WO2004101643A1 - Epoxy resin, method for producing same and epoxy resin composition - Google Patents

Epoxy resin, method for producing same and epoxy resin composition Download PDF

Info

Publication number
WO2004101643A1
WO2004101643A1 PCT/JP2004/006779 JP2004006779W WO2004101643A1 WO 2004101643 A1 WO2004101643 A1 WO 2004101643A1 JP 2004006779 W JP2004006779 W JP 2004006779W WO 2004101643 A1 WO2004101643 A1 WO 2004101643A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
ring
general formula
aromatic
represented
Prior art date
Application number
PCT/JP2004/006779
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Kaji
Takehiro Shimizu
Kohichiro Ohgami
Kazuhiko Nakahara
Original Assignee
Nippon Steel Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co., Ltd. filed Critical Nippon Steel Chemical Co., Ltd.
Publication of WO2004101643A1 publication Critical patent/WO2004101643A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1405Polycondensates modified by chemical after-treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • H01L23/49894Materials of the insulating layers or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • Epoxy resin method for producing the same, and epoxy resin composition
  • the present invention provides a cured product having excellent low viscosity and excellent moisture resistance and heat resistance.
  • the present invention relates to a novel epoxy resin to be provided, a method for producing the same, and an epoxy resin composition using the same and a cured product thereof.
  • the epoxy resin and the epoxy resin composition are useful as encapsulating agents for electric and electronic parts typified by semiconductor devices, and as curing agents for coating materials, laminated materials, composite materials, and the like. It is suitably used as an insulating material in the electric and electronic fields.
  • Epoxy resins have been used in a wide range of industrial applications, but their required performance has been increasingly sophisticated in recent years.
  • a typical field of resin compositions containing epoxy resin as a main component is a semiconductor encapsulating material.
  • package sizes have become larger and thinner.
  • the mounting method is also shifting to surface mounting, and the development of materials with better solder heat resistance is desired.
  • liquid materials without using dies such as metal arrays and plastic poll grid arrays.
  • liquid materials generally have lower reliability than solid materials used for transfer molding. This is largely because the liquid material has a viscosity limit, and the resin, curing agent, filler, etc. used are limited.
  • the epoxy resin and curing agent which are the main components, have low viscosity, low moisture absorption, and high heat resistance.
  • low-viscosity epoxy resins bisphenol A-type epoxy resins, pi-phenol F-type epoxy resins, etc. are generally widely known, but they are not sufficient in terms of low viscosity and have reduced heat resistance. There was a problem that caused it.
  • JP 3-221519A proposes an epoxy resin composition using an epoxy resin derived from dihydroxynaphthylene, but still has a low viscosity. Sex was not enough.
  • an object of the present invention is to provide a novel epoxy resin which provides a cured product excellent in low viscosity and excellent in moisture resistance and heat resistance, a method for producing the same, an epoxy resin composition using the same, and an epoxy resin composition using the same. It is to provide a cured product.
  • the present invention provides a compound represented by the general formula (1):
  • the hydrogenation rate of the aromatic ring obtained by hydrogenating the aromatic epoxy resin represented by the formula is 10 to 100%.
  • the epoxy resin is preferably 20 to 95%.
  • ring B represents an aliphatic ring or an aromatic ring
  • G represents a glycidyl group
  • the present invention is a method for producing an epoxy resin represented by the general formula (1), comprising hydrogenating an aromatic epoxy resin represented by the general formula (2).
  • the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent, an epoxy resin composition comprising the above epoxy resin, and a cured product obtained by curing the epoxy resin composition.
  • the epoxy resin of the present invention is represented by the above general formula (1), and has a structure in which the aromatic ring of the aromatic epoxy resin of the above general formula (2) is completely or partially hydrogenated. It is a hydrogenated epoxy resin.
  • the hydrogenation rate of the aromatic ring of the epoxy resin of the present invention is in the range of 10 to 100%, preferably 20 to 95%, and more preferably 30 to 90%. is there. If it is lower than this, the effect of low viscosity is difficult to be exhibited.
  • the condensed ring having a structure in which two rings A are condensed may be a condensed cycloalkane such as a tetralin ring or a decalin ring or a condensed ring of a cycloalkane and an aromatic ring.
  • An aromatic ring may be one in which an incompletely hydrogenated ring has an aliphatic double bond.
  • the aliphatic ring means not only cycloalkane but also one or more unsaturated double bonds. It is used in a sense including cycloalgens having.
  • the hydrogenated epoxy resin having a structure in which the aromatic ring of the aromatic epoxy resin of the general formula (2) is completely or partially hydrogenated has an average of 10 to 100% of the aromatic ring.
  • the hydrogenated epoxy resin as a reaction product may be a mixture having a hydrogenation rate of 0%, 100%, or an intermediate hydrogenation rate.
  • a hydrogenation rate of 0% refers to a state in which all of the naphthylene ring remains as an aromatic ring
  • 100% refers to a state in which all of the naphthylene ring is a decalin ring.
  • n represents a number from 0 to 15, but from the viewpoint of low viscosity, n is preferably small, and the average value of n is in the range of 0 to 3. It is.
  • the main component is an epoxy compound in which n is 0, and the preferable content is 50 wt% or more, more preferably 70 wt% or more. From the viewpoint of flexibility, those having large n are preferable, and the average value of n is in the range of 5 to 15.
  • the aromatic epoxy resin represented by the general formula (2) may remain in the epoxy resin of the present invention.
  • the epoxy resin of the present invention can be produced by selectively hydrogenating an aromatic ring of an aromatic epoxy resin represented by the general formula (2) by a known method in the presence of a catalyst. .
  • a catalyst a method in which an aromatic epoxy resin is dissolved in an organic solvent and a hydrogenation reaction is selectively performed on an aromatic ring in the presence of a catalyst in which rhodium or ruthenium is supported on a carbonaceous carrier is used.
  • a carbonaceous carrier is suitably used, and among them, graphite or car pump rack is preferred.
  • the preferred surface area of the carbonaceous support is from 10 to 400 m 2 / g, more preferably from 50 to 300 m 2 / g.
  • the pressure during the reaction is usually in the range of 1 to 30 MPa, preferably in the range of 3 to 15 MPa.
  • the reaction temperature is usually in the range of 30 to 150 ° C, preferably in the range of 50 to 120 ° C.
  • the reaction time is generally in the range from 0.5 to 20 hours, preferably from 1 to 10 hours. Control of the hydrogenation rate can be performed by monitoring the amount of hydrogen absorbed.
  • the hydrogenation rate is preferably in the range of 10 to 100%, preferably 10 to 95%, and more preferably 30 to 80%.
  • Organic solvents used in the reaction include ethers such as getyl ether, tetrahydrofuran and dioxane, alcohols such as ethanol, isopropanol and n-butanol, cyclohexane, methylcyclohexane, n-heptane, isoheptane and n-one.
  • ethers such as getyl ether, tetrahydrofuran and dioxane
  • alcohols such as ethanol, isopropanol and n-butanol
  • cyclohexane methylcyclohexane
  • n-heptane isoheptane and n-one.
  • Aliphatic hydrocarbons such as octane and isooctane
  • ketones such as methylethyl ketone, methyl isobutyl ketone and cyclohexanone
  • aliphatic esters such as ethyl acetate, isopropyl acetate and n-butyl acetate, and mixtures of two or more of these.
  • Z or aliphatic ester solvents are preferred.
  • the aromatic epoxy resin represented by the general formula (2) which is a raw material of the epoxy resin of the present invention, is synthesized by reacting dihydroxynaphthalenes and epichlorohydrin in the presence of a basic compound according to a usual method. I can do it.
  • dihydroxynaphthylenes include 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthylene, 1,4-dihydroxynaphthylene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, Naphthylene, 1,7-dihydroxynaphthylene, 1,8-dihydroxynaphthylene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, and 2,7-dihydroxynaphthylene. These dihydroxynaphthalenes may be used alone or in a mixture.
  • the hydroxy group may have two hydroxy groups on only one of the naphthalene rings, or may have one hydroxy group on both rings.
  • 2004/006779 The epoxy resin obtained by the reaction between dihydroxynaphthalenes and epichlorohydrin is usually obtained as a mixture of those having different numbers of n in the above general formula (2). From an industrial point of view, this mixture is directly subjected to a hydrogenation reaction as an epoxy resin.
  • the aromatic epoxy resin used as a raw material of the epoxy resin of the present invention mainly has an n number of 0 to 15 but has an n number of 16 or more. Is also good. From the viewpoint of lowering the viscosity, the smaller the number of n is, the more preferable it is.
  • Epoxy resins with a small number of n can be obtained by reacting a large excess of epichlorohydrin with dihydroxynaphthylene during the epoxidation reaction.
  • a method such as molecular distillation can be used to separate the mixture from the epoxy compound obtained by the epoxidation reaction.
  • Epoxy resins obtained by the reaction of dihydroxynaphthalenes with epichlorohydrin usually contain, in addition to the compound having the structure represented by the general formula (2), dihydroxynaphthalenes.
  • the remaining chlorohydrin remains without ring closure with epichlorohydrin added to the hydroxyl group.
  • the chlorine derived from the chlorohydrin compound is called hydrolyzable chlorine. If the residual amount is large, the reliability of the electronic component is reduced when an epoxy resin is used for sealing the electronic component.
  • the hydrolyzable chlorine in the epoxy resin used as the raw material of the epoxy resin of the present invention is usually at most 200 ppm, preferably at most 100 ppm, more preferably at most 400 ppm. .
  • Sex chlorine is prepared by dissolving 0.5 g of a sample in 30 ml of dioxane, adding 10 ml of IN-KOH, refluxing for 30 minutes, cooling to room temperature, and further adding 100 ml of 80% acetone water. It was added, a constant value measured by performing potentiometric titration with 0. 002N- AgN0 3 solution.
  • the molecular weight (or the number of n) of the epoxy resin of the present invention substantially corresponds to the molecular weight of the aromatic epoxy resin used as the raw material of the epoxy resin of the present invention
  • a method such as molecular distillation after the hydrogenation reaction is used. May be used to adjust the molecular weight.
  • the chlorine content also substantially corresponds to the chlorine content contained in the aromatic epoxy resin used as the raw material for the epoxy resin of the present invention. However, after the hydrogenation reaction, the chlorine content is further reduced by contact with a basic compound. Removal may be performed.
  • the epoxy compound of the present invention is represented by the general formula (3), wherein ring B is an aliphatic ring or an aromatic ring, and when the ring is an aliphatic ring, a double bond is partially left. You may.
  • This epoxy compound is obtained by hydrogenating an aromatic epoxy resin (compound) in which n is 0, which is an aromatic epoxy resin represented by the general formula (2).
  • the hydrogenation rate is preferably in the range of 50 to 90%.
  • the epoxy resin composition of the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent, and preferably contains the epoxy resin and the curing agent as main components of the resin.
  • the epoxy resin components include: a) an epoxy resin represented by the above general formula (1); b) an epoxy resin obtained by hydrogenating the epoxy resin represented by the above general formula (2) by 10 to 100%. C) an epoxy compound represented by the general formula (3) or d) an epoxy resin obtained by the above-mentioned production method as an essential component. Including.
  • the epoxy resin represented by the general formula (1) is preferable and typical, so that the epoxy resin represented by the general formula (1) is a representative of the epoxy resin of the present invention. Will be explained.
  • any of those generally known as curing agents for epoxy resins can be used. Examples include dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines, and the like.
  • polyphenols include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 * -biphenol, 2,2'-biphenol, hydroquinone, resorcinol, and naphtha.
  • Divalent phenols such as diols; or tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol nopolak, 0-cresol
  • tri- or higher-valent phenols represented by nopolak, naphtholnopolak, polyvinylphenol, and the like.
  • polyphenols, naphthols, or divalent phenols as described above, and a condensing agent such as formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, or p-xylylene diol are used.
  • a condensing agent such as formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, or p-xylylene diol
  • Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhexamic anhydride, nadic anhydride, and anhydrous anhydride.
  • trimellitic acid There is trimellitic acid.
  • amines examples include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, and m-phenylenediamine.
  • aromatic amines such as amine and P-xylylenediamine
  • aliphatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine and triethylenetetramine.
  • one or more of these curing agents can be used in combination.
  • another epoxy resin may be blended as an epoxy resin component in addition to the epoxy resin of the present invention represented by the general formula (1).
  • the epoxy resin in this case any ordinary epoxy resin having two or more epoxy groups in the molecule can be used.
  • Examples include divalent phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcin; or tris- (4-hydroxy Trivalent or more phenols such as phenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol nopol, and 0-cresol novolac; or tetrabromobisphenol A Halogenated bisphenols; darcidyl ether compounds derived from These epoxy resins can be used alone or in combination of two or more.
  • the compounding amount is preferably in the range of 5 to 100% by weight, and more preferably in the range of 60 to 100% by weight of the entire epoxy resin. .
  • an oligomer or a high molecular compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene maron resin, and phenoxy resin may be appropriately blended.
  • additives such as an inorganic filler, a pigment, a repellent, a thixotropic agent, a coupling agent, and a fluidity improver may be blended.
  • the inorganic filler include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, myriki, talc, calcium carbonate, alumina, and hydrated alumina.
  • Examples of the pigment include organic or inorganic extender pigments and scaly pigments.
  • Examples of the thixotropic agent include a silicone type, a castor oil type, an aliphatic amide wax, an oxidized polyethylene wax, and an organic bentonite type.
  • the resin composition of the present invention may further contain a releasing agent such as carnauba wax and OP dex, a coupling agent such as glycidoxypropyltrimethoxysilane, a coloring agent such as a car pump rack, and the like.
  • a releasing agent such as carnauba wax and OP dex
  • a coupling agent such as glycidoxypropyltrimethoxysilane
  • a coloring agent such as a car pump rack, and the like.
  • Flame retardants such as antimony oxide, low stress agents such as silicone oil, lubricants such as calcium stearate, and the like can be used.
  • a known curing accelerator can be used in the resin composition of the present invention.
  • examples include amines, imidazoles, organic phosphines, Lewis acids, and the like.
  • the amount of addition is usually in the range of 0.2 to 5 parts by weight based on 100 parts by weight of the epoxy resin.
  • the epoxy resin cured product of the present invention can be obtained by heating the above epoxy resin composition. Casting, pouring, potting, dive coating, drip coating, transfer molding, compression molding, and the like are preferably used as methods for obtaining a cured product, and the temperature at that time is usually 100 ° ( It is in the range of ⁇ 300 ⁇ .
  • FIG. 1 is an NMR spectrum of the epoxy resin obtained in Example 1
  • FIG. 2 is an IR spectrum thereof.
  • Fig. 3 is the NMR spectrum of the epoxy resin obtained in Example 2-.
  • Fig. 4 is its IR spectrum.
  • a colorless and transparent epoxy resin (epoxy resin B).
  • the hydrogenation rate of the aromatic ring determined by nuclear magnetic resonance analysis was 70%.
  • Fig. 1 shows the nuclear magnetic resonance spectrum of the obtained epoxy resin
  • Fig. 2 shows the infrared absorption spectrum.
  • Example 2 The same operation as in Example 1 was performed except that the hydrogenation reaction time was changed to 25 hours, to obtain 96.4 g of a colorless and transparent epoxy resin (epoxy resin C).
  • Fig. 3 shows the nuclear magnetic resonance spectrum of the obtained epoxy resin C
  • Fig. 4 shows the infrared absorption spectrum.
  • Table 1 shows the quality of the obtained epoxy resin together with the epoxy resin before hydrogenation and the bisphenol F type epoxy resin (epoxy resin D).
  • Epoxy resins A, B, C or D were used as epoxy resin components, and phenol nopolak (hardener: OH equivalent: 103 g / ed., Softening point: 80 ° C.) was used as a curing agent component. Further, an epoxy resin composition was obtained by using the combination shown in Table 2 by using spherical silica (average particle size: 18 m) as a filler and triphenylphosphine as a curing accelerator. The numerical values in the table indicate parts by weight in the composition.
  • a new epoxy compound can be easily obtained by hydrogenating an aromatic epoxy compound having a naphthalene structure.
  • This epoxy compound is excellent in workability because it is a liquid or a low melting point solid at room temperature, and can be applied to a wide range of applications. In particular, it can be advantageously used in applications in the electric and electronic fields such as semiconductor encapsulants, casting materials, and electric insulating materials.

Abstract

An epoxy resin having a structure of hydrogenated epoxy resin which contains a naphthalene ring is disclosed. This epoxy resin is represented by the general formula (1): (wherein n is 0-15, G represents a glycidyl group, and at least one ring A in a condensed ring composed of two rings A represents an aliphatic ring), and is obtained by hydrogenating a corresponding aromatic epoxy resin so that the hydrogenation rate of naphthalene ring is within 10-100%. This epoxy resin is excellent in workability since it is liquid at room temperature or solid with a low melting point, and thus is suitably used as a semiconductor sealing material, a casting material, an electric insulating material and the like.

Description

エポキシ樹脂、 その製造方法及びエポキシ樹脂組成物  Epoxy resin, method for producing the same, and epoxy resin composition
技 術 分 野 明 Technology Akira Nono
本発明は低粘度性に優れるとともに、 耐湿性、 耐熱性に優れた硬化物を  The present invention provides a cured product having excellent low viscosity and excellent moisture resistance and heat resistance.
 Rice field
与える新規エポキシ樹脂及びその製造方法、 更にそれを用いたエポキシ樹 脂組成物並びにその硬化物に関する。 このエポキシ樹脂及びエポキシ樹脂 組成物は、 半導体素子に代表される電気 ·電子部品等の封止、 コーティン グ材料、 積層材料、 複合材料等の硬化剤として有用であり、 プリント配線 板、 半導体封止等の電気電子分野の絶縁材料等に好適に使用される。 The present invention relates to a novel epoxy resin to be provided, a method for producing the same, and an epoxy resin composition using the same and a cured product thereof. The epoxy resin and the epoxy resin composition are useful as encapsulating agents for electric and electronic parts typified by semiconductor devices, and as curing agents for coating materials, laminated materials, composite materials, and the like. It is suitably used as an insulating material in the electric and electronic fields.
背 景 技 術 Background technology
エポキシ樹脂は工業的に幅広い用途で使用されてきているが、 その要求 性能は近年ますます高度化している。 例えば、 エポキシ樹脂を主剤とする 樹脂組成物の代表的分野に半導体封止材料があるが、 近年、 半導体素子の 集積度の向上に伴い、 パッケージサイズが大面積化、 薄型化に向かうとと もに、 実装方式も表面実装化への移行が進展しており、 より半田耐熱性に 優れた材料の開発が望まれている。 Epoxy resins have been used in a wide range of industrial applications, but their required performance has been increasingly sophisticated in recent years. For example, a typical field of resin compositions containing epoxy resin as a main component is a semiconductor encapsulating material.In recent years, as the degree of integration of semiconductor elements has increased, package sizes have become larger and thinner. In addition, the mounting method is also shifting to surface mounting, and the development of materials with better solder heat resistance is desired.
最近では、 高集積化、 高密度実装化の技術動向により、 従来の金型を利 用した卜ランスファー成形によるパッケージに変わり、ハイプリッ ド I C、 チップオンボード、 テープキャリアパッケージ、 プラスチックピングリツ ドアレイ、 プラスチックポ一ルグリツ ドアレイ等の金型を使用しないで液 状材料を用いて封止し、 実装する方式が増えてきている。 しかし、 一般に 液状材料はトランスファー成形に用いる固形材料に比べて信頼性が低い欠 点がある。 これは、 液状材料に粘度上の限界があり、 用いる樹脂、硬化剤、 充填剤等に制約があることがその大きな理由になっている。 Recently, due to technological trends of high integration and high-density mounting, packages have been changed to transfer molding using conventional dies, and hybrid ICs, chip-on-boards, tape carrier packages, There is an increasing number of methods for sealing and mounting using liquid materials without using dies such as metal arrays and plastic poll grid arrays. However, liquid materials generally have lower reliability than solid materials used for transfer molding. This is largely because the liquid material has a viscosity limit, and the resin, curing agent, filler, etc. used are limited.
これらの問題点を克服するため、 主剤となるエポキシ樹脂及び硬化剤と しては、 低粘度化、 低吸湿化、 高耐熱化が望まれている。 低粘度エポキシ 樹脂としてはビスフエノール A型エポキシ樹脂、 ピスフエノ一ル F型ェポ キシ樹脂等が一般に広く知られているが、 低粘度性の点で充分ではないこ とに加え、 耐熱性を低下させてしまう問題点があった。 耐熱性を改良する ものとして、 JP 3— 2 2 1 5 1 9 Aには、 ジヒドロキシナフ夕レンより誘 導されるエポキシ樹脂を用いたエポキシ樹脂組成物が提案されているが、 依然、 低粘度性が十分ではなかった。 発 明 の 開 示 従って、 本発明の目的は低粘度性に優れ、 かつ耐湿性及び耐熱性に優れ た硬化物を与える新規エポキシ樹脂及びその製造方法、 更にそれを用いた エポキシ樹脂組成物並びにその硬化物を提供することにある。  In order to overcome these problems, it is desired that the epoxy resin and curing agent, which are the main components, have low viscosity, low moisture absorption, and high heat resistance. As low-viscosity epoxy resins, bisphenol A-type epoxy resins, pi-phenol F-type epoxy resins, etc. are generally widely known, but they are not sufficient in terms of low viscosity and have reduced heat resistance. There was a problem that caused it. To improve the heat resistance, JP 3-221519A proposes an epoxy resin composition using an epoxy resin derived from dihydroxynaphthylene, but still has a low viscosity. Sex was not enough. DISCLOSURE OF THE INVENTION Accordingly, an object of the present invention is to provide a novel epoxy resin which provides a cured product excellent in low viscosity and excellent in moisture resistance and heat resistance, a method for producing the same, an epoxy resin composition using the same, and an epoxy resin composition using the same. It is to provide a cured product.
本発明は、 一般式(1)、  The present invention provides a compound represented by the general formula (1):
( 1 )
Figure imgf000004_0001
(式中、 二つ環 Aで構成される縮合環において、 少なくとも一つの環 Aは 脂肪族環を示し、 残りは芳香族環を示す。 nは 0〜 1 5の数、 Gはグリシ ジル基を示す。 ) で表されるエポキシ樹脂である。
(1)
Figure imgf000004_0001
(Wherein, in the condensed ring composed of two rings A, at least one ring A represents an aliphatic ring and the rest represents an aromatic ring. N is a number from 0 to 15; G is a glycidyl group The epoxy resin is represented by:
また、 本発明は、 一般式(2)、  Further, the present invention provides a compound represented by the general formula (2):
Figure imgf000005_0001
Figure imgf000005_0001
(式中、 nは 0〜 1 5の数、 Gはダリシジル基を示す。 ) で表される芳香 族エポキシ樹脂を水素化して得られる芳香族環の水素化率が 1 0〜 1 0 0 %、 好ましくは 2 0〜 9 5 %であるエポキシ樹脂である。 (Wherein, n is a number from 0 to 15 and G is a daricidyl group.) The hydrogenation rate of the aromatic ring obtained by hydrogenating the aromatic epoxy resin represented by the formula is 10 to 100%. The epoxy resin is preferably 20 to 95%.
更に、 本発明は、 一般式(3)、
Figure imgf000005_0002
Further, the present invention provides a compound represented by the general formula (3):
Figure imgf000005_0002
(式中、 環 Bは脂肪族環又は芳香族環を示し、 Gはグリシジル基を示す。 ) で表されるエポキシ化合物である。 (In the formula, ring B represents an aliphatic ring or an aromatic ring, and G represents a glycidyl group.)
また、 本発明は、 一般式(2)で表される芳香族エポキシ樹脂を水素化する ことからなる一般式(1)で表されるエポキシ樹脂の製造方法である。  Further, the present invention is a method for producing an epoxy resin represented by the general formula (1), comprising hydrogenating an aromatic epoxy resin represented by the general formula (2).
更に、 本発明は、 エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物 において、 上記のエポキシ樹脂を配合してなるエポキシ樹脂組成物及びこ のエポキシ樹脂組成物を硬化してなる硬化物である。 4 006779 本発明のエポキシ樹脂は、 上記一般式(1)で表され、 上記一般式(2)の芳 香族エポキシ樹脂の芳香族環が完全に又は部分的に水素化された構造を有 する水素化エポキシ樹脂である。 本発明のエポキシ樹脂の芳香族環の水素 化率は、 1 0〜 1 0 0 %の範囲であり、 好ましくは 2 0〜 9 5 %、 更に好 ましくは 3 0〜 9 0 %の範囲である。 これより低いと、 低粘度性の効果が 発現され難い。 上記一般式(1)において、二つの環 Aが縮合した構造を有す る縮合環は、 テトラリン環、 デカリン環等の縮合シクロアルカン又はシク ロアルカンと芳香族環の縮合環であることができるが、 芳香族環が不完全 に水素化された環に脂肪族系の二重結合を有するものであることもできる なお、 脂肪族環とは、 シクロアルカンのみならず不飽和二重結合を 1以上 有するシクロアルゲン類を含む意味で使用される。 また、 上記一般式(2) の芳香族エポキシ樹脂の芳香族環が完全に又は部分的に水素化された構造 を有する水素化エポキシ樹脂は、 平均として芳香族環の 1 0〜 1 0 0 %が 水素化されればよく、 反応生成物である水素化エポキシ樹脂は水素化率 0 %のものから、 1 0 0 %のもの及びその中間の水素化率のものの混合物で あることもできる。 ここで、 水素化率 0 %はナフ夕レン環の全部が芳香族 環として残っている状態をいい、 1 0 0 %はナフ夕レン環の全部がデカリ ン環となっている状態をいう。 Furthermore, the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent, an epoxy resin composition comprising the above epoxy resin, and a cured product obtained by curing the epoxy resin composition. 4 006779 The epoxy resin of the present invention is represented by the above general formula (1), and has a structure in which the aromatic ring of the aromatic epoxy resin of the above general formula (2) is completely or partially hydrogenated. It is a hydrogenated epoxy resin. The hydrogenation rate of the aromatic ring of the epoxy resin of the present invention is in the range of 10 to 100%, preferably 20 to 95%, and more preferably 30 to 90%. is there. If it is lower than this, the effect of low viscosity is difficult to be exhibited. In the general formula (1), the condensed ring having a structure in which two rings A are condensed may be a condensed cycloalkane such as a tetralin ring or a decalin ring or a condensed ring of a cycloalkane and an aromatic ring. An aromatic ring may be one in which an incompletely hydrogenated ring has an aliphatic double bond.The aliphatic ring means not only cycloalkane but also one or more unsaturated double bonds. It is used in a sense including cycloalgens having. The hydrogenated epoxy resin having a structure in which the aromatic ring of the aromatic epoxy resin of the general formula (2) is completely or partially hydrogenated has an average of 10 to 100% of the aromatic ring. May be hydrogenated, and the hydrogenated epoxy resin as a reaction product may be a mixture having a hydrogenation rate of 0%, 100%, or an intermediate hydrogenation rate. Here, a hydrogenation rate of 0% refers to a state in which all of the naphthylene ring remains as an aromatic ring, and 100% refers to a state in which all of the naphthylene ring is a decalin ring.
上記一般式 (1 ) 及び (2) において、 nは 0から 1 5の数を表すが、 低 粘度性の観点からは、 nが小さいものが良く、 nの平均値としては 0から 3の範囲である。 特には、 nが 0であるエポキシ化合物が主成分であるも のが好ましく、 その好ましい含有率は 5 0 w t %以上、 更に好ましくは 7 0 w t %以上である。 また、 可撓性の観点からは、 nが大きいものが好ま しく、 nの平均値としては 5から 1 5の範囲である。 本発明のエポキシ樹脂中には、 上記一般式 (2) で示される芳香族ェポキ シ樹脂が残存していてもよい。 また、 また、 副反応としてォキシラン環の 開環が起こる場合があり、 エポキシ樹脂の硬化性が低下するとともに硬化 物の耐熱性が低下するが、 少量であれば差し支えない。 本発明のエポキシ樹脂は、一般式(2)で示される芳香族エポキシ樹脂を、 触媒の存在下、 公知の方法で選択的に芳香族環を水素化反応することによ り製造することができる。 好ましい水素化方法としては、 芳香族エポキシ 樹脂を有機溶媒に溶解し、 ロジウム又はルテニウムを炭素質担体に担持し た触媒の存在下、 芳香族環を選択的に水素化反応する方法がとられる。 触 媒の担体としては、 炭素質担体が好適に使用され、 中でもグラフアイ ト又 はカーポンプラックが好ましい。 炭素質担体の好ましい表面積は 1 0 〜 4 0 0 m2 /gであり、 更に好ましくは、 5 0 〜 3 0 0 m2 /gの範囲である。 反 応の際の圧力は、 通常、 l 〜 3 0 MPaの範囲であり、 好ましくは 3 〜 1 5 MPaの範囲である。 また、 反応温度は、 通常、 3 0 〜 1 5 0 °Cであり、 好 ましくは 5 0 〜 1 2 0 °Cの範囲である。 反応時間は、 通常、 0 . 5 〜 2 0 時間、 好ましくは 1 〜 1 0時間の範囲である。 水素化率の制御は吸収され た水素量を監視することにより行うことができる。 水素化率は 1 0 〜 1 0 0 %、 好ましくは 1 0 〜 9 5 %、 より好ましくは 3 0 〜 8 0 %の範囲とす ることがよい。 In the above general formulas (1) and (2), n represents a number from 0 to 15, but from the viewpoint of low viscosity, n is preferably small, and the average value of n is in the range of 0 to 3. It is. In particular, it is preferable that the main component is an epoxy compound in which n is 0, and the preferable content is 50 wt% or more, more preferably 70 wt% or more. From the viewpoint of flexibility, those having large n are preferable, and the average value of n is in the range of 5 to 15. The aromatic epoxy resin represented by the general formula (2) may remain in the epoxy resin of the present invention. Also, ring-opening of the oxysilane ring may occur as a side reaction, which lowers the curability of the epoxy resin and the heat resistance of the cured product. The epoxy resin of the present invention can be produced by selectively hydrogenating an aromatic ring of an aromatic epoxy resin represented by the general formula (2) by a known method in the presence of a catalyst. . As a preferred hydrogenation method, a method in which an aromatic epoxy resin is dissolved in an organic solvent and a hydrogenation reaction is selectively performed on an aromatic ring in the presence of a catalyst in which rhodium or ruthenium is supported on a carbonaceous carrier is used. As the catalyst carrier, a carbonaceous carrier is suitably used, and among them, graphite or car pump rack is preferred. The preferred surface area of the carbonaceous support is from 10 to 400 m 2 / g, more preferably from 50 to 300 m 2 / g. The pressure during the reaction is usually in the range of 1 to 30 MPa, preferably in the range of 3 to 15 MPa. The reaction temperature is usually in the range of 30 to 150 ° C, preferably in the range of 50 to 120 ° C. The reaction time is generally in the range from 0.5 to 20 hours, preferably from 1 to 10 hours. Control of the hydrogenation rate can be performed by monitoring the amount of hydrogen absorbed. The hydrogenation rate is preferably in the range of 10 to 100%, preferably 10 to 95%, and more preferably 30 to 80%.
反応に用いる有機溶媒として、ジェチルエーテル、テトラヒドロフラン、 ジォキサン等のエーテル類、 エタノール、 イソプロパノール、 n—ブタノ ール等のアルコール類、 シクロへキサン、 メチルシクロへキサン、 n —へ ブタン、 イソヘプタン、 n 一オクタン、 イソォク夕ン等の脂肪族炭化水素 類、 メチルェチルケ卜ン、 メチルイソブチルケトン、 シクロへキサノン等 のケトン類、 酢酸ェチル、 酢酸イソプロピル、 酢酸 n —ブチル等の脂肪族 エステル類及びこれらの 2種以上の混合物が挙げられるが、 特に、 エーテ ル系溶媒及び Z又は脂肪族エステル系溶媒が好ましい。水素化反応終了後、 触媒を濾過により除去し、 有機溶媒を減圧で、 実質的に無くなるまで留去 し、 芳香族環が水素化されたエポキシ樹脂を得ることができる。 Organic solvents used in the reaction include ethers such as getyl ether, tetrahydrofuran and dioxane, alcohols such as ethanol, isopropanol and n-butanol, cyclohexane, methylcyclohexane, n-heptane, isoheptane and n-one. Aliphatic hydrocarbons such as octane and isooctane And ketones such as methylethyl ketone, methyl isobutyl ketone and cyclohexanone, aliphatic esters such as ethyl acetate, isopropyl acetate and n-butyl acetate, and mixtures of two or more of these. And Z or aliphatic ester solvents are preferred. After completion of the hydrogenation reaction, the catalyst is removed by filtration, and the organic solvent is distilled off under reduced pressure until it is substantially eliminated, whereby an epoxy resin in which the aromatic ring has been hydrogenated can be obtained.
本発明のエポキシ樹脂の原料となる一般式(2) で示される芳香族ェポキ シ樹脂は、 通常の方法に従い、 ジヒドロキシナフタレン類とェピクロロヒ ドリンを塩基性化合物の存在下に反応させることにより合成することがで きる。  The aromatic epoxy resin represented by the general formula (2), which is a raw material of the epoxy resin of the present invention, is synthesized by reacting dihydroxynaphthalenes and epichlorohydrin in the presence of a basic compound according to a usual method. I can do it.
このジヒドロキシナフ夕レン類の具体例としては、 1, 2-ジヒドロキシナ フタレン、 1, 3-ジヒドロキシナフ夕レン、 1, 4-ジヒドロキシナフ夕レン、 1, 5-ジヒドロキシナフタレン、 1, 6-ジヒドロキシナフ夕レン、 1, 7-ジヒド ロキシナフ夕レン、 1, 8-ジヒドロキシナフ夕レン、 2, 3-ジヒドロキシナフ タレン、 2, 6-ジヒドロキシナフタレン、 2, 7-ジヒドロキシナフ夕レンが挙 げられる。 これらのジヒドロキシナフタレン類は単独でも、 混合物で用い ても良い。 耐熱性の点で、 1, 4-ジヒドロキシナフ夕レン、 1, 5-ジヒドロキ シナフ夕レン、 1 , 6-ジヒ ドロキシナフタレン、 2, 6-ジヒドロキシナフタレ ン、 2, 7-ジヒドロキシナフタレンの含有率が高いものが好ましく、 5 0 wt % 以上含有しているものが好適に使用される。 このジヒドロキシナフタレン のナフタレン環への酸素原子の置換位置は、 エポキシ化後も維持されるの で、 好ましいエポキシ化合物もこれから理解される。 なお、 ヒドロキシ基 はナフタレン環の一方のみに 2つ有してもよく、 両方の環に各 1つ有して もよい。 これは、 一般式 (1)における縮合環についても同様である。 2004/006779 ジヒドロキシナフタレン類とェピクロロヒドリンとの反応により得られ るエポキシ樹脂は、 通常、 上記一般式 (2) における nの数が異なるものの 混合物として得られる。 工業的観点から、 この混合物はそのままエポキシ 樹脂として水素化反応に供せられる。 また、 本発明のエポキシ樹脂の原料 として用いられる芳香族エポキシ樹脂は、 nの数が 0から 1 5のものを主 成分とするものであるが、 nが 1 6以上のものが含まれていてもよい。 低 粘度化の観点からは、 nの数が小さいものほど好ましく、 特に電子部品の 封止用に用いられるエポキシ樹脂を調整する際には、 nが 0のものが主成 分であるものが好適に使用される。 低粘度化の点で特に好ましくは、 n = 0体が 8 0 w t %以上のものであり、 更に好ましくは 9 0 w t %以上のも のである。 nの数が小さいエポキシ樹脂は、 エポキシ化反応の際にジヒド ロキシナフ夕レン類に対して、 大過剰のェピクロロヒドリンを反応させる ことにより得られるが、 更に nが 0のものを高純度に得るためには、 ェポ キシ化反応により得られたエポキシ化合物の混合物より、 分子蒸留等の方 法で分け取る方法をとることができる。 Specific examples of the dihydroxynaphthylenes include 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthylene, 1,4-dihydroxynaphthylene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, Naphthylene, 1,7-dihydroxynaphthylene, 1,8-dihydroxynaphthylene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, and 2,7-dihydroxynaphthylene. These dihydroxynaphthalenes may be used alone or in a mixture. In terms of heat resistance, contains 1,4-dihydroxynaphthylene, 1,5-dihydroxysinaphthylene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, and 2,7-dihydroxynaphthalene The one having a high rate is preferable, and the one containing 50 wt% or more is suitably used. Since the substitution position of the oxygen atom on the naphthalene ring of the dihydroxynaphthalene is maintained after the epoxidation, preferred epoxy compounds will be understood from this. The hydroxy group may have two hydroxy groups on only one of the naphthalene rings, or may have one hydroxy group on both rings. The same applies to the condensed ring in the general formula (1). 2004/006779 The epoxy resin obtained by the reaction between dihydroxynaphthalenes and epichlorohydrin is usually obtained as a mixture of those having different numbers of n in the above general formula (2). From an industrial point of view, this mixture is directly subjected to a hydrogenation reaction as an epoxy resin. Further, the aromatic epoxy resin used as a raw material of the epoxy resin of the present invention mainly has an n number of 0 to 15 but has an n number of 16 or more. Is also good. From the viewpoint of lowering the viscosity, the smaller the number of n is, the more preferable it is. Particularly, when adjusting the epoxy resin used for encapsulating electronic components, those having n of 0 as the main component are preferable. Used for From the viewpoint of reducing the viscosity, particularly preferably, n = 0 is 80 wt% or more, and more preferably 90 wt% or more. Epoxy resins with a small number of n can be obtained by reacting a large excess of epichlorohydrin with dihydroxynaphthylene during the epoxidation reaction. In order to obtain the desired product, a method such as molecular distillation can be used to separate the mixture from the epoxy compound obtained by the epoxidation reaction.
また、 ジヒドロキシナフタレン類とェピクロロヒドリンとの反応により 得られるエポキシ樹脂中には、 通常、 上記一般式 (2) で表される構造の化 合物の他に、 ジヒドロキシナフ夕レン類の水酸基にェピクロロヒドリンが 付加したまま閉環せずに残ったクロロヒドリン体が残存する。 これらクロ ロヒドリン体に由来する塩素は、 加水分解性塩素と呼ばれ、 この残存量が 多いと、 電子部品の封止用途にエポキシ樹脂を応用した場合、 電子部品の 信頼性を低下させる。 本発明のエポキシ樹脂の原料となるエポキシ樹脂中 の加水分解性塩素は、 通常、 2 0 0 0 ppiii 以下であり、 好ましくは 1 0 0 O ppm以下、 更に好ましくは、 4 0 O ppm以下である。 ここでいう加水分解 性塩素とは、 試料 0 . 5 gをジォキサン 3 0 ml に溶解後、 I N— K O H、 1 0 ml を加え 3 0分間還流した後、 室温まで冷却し、 更に 8 0 %アセトン 水 1 0 0 ml を加え、 0. 002N- AgN03水溶液で電位差滴定を行うことにより測 定された値である。 Epoxy resins obtained by the reaction of dihydroxynaphthalenes with epichlorohydrin usually contain, in addition to the compound having the structure represented by the general formula (2), dihydroxynaphthalenes. The remaining chlorohydrin remains without ring closure with epichlorohydrin added to the hydroxyl group. The chlorine derived from the chlorohydrin compound is called hydrolyzable chlorine. If the residual amount is large, the reliability of the electronic component is reduced when an epoxy resin is used for sealing the electronic component. The hydrolyzable chlorine in the epoxy resin used as the raw material of the epoxy resin of the present invention is usually at most 200 ppm, preferably at most 100 ppm, more preferably at most 400 ppm. . Hydrolysis here Sex chlorine is prepared by dissolving 0.5 g of a sample in 30 ml of dioxane, adding 10 ml of IN-KOH, refluxing for 30 minutes, cooling to room temperature, and further adding 100 ml of 80% acetone water. It was added, a constant value measured by performing potentiometric titration with 0. 002N- AgN0 3 solution.
本発明のエポキシ樹脂の分子量 (又は nの数) は、 本発明のエポキシ樹 脂の原料に用いる芳香族エポキシ樹脂の分子量にほぼ対応しているが、 水 素化反応後、 分子蒸留等の方法により分子量の調整を行ってもよい。 塩素 含有量も、 本発明のエポキシ樹脂の原料に用いる芳香族エポキシ樹脂中に 含まれる塩素含有量にほぼ対応しているが、 水素化反応後、 更に塩基性化 合物との接触により塩素の除去を行ってもよい。 本発明のエポキシ化合物は、 一般式 (3) で表されるが、 ここで環 Bは脂 肪族環又は芳香族環であり、 脂肪族環である場合は二重結合が一部残存し ていてもよい。 このエポキシ化合物は、 一般式 (2) で表される芳香族ェポ キシ樹脂であって、 nが 0である芳香族エポキシ樹脂 (化合物) を水素化 することにより得られる。 この場合の水素化率は 5 0〜 9 0 %の範囲がよ い。 しかし、 他の方法で得ることもできる。 本発明のエポキシ樹脂組成物は、 エポキシ樹脂及び硬化剤をよりなるェ ポキシ樹脂組成物であって、 エポキシ樹脂及び硬化剤を樹脂主成分として 含むことがよい。 エポキシ樹脂成分としては、 a)上記一般式 (1) で表され るエポキシ樹脂、 b)上記一般式 (2) で表されるエポキシ樹脂を 1 0〜 1 0 0 %水素化して得られるエポキシ樹脂、 c)上記一般式 (3) で表されるェポ キシ化合物又は d) 上記した製法で得られたエポキシ樹脂を必須成分とし て含む。 しかし、 上記一般式 (1 ) で表されるエポキシ樹脂であることが好 ましく、 且つ、 代表的であるので、 一般式 (1 ) で表されるエポキシ樹脂を 本発明のエポキシ樹脂として、 代表して説明する。 Although the molecular weight (or the number of n) of the epoxy resin of the present invention substantially corresponds to the molecular weight of the aromatic epoxy resin used as the raw material of the epoxy resin of the present invention, a method such as molecular distillation after the hydrogenation reaction is used. May be used to adjust the molecular weight. The chlorine content also substantially corresponds to the chlorine content contained in the aromatic epoxy resin used as the raw material for the epoxy resin of the present invention. However, after the hydrogenation reaction, the chlorine content is further reduced by contact with a basic compound. Removal may be performed. The epoxy compound of the present invention is represented by the general formula (3), wherein ring B is an aliphatic ring or an aromatic ring, and when the ring is an aliphatic ring, a double bond is partially left. You may. This epoxy compound is obtained by hydrogenating an aromatic epoxy resin (compound) in which n is 0, which is an aromatic epoxy resin represented by the general formula (2). In this case, the hydrogenation rate is preferably in the range of 50 to 90%. However, they can be obtained in other ways. The epoxy resin composition of the present invention is an epoxy resin composition comprising an epoxy resin and a curing agent, and preferably contains the epoxy resin and the curing agent as main components of the resin. The epoxy resin components include: a) an epoxy resin represented by the above general formula (1); b) an epoxy resin obtained by hydrogenating the epoxy resin represented by the above general formula (2) by 10 to 100%. C) an epoxy compound represented by the general formula (3) or d) an epoxy resin obtained by the above-mentioned production method as an essential component. Including. However, the epoxy resin represented by the general formula (1) is preferable and typical, so that the epoxy resin represented by the general formula (1) is a representative of the epoxy resin of the present invention. Will be explained.
本発明のエポキシ樹脂組成物に配合する硬化剤としては、 一般にェポキ シ樹脂の硬化剤として知られているものはすべて使用できる。 例えば、 ジ シアンジアミ ド、 多価フエノール類、 酸無水物類、 芳香族及び脂肪族アミ ン類等がある。  As the curing agent to be added to the epoxy resin composition of the present invention, any of those generally known as curing agents for epoxy resins can be used. Examples include dicyandiamide, polyhydric phenols, acid anhydrides, aromatic and aliphatic amines, and the like.
具体的に例示すれば、 多価フエノール類としては、 ビスフエノール A、 ビスフエノール F、 ビスフエノール S、 フルオレンビスフエノール、 4, 4* - ビフエノール、 2, 2 ' -ビフエノール、 ハイ ドロキノン、 レゾルシン、 ナフタ レンジオール等の 2価のフエノ一ル類;あるいはトリス-(4-ヒドロキシフ ェニル)メタン、 1, 1 , 2, 2-テトラキス(4-ヒドロキシフエニル)ェタン、 フエ ノールノポラック、 0-クレゾールノポラック、 ナフ卜一ルノポラック、 ポ リビニルフエノール等に代表される 3価以上のフエノール類がある。 更に は、フエノ一ル類、ナフトール類又は前記のような 2価のフエノール類と、 ホルムアルデヒド、 ァセトアルデヒド、 ベンズアルデヒド、 p -ヒドロキシ ベンズアルデヒド又は p-キシリレンダリコール等の縮合剤とにより合成 される多価フエノール性化合物等がある。  For example, polyphenols include bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol, 4,4 * -biphenol, 2,2'-biphenol, hydroquinone, resorcinol, and naphtha. Divalent phenols such as diols; or tris- (4-hydroxyphenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol nopolak, 0-cresol There are tri- or higher-valent phenols represented by nopolak, naphtholnopolak, polyvinylphenol, and the like. Furthermore, polyphenols, naphthols, or divalent phenols as described above, and a condensing agent such as formaldehyde, acetoaldehyde, benzaldehyde, p-hydroxybenzaldehyde, or p-xylylene diol are used. Phenolic compounds and the like.
酸無水物としては、 無水フタル酸、 テ卜ラヒドロ無水フタル酸、 メチル テトラヒドロ無水フタル酸、 へキサヒドロ無水フタル酸、 メチルへキサヒ ドロ無水フ夕ル酸、 メチル無水八ィミック酸、 無水ナジック酸、 無水トリ メリッ ト酸等がある。  Examples of the acid anhydride include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylhexamic anhydride, nadic anhydride, and anhydrous anhydride. There is trimellitic acid.
アミン類としては、 4, 4 ' -ジァミノジフエ二ルメタン、 4, 4 ' -ジアミノジ フエニルプロパン、 4, 4 ' -ジアミノジフエニルスルホン、 m -フエ二レンジァ ミン、 P-キシリレンジァミン等の芳香族ァミン類、 エチレンジァミン、 へ キサメチレンジアミン、 ジエチレントリァミン、 トリエチレンテトラミン 等の脂肪族アミン類がある。 Examples of amines include 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylsulfone, and m-phenylenediamine. There are aromatic amines such as amine and P-xylylenediamine, and aliphatic amines such as ethylenediamine, hexamethylenediamine, diethylenetriamine and triethylenetetramine.
本発明の樹脂組成物には、 これら硬化剤の 1種又は 2種以上を混合して 用いることができる。  In the resin composition of the present invention, one or more of these curing agents can be used in combination.
また、 本発明のエポキシ樹脂組成物中には、 エポキシ樹脂成分として、 一般式 ( 1 ) で表される本発明のエポキシ樹脂以外に別種のエポキシ樹脂 を配合してもよい。 この場合のエポキシ樹脂としては、 分子中にエポキシ 基を 2個以上有する通常のエポキシ樹脂はすべて使用できる。 例を挙げれ ば、 ビスフエノール A、 ビスフエノール S、 フルオレンビスフエノール、 4, 4' -ビフエノール、 2, 2 ' -ビフエノール、 ハイ ドロキノン、 レゾルシン等 の 2価のフエノール類 ; あるいはトリス-(4 -ヒドロキシフエニル)メタン、 1, 1, 2, 2-テトラキス(4-ヒドロキシフエニル)ェタン、 フエノールノポラッ ク、 0-クレゾ一ルノボラック等の 3価以上のフエノール類 ; 又はテトラブ ロモビスフエノール A等のハロゲン化ビスフエノール類; から誘導される ダルシジルエーテル化物等がある。 これらのエポキシ樹脂は、 1種又は 2 種以上を混合して用いることができる。 そして、 本発明のエポキシ樹脂を 必須成分とする組成物の場合、 その配合量はエポキシ樹脂全体中、 5〜 1 0 0 wt %、 好ましくは 6 0〜 1 0 0 %の範囲であることがよい。  Further, in the epoxy resin composition of the present invention, another epoxy resin may be blended as an epoxy resin component in addition to the epoxy resin of the present invention represented by the general formula (1). As the epoxy resin in this case, any ordinary epoxy resin having two or more epoxy groups in the molecule can be used. Examples include divalent phenols such as bisphenol A, bisphenol S, fluorene bisphenol, 4,4'-biphenol, 2,2'-biphenol, hydroquinone, resorcin; or tris- (4-hydroxy Trivalent or more phenols such as phenyl) methane, 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane, phenol nopol, and 0-cresol novolac; or tetrabromobisphenol A Halogenated bisphenols; darcidyl ether compounds derived from These epoxy resins can be used alone or in combination of two or more. In the case of the composition containing the epoxy resin of the present invention as an essential component, the compounding amount is preferably in the range of 5 to 100% by weight, and more preferably in the range of 60 to 100% by weight of the entire epoxy resin. .
また、本発明のエポキシ樹脂組成物中には、ポリエステル、ポリアミ ド、 ポリイミ ド、 ポリエーテル、 ポリウレタン、 石油樹脂、 インデンクマロン 樹脂、 フエノキシ樹脂等のオリゴマー又は高分子化合物を適宜配合しても よいし、 無機充填剤、 顔料、 難然剤、 揺変性付与剤、 カップリング剤、 流 動性向上剤等の添加剤を配合してもよい。 無機充填剤としては、 例えば、 球状あるいは破砕状の溶融シリカ、 結晶 シリカ等のシリカ粉末、 アルミナ粉末、 ガラス粉末、 マイ力、 タルク、 炭 酸カルシウム、アルミナ又は水和アルミナ等が挙げられる。顔料としては、 有機系又は無機系の体質顔料、 鱗片状顔料等がある。 揺変性付与剤として は、 シリコン系、 ヒマシ油系、 脂肪族アマイ ドワックス、 酸化ポリェチレ ンワックス、 有機ベントナイ ト系等を挙げることができる。 Further, in the epoxy resin composition of the present invention, an oligomer or a high molecular compound such as polyester, polyamide, polyimide, polyether, polyurethane, petroleum resin, indene maron resin, and phenoxy resin may be appropriately blended. Further, additives such as an inorganic filler, a pigment, a repellent, a thixotropic agent, a coupling agent, and a fluidity improver may be blended. Examples of the inorganic filler include spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, myriki, talc, calcium carbonate, alumina, and hydrated alumina. Examples of the pigment include organic or inorganic extender pigments and scaly pigments. Examples of the thixotropic agent include a silicone type, a castor oil type, an aliphatic amide wax, an oxidized polyethylene wax, and an organic bentonite type.
また必要に応じて、 本発明の樹脂組成物には、 カルナバワックス、 O P ヮックス等の離型剤、 了ーグリシドキシプロピル卜リメ トキシシラン等の カップリング剤、 カーポンプラック等の着色剤、 三酸化アンチモン等の難 燃剤、 シリコンオイル等の低応力化剤、 ステアリン酸カルシウム等の滑剤 等を使用できる。  If necessary, the resin composition of the present invention may further contain a releasing agent such as carnauba wax and OP dex, a coupling agent such as glycidoxypropyltrimethoxysilane, a coloring agent such as a car pump rack, and the like. Flame retardants such as antimony oxide, low stress agents such as silicone oil, lubricants such as calcium stearate, and the like can be used.
更に必要に応じて、 本発明の樹脂組成物には、 公知の硬化促進剤を用い ることができる。 例を挙げれば、 アミン類、 イミダゾール類、 有機ホスフ イン類、 ルイス酸等がある。 添加量としては、 通常、 エポキシ樹脂 1 0 0 重量部に対して、 0 . 2から 5重量部の範囲である。 本発明のエポキシ樹脂硬化物は、 上記のエポキシ樹脂組成物を加熱する ことにより得ることができる。 硬化物を得るための方法としては注型、 注 入、 ポッティング、 デイツビング、 ドリ ップコーティング、 トランスファ —成形、 圧縮成形等が好適に用いられ、 その際の温度としては通常、 1 0 0 ° ( 〜 3 0 0 ^の範囲である。 図面の簡単な説明 図 1は実施例 1で得られたエポキシ樹脂の NMRスペク トルであり、 図 2 はその IR スペク トルである。 図 3は実施例 2で得られたエポキシ樹脂の NMRスぺク トルであり -. 図 4はその IRスぺク トルである。 発明を実施するための最良の形態 以下に、 実施例及び比較例を挙げて本発明エポキシ化合物とその製造方 法を更に詳しく説明する。 なお、 各例中の部は重量部を意味する。 実施例 1 Further, if necessary, a known curing accelerator can be used in the resin composition of the present invention. Examples include amines, imidazoles, organic phosphines, Lewis acids, and the like. The amount of addition is usually in the range of 0.2 to 5 parts by weight based on 100 parts by weight of the epoxy resin. The epoxy resin cured product of the present invention can be obtained by heating the above epoxy resin composition. Casting, pouring, potting, dive coating, drip coating, transfer molding, compression molding, and the like are preferably used as methods for obtaining a cured product, and the temperature at that time is usually 100 ° ( It is in the range of ~ 300 ^. FIG. 1 is an NMR spectrum of the epoxy resin obtained in Example 1, and FIG. 2 is an IR spectrum thereof. Fig. 3 is the NMR spectrum of the epoxy resin obtained in Example 2-. Fig. 4 is its IR spectrum. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the epoxy compound of the present invention and a method for producing the same will be described in more detail with reference to Examples and Comparative Examples. Parts in each example mean parts by weight. Example 1
攪拌機、 冷却器及び温度計を備えた 1 Lのォ一トクレーブ内に、 H P— 4 0 3 2 D (エポキシ樹脂 A : 大日本インキ社製 ; 1, 6-ジヒドロキシナフ タレンのジグリシジルエーテル、 エポキシ当量 1 3 9 g/e - ) 1 0 0 g、 酢 酸ェチルを 4 0 0 g及び 5重量%口ジゥム / 9 5重量%グラフアイ ト (グ ラファイ トの表面積: 1 3 0 m2 /g)触媒 0 . 5 gを仕込み、水素圧力 9 MPa、 温度 1 1 0 °C、 攪拌数 6 0 0 rpmの条件を保持しながら、 6時間水素化反 応を行った。 反応終了後、 冷却し、 触媒を濾別した後、 酢酸ェチルを減圧 下、 5 0 °Cで留去させて、 無色透明のエポキシ樹脂 9 7 . 8 gを得た (ェ ポキシ樹脂 B )。核磁気共鳴分析により求めた芳香族環の水素化率は 7 0 % であった。 得られたエポキシ樹脂の核磁気共鳴スペク トルを図 1、 赤外吸 収スぺク トルを図 2に示す。 実施例 2 水素化反応時間を 2 5時間に変える以外は、 上記実施例 1 と同様の操作 を行い、 無色透明のエポキシ樹脂 9 6 . 4 gを得た (エポキシ樹脂 C ) 。 得られたエポキシ樹脂 Cの核磁気共鳴スぺク トルを図 3、 赤外吸収スぺク トルを図 4に示す。 In a 1 L autoclave equipped with a stirrer, condenser and thermometer, put HP-4302D (epoxy resin A: manufactured by Dainippon Ink; diglycidyl ether of 1,6-dihydroxynaphthalene, epoxy eq 1 3 9 g / e -) 1 0 0 g, 4 0 0 g and 5 wt% port vinegar acid Echiru Jiumu / 9 5 wt% graph eye preparative (grayed Rafaï bets surface area: 1 3 0 m 2 / g ) 0.5 g of a catalyst was charged, and a hydrogenation reaction was performed for 6 hours while maintaining the conditions of hydrogen pressure of 9 MPa, temperature of 110 ° C, and stirring speed of 600 rpm. After completion of the reaction, the reaction mixture was cooled, and the catalyst was filtered off. Ethyl acetate was distilled off at 50 ° C. under reduced pressure to obtain 97.8 g of a colorless and transparent epoxy resin (epoxy resin B). The hydrogenation rate of the aromatic ring determined by nuclear magnetic resonance analysis was 70%. Fig. 1 shows the nuclear magnetic resonance spectrum of the obtained epoxy resin, and Fig. 2 shows the infrared absorption spectrum. Example 2 The same operation as in Example 1 was performed except that the hydrogenation reaction time was changed to 25 hours, to obtain 96.4 g of a colorless and transparent epoxy resin (epoxy resin C). Fig. 3 shows the nuclear magnetic resonance spectrum of the obtained epoxy resin C, and Fig. 4 shows the infrared absorption spectrum.
得られたエポキシ樹脂の品質を水素化前のエポキシ樹脂、 ビスフエノー ル F型エポキシ樹脂 (エポキシ樹脂 D ) と共に表 1に示す。  Table 1 shows the quality of the obtained epoxy resin together with the epoxy resin before hydrogenation and the bisphenol F type epoxy resin (epoxy resin D).
(表 1 )  (table 1 )
Figure imgf000015_0001
実施例 3、 4、 比較例 1、 2
Figure imgf000015_0001
Examples 3 and 4, Comparative Examples 1 and 2
エポキシ樹脂成分として、 エポキシ樹脂 A、 B、 C又は Dを用い、 硬化 剤成分として、 フエノールノポラック (硬化剤 : O H当量 1 0 3 g/ed. 、 軟化点 8 0 °C ) を用いた。 更に、 充填剤として球状シリカ (平均粒径 1 8 m) 、 硬化促進剤としてトリフエニルホスフィンを用い、 表 2に示す配 合でエポキシ樹脂組成物を得た。 なお、 表中の数値は配合における重量部 を示す。  Epoxy resins A, B, C or D were used as epoxy resin components, and phenol nopolak (hardener: OH equivalent: 103 g / ed., Softening point: 80 ° C.) was used as a curing agent component. Further, an epoxy resin composition was obtained by using the combination shown in Table 2 by using spherical silica (average particle size: 18 m) as a filler and triphenylphosphine as a curing accelerator. The numerical values in the table indicate parts by weight in the composition.
このエポキシ樹脂組成物を用いて 1 7 5。(:で成形し、 更に 1 8 0 °Cにて 1 2時間ポストキュアを行い、 硬化物試験片を得た後、 各種物性測定に供 した。 結果を表 3に示す。 なお、 ガラス転移点及び線膨張係数の測定は、 熱機械測定装置を用いて 1 0で/分の昇温速度で求めた。 また吸水率は、 直径 5 0 mm、 厚さ 3籠の円形の試験片を用いて、 8 5 ° (:、 8 5 % R Hの条 件で 1 0 0時間吸湿させた後の重量変化率とした 1 75 using this epoxy resin composition. (: And then post-cured at 180 ° C for 12 hours to obtain a cured product specimen, which was subjected to various physical property measurements. The results are shown in Table 3. The glass transition point is shown in Table 3. The coefficient of linear expansion and the coefficient of linear expansion were measured at a heating rate of 10 / min using a thermomechanical measuring device, and the water absorption was measured using a circular test piece with a diameter of 50 mm and a thickness of 3 baskets. , 85 ° (: 85% RH Weight change rate after moisture absorption for 100 hours
(表 2 )
Figure imgf000016_0001
(Table 2)
Figure imgf000016_0001
(表 3 )  (Table 3)
Figure imgf000016_0002
産業上の利用の可能性 ナフタレン構造を有する芳香族エポキシ化合物を水素化することにより . 新規なエポキシ化合物が容易に得られる。 このエポキシ化合物は、 室温で 液体又は低融点の固体のため作業性に優れ、 広範な用途に応用展開が可能 である。 特に、 半導体封止材、 注型材料及び電気絶縁材料等の電気 · 電子 分野等の用途において有利に使用できる。
Figure imgf000016_0002
Industrial applicability A new epoxy compound can be easily obtained by hydrogenating an aromatic epoxy compound having a naphthalene structure. This epoxy compound is excellent in workability because it is a liquid or a low melting point solid at room temperature, and can be applied to a wide range of applications. In particular, it can be advantageously used in applications in the electric and electronic fields such as semiconductor encapsulants, casting materials, and electric insulating materials.

Claims

em 求 の 範 囲 ( 1 ) 一般式(1)、 Range of em calculation (1) General formula (1),
( 1 )(1)
Figure imgf000017_0001
Figure imgf000017_0001
(式中、 二つ環 Aで構成される縮合環において、 少なくとも一つの環 Aは 脂肪族環を示し、 残りは芳香族環を示す。 nは 0〜 1 5の数、 Gはグリシ ジル基を示す。 ) で表されるエポキシ樹脂。 (Wherein, in the condensed ring composed of two rings A, at least one ring A represents an aliphatic ring and the rest represents an aromatic ring. N is a number from 0 to 15; G is a glycidyl group An epoxy resin represented by:
( 2 ) —般式(2)、
Figure imgf000017_0002
(2) — general formula (2),
Figure imgf000017_0002
(式中、 nは 0〜 1 5の数、 Gはグリシジル基を示す。 ) で表される芳香 族エポキシ樹脂を水素化して得られる芳香族環の水素化率が 1 0〜 1 0 0 %であるエポキシ樹脂。 (Wherein, n represents a number of 0 to 15 and G represents a glycidyl group.) The hydrogenation rate of an aromatic ring obtained by hydrogenating an aromatic epoxy resin represented by the following formula is 10 to 100%. Epoxy resin.
( 3 ) —般式(3)、
Figure imgf000017_0003
(3) — general formula (3),
Figure imgf000017_0003
(式中、 環 Bは脂肪族環又は芳香族環を示し、 Gはグリシジル基を示す。 ) で表されるエポキシ化合物。 (Wherein, ring B represents an aliphatic ring or an aromatic ring, and G represents a glycidyl group.)
(4) 一般式(2)、
Figure imgf000018_0001
(4) General formula (2),
Figure imgf000018_0001
(式中、 nは 0〜 1 5の数、 Gはダリシジル基を示す。 ) で表される芳香 族エポキシ樹脂を水素化して一般式(1)で表されるエポキシ樹脂とするこ とを特徴とする請求項 1記載のエポキシ樹脂の製造方法。 (Wherein, n represents a number from 0 to 15 and G represents a dalicidyl group.) An aromatic epoxy resin represented by the general formula (1) is hydrogenated to obtain an epoxy resin represented by the general formula (1). The method for producing an epoxy resin according to claim 1, wherein
( 5 ) 口ジゥム又はルテニウム触媒の存在下、 加圧下に水素化すること を特徴とする請求項 4に記載のエポキシ樹脂の製造方法。  (5) The method for producing an epoxy resin according to claim 4, wherein the hydrogenation is carried out under pressure in the presence of an orifice or ruthenium catalyst.
( 6 ) 一般式(2)で表される芳香族エポキシ樹脂の芳香族環の水素化率が 1 0〜 1 0 0 %となるまで水素化を行う請求項 4に記載のエポキシ樹脂の 製造方法。  (6) The method for producing an epoxy resin according to claim 4, wherein the hydrogenation is performed until the hydrogenation rate of the aromatic ring of the aromatic epoxy resin represented by the general formula (2) becomes 10 to 100%. .
( 7 ) 芳香族環の水素化率が 2 0〜 9 5 %である請求項 2に記載のェポ キシ樹脂。  (7) The epoxy resin according to claim 2, wherein the hydrogenation rate of the aromatic ring is from 20 to 95%.
( 8 ) エポキシ樹脂及び硬化剤よりなるエポキシ樹脂組成物において、 請求項 1又は 2に記載のエポキシ樹脂を配合してなるエポキシ樹脂組成物, (8) In an epoxy resin composition comprising an epoxy resin and a curing agent, an epoxy resin composition comprising the epoxy resin according to claim 1 or 2,
( 9 ) 請求項 8に記載のエポキシ樹脂組成物を硬化してなる硬化物。 (9) A cured product obtained by curing the epoxy resin composition according to claim 8.
PCT/JP2004/006779 2003-05-14 2004-05-13 Epoxy resin, method for producing same and epoxy resin composition WO2004101643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-135855 2003-05-14
JP2003135855A JP2004339311A (en) 2003-05-14 2003-05-14 Epoxy resin, epoxy compound, manufacturing process for the same, epoxy resin composition and its hardened article

Publications (1)

Publication Number Publication Date
WO2004101643A1 true WO2004101643A1 (en) 2004-11-25

Family

ID=33447201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006779 WO2004101643A1 (en) 2003-05-14 2004-05-13 Epoxy resin, method for producing same and epoxy resin composition

Country Status (2)

Country Link
JP (1) JP2004339311A (en)
WO (1) WO2004101643A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4796366B2 (en) * 2005-09-28 2011-10-19 スガイ化学工業株式会社 Bis (glycidyloxy) decalin
JP4853225B2 (en) * 2006-10-20 2012-01-11 住友ベークライト株式会社 Resin composition and semiconductor device produced using resin composition
JPWO2019142646A1 (en) * 2018-01-16 2021-01-14 昭和電工マテリアルズ株式会社 Curable resin composition, semiconductor device, and method for manufacturing the semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336241A (en) * 1963-11-12 1967-08-15 Shell Oil Co Process for preparing epoxy compounds and resulting products
JPH11217379A (en) * 1997-11-27 1999-08-10 Mitsubishi Chemical Corp Production of epoxy compound
JPH11302508A (en) * 1998-04-15 1999-11-02 Mitsubishi Chemical Corp Epoxy resin component
JP2001019742A (en) * 1999-07-06 2001-01-23 Yuka Shell Epoxy Kk Epoxy resin composition
JP2002037856A (en) * 2000-07-28 2002-02-06 Dainippon Ink & Chem Inc Epoxy resin composition
JP2003048962A (en) * 2001-08-02 2003-02-21 Nippon Steel Chem Co Ltd Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336241A (en) * 1963-11-12 1967-08-15 Shell Oil Co Process for preparing epoxy compounds and resulting products
JPH11217379A (en) * 1997-11-27 1999-08-10 Mitsubishi Chemical Corp Production of epoxy compound
JPH11302508A (en) * 1998-04-15 1999-11-02 Mitsubishi Chemical Corp Epoxy resin component
JP2001019742A (en) * 1999-07-06 2001-01-23 Yuka Shell Epoxy Kk Epoxy resin composition
JP2002037856A (en) * 2000-07-28 2002-02-06 Dainippon Ink & Chem Inc Epoxy resin composition
JP2003048962A (en) * 2001-08-02 2003-02-21 Nippon Steel Chem Co Ltd Polyhydric hydroxy resin, epoxy resin, method for producing the same, epoxy resin composition and cured product

Also Published As

Publication number Publication date
JP2004339311A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
TWI444400B (en) A crystalline resin cured product, a crystalline resin composite, and a method for producing the same
KR101262138B1 (en) Epoxy resin composition and curing product thereof
TWI494338B (en) An epoxy resin, a method for producing the same, an epoxy resin composition and a hardened product using the same
TWI439480B (en) A crystalline modified epoxy resin, an epoxy resin composition, and a crystalline hardened product
KR101143131B1 (en) Epoxy compound, preparation method thereof, and use thereof
TWI425019B (en) Liquid epoxy resin, epoxy resin composition and hardened product
TWI494341B (en) Epoxy resin compositions and shaped articles
KR101408535B1 (en) Modified liquid epoxy resin, epoxy resin composition using the same, and cured product thereof
JP6238845B2 (en) Phenol resin, phenol resin mixture, epoxy resin, epoxy resin composition and cured products thereof
JP2006249144A (en) Hydrogenated epoxy resin, its manufacturing method and epoxy resin composition
JP3539772B2 (en) Crystalline epoxy resin, production method thereof, epoxy resin composition and cured product using the same
JP2016089072A (en) Phenolic resin, epoxy resin, epoxy resin composition and cured products thereof
KR101640856B1 (en) Naphtol resin, epoxy resin, epoxy resin composition and cured product thereof
WO2004101643A1 (en) Epoxy resin, method for producing same and epoxy resin composition
JP5037370B2 (en) Epoxy resin composition and cured product
JP3915938B2 (en) Epoxy resin composition, method for producing epoxy resin, and semiconductor sealing material
WO2008123383A1 (en) Novel epoxy resin, epoxy resin composition containing the same, and cured product of the epoxy resin composition
JP4142155B2 (en) Epoxy resin and method for producing the same
JP2020105436A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP4334446B2 (en) Semiconductor sealing material
JP4435342B2 (en) Epoxy resin composition and epoxy resin composition for semiconductor encapsulation
JP2002194049A (en) New epoxy resin, its production method, epoxy resin composition and its cured product
JP7252196B2 (en) Epoxy resin composition and cured product thereof
WO2015076229A1 (en) Phenol resin, epoxy resin, epoxy resin composition, and cured product of same
JPH09255758A (en) New epoxy resin, its intermediate, production thereof, epoxy resin composition made using the same, and cured item thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase