WO2004102764A1 - Dispositif de protection d'un transformateur de distribution multiphase, a isolation dans un dielectrique liquide - Google Patents

Dispositif de protection d'un transformateur de distribution multiphase, a isolation dans un dielectrique liquide Download PDF

Info

Publication number
WO2004102764A1
WO2004102764A1 PCT/FR2004/050184 FR2004050184W WO2004102764A1 WO 2004102764 A1 WO2004102764 A1 WO 2004102764A1 FR 2004050184 W FR2004050184 W FR 2004050184W WO 2004102764 A1 WO2004102764 A1 WO 2004102764A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformer
fuse
disconnector
short
phase
Prior art date
Application number
PCT/FR2004/050184
Other languages
English (en)
Inventor
Philippe Folliot
Stéphane Melquiond
Saïd ATTAK
François HEBERT
Original Assignee
Areva T & D Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva T & D Sa filed Critical Areva T & D Sa
Publication of WO2004102764A1 publication Critical patent/WO2004102764A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/321Insulating of coils, windings, or parts thereof using a fluid for insulating purposes only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/0241Structural association of a fuse and another component or apparatus
    • H01H2085/0291Structural association with a current transformer

Definitions

  • the present invention relates to two-phase or three-phase transformers, and more particularly those which are isolated in a liquid dielectric such as oil.
  • the one described in the document FR 2 747 245 A (GEC Alsthom T&D SA), to which we will refer, is a protection system for a three-phase distribution transformer insulated in a liquid dielectric, at least two of the three phases being fitted on the high voltage side of the transformer with a current limiting fuse, characterized in that in series on each of the two phases equipped with a so-called current fuse, a protective micro-fuse is arranged acting in the critical operating zone of the protective fuse, the micro-fuse being associated with a striker and in that it comprises at least one fault detection means relating to at least one of the following two points: the pressure in the tank and the level of the dielectric, a three-phase short-circuiter being located on the high voltage between said current limiting fuses and the high-voltage windings, said short-circuiter being controlled by said fault detection means, the striker associated with each micro-fuse also controlling the short-circuiter in the event of operation of the micro-fuse.
  • this transformer being multi-phase, that is to say two-phase or three-phase, and isolated in a liquid dielectric, and comprising a cut-off and disconnection system , making it possible to disconnect the transformer from a multiphase supply network, this system comprising at least one fuse, at least one disconnector, and a short-circuiter.
  • the object of the present invention is to remedy this drawback.
  • the subject of the present invention is a multiphase distribution transformer, isolated in a liquid dielectric and comprising a breaking and disconnection system comprising at least one fuse, at least one disconnector, and a short-circuiter, characterized in that that the short-circuiter and the fuse form an assembly outside of which is the disconnector, this disconnector being placed upstream or downstream of this set, and at least one of the phases is provided with both a fuse and a disconnector.
  • the disconnector is placed upstream of the fuse.
  • the short-circuit current always passes through the disconnector (s) but, with the configuration of this particular embodiment, the links remaining at potential after disconnection are thereby shortened to the minimum.
  • this configuration makes it possible to reduce the length of the link between a fuse and the fixed contact of the corresponding disconnector and therefore the cost of the transformer provided with the system.
  • the disconnector is placed downstream of the short-circuiter. In this case, the short-circuit current no longer passes through the disconnector (s), which makes it possible to reduce the size and therefore the cost of this (s) disconnector (s).
  • At least one of the elements which comprises the cut-off and disconnection system is placed in a tank for retaining the liquid dielectric in which the transformer is isolated.
  • the tank in which the element of the cut-off and disconnection system is placed keeps a certain amount of said liquid dielectric, sufficient to bathe said element and thus ensure its dielectric insulation.
  • One, two or three fuses can be used.
  • the element is a disconnector.
  • the disconnector can be single-phase, two-phase or three-phase.
  • the element is a short-circuiter.
  • the element is a micro-fuse.
  • the element of the sewing and disconnection system is associated with at least one phase and capable of disconnecting it.
  • each phase with its different breaking and disconnection elements must be disconnected. Indeed, if a phase remains under tension the risk remains; each of said elements of each phase must therefore be isolated by the liquid dielectric.
  • each element is placed in a tray specific retention of liquid dielectric. The electric arc which is created in the tank of the short-circuiter pollutes the liquid dielectric by degrading its qualities of insulation. It is therefore necessary that the boxes of the disconnectors or micro-fuses remain clean. The fact of creating specific compartments compartmented at least for each type of element makes it possible to guarantee the necessary purity of the liquid dielectric in the vicinity of the disconnection elements.
  • the transformer is at medium voltage.
  • FIG. 1 is a schematic overview of an example of a distribution transformer which is useful for understanding the invention
  • FIG. 2 is a schematic and partial view of an example of a transformer according to a first variant of the invention
  • FIG. 3 is a schematic and partial view of an example of a transformer according to a second variant of the invention
  • FIG. 4 is a schematic and partial sectional view of the tank that the transformer of FIG. 1 contains
  • Figure 5 is a schematic top view of a retention tank usable in the present invention.
  • the three-phase distribution transformer T which is represented in FIG. 1, comprises a cut-off and disconnection system, comprising high-voltage fuses 2, a disconnector 3a, a three-phase short-circuiter 4a and micro- fuses 5a, a high voltage electric circuit 6 (winding) in the shape of a triangle and a low voltage electric circuit 7 (winding) in the shape of a star, arranged in a tank 8 which is filled with a liquid dielectric.
  • the circuit 6 is supplied by three phase lines a, b and c which penetrate tightly into the tank 8 by electrically insulating bushings 80, 81 and 82.
  • the short-circuiter 4a allows actuation of the disconnector 3a, as described in the document FR 2801141 A cited above, to which reference will be made.
  • the transformer T of FIG. 1 also comprises a means 32 for detecting the pressure in the tank 8, a means 33 for detecting the level of this liquid dielectric, a contact 34 which is closed by this detection means 33 when the level becomes lower than a given value, a circuit which is closed when the contact 34 is closed, this circuit comprising a striker 35 provided with a steel wire and a possible limiting resistance 37.
  • the dotted lines C symbolize the command to close the three-phase short-circuiter 4a.
  • a three-phase disconnector 3 comprising three elementary disconnectors, respectively associated with the three phases
  • FIG. 2 shows a variant of the invention where the disconnector 3 is placed upstream of the fuses 2 and therefore of the short-circuiter 4 (and of the microfuses 5).
  • the disconnector 3 can also be positioned downstream of the short-circuiter 4 and therefore of the fuses 2 as shown in the variant of FIG. 3, where the disconnector 3 is also upstream of the microfuses 5.
  • the disconnector 3 can also be placed downstream of the assembly constituted by the fuses 2, the short-circuiter 4 and the microfuses 5 (variant not shown).
  • the tank 8 is filled with electrically insulating liquid L such as oil and, in the example illustrated by FIG. 4, a second tank 86 is placed in the upper part of the tank 8. Thus when the level of the liquid drops abnormally, there remains liquid in the tank 86. This can be used in the examples of the invention, which have just been given.
  • FIG. 5 which shows the tray 86 in top view, reveals several compartments 860, 861, 862, 863 and 864 which each retain the insulating liquid.
  • the compartment 860 comprises a set of three micro-fuses 5, the compartments 861, 862 and 863 respectively isolate each of the elementary disconnectors from the isolator 3, and the compartment 864 houses the short-circuiter 4.
  • the compartments 860, 861, 862, 863 and 864 individually retaining the insulating liquid it is possible, as seen in Figure 2, to separate the compartments according to the position of the different elements 3, 4 or 5 in the electrical diagram. For example, in FIG. 3, the disconnector 3 and the short-circuiter 4 are placed in the same compartment 866.
  • micro-fuses have been used. It should however be noted that these micro-fuses are only intended to detect currents whose intensity is abnormally high and can be replaced by other overcurrent detection means, for example magnetic toroids or Hall effect sensors. In addition, these micro-fuses (or equivalent) are not essential in the invention: it is possible to design a transformer according to the invention which does not include any micro-fuse (or equivalent).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Fuses (AREA)
  • Protection Of Transformers (AREA)

Abstract

Dispositif de protection d'un transformateur de distribution multiphasé, à isolation dans un diélectrique liquide. Ce transformateur comporte un système de coupure et de déconnexion comprenant au moins un fusible (2), au moins un sectionneur (3), et un court-circuiteur (4). Selon l'invention, le court-circuiteur (4) et le fusible (2) forment un ensemble à l'extérieur duquel se trouve le sectionneur (3), ce sectionneur étant placé en amont ou en aval de cet ensemble, et au moins l'une des phases est pourvue à la fois d'un fusible et d'un sectionneur.

Description

DISPOSITIF DE PROTECTION D'UN TRANSFORMATEUR DE
DISTRIBUTION MULTIPHASE, A ISOLATION DANS UN
DIELECTRIQUE LIQUIDE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne les transformateurs biphasés ou triphasés, et plus particulièrement ceux qui sont isolés dans un diélectrique liquide tel que l'huile.
Elle s'applique notamment aux transformateurs à moyenne tension.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
En cas de dysfonctionnement, il peut être nécessaire d'isoler un transformateur du réseau après détection d'un défaut, car il y a un risque d'échauffement du diélectrique provocant une surpression pouvant atteindre une valeur telle qu'il explose. Il s'ensuit des risques de projection notamment du diélectrique, graves pour l'environnement.
Il existe plusieurs systèmes de coupure et de déconnexion.
Celui qui est décrit dans le document FR 2 747 245 A (GEC Alsthom T&D SA), auquel on se reportera, est un système de protection d'un transformateur de distribution triphasé à isolation dans un diélectrique liquide, deux au moins des trois phases étant équipées, du côté haute tension du transformateur d'un fusible limiteur de courant, caractérisé en ce qu'en série sur chacune des deux phases équipées d'un dit fusible Iimiteur de courant, est disposé un micro-fusible de protection agissant dans la zone critique de fonctionnement du fusible Iimiteur de protection, le micro- fusible étant associé à un percuteur et en ce qu'il comporte au moins un moyen de détection de défaut concernant au moins l'un des deux points suivants: la pression dans la cuve et le niveau du diélectrique, un court-circuiteur triphasé étant situé sur la haute tension entre lesdits fusibles limiteurs de courant et les enroulements haute tension, ledit court-circuiteur étant commandé par ledit moyen de détection de défaut, le percuteur associé à chaque micro-fusible commandant également le court-circuiteur en cas de fonctionnement du micro-fusible.
Celui qui est décrit dans le document FR 2 801 141 A (Alstom SA) , auquel on se reportera, est un système de protection d'un transformateur de distribution triphasé immergé dans un diélectrique liquide contenu dans une cuve comprend sur deux des trois phases du côté haute tension du transformateur, un fusible Iimiteur de courant et un micro-fusible de protection disposé en série avec le fusible Iimiteur de courant. Le micro-fusible est plus rapide que le fusible Iimiteur de courant et est associé à un percuteur. Il comporte en outre au moins un moyen de détection de défaut concernant au moins l'un des points suivants : la pression dans la cuve et le niveau du diélectrique, un court-circuiteur triphasé situé sur la haute tension entre lesdits fusibles limiteurs de courant et les enroulements haute tension. Le court- circuiteur est commandé par le moyen de détection de défaut, le percuteur associé à chaque micro-fusible commandant également le court-circuiteur en cas de fonctionnement du micro-fusible. La troisième phase est équipée du côté haute tension du transformateur et en amont du court-circuiteur d'un micro-sectionneur associé à un percuteur commandant le court-circuiteur en cas de fonctionnement du micro-sectionneur ce qui permet de protéger le système contre des défauts phase/terre.
Cependant, tous ces systèmes présentent l'inconvénient d'être inopérants si le niveau du liquide diélectrique dans le transformateur est bas à cause d'une fuite par exemple. En effet, dans l'air, la distance d'isolement est dix fois plus grande et, en cas de fuite, l'isolement n'est plus assuré.
On explique ci-après un problème plus important, posé par un transformateur de distribution connu, ce transformateur étant multiphasé, c'est-à-dire biphasé ou triphasé, et isolé dans un diélectrique liquide, et comportant un système de coupure et de déconnexion, permettant de déconnecter le transformateur d'un réseau d'alimentation multiphasé, ce système comprenant au moins un fusible, au moins un sectionneur, et un court-circuiteur.
Il est connu de placer le sectionneur entre le fusible et le court-circuiteur mais les structures du système de coupure et de déconnexion qui en résultent posent un problème de fiabilité de déconnexion et/ou de coût. EXPOSE DE L'INVENTION
La présente invention a pour but de remédier à cet inconvénient.
Elle vise à augmenter la fiabilité de déconnexion du transformateur lorsque le système de coupure et de déconnexion a fonctionné et à réduire le coût du transformateur pourvu de ce système.
De façon précise, la présente invention a pour objet un transformateur de distribution multiphasé, isolé dans un diélectrique liquide et comportant un système de coupure et de déconnexion comprenant au moins un fusible, au moins un sectionneur, et un court-circuiteur, caractérisé en ce que le court-circuiteur et le fusible forment un ensemble à l'extérieur duquel se trouve le sectionneur, ce sectionneur étant placé en amont ou en aval de cet ensemble, et au moins l'une des phases est pourvue à la fois d'un fusible et d'un sectionneur.
Selon un premier mode de réalisation particulier du transformateur objet de l'invention, le sectionneur est placé en amont du fusible. Dans ce cas, le courant de court-circuit passe toujours par le ou les sectionneurs mais, avec la configuration de ce mode de réalisation particulier, les liaisons restant au potentiel après la déconnexion s'en trouvent raccourcies au minimum.
De plus, cette configuration permet de réduire la longueur de la liaison entre un fusible et le contact fixe du sectionneur correspondant et donc le coût du transformateur pourvu du système. Selon un deuxième mode de réalisation particulier du transformateur objet de l'invention, le sectionneur est placé en aval du court-circuiteur. Dans ce cas, le courant de court-circuit ne passe plus par le ou les sectionneurs, ce qui permet de réduire la taille et donc le coût de ce (s) sectionneur (s) .
De plus, le contact mobile de chaque sectionneur reste propre. On évite ainsi la formation des micro -soudures qui, pour être cassées, nécessitent le développement d'une grande énergie mécanique lors de l'ouverture du sectionneur.
On précise que, dans la présente invention, au lieu d'un sectionneur biphasé (respectivement triphasé) on peut utiliser deux (respectivement trois) sectionneurs monophasés, ces sectionneurs monophasés étant commandés par un même organe de commande .
Selon un mode de réalisation particulier du transformateur objet de l'invention, le système de coupure et de déconnexion comprend en outre au moins un micro-fusible.
De préférence, en vue d'obtenir un transformateur à la fois simple à réaliser et sûr en cas de fuite du diélectrique liquide, au moins un des éléments que comporte le système de coupure et de déconnexion est placé dans un bac de rétention du diélectrique liquide dans lequel est isolé le transformateur. Ainsi, lorsque la cuve étanche où est placé le transformateur fuit et que le niveau du diélectrique liquide est bas, le bac dans lequel est placé l'élément du système de coupure et de déconnexion garde une certaine quantité dudit diélectrique liquide, suffisante pour baigner ledit élément et ainsi assurer son isolation diélectrique.
On peut indifféremment utiliser un, deux ou trois fusibles. Selon un mode de réalisation particulier, l'élément est un sectionneur.
Le sectionneur peut être monophasé, biphasé ou triphasé.
Le sectionneur doit aussi être retardé lors de son ouverture, telle que décrite dans le document FR 2801141 A cité plus haut, et le diélectrique liquide permet de ralentir cette ouverture afin d'isoler la troisième phase après la coupure des fusibles par le court-circuiteur (dans le cas d'un transformateur triphasé) .
Selon un autre mode de réalisation particulier, l'élément est un court-circuiteur.
Selon un autre mode de réalisation particulier, l'élément est un micro-fusible. Selon un mode de réalisation particulier complémentaire, l'élément du système de cou ure et de déconnexion est associé à au moins une phase et apte à déconnecter celle-ci. Quand le transformateur est biphasé ou triphasé, chaque phase avec ses différents éléments de coupure et de déconnexion doit être déconnectée. En effet, si une phase reste sous tension le risque demeure ; il .faut donc que chacun desdits éléments de chaque phase soit isolé par le diélectrique liquide. Selon un autre mode de réalisation particulier, chaque élément est placé dans un bac spécifique de rétention du diélectrique liquide. L'arc électrique qui se crée dans le bac du court-circuiteur pollue le diélectrique liquide en dégradant ses qualités d'isolement. Il est donc nécessaire que les bacs des sectionneurs ou des micro-fusibles restent propres. Le fait de créer des bacs spécifiques compartimentés au moins pour chaque type d'élément permet de garantir la pureté nécessaire du diélectrique liquide au voisinage des éléments de déconnexion. Selon un autre mode de réalisation particulier, le transformateur est à moyenne tension.
Selon un mode de réalisation particulier, le diélectrique liquide est de l'huile. L'huile a une tenue à l'isolement dix fois plus importante que l'air, son coût est relativement faible et sa viscosité permet un amortissement des mouvements des éléments qui sont plongés dedans .
BRÈVE DESCRIPTION DES DESSINS L'invention sera mieux comprise à la lecture de la description qui va suivre et qui est donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés dans lesquels : la figure 1 est une vue d'ensemble schématique d'un exemple de transformateur de distribution qui est utile pour la compréhension de 1' invention, la figure 2 est une vue schématique et partielle d'un exemple d'un transformateur selon une première variante de l'invention, la figure 3 est une vue schématique et partielle d'un exemple d'un transformateur selon une deuxième variante de l'invention, la figure 4 est une vue en coupe schématique et partielle de la cuve que comporte le transformateur de la figure 1, et la figure 5 est une vue de dessus schématique d'un bac de rétention utilisable dans la présente invention.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
De façon connue, le transformateur de distribution triphasé T, qui est représenté sur la figure 1, comprend un système de coupure et de déconnexion, comprenant des fusibles 2 de haute tension, un sectionneur 3a, un court-circuiteur triphasé 4a et des micro-fusibles 5a, un circuit électrique de haute tension 6 (bobinage) en forme de triangle et un circuit électrique de basse tension 7 (bobinage) en forme d'étoile, disposés dans une cuve 8 qui est remplie d'un diélectrique liquide.
Le circuit 6 est alimenté par trois lignes de phases a, b et c qui pénètrent de façon étanche dans la cuve 8 par des traversées é lectriquement isolantes 80, 81 et 82.
Le circuit 7 alimente les lignes de phases d, e et f qui sortent de façon étanche de la cuve 8 par des traversées électriquement isolantes 83, 84 et 85.
Le court-circuiteur 4a permet 1 'actionnement du sectionneur 3a, de la manière décrite dans le document FR 2801141 A cité plus haut, auquel on se reportera.
De façon connue, le transformateur T de la figure 1 comprend aussi un moyen 32 de détection de • la pression dans la cuve 8, un moyen 33 de détection du niveau de ce diélectrique liquide, un contact 34 qui est fermé par ce moyen de détection 33 lorsque le niveau devient inférieur à une valeur donnée, un circuit qui est fermé lors de la fermeture du contact 34, ce circuit comprenant un percuteur 35 pourvu d'un fil d'acier et une éventuelle résistance de limitation 37. En outre, les pointillés C symbolisent la commande de la fermeture du court-circuiteur triphasé 4a.
Remarquons que le système de coupure et de déconnexion du transformateur de la figure 1 comprend soit un fusible soit un sectionneur sur chaque phase. Ce n'est pas le cas de la présente invention où l'on prévoit à la fois un fusible et un sectionneur sur au moins l'une des phases. En outre, dans un transformateur conforme à l'invention, au moins un sectionneur est placé en amont ou en aval de l'ensemble formé par le ou les fusibles et le court-circuiteur.
On a illustré ceci sur les figures 2 et 3 qui montrent, de façon schématique et partielle, des exemples d'un transformateur de distribution triphasé 1 conforme à l'invention, et sur lesquelles on voit essentiellement un système de coupure et de déconnexion comprenant :
- un groupe de trois fusibles 2 de haute tension, qui sont respectivement associés aux trois phases PI, P2 et P3 d'un réseau d'alimentation triphasé, un sectionneur triphasé 3, comportant trois sectionneurs élémentaires, respectivement associés aux trois phases, et
- un court-circuiteur triphasé 4. Comme dans le cas de la figure 1, le transformateur 1 comprend aussi un circuit de haute tension en forme de triangle 6. Le circuit de basse tension associé, en forme d'étoile, n'est pas représenté. En outre, le transformateur 1 est isolé dans un diélectrique liquide qui est contenu dans une cuve (non représentée) telle que la cuve 8 de la figure 1. Dans les exemples considérés, des micro-fusibles 5 sont également associés au court-circuiteur 4, comme on le voit sur les figures 2 et 3. L'homme du métier déduira aisément le reste de la structure du transformateur 1 à partir de la figure 1 et de ses connaissances .
La figure 2 montre une variante de l'invention où le sectionneur 3 est placé en amont des fusibles 2 et donc du court-circuiteur 4 (et des microfusibles 5) .
Le sectionneur 3 peut également être positionné en aval du court-circuiteur 4 et donc des fusibles 2 comme le montre la variante de la figure 3, où le sectionneur 3 est aussi en amont des microfusibles 5.
Le sectionneur 3 peut également être placé en aval de l'ensemble constitué par les fusibles 2, le court-circuiteur 4 et les microfusibles 5 (variante non représentée) . La cuve 8 est remplie de liquide électriquement isolant L tel que de l'huile et, dans l'exemple illustré par la figure 4, un deuxième bac 86 est placé dans la partie haute de la cuve 8. Ainsi quand le niveau du liquide descend de façon anormale, il reste du liquide dans le bac 86. Cela peut être utilisé dans les exemples de l'invention, que l'on vient de donner.
La figure 5, qui montre le bac 86 en vue de dessus, laisse apparaître plusieurs compartiments 860, 861, 862, 863 et 864 qui retiennent chacun le liquide isolant. Le compartiment 860 comprend un ensemble de trois micro-fusibles 5, les compartiments 861, 862 et 863 isolent respectivement chacun des sectionneurs élémentaires du sectionneur 3, et le compartiment 864 abrite le court-circuiteur 4.
Lorsque le niveau du liquide isolant descend de façon anormale dans la cuve 8, le bac 86 garde encore une certaine quantité de liquide et ce liquide se répartit dans les différents compartiments 860, 861, 862, 863 et 864. Ainsi, en cas de coupure, la décomposition du liquide isolant lors du fonctionnement du court-circuiteur 4 ne peut pas polluer le liquide des autres compartiments 860, 861, 862 et 863, liquide dont les propriétés diélectriques sont ainsi maintenues .
Les compartiments 860, 861, 862, 863 et 864 retenant individuellement le liquide isolant, il est possible, comme on le voit sur la figure 2, de séparer les compartiments selon la position des différents éléments 3, 4 ou 5 dans le schéma électrique. Par exemple, sur la figure 3, on a placé le sectionneur 3 et le court-circuiteur 4 dans un même compartiment 866.
Dans les exemples de l'invention, que l'on vient de donner, on a utilisé des micro-fusibles. Il convient cependant de noter que ces micro-fusibles sont seulement destinés à détecter des courants dont l'intensité est anormalement forte et peuvent être remplacés par d'autres moyens de détection de surintensités, par exemple des tores magnétiques ou des capteurs à effet Hall. De plus, ces micro-fusibles (ou équivalents) ne sont pas indispensables dans l'invention : on peut concevoir un transformateur conforme à l'invention qui ne comporte aucun micro- fusible (ou équivalent) .
En outre, les exemples décrits sont relatifs à un transformateur triphasé mais peuvent être aisément adaptés, par l'homme du métier, à un transformateur biphasé.

Claims

REVENDICATIONS
1. Transformateur de distribution multiphasé (1) , isolé dans un diélectrique liquide et comportant un système de coupure et de déconnexion comprenant au moins un fusible (2) , au moins un sectionneur (3) , et un court-circuiteur (4) , caractérisé en ce que le court-circuiteur (4) et le fusible (2) forment un ensemble à l'extérieur duquel se trouve le sectionneur (3) , ce sectionneur étant placé en amont ou en aval de cet ensemble, et au moins l'une des phases est pourvue à la fois d'un fusible et d'un sectionneur.
2. Transformateur selon la revendication 1, dans lequel le sectionneur (3) est placé en amont du fusible (2) .
3. Transformateur selon la revendication 1, dans lequel le sectionneur (3) est placé en aval du court-circuiteur (4) .
4. Transformateur selon l'une quelconque des revendications 1 à 3, dans lequel le système de coupure et de déconnexion comprend en outre au moins un micro-fusible (5) .
5. Transformateur selon l'une quelconque des revendications 1 à 4, dans lequel au moins un des éléments que comporte le système de coupure et de déconnexion est placé dans un bac (86, 860, 861, 862, 863) de rétention du diélectrique liquide dans lequel est isolé le transformateur (1) .
6. Transformateur selon la revendication 5, dans lequel l'élément est le sectionneur (3).
7. Transformateur selon la revendication 5, dans lequel l'élément est le court-circuiteur (4).
8. Transformateur selon la revendication 5, dans lequel l'élément est le micro-fusible (5).
9. Transformateur selon l'une quelconque des revendications 5 à 6, dans lequel l'élément du système de coupure et de déconnexion est associé à au moins une phase et apte à déconnecter cette phase.
10. Transformateur selon l'une quelconque des revendications 5 à 9, dans lequel chaque élément est placé dans un bac spécifique (860, 861, 862, 863) de rétention du diélectrique liquide.
11. Transformateur selon l'une quelconques des revendications 1 à 10, dans lequel le transformateur est un transformateur à moyenne tension.
12. Transformateur selon l'une quelconque des revendications 1 à 11, dans lequel le diélectrique liquide est de l'huile.
PCT/FR2004/050184 2003-05-09 2004-05-07 Dispositif de protection d'un transformateur de distribution multiphase, a isolation dans un dielectrique liquide WO2004102764A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0305614A FR2854725B1 (fr) 2003-05-09 2003-05-09 Dispositif de protection d'un transformateur de distribution a isolation dans un dielectrique liquide
FR03/05614 2003-05-09

Publications (1)

Publication Number Publication Date
WO2004102764A1 true WO2004102764A1 (fr) 2004-11-25

Family

ID=33306249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2004/050184 WO2004102764A1 (fr) 2003-05-09 2004-05-07 Dispositif de protection d'un transformateur de distribution multiphase, a isolation dans un dielectrique liquide

Country Status (2)

Country Link
FR (1) FR2854725B1 (fr)
WO (1) WO2004102764A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075807A1 (fr) 2007-12-28 2009-07-01 Constructora de Transformadores de Distribucion Cotradis, S.L.U. Équipement électrique pour réseau de distribution avec système de détection de panne, de déconnexion et d'élimination

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2886480B1 (fr) * 2005-05-31 2007-06-29 Areva T & D Sa Dispositif de detection fusible avec controle d'arc pour transformateur auto-protege
FR2936909B1 (fr) * 2008-10-08 2010-11-19 Matelec S A L Systeme de protection pour transformateur electrique polyphase et transformateur electrique comprenant un tel systeme de protection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747245A1 (fr) * 1996-04-04 1997-10-10 Gec Alsthom T & D Sa Systeme de protection d'un transformateur de distribution triphase a isolation dans un dielectrique liquide
FR2801141A1 (fr) * 1999-11-17 2001-05-18 Alstom Systeme de protection d'un transformateur de distribution triphase a isolation dans un dielectrique liquide comportant un micro-sectionneur
EP1122848A1 (fr) * 2000-01-31 2001-08-08 Societe Nouvelle Transfix Toulon Dispositif de protection perfectionne contre les effects des défauts internes d'un transformateur triphase
EP1304785A1 (fr) * 2001-10-22 2003-04-23 Alstom Système de protection d'un transformateur de distribution polyphasé à isolation dans un diélectrique liquide, comportant au moins un interrupteur sectionneur de phase

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2747245A1 (fr) * 1996-04-04 1997-10-10 Gec Alsthom T & D Sa Systeme de protection d'un transformateur de distribution triphase a isolation dans un dielectrique liquide
FR2801141A1 (fr) * 1999-11-17 2001-05-18 Alstom Systeme de protection d'un transformateur de distribution triphase a isolation dans un dielectrique liquide comportant un micro-sectionneur
EP1122848A1 (fr) * 2000-01-31 2001-08-08 Societe Nouvelle Transfix Toulon Dispositif de protection perfectionne contre les effects des défauts internes d'un transformateur triphase
EP1304785A1 (fr) * 2001-10-22 2003-04-23 Alstom Système de protection d'un transformateur de distribution polyphasé à isolation dans un diélectrique liquide, comportant au moins un interrupteur sectionneur de phase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075807A1 (fr) 2007-12-28 2009-07-01 Constructora de Transformadores de Distribucion Cotradis, S.L.U. Équipement électrique pour réseau de distribution avec système de détection de panne, de déconnexion et d'élimination

Also Published As

Publication number Publication date
FR2854725B1 (fr) 2006-12-29
FR2854725A1 (fr) 2004-11-12

Similar Documents

Publication Publication Date Title
EP1304785B1 (fr) Système de protection d'un transformateur de distribution polyphasé à isolation dans un diélectrique liquide, comportant au moins un interrupteur sectionneur de phase
EP1974362B1 (fr) Disjoncteur de générateur avec résistance insérée
BE1012970A5 (fr) Coupe-circuit pour debrancher un appareil electrique du reseau electrique.
FR2948490A1 (fr) Dispositif de protection d'une installation electrique contre des surtensions transitoires
EP0817346B1 (fr) Dispositif de protection contre les effets des défauts internes d'un appareil électrique
EP0800251A1 (fr) Système de protection d'un transformateur de distribution triphasé à isolation dans un diélectrique liquide
EP3577672A1 (fr) Dispositif de coupure de courant continu haute tension
EP0981140B1 (fr) Transformateur immerge auto-protege par un dispositif incluant un disjoncteur et des fusibles
FR2999792A1 (fr) Dispositif de protection d'un appareil electronique alimente par un reseau polyphase
FR3072826A1 (fr) Appareil de coupure electrique, procede et installation utilisant un tel appareil
EP1102379B1 (fr) Système de protection d'un transformateur de distribution triphasé à isolation dans un diélectrique liquide comportant un micro-sectionneur
EP1122848B1 (fr) Dispositif de protection perfectionne contre les effects des défauts internes d'un transformateur triphase
WO2004102764A1 (fr) Dispositif de protection d'un transformateur de distribution multiphase, a isolation dans un dielectrique liquide
EP0204594B1 (fr) Appareil interrupteur protégé contre les courants de court-circuit
EP1842269A2 (fr) Appareil de protection d'une installation electrique a capacite de coupure amelioree
EP3073504A1 (fr) Interrupteur d'un reseau triphase
FR3067165A1 (fr) Systeme d'hybridation pour courant continu haute tension
WO2012022901A1 (fr) Systeme de protection pour transformateur electrique
EP0653765A1 (fr) Transformateur électrique polyphasé immergé auto-protégé
FR2678770A1 (fr) Disjoncteur hybride haute tension a grande tension d'arc.
WO2024121486A1 (fr) Contacteur electrique a dispositif de coupure integre
EP4343808A1 (fr) Dispositif non-électrique pour la substitution d'un capteur de courant dans une chambre de coupure d'un interrupteur-sectionneur, ainsi qu interrupteur-sectionneur comportant un tel dispositif non-électrique
FR2708136A1 (fr) Dispositif de déconnexion d'un appareil électrique, notamment un transformateur de distribution, immergé et protégé par fusible.
FR2874288A1 (fr) Dispositif de protection contre les surtensions a eclateurs en parallele
FR2481512A1 (fr) Disjoncteur a gaz comprime de grande puissance pour alternateur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: CONSTATATION DE LA PERTE D UN DROIT CONFORMEMENT AE LA REGLE 69(1) CBE

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase