG | Tool with coolant channels |
DE102014115760A1 (en) * | 2014-10-30 | 2016-05-04 | Arno Friedrichs | Cutting tool with internal spirally running coolant channels with changing pitch angle |
US10525448B2 (en) | 2015-07-22 | 2020-01-07 | Basf Corporation | High geometric surface area catalysts for vinyl acetate monomer production |
DE102017212054B4 (en) * | 2017-07-13 | 2019-02-21 | Kennametal Inc. | Method for producing a cutting head and cutting head |
DE102018202941B4 (en) * | 2018-02-27 | 2024-01-25 | Kennametal Inc. | Process for producing a blank from extrusion mass and extruder |
CN112077370B (en) | 2019-06-13 | 2024-10-01 | 肯纳金属印度有限公司 | Indexable drill insert |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4779440A (en) * | 1985-10-31 | 1988-10-25 | Fried. Krupp Gesellschaft Mit Beschraenkter Haftung | Extrusion tool for producing hard-metal or ceramic drill blank |
US5438858A (en) * | 1991-06-19 | 1995-08-08 | Gottlieb Guhring Kg | Extrusion tool for producing a hard metal rod or a ceramic rod with twisted internal boreholes |
WO2000074870A1 (en) * | 1999-06-03 | 2000-12-14 | Seco Tools Ab (Publ) | Tool, and a method and device for its manufacturing |
US6248277B1 (en) * | 1996-10-25 | 2001-06-19 | Konrad Friedrichs Kg | Continuous extrusion process and device for rods made of a plastic raw material and provided with a spiral inner channel |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US329174A (en) * | 1885-10-27 | Twist-drill | ||
FR1302191A (en) * | 1961-09-29 | 1962-08-24 | Stalker Drill Works Ltd | Forest |
DE2945635A1 (en) * | 1979-11-12 | 1981-05-21 | Rohde & Dörrenberg, 4000 Düsseldorf | Helically fluted drill contg. coolant ducts - has cutting bits at tip on seating faces at acute angle to helix direction near tip |
DE3309860A1 (en) * | 1983-02-08 | 1984-08-09 | Fa. Gottlieb Gühring, 7470 Albstadt | DRILLING TOOL |
JPS59166405A (en) * | 1983-03-07 | 1984-09-19 | Daijietsuto Kogyo Kk | Drill |
JPS59219108A (en) * | 1983-05-25 | 1984-12-10 | Sumitomo Electric Ind Ltd | Drill |
JPS6228105A (en) * | 1985-07-29 | 1987-02-06 | Hitachi Carbide Tools Ltd | Cemented carbide solid drill and its manufacture |
DE3601385A1 (en) * | 1986-01-18 | 1987-07-23 | Krupp Gmbh | METHOD FOR PRODUCING SINTER BODIES WITH INNER CHANNELS, EXTRACTION TOOL FOR IMPLEMENTING THE METHOD, AND DRILLING TOOL |
DE3706282A1 (en) * | 1986-02-28 | 1987-09-03 | Izumo Sangyo Kk | CIRCULAR CUTTING TOOL |
CH665979A5 (en) * | 1986-03-27 | 1988-06-30 | Precitool S A | Twist drill bit - has shank grooves at angle which increases progressively towards tip from 15 to 40 degrees |
US5230593A (en) * | 1987-12-14 | 1993-07-27 | Mitsubishi Kinzoku Kabushiki Kaisha | Twist drill |
DE4120165C2 (en) * | 1990-07-05 | 1995-01-26 | Friedrichs Konrad Kg | Extrusion tool for producing a hard metal or ceramic rod |
JP3309860B2 (en) * | 1991-07-30 | 2002-07-29 | 日新製鋼株式会社 | Manufacturing method of cold drawn steel sheet for deep drawing with excellent corrosion resistance |
EP0634959B1 (en) * | 1992-04-08 | 1997-03-26 | Gühring, Jörg, Dr. | Process and device for the continuous production of cylindrical rods with at least one internal helical channel, and sinter blank made by this process |
SE508466C2 (en) * | 1993-09-14 | 1998-10-12 | Seco Tools Ab | Drill |
SE509262C2 (en) * | 1995-03-02 | 1998-12-21 | Sandvik Ab | Drill with cooling ducts and means for making them |
US5704740A (en) * | 1995-06-26 | 1998-01-06 | Walter Ag | Drilling tool, particularly for metallic materials |
JPH09277108A (en) * | 1996-02-14 | 1997-10-28 | Sumitomo Electric Ind Ltd | Drill |
SE510763C2 (en) | 1996-12-20 | 1999-06-21 | Sandvik Ab | Topic for a drill or a metal cutter for machining |
US6283682B1 (en) * | 1997-09-30 | 2001-09-04 | Jerald D. Plummer | Helically fluted twist drill device |
JPH11226810A (en) * | 1998-02-12 | 1999-08-24 | Hitachi Metals Ltd | Twist drill, material for twist drill having oil hole, extrusion molding device for the material and method therefor |
JPH11236602A (en) * | 1998-02-24 | 1999-08-31 | Hitachi Metals Ltd | Production of bar having spiral hole and its apparatus |
DE19907749A1 (en) * | 1999-02-23 | 2000-08-24 | Kennametal Inc | Sintered hard metal body useful as cutter insert or throwaway cutter tip has concentration gradient of stress-induced phase transformation-free face-centered cubic cobalt-nickel-iron binder |
SE519135C2 (en) * | 1999-07-02 | 2003-01-21 | Seco Tools Ab | Chip separation machining tools comprising a relatively tough core connected to a relatively durable periphery |
SE514558C2 (en) * | 1999-07-02 | 2001-03-12 | Seco Tools Ab | Method and apparatus for manufacturing a tool |
CN1133515C (en) * | 1999-09-09 | 2004-01-07 | 阿尔诺·弗里德里克斯 | Method and device for producing sintered metal blank with interior helical recesses |
DE20108179U1 (en) * | 2001-05-15 | 2001-07-26 | Plica Werkzeugfabrik Ag, Mollis | drill |
US6652203B1 (en) * | 2002-08-30 | 2003-11-25 | Credo Technology Corporation | Precision drill bits |
-
2004
- 2004-05-28 AT AT04735437T patent/ATE477870T1/en not_active IP Right Cessation
- 2004-05-28 DE DE602004028726T patent/DE602004028726D1/en not_active Expired - Lifetime
- 2004-05-28 KR KR1020057023063A patent/KR101084014B1/en not_active IP Right Cessation
- 2004-05-28 WO PCT/SE2004/000839 patent/WO2004108329A1/en active Application Filing
- 2004-05-28 EP EP04735437A patent/EP1628795B1/en not_active Expired - Lifetime
- 2004-06-01 US US10/857,499 patent/US7371344B2/en not_active Expired - Fee Related
- 2004-06-02 CZ CZ20050750A patent/CZ301684B6/en not_active IP Right Cessation
- 2004-06-02 WO PCT/SE2004/000857 patent/WO2004108334A1/en active Application Filing
- 2004-06-02 KR KR1020057023064A patent/KR101086663B1/en not_active IP Right Cessation
- 2004-06-02 EP EP04735842.9A patent/EP1628796B1/en not_active Expired - Lifetime
-
2005
- 2005-12-05 US US11/164,760 patent/US7311479B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4779440A (en) * | 1985-10-31 | 1988-10-25 | Fried. Krupp Gesellschaft Mit Beschraenkter Haftung | Extrusion tool for producing hard-metal or ceramic drill blank |
US5438858A (en) * | 1991-06-19 | 1995-08-08 | Gottlieb Guhring Kg | Extrusion tool for producing a hard metal rod or a ceramic rod with twisted internal boreholes |
US6248277B1 (en) * | 1996-10-25 | 2001-06-19 | Konrad Friedrichs Kg | Continuous extrusion process and device for rods made of a plastic raw material and provided with a spiral inner channel |
WO2000074870A1 (en) * | 1999-06-03 | 2000-12-14 | Seco Tools Ab (Publ) | Tool, and a method and device for its manufacturing |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006115344A1 (en) * | 2005-04-27 | 2006-11-02 | Korea Institute Of Industrial Technology | Method for manufacturing dental scaler tip using powder injection molding process, mold used therein and scaler tip manufactured by the same |
US7875237B2 (en) | 2005-04-27 | 2011-01-25 | Korea Institute Of Industrial Technology | Method for manufacturing dental scaler tip using powder injection molding process, mold used therein and scaler tip manufactured by the same |
Also Published As
Publication number | Publication date |
---|---|
US7371344B2 (en) | 2008-05-13 |
DE602004028726D1 (en) | 2010-09-30 |
CZ2005750A3 (en) | 2006-07-12 |
WO2004108334A1 (en) | 2004-12-16 |
KR20060015743A (en) | 2006-02-20 |
US20050047951A1 (en) | 2005-03-03 |
US7311479B2 (en) | 2007-12-25 |
US20070020054A1 (en) | 2007-01-25 |
EP1628796A1 (en) | 2006-03-01 |
KR20060004705A (en) | 2006-01-12 |
ATE477870T1 (en) | 2010-09-15 |
KR101084014B1 (en) | 2011-11-16 |
EP1628795A1 (en) | 2006-03-01 |
CZ301684B6 (en) | 2010-05-26 |
EP1628795B1 (en) | 2010-08-18 |
KR101086663B1 (en) | 2011-11-24 |
EP1628796B1 (en) | 2013-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7311479B2 (en) | Rotatable tool and a blank | |
US6669414B1 (en) | Method and a device for manufacturing a tool and a tool made by the method | |
EP1065021B1 (en) | Method and device for manufacturing a tool | |
KR101166404B1 (en) | Method and device for manufacturing a drill blank or a mill blank | |
EP1222047B1 (en) | Tool for rotary chip removal, a tool tip and a method for manufacturing a tool tip | |
US6402439B1 (en) | Tool for chip removal machining | |
EP1626831B1 (en) | An edge-carrying drill body | |
CN1802231B (en) | Rotatable tool and a blank | |
KR100675940B1 (en) | Tool for chip removing machining | |
CZ2005751A3 (en) | Method and device for manufacturing a blank for a tool | |
SE526937C2 (en) | Rotatable tool and material for tool provided with coil channels at different angles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2004735437 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: PV2005-751 Country of ref document: CZ Ref document number: 1020057023063 Country of ref document: KR Ref document number: 20048153317 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2709/KOLNP/2005 Country of ref document: IN |
|
WWP | Wipo information: published in national office |
Ref document number: 1020057023063 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 2004735437 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: PV2005-751 Country of ref document: CZ |