WO2004101972A1 - Procede de fonctionnement d'un moteur a combustion interne - Google Patents

Procede de fonctionnement d'un moteur a combustion interne Download PDF

Info

Publication number
WO2004101972A1
WO2004101972A1 PCT/EP2004/004929 EP2004004929W WO2004101972A1 WO 2004101972 A1 WO2004101972 A1 WO 2004101972A1 EP 2004004929 W EP2004004929 W EP 2004004929W WO 2004101972 A1 WO2004101972 A1 WO 2004101972A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
amount
air mixture
injection
air
Prior art date
Application number
PCT/EP2004/004929
Other languages
German (de)
English (en)
Inventor
Jürgen Ringler
Wolfgang Strobl
Andreas SCHÜERS
Helmut Eichlseder
Andreas Wimmer
Thomas Wallner
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Publication of WO2004101972A1 publication Critical patent/WO2004101972A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0206Non-hydrocarbon fuels, e.g. hydrogen, ammonia or carbon monoxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/023Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/024Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0027Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures the fuel being gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the invention relates to a method for operating a gas-operated, in particular hydrogen-powered, internal combustion engine with a device for injecting the fuel into the combustion chamber and a device for igniting the fuel-air mixture.
  • a gas-fueled internal combustion engine in contrast to a gasoline or diesel-fueled internal combustion engine, means an operation with a fuel which has comparatively wide ignition limits, such as hydrogen or hydrogen-containing gas mixtures, which in particular also include carbon monoxide and / or dioxide and / or Nitrogen and / or methane include, with hydrogen not necessarily having the largest share.
  • a fuel which has comparatively wide ignition limits, such as hydrogen or hydrogen-containing gas mixtures, which in particular also include carbon monoxide and / or dioxide and / or Nitrogen and / or methane include, with hydrogen not necessarily having the largest share.
  • DE 37 31 986 A1 Such a method is known from DE 37 31 986 A1. Based on the problem of operating an internal combustion engine with hydrogen (H 2 ) so that on the one hand, the nitrogen oxide emission (NO ⁇ emission) is reduced as much as possible and on the other hand, a simple power control is possible, proposes DE 37 31 986 A1, the outer mixture formation,
  • a second injector is provided for fuel injection into the intake line with external mixture formation and for fuel injection into the combustion chamber with internal mixture formation, a control of the injectors by means of the engine control.
  • the invention is therefore based on the object to provide an aforementioned method, which combines the advantages of a multi-stage fuel injection before and after the ignition while avoiding the disadvantages of an external mixture formation in itself.
  • the object is achieved by the features of claim 1, wherein according to the underlying idea at least a first amount of fuel is injected into the combustion chamber, forming a fuel-air mixture, the fuel-air mixture is ignited and at least a second amount of fuel is blown into the burning fuel-air mixture.
  • the fuel-air mixture formed with the at least one first amount of fuel has an excess of air, so that with the first amount of fuel, a fuel-air mixture with an air ratio ⁇ > 1 is formed.
  • the fuel-air mixture formed with the at least one first fuel quantity has an air ratio ( ⁇ ) which lies at least approximately in the region of the transition to the negligible level.
  • the fuel-air mixture formed with the at least one first fuel quantity has an air ratio ( ⁇ ) in the range 1, 5 ⁇ , in particular in the range 1, 8 ⁇ . It is regarded as very advantageous if the determination of the injection parameters such as time, duration or quantity / time of the at least one first fuel quantity takes place with a view to optimized homogenization of the fuel-air mixture.
  • the injection of the at least one first amount of fuel after closing the intake valve and / or the ignition of the fuel-air mixture begins at least approximately in the region of top dead center (TDC), wherein according to another, also preferred embodiment, the ignition of the fuel Air mixture can also be done before reaching the top dead center (TDC).
  • the injection of the at least one second quantity of fuel depends on the burning rate and / or the course of combustion of the fuel-air mixture, for example -10-30 ° crankshaft angle, in particular 0-20 ° crankshaft angle, after TDC, he follows.
  • the dependence of the at least one second injection quantity on the load lever is preferred, whereby an increasing amount of fuel is injected only from a load lever of approximately 50% in the direction of the 100% load lever.
  • the injection end of the at least one first fuel quantity correlates at least approximately with the start of injection of the at least one second fuel quantity.
  • the combustion is initiated by means of spark ignition and a pressure / Brennverlaufsformung about the Einblasestrategie, ie via the regulation the amount of fuel before and after ignition takes place without the formation of soot occurs.
  • the ignition timing can be chosen arbitrarily to optimize efficiency and performance.
  • Combustion is not as big as conventional diesel engines and there already present a very willing to ignite and Verbrennungsfördemdes homogeneous fuel / air mixture in the combustion chamber by the pre-introduced amount of fuel.
  • the ignitability and combustion characteristics, for example the higher burning speed, of the stated fuels allow a faster conversion even with non-premixed combustion and the turbulent flow conditions in the combustion chamber can be explicitly optimized for the combustion of the amount of fuel introduced after ignition, so that high from this side Speeds are possible.
  • the peak temperature level in the combustion chamber can be significantly reduced.
  • the lower pressure and temperature-side load on the combustion control allows a component design similar to the gasoline engine. Despite high compression therefore occur for the diesel engine higher friction losses and the associated reduction of the effective efficiency does not occur.
  • the combustion control can also reduce wall heat losses.
  • the method according to the invention has a specific influence on the combustion process, in particular on the start of combustion and the pressure waveform, so that both a high power density, corresponding to a high rotational speed, a low friction power and due to lower pressure increases and peak pressures softer engine noise and due to the high compression ratio high efficiency and high torque can be achieved and at the same time the formation of nitrogen oxides at high engine loads can be significantly reduced.
  • FIG. 1 shows a pressure curve during two-stage fuel injection before and after spark ignition
  • Figure 3a shows a discrete two-stage injection as well
  • FIG. 3b shows a transitional two-stage injection.
  • Figure 1 relates to a hydrogen-powered four-stroke multi-cylinder internal combustion engine not shown here with internal mixture formation and spark ignition, the invention of course also in another internal combustion engine, such as Wankel engine or Two-stroke internal combustion engine, can be used.
  • the combustion chambers of the cylinders can be filled with air in each case via at least one inlet valve, wherein the supplied air may optionally contain recirculated exhaust gas and / or alternatively or additionally further admixtures and / or with increased pressure (charging) can be supplied.
  • an injector For injecting the fuel at a pressure of about 100 to 300 bar, an injector is provided which can be controlled by means of the internal combustion engine control including a plurality of parameters; the spark ignition in the power stroke is also controlled by the engine control in the present case by means of a spark plug, wherein in another embodiment, another ignition device may be used.
  • the burned mixture is ejected via at least one exhaust valve and possibly fed to an exhaust aftertreatment system, wherein in the present case, an exhaust gas after-treatment with respect to the emitted nitrogen oxides (NO x ), for example by means of a three-way catalyst or a NO ⁇ storage catalytic converter takes place.
  • NO x emitted nitrogen oxides
  • the hydrogen is entrained cryogenic and liquid in a cryogenic tank on board the vehicle and injected after evaporation in the gaseous state into the combustion chamber, wherein it is emphasized that the invention of the storage type of hydrogen is independent, so stored according to another embodiment, the hydrogen also differently and can be fed ..
  • FIG. 1 shows, in a diagram 100, a pressure profile 102 in the case of two-stage fuel injection before and after spark ignition plotted against the crankshaft angle ⁇ and illustrates the arbitrary influenceability of the combustion process with the method according to the invention.
  • the first amount of fuel is such that a fuel-air mixture with 1, 5 ⁇ , in particular 1, 8 ⁇ , results.
  • the increase dp / d ⁇ is flatter with a larger ⁇ and a lower maximum cylinder pressure p max is achieved.
  • the ignition takes place in the present embodiment, a few degrees crank angle before reaching the top dead center (ZOT).
  • FIG. 2 shows in a diagram 200 pressure curves for single injection 202 and multiple injection 204 for a hydrogen-operated internal combustion engine with direct injection in comparison.
  • the illustration relates to the crankshaft angle ⁇ and includes a single-injection and multiple-injection 208 and single-injection 210 and multiple-injection 212; ZOT marks top dead center, UT indicates bottom dead center.
  • the pressure ratio of combustion chamber pressure and hydrogen supply pressure must be below the critical pressure ratio of about 0.5, which corresponds to a hydrogen supply pressure of about 200 to 300 bar.
  • the high injection pressures can have a positive effect not only on the mixture formation / homogenization process of the second injection, but also on the first injection.
  • FIGS. 3a and 3b show various injection strategies 300 and 350 for realizing a combustion control, with the injected fuel quantity (n) m in each case being shown as a function of the crankshaft angle ⁇ .
  • the top dead center in the charge cycle cycle is WOT
  • the top dead center in the power stroke is designated ZOT
  • UT marks the bottom dead center.
  • the cylinder inlet opens at EO and closes at ES
  • Both strategies 300, 350 have in common that after ignition, a subset of hydrogen is injected directly into the combustion. While, however, in FIG. 3 a, a first amount of hydrogen is supplied during ⁇ i via an early internal mixture formation and a second amount of hydrogen is blown in during ⁇ 2 after ignition and in the present case also after ZOT, the introduction of the first and second quantities of H 2 occurs according to FIG before and after ignition via an injection process .DELTA. ⁇ - ⁇ , so that even a single injection with intermittent ignition can be spoken.
  • the parameters ⁇ -i, ⁇ - ⁇ , ⁇ 2 , ⁇ 2 freely selectable depending on the speed and load lever, where i and ⁇ 2 each mark the beginning of injection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

L'invention concerne un procédé permettant de faire fonctionner un moteur à combustion interne fonctionnant au gaz, notamment à l'hydrogène, pourvu d'un équipement d'injection du carburant dans la chambre de combustion et d'un équipement d'allumage du mélange air-carburant. Au moins une première quantité de carburant est injectée dans la chambre de combustion, ce qui permet d'obtenir un mélange air-carburant. Ce mélange air-carburant est allumé et au moins une deuxième quantité de carburant est injectée dans ce mélange air-carburant.
PCT/EP2004/004929 2003-05-14 2004-05-06 Procede de fonctionnement d'un moteur a combustion interne WO2004101972A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10321794A DE10321794A1 (de) 2003-05-14 2003-05-14 Verfahren zum Betreiben einer Brennkraftmaschine
DE10321794.0 2003-05-14

Publications (1)

Publication Number Publication Date
WO2004101972A1 true WO2004101972A1 (fr) 2004-11-25

Family

ID=33440827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/004929 WO2004101972A1 (fr) 2003-05-14 2004-05-06 Procede de fonctionnement d'un moteur a combustion interne

Country Status (2)

Country Link
DE (1) DE10321794A1 (fr)
WO (1) WO2004101972A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078079A1 (fr) * 2005-01-24 2006-07-27 Toyota Jidosha Kabushiki Kaisha Moteur a combustion interne a taux de compression variable
CN106460689A (zh) * 2014-03-21 2017-02-22 西港能源有限公司 用于操作气体燃料直接注入式内燃发动机的方法和系统
EP3425188A1 (fr) * 2017-07-07 2019-01-09 PGES Günther Herdin technisches Büro GmbH Procédé de fonctionnement d'un moteur à combustion interne et moteur à combustion interne
CN110552805A (zh) * 2019-08-27 2019-12-10 华北水利水电大学 一种氢气多次直喷内燃机燃烧控制系统和方法
WO2021074173A1 (fr) * 2019-10-17 2021-04-22 Man Truck & Bus Se Procédé de fonctionnement d'un moteur à combustion interne
US11506140B1 (en) * 2021-06-10 2022-11-22 Hyundai Motor Company Control apparatus and method of engine for hybrid vehicle
WO2023004017A1 (fr) * 2021-07-22 2023-01-26 Achates Power, Inc. Moteur à pistons opposés alimenté par hydrogène
US11933215B2 (en) 2022-02-21 2024-03-19 Achates Power, Inc. Hydrogen opposed-piston engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017116648A1 (de) 2017-07-24 2019-01-24 Keyou GmbH Verbrennungskraftmaschine, insbesondere für ein Kraftfahrzeug, sowie Verfahren zum Betreiben einer solchen Verbrennungskraftmaschine
DE102017120512B4 (de) 2017-09-06 2022-09-29 Keyou GmbH Verfahren zum Betreiben eines Wasserstoffmotors für ein Kraftfahrzeug
DE102019213132A1 (de) 2019-08-30 2021-03-04 Ford Global Technologies, Llc Verfahren zum Betreiben eines Wasserstoffverbrennungsmotors mit interner Abgasrückführung, Motorsystem, Kraftfahrzeug und Computerprogrammprodukt
AT524012B1 (de) 2020-07-03 2022-10-15 Avl List Gmbh Gasbetriebene Brennkraftmaschine und Abgasreinigung hierfür
DE102022209619A1 (de) * 2022-09-14 2024-03-14 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben eines Gasinjektors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3731986A1 (de) * 1987-09-23 1989-04-13 Deutsche Forsch Luft Raumfahrt Verfahren zum betrieb eines verbrennungsmotors mit wasserstoff als kraftstoff und verbrennungsmotor fuer dieses verfahren
US5609131A (en) * 1995-10-11 1997-03-11 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Multi-stage combustion engine
WO2001059285A2 (fr) * 2000-02-11 2001-08-16 Westport Research Inc. Procede et appareil permettant d'introduire du carburant gazeux et de reguler la combustion dans un moteur a combustion interne
DE10052336A1 (de) * 2000-10-22 2002-05-02 Gvh Entwicklungsgesellschaft F Brennkraftmaschine mit Einblasung von gasförmigem Kraftstoff
US20020078918A1 (en) * 2000-12-26 2002-06-27 Richard Ancimer Method and apparatus for gaseous fuel introduction and controlling combustion in an internal combustion engine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE137514C (fr) *
DE3007664A1 (de) * 1980-02-29 1981-09-10 Daimler-Benz Ag, 7000 Stuttgart Verfahren zum betreiben einer mit homogenem gas betriebenen fremdgezuendeten brennkraftmaschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3731986A1 (de) * 1987-09-23 1989-04-13 Deutsche Forsch Luft Raumfahrt Verfahren zum betrieb eines verbrennungsmotors mit wasserstoff als kraftstoff und verbrennungsmotor fuer dieses verfahren
US5609131A (en) * 1995-10-11 1997-03-11 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Multi-stage combustion engine
WO2001059285A2 (fr) * 2000-02-11 2001-08-16 Westport Research Inc. Procede et appareil permettant d'introduire du carburant gazeux et de reguler la combustion dans un moteur a combustion interne
DE10052336A1 (de) * 2000-10-22 2002-05-02 Gvh Entwicklungsgesellschaft F Brennkraftmaschine mit Einblasung von gasförmigem Kraftstoff
US20020078918A1 (en) * 2000-12-26 2002-06-27 Richard Ancimer Method and apparatus for gaseous fuel introduction and controlling combustion in an internal combustion engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006078079A1 (fr) * 2005-01-24 2006-07-27 Toyota Jidosha Kabushiki Kaisha Moteur a combustion interne a taux de compression variable
CN110700953A (zh) * 2014-03-21 2020-01-17 西港能源有限公司 气体燃料直接注入式内燃发动机
CN110700953B (zh) * 2014-03-21 2022-05-24 西港燃料系统加拿大公司 气体燃料直接注入式内燃发动机
US10167786B2 (en) 2014-03-21 2019-01-01 Westport Power Inc. Method and system for operating gaseous-fuelled direct injection internal combustion engine
CN106460689A (zh) * 2014-03-21 2017-02-22 西港能源有限公司 用于操作气体燃料直接注入式内燃发动机的方法和系统
CN106460689B (zh) * 2014-03-21 2020-02-28 西港能源有限公司 用于操作气体燃料直接注入式内燃发动机的方法和系统
EP3120005A4 (fr) * 2014-03-21 2017-11-15 Westport Power Inc. Procédé et système de fonctionnement de moteur à combustion interne à injection directe à carburant gazeux
EP3425188A1 (fr) * 2017-07-07 2019-01-09 PGES Günther Herdin technisches Büro GmbH Procédé de fonctionnement d'un moteur à combustion interne et moteur à combustion interne
CN110552805A (zh) * 2019-08-27 2019-12-10 华北水利水电大学 一种氢气多次直喷内燃机燃烧控制系统和方法
WO2021074173A1 (fr) * 2019-10-17 2021-04-22 Man Truck & Bus Se Procédé de fonctionnement d'un moteur à combustion interne
US11506140B1 (en) * 2021-06-10 2022-11-22 Hyundai Motor Company Control apparatus and method of engine for hybrid vehicle
US20220397076A1 (en) * 2021-06-10 2022-12-15 Hyundai Motor Company Control apparatus and method of engine for hybrid vehicle
WO2023004017A1 (fr) * 2021-07-22 2023-01-26 Achates Power, Inc. Moteur à pistons opposés alimenté par hydrogène
US11898448B2 (en) 2021-07-22 2024-02-13 Achates Power, Inc. Hydrogen-powered opposed-piston engine
US11933215B2 (en) 2022-02-21 2024-03-19 Achates Power, Inc. Hydrogen opposed-piston engine

Also Published As

Publication number Publication date
DE10321794A1 (de) 2004-12-09

Similar Documents

Publication Publication Date Title
DE102006007279B4 (de) Kompressionsgezündeter Verbrennungsmotor und Betriebsverfahren
DE112006003590B4 (de) Verdichtungszündungseinleitungsvorrichtung und Verbrennungsmotor, der diese verwendet
DE10147529B4 (de) Verfahren zum Betreiben einer mit selbstzündbarem Kraftstoff betriebenen Brennkraftmaschine
DE10161551B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine
WO2004088109A1 (fr) Moteur a combustion interne a auto-allumage
DE102018101890A1 (de) Verbrennungsmotor
WO2005100768A1 (fr) Procede pour faire fonctionner un moteur a combustion a injection directe de carburant
WO2007031157A1 (fr) Procede pour faire fonctionner un moteur a combustion a allumage commande
WO1999047797A1 (fr) Procede pour faire fonctionner un moteur a combustion interne quatre temps a piston alternatif
EP2446133A1 (fr) Procédé pour faire fonctionner un moteur à combustion interne
WO2004101972A1 (fr) Procede de fonctionnement d'un moteur a combustion interne
EP0864734B1 (fr) Procédé pour alimenter en carburant la chambre de combustion d'un moteur à injection directe et à allumage commandé
WO2020249277A1 (fr) Procédé pour faire fonctionner un moteur à combustion interne par hydrogène, moteur à combustion interne par hydrogène et véhicule automobile
DE10344428B4 (de) Verfahren zum Betrieb einer Brennkraftmaschine
EP2129894A2 (fr) Procédé de combustion pour un moteur à combustion interne à pistons alternatifs
EP1549844A1 (fr) Moteur a combustion interne a auto-allumage
EP4045784B1 (fr) Procédé de fonctionnement d'un moteur à combustion interne
DE10160057A1 (de) Brennkraftmaschine mit Kompressionszündung
EP3953574B1 (fr) Procédé pour faire fonctionner un moteur à combustion interne
WO2021048024A1 (fr) Procédé de fonctionnement d'un moteur à combustion interne
EP3504415B1 (fr) Moteur à combustion interne à gaz et procédé de fonctionnement associé
WO2024223346A1 (fr) Procédé pour faire fonctionner un moteur à combustion interne à piston alternatif
DE102022101345A1 (de) Verfahren zum Beheizen einer Abgasnachbehandlungskomponente sowie Verbrennungsmotor
CH717344A1 (de) Motor mit Vorkammerzündung und Verfahren zum Steuern eines solchen Motors.
DE102023203862A1 (de) Verfahren zum Betreiben einer Hubkolben-Verbrennungskraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase