WO2004101002A2 - Polyhydroxyalkanoate medical textiles and fibers - Google Patents
Polyhydroxyalkanoate medical textiles and fibers Download PDFInfo
- Publication number
- WO2004101002A2 WO2004101002A2 PCT/US2004/013475 US2004013475W WO2004101002A2 WO 2004101002 A2 WO2004101002 A2 WO 2004101002A2 US 2004013475 W US2004013475 W US 2004013475W WO 2004101002 A2 WO2004101002 A2 WO 2004101002A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- repair
- tissue
- fibers
- implantation
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0063—Implantable repair or support meshes, e.g. hernia meshes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/48—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/06—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/022—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C48/00—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
- B29C48/03—Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
- B29C48/05—Filamentary, e.g. strands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C71/00—After-treatment of articles without altering their shape; Apparatus therefor
- B29C71/0072—After-treatment of articles without altering their shape; Apparatus therefor for changing orientation
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/088—Cooling filaments, threads or the like, leaving the spinnerettes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/098—Melt spinning methods with simultaneous stretching
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
- D01D5/16—Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/62—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
- D01F6/625—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters derived from hydroxy-carboxylic acids, e.g. lactones
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/84—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0063—Implantable repair or support meshes, e.g. hernia meshes
- A61F2002/0068—Implantable repair or support meshes, e.g. hernia meshes having a special mesh pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2067/00—Use of polyesters or derivatives thereof, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/753—Medical equipment; Accessories therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1362—Textile, fabric, cloth, or pile containing [e.g., web, net, woven, knitted, mesh, nonwoven, matted, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/13—Hollow or container type article [e.g., tube, vase, etc.]
- Y10T428/1352—Polymer or resin containing [i.e., natural or synthetic]
- Y10T428/1369—Fiber or fibers wound around each other or into a self-sustaining shape [e.g., yarn, braid, fibers shaped around a core, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249922—Embodying intertwined or helical component[s]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/10—Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/10—Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
- Y10T442/102—Woven scrim
- Y10T442/183—Synthetic polymeric fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/10—Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
- Y10T442/184—Nonwoven scrim
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/20—Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
- Y10T442/2525—Coating or impregnation functions biologically [e.g., insect repellent, antiseptic, insecticide, bactericide, etc.]
Definitions
- the present invention generally relates to textile and fiber-based medical devices derived from poly-4-hydroxybutyrate and its copolymers.
- Poly-4-hydroxybutyrate (available from Tepha, Inc., Cambridge, MA as PHA4400) is a strong pliable thermoplastic that is produced by a fermentation process (see U.S. Patent No. 6,548,569 to Williams et al). Despite its biosynthetic route, the structure of the polyester is relatively simple ( Figure 1).
- the polymer belongs to a larger class of materials called polyhydroxyalkanoates (PHAs) that are produced by numerous microorganims, Steinb ⁇ chel, A. Polyhydroxyalkanoic acids, Biomaterials, 123-213 (1991); Steinb ⁇ chel A., et al. Diversity of Bacterial Polyhydroxyalkanoic Acids, FEMS Microbial. Lett.
- PHAs polyhydroxyalkanoates
- an absorbable hernia mesh with prolonged strength retention could have many advantages over the non-absorbable synthetic meshes currently used in hernia operations (Klinge, U., et al., Functional Assessment and Tissue Response of Short- and Long-term Absorbable Surgical Meshes, Biomaterials 22:1415-1424 (2001).
- Long-term implantation of these non- absorbable meshes is not considered ideal because they can lead to complications such as adhesions (fistula formation), pain, and restriction of physical capabilities (Klinge et al., 2001).
- Biomaterial patches derived from animal and human tissue are currently used fairly extensively in cosmetic surgery, cardiovascular surgery, general surgery (including hernia repair), and in urology and gynecology procedures for the treatment of conditions that include vaginal prolapse and urinary incontinence.
- Synthetic absorbable meshes and patches that may offer decreased risks of disease transmission are currently limited, can be inflammatory, and do not provide prolonged strength retention. Thus there currently exists a need to develop new absorbable meshes for these procedures as well.
- these products should have prolonged strength retention, induce minimal inflammatory responses that resolve, provide mechanically stable reinforcement or closure, offer anti- adhesion properties (where necessary), minimize the risks of disease transmission, and after absorption leave a healthy natural tissue structure. There is thus a need to develop absorbable fibers with prolonged strength retention that could be used as suturing materials, or in surgical meshes.
- the latter offering longer-term mechanical stability, could also be used in other procedures such as pelvic floor reconstruction, urethral suspension (to prevent stress incontinence using the mesh as a sling), pericardial repair, cardiovascular patching, cardiac support (as a sock that fits over the heart to provide reinforcement), organ salvage, elevation of the small bowel during radiation of the colon in colorectal cancer patients, retentive devices for bone graft or cartilage, guided tissue regeneration, vascular grafting, dural substitution, nerve guide repair, as well as in procedures needing anti-adhesion membranes and tissue engineering scaffolds. Strong absorbable fibers could also find other uses, for example, in synthetic ligament and tendon devices or scaffolds.
- the absorbable fibers and devices such as meshes and tubes derived from the fibers could be combined with autologous tissue, allogenic tissue, and/or xenogenic tissues to provide reinforcement, strengthening and/or stiffening of the tissue.
- Such combinations could facilitate implantation of the autologous, allogenic and/or xenogenic tissues, as well as provide improved mechanical and biological properties.
- Combination devices could be used for example in hernia repair, mastopexy / breast reconstruction, rotator cuff repair, vascular grafting / fistulae, tissue flaps, pericardial patching, tissue heart valve implants, bowel interposition, and dura patching.
- Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4- hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post- operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices are also particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.
- Figure 1 is the chemical structure of poly-4-hydroxybutyrate (P4HB, poly-4-hydroxybutyrate) .
- Figure 2 shows some of the known biosynthetic pathways for the production of P4HB. Pathway enzymes are: 1. Succinic semialdehyde dehydrogenase, 2. 4-hydroxybutyrate dehydrogenase, 3. diol oxidoreductase, 4. aldehyde dehydrogenase, 5. Coenzyme A transferase and 6. PHA synthetase.
- Figure 3 is a graph of strength retention data of PHA4400 fibers (in vitro and in vivo) compared with PDS control fiber (in vivo).
- Figure 4 is a graph comparing the tensile mechanical properties of PHA4400 and commercially available monofilament sutures.
- Figure 5 is a graph of the degradation of PHA4400 (P4HB) samples in vivo compared to in vitro controls. The Mw for implanted (in vivo) and buffer control sutures (in vitro) is plotted versus time.
- Figure 6 is a graph of the ratio of mass and length of the PHA4400 sutures (in vitro and in vivo) plotted as a function of degradation time.
- Strength retention refers to the amount of time that a material maintains a particular mechanical property following implantation into a human or animal. For example, if the tensile strength of an absorbable fiber decreased by half over 3 months when implanted into an animal, the fiber's strength retention at 3 months would be 50%.
- Biocompatible refers to the biological response to the material or device being appropriate for the device's intended application in vivo. Any metabolites of these materials should also be biocompatible.
- Poly-4-hydroxybutyrate means a homopolymer comprising 4- hydroxybutyrate units. It may be referred to as P4HB, PHA4400 or TephaFLEXTM biomaterial and is manufactured by Tepha Inc., Cambridge, MA.
- Copolymers of poly-4-hydroxybutyrate mean any polymer comprising 4-hydroxybutyrate with one or more different hydroxy acid units.
- MonocrylTM based on segmented copolymers of glycolide and caprolactone
- BiosynTM based on a terpolymer of glycolide, p- dioxanone, and trimethylene carbonate.
- MonocrylTM is reported to have a 20-30% breaking strength after 2-3 weeks, and be completely absorbed after 3-4 months.
- BiosynTM has an absorption profile similar to MonocrylTM.
- U.S. Patent No. 6,548,569 to Williams et al. discloses that poly-4- hydroxybutyrate has a slower absorption rate in vivo than many materials used as absorbable sutures, and provides absorption data for unoriented poly- 4-hydroxybutyrate films and porous samples. It does not, however, disclose the strength retention of fibers of poly-4-hydroxybutyrate following implantation.
- oriented fibers of PHA4400 and copolymers thereof can be prepared with tensile strengths comparable to existing synthetic absorbable suture fibers (such as PDSTM), but have a prolonged strength retention in vivo of over 20-30% at 3-6 months. In comparison, a control PDS suture had little tensile strength remaining after 12-15 weeks.
- oriented poly-4-hydroxybutyrate fibers can be used to prepare surgical meshes and tubes with prolonged strength retention.
- These fiber and textile devices may further be combined with autologous, allogenic and/or xenogenic tissues to impart improved properties to these implantable tissues.
- Properties that can be improved through this combination include mechanical properties such as tensile strength and modulus, for example, to reinforce the tissues to make them stronger, stiffer, more durable, and easier to implant.
- Non-limiting examples are given herein to describe the methods for preparing the fibers, meshes, and composite devices with autologous, allogenic and/or xenogenic tissues, and to illustrate the strength retention of the fibers upon implantation.
- EXAMPLE 1 Melt extrusion of PHA4400 to produce monofilament fibers PHA4400 (Tepha, Inc., Cambridge, MA) (Mw 575K) was ground into small pieces using a Fritsch cutting mill (Pulversette 15, 10 mm bottom sieve) and dried under vacuum overnight prior to melt processing. Monofilament fibers of PHA4400 were melt extruded using an AJA (Alex James Associates, Greer, SC) 3/4" single screw extruder (24:1 L:D, 3:1 compression) equipped with a Zenith type metering pump (0.16 cc/rev) and a die with a single hole spinnerette (0.026", 2:1 L:D).
- AJA Alex James Associates, Greer, SC
- the 4 heating zones of the extruder were set at 140°, 190°, 200° and 205°C.
- the extruder was set up with a 15 ft drop zone, 48" air quench zone (10°C), a guide roll, three winders and a pickup.
- the fiber was oriented in-line with extrusion by drawing it in a multi-stage process to provide fiber with high tensile strength and a reduced extension to break.
- the fiber was drawn in-line to stretch ratios of 6 to 1 IX.
- a spin finish (Goulston, Lurol PT-6A) was dissolved in iso-propanol at 10 vol/vol% and applied to the fiber before the first roll to act as a lubricant and protect the fiber during downstream processing.
- the weight average molecular weight (Mw) of the fibers was determined by gel permeation chromatography (GPC) and is also shown in Table 1.
- EXAMPLE 2 Strength retention and biocompatibility of PHA4400 monofilament fibers.
- the sterilized sutures were placed perpendicular to the dorsal midline of the rabbit. After making a small incision, a large hemostat was introduced through the incision into the subcutaneous tissue and tunneled approximately 9 inches into the subcutis layer. The PHA4400 and control (3/0 PDSTM) suture fibers were threaded individually through separate surgically created implant areas and left in place. The incisions were closed with tissue glue. A total of four test and four control samples were implanted in each rabbit. Animals were maintained for periods of 1, 4, 8, 12, 16 and 26 weeks (2 rabbits per time point) and were observed daily to ensure proper healing of the implant sites.
- the animals were weighed and euthanized by an injectable barbituate. Tissue sections containing the implanted sutures were excised from the animals. One test and one control sample were fixed in formalin and retained for histological analysis of the tissue surrounding the suture implants. The remaining three samples from each group were cleaned of tissue, wrapped in sterile, saline soaked gauze and returned on the day of explanation for further analysis. Suture samples were further cleaned of residual tissue and dried.
- Sterilized PHA4400 monofilament fibers identical with those used in the implantation study, were incubated in Dulbeco's phosphate buffered saline (pH 7.4, 37°C) containing sodium azide (0.05%) as a preservative.
- Six control PHA4400 sutures per time point were enclosed in sterile polyethylene sample bags and removed at the same time as each of the implant samples. The in vivo and in vitro samples were processed identically.
- the PHA4400 in vitro control suture showed a more gradual loss of strength during the entire 26-week degradation study, retaining 80% of its original strength. This result demonstrates the mechanical stability of the polymeric material to simple hydrolysis.
- the Mw of the PHA4400 samples were analyzed by GPC. As shown in Figure 5, the Mw of the implanted and control PHA4400 sutures decreased gradually during the course of the degradation study to approximately 43% of their original Mw at 26 weeks. Additionally, there does not appear to be a significant difference between the Mw of the implanted and the in vitro control PHA4400 sutures. This result shows that the hydrolytic stability of the implanted sample is very similar to the in vitro control. In order to determine the mass loss of the samples over time, the mass and length of the PHA4400 sutures (in vitro and in vivo) were determined and plotted as a function of degradation time.
- the ratio of mass to length of the PHA4400 samples is plotted vs. degradation time and shown in Figure 6.
- the mass/length ratio was determined rather than just the mass of the sample, because this ratio normalizes for samples that were cut during implantation or that break during harvest.
- the implanted sutures appear to loose mass more rapidly than the in vitro controls. This data shows that the implanted samples lost mass more rapidly than the in vitro control samples and suggests that surface degradation is occurring in vivo.
- tissue surrounding the implanted PHA4400 and PDSTM control sutures was analyzed for the tissue reaction to the implanted articles through the 26-week time point.
- Formalin fixed tissue samples (PHA4400 and PDSTM control) from each test animal were sectioned and graded by a board certified veterinarian for the following: inflammation, fibrosis, hemorrhage, necrosis, degeneration, foreign debris and relative size of involved area. *
- a warp knitted mesh of PHA4400 was produced from 100 ⁇ m diameter oriented monofilament PHA4400 fiber produced as described in Example 1.
- a warp knit type of construction is desirable as an implant because it can be cut by the surgeon and will not readily unravel.
- the mesh was fabricated using fiber of 100 ⁇ m monofilament PHA4400, tensile strength 92,000 psi, and an elongation to break of 77%.
- Fabric construction was as follows: Mach #30 Raschel Knit 36 gauge fabric, 150 ends, 16 courses, 40 stitches per inch, using 18 needles per inch. Specifications for the finished fabric were: Weight: 58 g/m 2 (1.72 oz/sq. yard), Thickness: 0.29 mm.
- EXAMPLE 4 Extrusion of suture fibers of a copolymer of glycolate and 4-hydroxybutyrate (PHA4422). PHA4422 containing 5% glycolic acid comonomer (Mw 305,000 by
- the polymer was melt extruded into a fiber and converted to a suture as follows.
- the polymer was prepared by milling the bulk polymer into approximately 1 mm sized particles using a P-15 laboratory cutting mill (Fritsch, Germany) dried in a vacuum desicator.
- the polymer was extruded using an AJA 5/8" single screw extruder (Alex James and Associates) with a single-hole spinneret (0.040", 2:1 L/D).
- the extruder had five separate temperature zones that were set to 120, 154, 155, 160 and 160°C from the inlet to the outlet, with a gear pump at the outlet.
- the total residence time in the extruder was estimated at 9 minutes.
- EXAMPLE 5 Monofilament fiber with peak tensile stress of greater that 70 kg/mm 2 .
- This example illustrates our ability to overcome the above processing problems and produce high strength fiber.
- PHA4400 polymer was dried to less than 0.01% moisture. Dried pellets of the PHA4400 were fed to an extruder barrel under a blanket of nitrogen. Barrel temperatures zones were kept at 100°C feed, 150°C transition and 200°C metering.
- Molten polymer passed through a heated block to a metering pump then extruded from a die with a single hole spinneret.
- the block, metering pump and the die were kept at 220°C temperature.
- Pump discharge pressure was kept below 1000 psi by control of temperatures, and the speed of the metering pump.
- Spun extrudate filament was free from all melt irregularities., The extrudate was allowed dwell time to crystallize after which further multi stage drawing was possible to increase crystal orientation and gain strength.
- the fiber was then heat treated and rolled on a winding spool. Properties of the ensuing fiber are shown in Table 3.
- Diameter means Diameter
- EXAMPLE 6 Monofilament fibers with prolonged in vivo strength retention.
- the PHA4400 monofilaments prepared as in Example 5 were sterilized using cold ethylene oxide gas (40°C, ethylene oxide pressure of 13.7 INHGA, humidity of 1.7 INHGA, dwell time 4 hr, and aeration time 10 hr).
- the sterilized monofilament fibers were placed perpendicular to the dorsal midline of the rabbit. After making a small incision, a large hemostat was introduced through the incision into the subcutaneous tissue and tunneled approximately 9 inches into the subcutis layer. The PHA4400 fibers were threaded individually through separate surgically created implant areas and left in place. A total of four test and four control samples were implanted in each rabbit. Animals were maintained for a period of 2 weeks (2 rabbits) and were observed daily to ensure proper healing of the implant sites. At the end of the appropriate time points, the animals were weighed and euthanized. Tissue sections containing the implanted sutures were excised from the animals.
- EXAMPLE 7 Multifilament yarn. Fiber spinning was carried out in the same manner as example 5 except with the die having a multi hole spinneret (20 holes x 0.0065 inches). Extrudate yarn was allowed time to crystallize, and a super cooled stream of gaseous media / liquid mist perpendicular to the fiber axis was introduced. A subzero bath was also used and proved a suitable substitute for the gaseous media. The resulting filaments were further processed tlirough cold and heated godets, and the filaments could be oriented and heat set. Yarn tenacity of greater than 3.5 gpd (gram per denier) with 30% elongation was obtained. Representative data for the multifilament yarns is shown in Table 4. Table 4. Tensile properties for PHA4400 multifilament yarns.
- EXAMPLE 8 Knitted fabric from a multifilament yarn.
- a multifilament yarn was knitted into a tube using a single feed, circular weft knitting machine (Lamb Knitting Co., model ST3A/ZA).
- the width of the flat tube was approximately 9 mm.
- EXAMPLE 9 Absorbable polymeric support structure for biological tissue implant.
- PHA4400 fiber woven, knitted or braided into semi rigid support tubes or PHA4400 polymer directly extruded into support tubes can be prepared with an inner diameter closely matching that of a biological substrate implant (e.g. autologous, allogenic and/or xenogenic tissue).
- the biological implant can be inserted into the support tube, and may optionally be secured in place, for example, by suturing, prior to implantation.
- the addition of the support tube provides improved strength, modulus, and can make implantation easier.
- sheets of extruded film, woven, non- woven or knitted fabric may be rolled over a biological tissue implant and the fabric ends may be tied, sutured or glued to maintain a semi-rigid construct over the biological implant.
- a woven tube was produced from 0.300 mm diameter monofilament PHA4400 fiber extruded as described in Example 5. Using circular weaving equipment a 10 mm inside diameter tube was produced. The tube construction allowed insertion of an implant biological substrate and provided enough stiffness to position and suture an otherwise flaccid biological implant.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Medicinal Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Dermatology (AREA)
- Surgery (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Materials For Medical Uses (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Prostheses (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Knitting Of Fabric (AREA)
- Artificial Filaments (AREA)
- Woven Fabrics (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14185659.1A EP2860292B1 (en) | 2003-05-08 | 2004-04-30 | Polyhydroxyalkanoate medical textiles and fibers |
DK04760859.1T DK1638615T3 (en) | 2003-05-08 | 2004-04-30 | MEDICAL POLYHYDROXYALKANOATE TEXTILES AND FIBERS |
CA2525132A CA2525132C (en) | 2003-05-08 | 2004-04-30 | Polyhydroxyalkanoate medical textiles and fibers |
JP2006501302A JP2007525601A (en) | 2003-05-08 | 2004-04-30 | Polyhydroxyalkanoate medical fabric and medical fiber |
ES04760859.1T ES2527857T3 (en) | 2003-05-08 | 2004-04-30 | Medical tissues and fibers of polyhydroxyalkanoate |
EP04760859.1A EP1638615B1 (en) | 2003-05-08 | 2004-04-30 | Polyhydroxyalkanoate medical textiles and fibers |
AU2004238229A AU2004238229B2 (en) | 2003-05-08 | 2004-04-30 | Polyhydroxyalkanoate medical textiles and fibers |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46946903P | 2003-05-08 | 2003-05-08 | |
US60/469,469 | 2003-05-08 | ||
US53406504P | 2004-01-02 | 2004-01-02 | |
US60/534,065 | 2004-01-02 | ||
US54577104P | 2004-02-19 | 2004-02-19 | |
US60/545,771 | 2004-02-19 | ||
US56309604P | 2004-04-16 | 2004-04-16 | |
US60/563,096 | 2004-04-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2004101002A2 true WO2004101002A2 (en) | 2004-11-25 |
WO2004101002A3 WO2004101002A3 (en) | 2006-10-26 |
Family
ID=33459145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2004/013475 WO2004101002A2 (en) | 2003-05-08 | 2004-04-30 | Polyhydroxyalkanoate medical textiles and fibers |
Country Status (9)
Country | Link |
---|---|
US (7) | US8034270B2 (en) |
EP (2) | EP2860292B1 (en) |
JP (1) | JP2007525601A (en) |
AU (1) | AU2004238229B2 (en) |
CA (1) | CA2525132C (en) |
DK (1) | DK1638615T3 (en) |
ES (2) | ES2819189T3 (en) |
PT (1) | PT1638615E (en) |
WO (1) | WO2004101002A2 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006015276A3 (en) * | 2004-08-03 | 2006-03-23 | Tepha Inc | Non-curling polyhydroxyalkanoate sutures |
JP2008529749A (en) * | 2005-02-18 | 2008-08-07 | シンタソーム インコーポレーテッド | Synthetic structures for soft tissue repair |
JP2009502749A (en) * | 2005-07-13 | 2009-01-29 | ヘムコン, インコーポレイテッド | Hemostasis composition, assembly, system and method using particulate hemostatic agent formed from chitosan and comprising polymer mesh material of poly-4-hydroxybutyrate |
WO2011119742A2 (en) | 2010-03-26 | 2011-09-29 | Tepha, Inc. | Coatings for the manufacture and application of polyhydroxyalkanoate medical devices |
WO2011159784A1 (en) | 2010-06-15 | 2011-12-22 | Tepha, Inc. | Medical devices containing dry spun non-wovens of poly-4-hydroxybutyrate and copolymers |
US8287909B2 (en) | 2007-12-19 | 2012-10-16 | Tepha, Inc. | Medical devices containing melt-blown non-wovens of poly-4-hydroxybutyrate and copolymers thereof |
US8317808B2 (en) | 2008-02-18 | 2012-11-27 | Covidien Lp | Device and method for rolling and inserting a prosthetic patch into a body cavity |
WO2013142879A1 (en) * | 2012-03-23 | 2013-09-26 | Cytograft Tissue Engineering, Inc. | Tissue-engineered heart valve for transcatheter repair |
US8753359B2 (en) | 2008-02-18 | 2014-06-17 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US8758373B2 (en) | 2008-02-18 | 2014-06-24 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
US8758374B2 (en) | 2010-09-15 | 2014-06-24 | University Of Utah Research Foundation | Method for connecting nerves via a side-to-side epineurial window using artificial conduits |
US8808314B2 (en) | 2008-02-18 | 2014-08-19 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US8888811B2 (en) | 2008-10-20 | 2014-11-18 | Covidien Lp | Device and method for attaching an implant to biological tissue |
US8906045B2 (en) | 2009-08-17 | 2014-12-09 | Covidien Lp | Articulating patch deployment device and method of use |
US9034002B2 (en) | 2008-02-18 | 2015-05-19 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9044235B2 (en) | 2008-02-18 | 2015-06-02 | Covidien Lp | Magnetic clip for implant deployment device |
WO2015167807A1 (en) | 2014-04-30 | 2015-11-05 | Tepha, Inc. | Three-dimensional resorbable implants for tissue reinforcement and hernia repair |
US20160082160A1 (en) * | 2014-09-22 | 2016-03-24 | Tepha, Inc. | Oriented p4hb implants containing antimicrobial agents |
WO2016057083A2 (en) | 2014-05-16 | 2016-04-14 | Tepha, Inc. | Medical devices containing dry spun non-wovens of poly-4-hydroxybutyrate and copolymers with anisotropic properties |
US9398944B2 (en) | 2008-02-18 | 2016-07-26 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9511169B2 (en) | 2010-06-15 | 2016-12-06 | Tepha, Inc. | Medical devices containing dry spun non-wovens of poly-4-hydroxybutyrate and copolymers with anisotropic properties |
US9833240B2 (en) | 2008-02-18 | 2017-12-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9931121B2 (en) | 2011-10-17 | 2018-04-03 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
US9999424B2 (en) | 2009-08-17 | 2018-06-19 | Covidien Lp | Means and method for reversibly connecting an implant to a deployment device |
US10111738B2 (en) | 2003-05-08 | 2018-10-30 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
WO2018217574A1 (en) | 2017-05-25 | 2018-11-29 | Tepha, Inc. | Continuous formation of tubes of poly-4-hydroxybutyrate and copolymers thereof |
US10159554B2 (en) | 2008-02-18 | 2018-12-25 | Covidien Lp | Clip for implant deployment device |
US10182898B2 (en) | 2008-02-18 | 2019-01-22 | Covidien Lp | Clip for implant deployment device |
US10227713B2 (en) | 2014-12-11 | 2019-03-12 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
US10626521B2 (en) | 2014-12-11 | 2020-04-21 | Tepha, Inc. | Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof |
US10842494B2 (en) | 2011-10-17 | 2020-11-24 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
EP3700594A4 (en) * | 2017-10-24 | 2021-07-28 | Davol Inc. | Soft tissue repair implants comprising hydroxybutyrate |
WO2022092014A1 (en) | 2020-10-26 | 2022-05-05 | 三菱瓦斯化学株式会社 | Bioabsorbable fiber-like medical material |
US11944709B2 (en) | 2014-08-15 | 2024-04-02 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
Families Citing this family (74)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3990880B2 (en) * | 2001-07-10 | 2007-10-17 | キヤノン株式会社 | Method for producing polyhydroxyalkanoate-coated liposome |
WO2006078320A2 (en) | 2004-08-04 | 2006-07-27 | Brookwood Pharmaceuticals, Inc. | Methods for manufacturing delivery devices and devices thereof |
US9717825B2 (en) | 2004-12-23 | 2017-08-01 | Novus Scientific Ab | Mesh implant for use in reconstruction of soft tissue defects |
US9566370B2 (en) | 2004-12-23 | 2017-02-14 | Novus Scientific Ab | Mesh implant for use in reconstruction of soft tissue defects |
US20060281967A1 (en) * | 2005-04-22 | 2006-12-14 | Sofradim Production | Prosthetic safeguard for support implants |
US8449614B2 (en) * | 2005-12-08 | 2013-05-28 | Anova Corporation | Sutures for use in the repair of defects in the anulus fibrosus |
ES2624589T3 (en) * | 2006-02-07 | 2017-07-17 | Tepha, Inc. | Methods and devices for rotator cuff repair |
US9592325B2 (en) * | 2006-02-07 | 2017-03-14 | Tepha, Inc. | Polymeric, degradable drug-eluting stents and coatings |
US8979921B2 (en) * | 2006-02-07 | 2015-03-17 | Tepha, Inc. | Polymeric, degradable drug-eluting stents and coatings |
US8083755B2 (en) | 2006-06-22 | 2011-12-27 | Novus Scientific Pte. Ltd. | Mesh implant for use in reconstruction of soft tissue defects |
IL177550A0 (en) * | 2006-08-17 | 2006-12-31 | Sialo Technology Israel Ltd | All-in-one optical microscopic handle |
EP3292837B1 (en) * | 2006-11-22 | 2022-11-09 | Inspire M.D Ltd | Optimized stent jacket |
US7943683B2 (en) | 2006-12-01 | 2011-05-17 | Tepha, Inc. | Medical devices containing oriented films of poly-4-hydroxybutyrate and copolymers |
US20090192530A1 (en) | 2008-01-29 | 2009-07-30 | Insightra Medical, Inc. | Fortified mesh for tissue repair |
US8016841B2 (en) * | 2007-06-11 | 2011-09-13 | Novus Scientific Pte. Ltd. | Mesh implant with an interlocking knitted structure |
US20090112259A1 (en) * | 2007-10-31 | 2009-04-30 | Angiotech Pharmaceuticals, Inc. | Recombinant expressed bioadsorbable polyhydroxyalkonate monofilament and multi-filaments self-retaining sutures |
EP2222281B1 (en) | 2007-12-20 | 2018-12-05 | Evonik Corporation | Process for preparing microparticles having a low residual solvent volume |
US9301826B2 (en) | 2008-02-18 | 2016-04-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
CN102076280B (en) * | 2008-06-24 | 2014-08-27 | 生物活性外科公司 | Surgical sutures incorporated with stem cells or other bioactive materials |
KR20110042107A (en) | 2008-08-07 | 2011-04-22 | 바이오엑티브 써지컬, 아이엔씨. | Stem cell capture and immobilization coatings for medical devices and implants |
WO2011028579A2 (en) * | 2009-08-26 | 2011-03-10 | The Regents Of The University Of California | Aligning cells on wrinkled surface |
WO2011068952A1 (en) | 2009-12-02 | 2011-06-09 | Entrigue Surgical, Inc. | Devices for tongue stabilization |
US9078634B2 (en) | 2011-01-27 | 2015-07-14 | Cryosa, Llc | Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues |
ES2684949T3 (en) | 2011-03-09 | 2018-10-05 | Tepha, Inc. | Mastopexy systems |
US9248012B2 (en) * | 2011-05-06 | 2016-02-02 | Jeremy J. Heffner | Mesh based fluid delivery prosthesis and method of use |
EP2543339A1 (en) | 2011-07-05 | 2013-01-09 | Aesculap AG | Surgical implant, in particular for use as a hernia repair implant |
US8776716B2 (en) | 2011-08-09 | 2014-07-15 | Biomet Biologics, Llc | Surgical mesh spray and delivery system |
US9370482B1 (en) | 2011-09-09 | 2016-06-21 | Harrison Yu | Method of incorporating additives to shaped porous monocomponent biopolymer fibers during fiber orienting step |
US10433892B2 (en) * | 2012-03-27 | 2019-10-08 | National University Corporation Nagoya University | Three-dimensional structure produced from a material containing polyhydroxyalkanoate, kit for preparation of bone filler, and intramedullary rod |
ES2774932T3 (en) | 2012-11-14 | 2020-07-23 | Cj Cheiljedang Corp | Production of 4-hydroxybutyrate salts using bio-based raw materials |
ES2751398T3 (en) | 2013-01-15 | 2020-03-31 | Tepha Inc | Implants for regeneration of soft tissue and hard tissue |
US9290612B2 (en) | 2013-03-13 | 2016-03-22 | Tepha, Inc. | Compositions and devices of poly-4-hydroxybutyrate |
US10201640B2 (en) | 2013-03-13 | 2019-02-12 | Tepha, Inc. | Ultrafine electrospun fibers of poly-4-hydroxybutyrate and copolymers thereof |
US9655715B2 (en) | 2013-07-11 | 2017-05-23 | Tepha, Inc. | Absorbable implants for plastic surgery |
CA2917577C (en) | 2013-07-11 | 2018-05-29 | Tepha, Inc. | Absorbable implants for plastic surgery |
US9687585B2 (en) | 2013-08-20 | 2017-06-27 | Tepha, Inc. | Thermoformed poly-4-hydroxybutyrate medical implants |
WO2015026964A1 (en) | 2013-08-20 | 2015-02-26 | Tepha, Inc. | Closed cell foams including poly-4-hydroxybutyrate and copolymers thereof |
JP6406806B2 (en) * | 2013-09-12 | 2018-10-17 | 旭化成株式会社 | Artificial fiber cloth |
US9302029B2 (en) | 2013-10-31 | 2016-04-05 | Tepha, Inc. | Pultrusion of poly-4-hydroxybutyrate and copolymers thereof |
WO2015069556A1 (en) | 2013-11-05 | 2015-05-14 | Tepha, Inc. | Compositions and devices of poly-4-hydroxybutyrate |
WO2015094619A1 (en) * | 2013-12-19 | 2015-06-25 | Tornier, Inc. | High-strength bioabsorbable suture |
ES2834498T3 (en) | 2013-12-26 | 2021-06-17 | Tepha Inc | Medical implants including poly-4-hydroxybutyrate laminates and copolymers thereof |
US10588732B2 (en) | 2014-03-07 | 2020-03-17 | IconLab USA, Inc. | Multipurpose implant with modeled surface structure for soft tissue reconstruction |
RU2699811C1 (en) | 2014-03-07 | 2019-09-11 | Айконлаб Инк. | Multipurpose implant with specified surface structure for soft tissue reconstruction |
US9457127B2 (en) | 2014-03-18 | 2016-10-04 | Tepha, Inc. | Micro-fiber webs of poly-4-hydroxybutyrate and copolymers thereof produced by centrifugal spinning |
US11638640B2 (en) | 2014-06-11 | 2023-05-02 | Bard Shannon Limited | In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material |
US10595986B2 (en) | 2014-06-11 | 2020-03-24 | Robert D. Rehnke | Internal long term absorbable matrix brassiere and tissue engineering scaffold |
US11883275B2 (en) | 2014-06-11 | 2024-01-30 | Bard Shannon Limited | In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material |
WO2016028292A1 (en) | 2014-08-20 | 2016-02-25 | Tepha, Inc. | Thermoformed poly-4-hydroxybutyrate medical implants |
WO2016053741A1 (en) | 2014-10-01 | 2016-04-07 | Cryosa, Llc | Apparatus and methods for treatment of obstructive sleep apnea utilizing cryolysis of adipose tissues |
EP3285684A1 (en) | 2015-04-23 | 2018-02-28 | Tepha, Inc. | Absorbable implants for plastic surgery |
USD836778S1 (en) | 2015-10-09 | 2018-12-25 | Tepha, Inc. | Three dimensional mastopexy implant |
ES2863248T3 (en) * | 2015-10-15 | 2021-10-11 | Tepha Inc | Implantable fixation element for attaching a medical device to tissue |
ES2883878T3 (en) | 2015-11-19 | 2021-12-09 | Tepha Inc | Methods to Produce Collagen Coated Perforated Surgical Mesh |
USD816221S1 (en) | 2017-04-11 | 2018-04-24 | Tepha, Inc. | Three dimensional mastopexy implant |
USD816220S1 (en) | 2017-04-11 | 2018-04-24 | Tepha, Inc. | Three dimensional mastopexy implant |
US10874498B2 (en) | 2017-09-06 | 2020-12-29 | Tepha, Inc. | Calendered surgical meshes comprising polyhydroxyalkanoates |
CN107815775B (en) * | 2017-11-03 | 2020-10-23 | 杭州佳泰纺织品有限公司 | Segment-color slub yarn fabric |
ES2916298T3 (en) | 2017-12-04 | 2022-06-29 | Tepha Inc | Vacuum Membrane Thermoformed Poly-4-Hydroxybutyrate Medical Implants |
WO2019156870A2 (en) | 2018-02-09 | 2019-08-15 | Tepha, Inc. | Full contour breast implant |
USD889655S1 (en) | 2018-02-09 | 2020-07-07 | Tepha, Inc. | Three dimensional mastopexy implant |
USD889654S1 (en) | 2018-02-09 | 2020-07-07 | Tepha, Inc. | Three dimensional mastopexy implant |
US11883276B2 (en) | 2018-03-12 | 2024-01-30 | Bard Shannon Limited | In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material |
CN108754741A (en) * | 2018-05-29 | 2018-11-06 | 东华大学 | Used in tissue engineering biomimetic type trachea bracket |
EP4442767A2 (en) | 2018-06-11 | 2024-10-09 | Tepha, Inc. | Methods for 3d printing of poly-4-hydroxybutyrate |
USD892329S1 (en) | 2018-07-03 | 2020-08-04 | Tepha, Inc. | Three dimensional mastopexy implant |
WO2020072349A1 (en) | 2018-10-02 | 2020-04-09 | Tepha, Inc. | Medical devices to limit movement of breast implants |
ES2956815T3 (en) | 2018-10-29 | 2023-12-28 | Tepha Inc | Procedures for manufacturing mesh sutures from poly-4-hydroxybutyrate and its copolymers |
US11136696B2 (en) * | 2018-11-08 | 2021-10-05 | Ethicon, Inc. | Extrusion process for manufacturing of absorbable suture fibers |
US20210022842A1 (en) * | 2019-07-22 | 2021-01-28 | Poly-Med, Inc. | Self-affixing medical devices and additive manufacture of same |
AU2020392326A1 (en) | 2019-11-25 | 2022-06-23 | Tepha, Inc. | Breast implant wraps to limit movement of breast implants and related methods |
WO2021194555A1 (en) | 2020-03-23 | 2021-09-30 | Bard Shannon Limited | In vivo tissue engineering devices, methods and regenerative and cellular medicine employing scaffolds made of absorbable material |
CN114246980B (en) * | 2021-12-24 | 2022-11-22 | 无锡中科光远生物材料有限公司 | Partially absorbable hernia repair patch and preparation method thereof |
KR20240055557A (en) * | 2022-10-20 | 2024-04-29 | 씨제이제일제당 (주) | Composition for biodegradable meltblown nonwoven fabric and biodegradable meltblown nonwoven fabric using the same |
Family Cites Families (195)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3598122A (en) | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3598123A (en) | 1969-04-01 | 1971-08-10 | Alza Corp | Bandage for administering drugs |
US3797494A (en) | 1969-04-01 | 1974-03-19 | Alza Corp | Bandage for the administration of drug by controlled metering through microporous materials |
US3731683A (en) | 1971-06-04 | 1973-05-08 | Alza Corp | Bandage for the controlled metering of topical drugs to the skin |
US3982543A (en) | 1973-04-24 | 1976-09-28 | American Cyanamid Company | Reducing capillarity of polyglycolic acid sutures |
USRE30170E (en) * | 1975-04-04 | 1979-12-18 | Sutures, Inc. | Hydrolyzable polymers of amino acid and hydroxy acids |
US4031894A (en) | 1975-12-08 | 1977-06-28 | Alza Corporation | Bandage for transdermally administering scopolamine to prevent nausea |
US4205399A (en) | 1977-06-13 | 1980-06-03 | Ethicon, Inc. | Synthetic absorbable surgical devices of poly(alkylene oxalates) |
US4201211A (en) | 1977-07-12 | 1980-05-06 | Alza Corporation | Therapeutic system for administering clonidine transdermally |
US4286592A (en) | 1980-02-04 | 1981-09-01 | Alza Corporation | Therapeutic system for administering drugs to the skin |
US4314557A (en) | 1980-05-19 | 1982-02-09 | Alza Corporation | Dissolution controlled active agent dispenser |
US4379454A (en) | 1981-02-17 | 1983-04-12 | Alza Corporation | Dosage for coadministering drug and percutaneous absorption enhancer |
US4849226A (en) | 1981-06-29 | 1989-07-18 | Alza Corporation | Method for increasing oxygen supply by administering vasodilator |
US4435180A (en) | 1982-05-25 | 1984-03-06 | Alza Corporation | Elastomeric active agent delivery system and method of use |
DE3374698D1 (en) * | 1982-08-27 | 1988-01-07 | Ici Plc | 3-hydroxybutyrate polymers |
US4559222A (en) | 1983-05-04 | 1985-12-17 | Alza Corporation | Matrix composition for transdermal therapeutic system |
US4856188A (en) | 1984-10-12 | 1989-08-15 | Drug Delivery Systems Inc. | Method for making disposable and/or replenishable transdermal drug applicators |
EP0145233B2 (en) | 1983-11-23 | 1991-11-06 | Imperial Chemical Industries Plc | Separation processfor a 3-hydroxybutyrate polymer |
US4704282A (en) | 1984-06-29 | 1987-11-03 | Alza Corporation | Transdermal therapeutic system having improved delivery characteristics |
US4588580B2 (en) | 1984-07-23 | 1999-02-16 | Alaz Corp | Transdermal administration of fentanyl and device therefor |
GB8424950D0 (en) | 1984-10-03 | 1984-11-07 | Ici Plc | Non-woven fibrous materials |
US4573995A (en) | 1984-10-09 | 1986-03-04 | Alza Corporation | Transdermal therapeutic systems for the administration of naloxone, naltrexone and nalbuphine |
GB2166354B (en) | 1984-10-10 | 1987-12-09 | Ici Plc | Wound dressings |
US4648978A (en) | 1985-04-24 | 1987-03-10 | American Sterilizer Company | Process for the continuous preparation of sterile, depyrogenated solutions |
US4645502A (en) | 1985-05-03 | 1987-02-24 | Alza Corporation | Transdermal delivery of highly ionized fat insoluble drugs |
FI75493C (en) * | 1985-05-08 | 1988-07-11 | Materials Consultants Oy | SJAELVARMERAT ABSORBERBART PURCHASING SYNTHESIS. |
AU603076B2 (en) | 1985-12-09 | 1990-11-08 | W.R. Grace & Co.-Conn. | Polymeric products and their manufacture |
US4792336A (en) | 1986-03-03 | 1988-12-20 | American Cyanamid Company | Flat braided ligament or tendon implant device having texturized yarns |
US4664655A (en) | 1986-03-20 | 1987-05-12 | Norman Orentreich | High viscosity fluid delivery system |
US4758234A (en) | 1986-03-20 | 1988-07-19 | Norman Orentreich | High viscosity fluid delivery system |
US4711241A (en) | 1986-09-05 | 1987-12-08 | American Cyanamid Company | Surgical filament coating |
US5032638A (en) | 1986-09-05 | 1991-07-16 | American Cyanamid Company | Bioabsorbable coating for a surgical device |
US4908027A (en) | 1986-09-12 | 1990-03-13 | Alza Corporation | Subsaturated transdermal therapeutic system having improved release characteristics |
JPH0725689B2 (en) | 1986-10-07 | 1995-03-22 | 中外製薬株式会社 | Sustained-release preparation containing granulocyte colony-stimulating factor |
NL8603073A (en) | 1986-12-02 | 1988-07-01 | Rijksuniversiteit | METHOD FOR PREPARING POLYESTERS BY FERMENTATION; METHOD FOR PREPARING OPTICALLY ACTIVE CARBONIC ACIDS AND ESTERS; POLYESTER INCLUDING PRODUCTS. |
FI81498C (en) * | 1987-01-13 | 1990-11-12 | Biocon Oy | SURGICAL MATERIAL OCH INSTRUMENT. |
US4788062A (en) | 1987-02-26 | 1988-11-29 | Alza Corporation | Transdermal administration of progesterone, estradiol esters, and mixtures thereof |
US4816258A (en) | 1987-02-26 | 1989-03-28 | Alza Corporation | Transdermal contraceptive formulations |
US5059211A (en) | 1987-06-25 | 1991-10-22 | Duke University | Absorbable vascular stent |
US5480794A (en) | 1987-06-29 | 1996-01-02 | Massachusetts Institute Of Technology And Metabolix, Inc. | Overproduction and purification of soluble PHA synthase |
US5250430A (en) | 1987-06-29 | 1993-10-05 | Massachusetts Institute Of Technology | Polyhydroxyalkanoate polymerase |
US5245023A (en) | 1987-06-29 | 1993-09-14 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
US5229279A (en) | 1987-06-29 | 1993-07-20 | Massachusetts Institute Of Technology | Method for producing novel polyester biopolymers |
SE8802414D0 (en) | 1988-06-27 | 1988-06-28 | Astra Meditec Ab | NEW SURGICAL MATERIAL |
JPS6422886A (en) | 1987-07-17 | 1989-01-25 | Shinetsu Chemical Co | Organosilicon compound |
US4876331A (en) | 1987-08-18 | 1989-10-24 | Mitsubishi Kasei Corporation | Copolyester and process for producing the same |
US4943435A (en) | 1987-10-05 | 1990-07-24 | Pharmetrix Corporation | Prolonged activity nicotine patch |
IT1217783B (en) | 1988-06-03 | 1990-03-30 | Farmaceutico Ct S R L Lab | USE OF SALO DELL, BUTYRIC HYDROXIC ACID RANGE FOR THE PREPARATION OF PHARMACEUTICAL COMPOSITIONS SUITABLE FOR USE IN THE ALCOHOLIC THERAPY AND RELATED COMPOSITIONS |
US5502158A (en) | 1988-08-08 | 1996-03-26 | Ecopol, Llc | Degradable polymer composition |
US4938763B1 (en) | 1988-10-03 | 1995-07-04 | Atrix Lab Inc | Biodegradable in-situ forming implants and method of producing the same |
US5085629A (en) | 1988-10-06 | 1992-02-04 | Medical Engineering Corporation | Biodegradable stent |
US5026381A (en) | 1989-04-20 | 1991-06-25 | Colla-Tec, Incorporated | Multi-layered, semi-permeable conduit for nerve regeneration comprised of type 1 collagen, its method of manufacture and a method of nerve regeneration using said conduit |
US5041100A (en) | 1989-04-28 | 1991-08-20 | Cordis Corporation | Catheter and hydrophilic, friction-reducing coating thereon |
US5002067A (en) | 1989-08-23 | 1991-03-26 | Medtronic, Inc. | Medical electrical lead employing improved penetrating electrode |
EP0423484B1 (en) | 1989-10-16 | 1993-11-03 | PCD-Polymere Gesellschaft m.b.H. | Tablet with sustained release |
IT1238344B (en) | 1989-10-20 | 1993-07-13 | Sigma Tau Ind Farmaceuti | ESTERS OF L-CARNITINE WITH GAMMA-HYDROXYBUTIRRIC ACID AND PHARMACEUTICAL COMPOSITIONS THAT CONTAIN IT FOR THE INHIBITION OF NEURONAL DEGENERATION AND IN THE TREATMENT OF COMA |
US5271961A (en) | 1989-11-06 | 1993-12-21 | Alkermes Controlled Therapeutics, Inc. | Method for producing protein microspheres |
DE3937649A1 (en) | 1989-11-11 | 1991-05-16 | Boehringer Ingelheim Kg | POLYESTER BASED ON 4-HYDROXYALKANSAURES AND METHOD FOR THE PRODUCTION THEREOF |
JPH0662839B2 (en) | 1989-11-14 | 1994-08-17 | 工業技術院長 | Microbial degradable plastic molding and method for producing the same |
US5705187A (en) | 1989-12-22 | 1998-01-06 | Imarx Pharmaceutical Corp. | Compositions of lipids and stabilizing materials |
EP0452111B1 (en) | 1990-04-13 | 1998-07-15 | Takeda Chemical Industries, Ltd. | Biodegradable high-molecular polymers, production and use thereof |
US5171308A (en) | 1990-05-11 | 1992-12-15 | E. I. Du Pont De Nemours And Company | Polyesters and their use in compostable products such as disposable diapers |
AU636481B2 (en) | 1990-05-18 | 1993-04-29 | Bracco International B.V. | Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography |
IT1247157B (en) | 1991-02-11 | 1994-12-12 | Fidia Spa | BIODEGRADABLE AND BIOABSORBABLE GUIDE CHANNELS TO BE USED FOR NERVE REGENERATION. |
JPH04292619A (en) | 1991-03-19 | 1992-10-16 | Terumo Corp | Bio-degradable copolymerized polyester and bio-degradable resin composition |
CA2064410A1 (en) | 1991-04-01 | 1992-10-02 | Masanobu Ajioka | Degradable foam and use of same |
GB9107628D0 (en) | 1991-04-10 | 1991-05-29 | Moonbrook Limited | Preparation of diagnostic agents |
JPH04326932A (en) | 1991-04-24 | 1992-11-16 | Nippon Zeon Co Ltd | Polyester porous film |
DE4113984C2 (en) | 1991-04-29 | 2002-05-08 | Koehler Chemie Dr Franz | Salts of 4-hydroxy butyric acid |
FR2676927B1 (en) | 1991-05-29 | 1995-06-23 | Ibf | MICROSPHERES FOR USE IN THERAPEUTIC VASCULAR OCCLUSIONS AND INJECTABLE SOLUTIONS CONTAINING THEM. |
JPH0523189A (en) | 1991-07-18 | 1993-02-02 | Mitsubishi Kasei Corp | Production of polyester copolymer |
US5236431A (en) | 1991-07-22 | 1993-08-17 | Synthes | Resorbable fixation device with controlled stiffness for treating bodily material in vivo and introducer therefor |
JP2777757B2 (en) | 1991-09-17 | 1998-07-23 | 鐘淵化学工業株式会社 | Copolymer and method for producing the same |
EP0560984B1 (en) | 1991-09-27 | 1999-05-26 | Terumo Kabushiki Kaisha | Flexible member for medical use |
WO1993006792A1 (en) | 1991-10-04 | 1993-04-15 | Scimed Life Systems, Inc. | Biodegradable drug delivery vascular stent |
JPH05194141A (en) | 1992-01-14 | 1993-08-03 | Mitsubishi Kasei Corp | Cosmetic |
US5876452A (en) | 1992-02-14 | 1999-03-02 | Board Of Regents, University Of Texas System | Biodegradable implant |
US5204382A (en) | 1992-02-28 | 1993-04-20 | Collagen Corporation | Injectable ceramic compositions and methods for their preparation and use |
CH689767A5 (en) | 1992-03-24 | 1999-10-15 | Balzers Hochvakuum | Process for Werkstueckbehandlung in a Vakuumatmosphaere and vacuum treatment system. |
AU3941793A (en) | 1992-03-30 | 1993-11-08 | Alza Corporation | Additives for bioerodible polymers to regulate degradation |
US5939467A (en) | 1992-06-26 | 1999-08-17 | The Procter & Gamble Company | Biodegradable polymeric compositions and products thereof |
US5703160A (en) | 1992-07-15 | 1997-12-30 | Solvay S.A. | Biodegradable moulding compositions comprising a starch, a biodegradable polyester, and a salt of a hydroxycarboxylic acid |
SE509991C2 (en) | 1992-07-20 | 1999-03-29 | Bengt Hjalmar Aagerup Med Firm | Biodegradable tissue enhancement |
US5700485A (en) | 1992-09-10 | 1997-12-23 | Children's Medical Center Corporation | Prolonged nerve blockade by the combination of local anesthetic and glucocorticoid |
US5278256A (en) | 1992-09-16 | 1994-01-11 | E. I. Du Pont De Nemours And Company | Rapidly degradable poly (hydroxyacid) compositions |
DE4231342C1 (en) | 1992-09-18 | 1994-05-26 | Bostik Gmbh | Intumescent one-component sealing compound based on polyurethane |
GB9223351D0 (en) | 1992-11-06 | 1992-12-23 | Ici Plc | Polyesters |
GB9223350D0 (en) | 1992-11-06 | 1992-12-23 | Ici Plc | Polymer composition |
JP3263710B2 (en) | 1992-12-11 | 2002-03-11 | 高砂香料工業株式会社 | Biodegradable optically active polymer and method for producing the same |
DE69318946T2 (en) | 1992-12-11 | 1998-12-17 | Takasago International Corp., Tokio/Tokyo | Biodegradable, optically active lactone polymer and process for its production |
US5443458A (en) | 1992-12-22 | 1995-08-22 | Advanced Cardiovascular Systems, Inc. | Multilayered biodegradable stent and method of manufacture |
US5468253A (en) | 1993-01-21 | 1995-11-21 | Ethicon, Inc. | Elastomeric medical device |
US5288516A (en) * | 1993-02-11 | 1994-02-22 | E. I. Du Pont De Nemours And Company | Process of producing bioabsorbable filaments |
JPH06264306A (en) | 1993-03-09 | 1994-09-20 | Unitika Ltd | Biodegradable multifilament and its production |
JPH06336523A (en) | 1993-03-31 | 1994-12-06 | Nippon Zeon Co Ltd | Molded polyester product |
US5709854A (en) | 1993-04-30 | 1998-01-20 | Massachusetts Institute Of Technology | Tissue formation by injecting a cell-polymeric solution that gels in vivo |
US5412067A (en) | 1993-05-10 | 1995-05-02 | Mitsui Toatsu Chemicals, Inc. | Preparation process of polyester |
GB9311402D0 (en) | 1993-06-02 | 1993-07-21 | Zeneca Ltd | Processing of polyesters |
US5874040A (en) | 1993-06-02 | 1999-02-23 | Monsanto Company | Processing of polyesters |
JP3243334B2 (en) | 1993-06-10 | 2002-01-07 | テルモ株式会社 | Hydroxyalkanoate polymer composition |
DE69401945T3 (en) | 1993-06-25 | 2004-09-02 | Alza Corp., Palo Alto | INTRODUCTION OF A POLY-N-VINYLAMID INTO A TRANSDERMAL SYSTEM |
EP0712421A1 (en) | 1993-07-23 | 1996-05-22 | Massachusetts Institute Of Technology | Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers |
JPH083333A (en) | 1994-06-22 | 1996-01-09 | Tokuyama Corp | Melt-extruded film of biodegradable aliphatic polyester and bag comprising the same |
US5814599A (en) | 1995-08-04 | 1998-09-29 | Massachusetts Insitiute Of Technology | Transdermal delivery of encapsulated drugs |
CA2177033C (en) | 1993-12-20 | 2000-06-27 | Robert S. Honkonen | Ph-modified polymer compositions with enhanced biodegradability |
WO1995018781A1 (en) | 1994-01-06 | 1995-07-13 | Metabolix, Inc. | Methods for synthesizing oligomers containing hydroxy acid units |
SG49096A1 (en) | 1994-01-28 | 1998-05-18 | Procter & Gamble | Biodegradable 3-polyhydtoxybuyrate/3- polyhydroxyhexanoate copolymer films |
ZA95627B (en) | 1994-01-28 | 1995-10-05 | Procter & Gamble | Biodegradable copolymers and plastic articles comprising biodegradable copolymers |
PL181098B1 (en) | 1994-01-28 | 2001-05-31 | Procter & Gamble | Biodegradable copolymers and plastic articles incorporating 3-hydroxyhexnate copolymers |
ID23491A (en) | 1994-01-28 | 1995-09-07 | Procter & Gamble | COOPOLYMERS WHICH CAN BE DIODODEGRADED AND PLASTIC MATERIALS CONTAINED FROM CO-COLLIMERS WHICH CAN BE DIBIODEGRADED |
SG49102A1 (en) | 1994-02-28 | 1998-05-18 | Procter & Gamble | Stirring processes for preparing biodegradable fibrils nonwoven fabrics comprising the biodegradable fibrils and articles comprising the nonwoven fabrics |
JPH07275344A (en) | 1994-04-05 | 1995-10-24 | Nippon Zeon Co Ltd | Medical material for soft tissue |
US5584885A (en) | 1994-04-28 | 1996-12-17 | Seckel; Brooke R. | Nerve regeneration chamber |
US5814404A (en) | 1994-06-03 | 1998-09-29 | Minnesota Mining And Manufacturing Company | Degradable multilayer melt blown microfibers |
DK0952792T3 (en) | 1994-06-06 | 2003-12-08 | Osiris Therapeutics Inc | Biomatrix for tissue regeneration |
NL9401037A (en) | 1994-06-23 | 1996-02-01 | Soonn Stichting Onderzoek En O | Process for preparing a biodegradable polyhydroxyalkanoate coating using an aqueous dispersion of polyhydroxyalkanoate. |
CN1151165A (en) | 1994-06-24 | 1997-06-04 | 日本新药株式会社 | Triterpene derivative and medicinal composition |
US5629077A (en) | 1994-06-27 | 1997-05-13 | Advanced Cardiovascular Systems, Inc. | Biodegradable mesh and film stent |
AU700073B2 (en) | 1994-08-12 | 1998-12-17 | Minnesota Mining And Manufacturing Company | Poly(beta -hydroxyorganoate) pressure sensitive adhesive compositions |
JPH0889264A (en) | 1994-09-20 | 1996-04-09 | Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko | Production of polyester copolymer |
US5599852A (en) | 1994-10-18 | 1997-02-04 | Ethicon, Inc. | Injectable microdispersions for soft tissue repair and augmentation |
AU706434B2 (en) | 1994-10-18 | 1999-06-17 | Ethicon Inc. | Injectable liquid copolymers for soft tissue repair and augmentation |
US5563239A (en) | 1994-11-09 | 1996-10-08 | Eastman Chemical Company | Composition and process for the production of poly(3-hydroxyalkanoates) |
US5814071A (en) | 1994-11-10 | 1998-09-29 | Innovasive Devices, Inc. | Suture anchor assembly and methods |
IL116328A (en) | 1994-12-16 | 1999-09-22 | Bracco Research Sa | Frozen suspension of gas microbubbles in frozen aqueous carrier for use as contrast agent in ultrasonic imaging |
AU4652596A (en) | 1995-01-09 | 1996-07-31 | Atrix Laboratories, Inc. | Liquid polymer delivery system |
DE69614279T2 (en) | 1995-01-26 | 2002-06-13 | Takasago International Corp., Tokio/Tokyo | Biodegradable composition |
JP3519480B2 (en) | 1995-02-16 | 2004-04-12 | ユニチカ株式会社 | Manufacturing method of biodegradable monofilament |
US5879322A (en) | 1995-03-24 | 1999-03-09 | Alza Corporation | Self-contained transdermal drug delivery device |
US5840331A (en) | 1995-06-07 | 1998-11-24 | Arch Development Corporation | Use of γ-hydroxybutyrate for the stimulation of sleep-related secretion growth hormone and prolactin |
US6129761A (en) | 1995-06-07 | 2000-10-10 | Reprogenesis, Inc. | Injectable hydrogel compositions |
DE69636485T2 (en) | 1995-07-20 | 2007-04-19 | The Procter & Gamble Company, Cincinnati | Biodegradable copolymer containing nonwoven materials |
WO1997007153A1 (en) | 1995-08-14 | 1997-02-27 | University Of Massachusetts Medical Center | Methods of controlling microbial polyester structure |
JPH0998793A (en) | 1995-10-06 | 1997-04-15 | Taisei Corp | Production of polyester copolymer containing 4-hydroxybutyrate unit |
DE19539449A1 (en) | 1995-10-24 | 1997-04-30 | Biotronik Mess & Therapieg | Process for the production of intraluminal stents from bioresorbable polymer material |
US6083729A (en) | 1995-10-26 | 2000-07-04 | Metabolix, Inc. | Methods for isolating polyhydroxyalkanoates from plants |
WO1997030042A1 (en) | 1996-02-13 | 1997-08-21 | Global Art Co. Ltd. | Polyester cyclic compounds, their complexes and bonded bodies |
US5842477A (en) | 1996-02-21 | 1998-12-01 | Advanced Tissue Sciences, Inc. | Method for repairing cartilage |
US5670161A (en) | 1996-05-28 | 1997-09-23 | Healy; Kevin E. | Biodegradable stent |
US5811272A (en) | 1996-07-26 | 1998-09-22 | Massachusetts Institute Of Technology | Method for controlling molecular weight of polyhydroxyalkanoates |
US5837221A (en) | 1996-07-29 | 1998-11-17 | Acusphere, Inc. | Polymer-lipid microencapsulated gases for use as imaging agents |
US5711953A (en) | 1996-08-26 | 1998-01-27 | Bassett; John M. | Insect repellant |
GB9619864D0 (en) | 1996-09-24 | 1996-11-06 | Berol Limited | Coating fluids with reduced solvent evaporation |
US6162537A (en) * | 1996-11-12 | 2000-12-19 | Solutia Inc. | Implantable fibers and medical articles |
JP3369421B2 (en) * | 1996-12-18 | 2003-01-20 | 理化学研究所 | Film composed of poly (3-hydroxybutanoic acid) |
AU2324097A (en) | 1997-03-03 | 1998-09-22 | Monsanto Company | Methods for the biosynthesis of polyesters |
IL132120A0 (en) | 1997-04-03 | 2001-03-19 | Guilford Pharm Inc | Biodegradable terephthalate polyester-poly (phosphate) polymers compositions articles and methods for making and using the same |
AU7140598A (en) | 1997-04-21 | 1998-11-13 | Monsanto Company | Hydroxy-terminated polyhydroxyalkanoates |
US6245537B1 (en) | 1997-05-12 | 2001-06-12 | Metabolix, Inc. | Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation |
US6610764B1 (en) | 1997-05-12 | 2003-08-26 | Metabolix, Inc. | Polyhydroxyalkanoate compositions having controlled degradation rates |
US6119567A (en) | 1997-07-10 | 2000-09-19 | Ktm Industries, Inc. | Method and apparatus for producing a shaped article |
US5876455A (en) | 1997-07-24 | 1999-03-02 | Harwin; Steven F. | Bio-shim |
US6245103B1 (en) * | 1997-08-01 | 2001-06-12 | Schneider (Usa) Inc | Bioabsorbable self-expanding stent |
US5990162A (en) | 1997-08-29 | 1999-11-23 | Orphan Medical, Inc. | Method for treatment of fibromyalgia and chronic fatigue syndrome |
AU9313298A (en) | 1997-09-04 | 1999-03-22 | Point Biomedical Corporation | Injectable tissue reconstruction material |
EP1015565B1 (en) | 1997-09-19 | 2006-04-12 | Metabolix, Inc. | Biological systems for manufacture of polyhydroxyalkanoate polymers containing 4-hydroxyacids |
ATE328617T1 (en) | 1997-10-31 | 2006-06-15 | Childrens Medical Center | PENIS RECONSTRUCTION |
EP2258742A1 (en) | 1997-12-22 | 2010-12-08 | Metabolix, Inc. | Polyhydroxyalkanoate compositons having controlled degradation rates |
US6429285B2 (en) | 1998-01-09 | 2002-08-06 | Metabolix, Inc. | Polymer compositions providing low residue levels and methods of use thereof |
JPH11199514A (en) | 1998-01-13 | 1999-07-27 | Meiji Seika Kaisha Ltd | Sustainably releasing pharmaceutically prepared composition |
US6056970A (en) | 1998-05-07 | 2000-05-02 | Genzyme Corporation | Compositions comprising hemostatic compounds and bioabsorbable polymers |
EP2267133B1 (en) | 1998-05-22 | 2017-07-12 | CJ Research Center LLC | Method for making poly(3-hydroxyproprionate) |
US6119557A (en) | 1998-08-24 | 2000-09-19 | Bilco Tools, Inc. | Power tong with shutdown system and method |
US7662409B2 (en) | 1998-09-25 | 2010-02-16 | Gel-Del Technologies, Inc. | Protein matrix materials, devices and methods of making and using thereof |
EP1121072A1 (en) | 1998-10-12 | 2001-08-08 | Therics, Inc. | Composites for tissue regeneration and methods of manufacture thereof |
FR2784580B1 (en) | 1998-10-16 | 2004-06-25 | Biosepra Inc | POLYVINYL-ALCOHOL MICROSPHERES AND METHODS OF MAKING THE SAME |
JP2000220032A (en) | 1999-01-28 | 2000-08-08 | Toray Ind Inc | Ultrafine polyester multifilament yarn, combined filament yarn and woven or knitted fabric |
US6656489B1 (en) | 1999-02-10 | 2003-12-02 | Isotis N.V. | Scaffold for tissue engineering cartilage having outer surface layers of copolymer and ceramic material |
US6514515B1 (en) | 1999-03-04 | 2003-02-04 | Tepha, Inc. | Bioabsorbable, biocompatible polymers for tissue engineering |
JP3035292B1 (en) | 1999-03-24 | 2000-04-24 | 日本イーライリリー株式会社 | Needle unit storage case |
DK1163019T3 (en) | 1999-03-25 | 2008-03-03 | Metabolix Inc | Medical devices and applications of polyhydroxyalkanoate polymers |
US6103255A (en) * | 1999-04-16 | 2000-08-15 | Rutgers, The State University | Porous polymer scaffolds for tissue engineering |
ATE334639T1 (en) * | 1999-06-08 | 2006-08-15 | Ethicon Inc | SURGICAL KNITTED FABRIC |
JP4859317B2 (en) * | 1999-08-06 | 2012-01-25 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | Drug release biodegradable fiber implant |
EP1212046A2 (en) | 1999-08-30 | 2002-06-12 | Tepha, Inc. | Flushable disposable polymeric products |
US7025980B1 (en) | 1999-09-14 | 2006-04-11 | Tepha, Inc. | Polyhydroxyalkanoate compositions for soft tissue repair, augmentation, and viscosupplementation |
JP4723143B2 (en) | 1999-09-14 | 2011-07-13 | テファ, インコーポレイテッド | Therapeutic uses of polymers and oligomers containing gamma-hydroxybutyrate |
EP1130043B1 (en) | 2000-02-29 | 2006-01-25 | Canon Kabushiki Kaisha | Polyhydroxyalkanoate containing 3-hydroxythienylalkanoic acid as monomer unit and method for producing the same |
JP2005501927A (en) | 2001-04-20 | 2005-01-20 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Processing of polyhydroxyalkanoates using nucleating agents and plasticizers |
US20020168518A1 (en) | 2001-05-10 | 2002-11-14 | The Procter & Gamble Company | Fibers comprising starch and polymers |
JP4562316B2 (en) * | 2001-06-11 | 2010-10-13 | 株式会社カネカ | Biodegradable fiber and method for producing the same |
US6770356B2 (en) | 2001-08-07 | 2004-08-03 | The Procter & Gamble Company | Fibers and webs capable of high speed solid state deformation |
GB0202233D0 (en) * | 2002-01-31 | 2002-03-20 | Smith & Nephew | Bioresorbable polymers |
US20050107505A1 (en) | 2002-02-05 | 2005-05-19 | Hosei Shinoda | Biodegradable resin composition and molded object thereof |
US7094369B2 (en) | 2002-03-29 | 2006-08-22 | Scimed Life Systems, Inc. | Processes for manufacturing polymeric microspheres |
ES2741964T3 (en) | 2002-05-10 | 2020-02-12 | Tepha Inc | Bioabsorbable polymer containing 2-hydroxy acid monomers |
US6838492B2 (en) * | 2002-06-17 | 2005-01-04 | Scentco, Llc. | Scented paints, paint scenting additive mixtures and processes for producing scented paints |
EP1545390A4 (en) * | 2002-08-23 | 2007-05-09 | Proxy Biomedical Ltd | Three dimensional implant |
US8283435B2 (en) | 2003-02-21 | 2012-10-09 | Metabolix, Inc. | PHA adhesive compositions |
JP2007525601A (en) | 2003-05-08 | 2007-09-06 | テファ, インコーポレイテッド | Polyhydroxyalkanoate medical fabric and medical fiber |
JP4326932B2 (en) | 2003-12-16 | 2009-09-09 | 本田技研工業株式会社 | Stator and manufacturing method thereof |
US20050267516A1 (en) | 2004-06-01 | 2005-12-01 | Farzad Soleimani | Embolic protection device for the prevention of stroke |
DK1778305T3 (en) | 2004-08-03 | 2010-10-18 | Tepha Inc | Non-curly polyhydroxyalkanoate sutures |
JP5023189B2 (en) | 2010-06-04 | 2012-09-12 | 株式会社日立ビルシステム | Escalator monitoring device |
JP5194141B2 (en) | 2010-03-30 | 2013-05-08 | 楽天株式会社 | Product information providing system, product information providing method and program |
-
2004
- 2004-04-30 JP JP2006501302A patent/JP2007525601A/en active Pending
- 2004-04-30 DK DK04760859.1T patent/DK1638615T3/en active
- 2004-04-30 EP EP14185659.1A patent/EP2860292B1/en not_active Expired - Lifetime
- 2004-04-30 EP EP04760859.1A patent/EP1638615B1/en not_active Expired - Lifetime
- 2004-04-30 PT PT04760859T patent/PT1638615E/en unknown
- 2004-04-30 ES ES14185659T patent/ES2819189T3/en not_active Expired - Lifetime
- 2004-04-30 ES ES04760859.1T patent/ES2527857T3/en not_active Expired - Lifetime
- 2004-04-30 US US10/835,926 patent/US8034270B2/en active Active
- 2004-04-30 CA CA2525132A patent/CA2525132C/en not_active Expired - Lifetime
- 2004-04-30 WO PCT/US2004/013475 patent/WO2004101002A2/en active IP Right Grant
- 2004-04-30 AU AU2004238229A patent/AU2004238229B2/en not_active Expired
-
2011
- 2011-09-08 US US13/228,056 patent/US9125719B2/en not_active Expired - Lifetime
-
2013
- 2013-07-16 US US13/943,116 patent/US8758657B2/en not_active Expired - Lifetime
-
2014
- 2014-04-01 US US14/242,599 patent/US10111738B2/en active Active
- 2014-05-13 US US14/276,693 patent/US10136982B2/en not_active Expired - Lifetime
- 2014-05-13 US US14/276,708 patent/US9333066B2/en not_active Expired - Lifetime
-
2016
- 2016-07-21 US US15/215,878 patent/US10314683B2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
None |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10314683B2 (en) | 2003-05-08 | 2019-06-11 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US10136982B2 (en) | 2003-05-08 | 2018-11-27 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
US10111738B2 (en) | 2003-05-08 | 2018-10-30 | Tepha, Inc. | Polyhydroxyalkanoate medical textiles and fibers |
EP2221069A1 (en) | 2004-08-03 | 2010-08-25 | Tepha, Inc. | Non-curling polyhydroxyalkanoate sutures |
WO2006015276A3 (en) * | 2004-08-03 | 2006-03-23 | Tepha Inc | Non-curling polyhydroxyalkanoate sutures |
US9820847B2 (en) | 2005-02-18 | 2017-11-21 | Synthasome Inc. | Synthetic structure for soft tissue repair |
JP2008529749A (en) * | 2005-02-18 | 2008-08-07 | シンタソーム インコーポレーテッド | Synthetic structures for soft tissue repair |
JP2009502749A (en) * | 2005-07-13 | 2009-01-29 | ヘムコン, インコーポレイテッド | Hemostasis composition, assembly, system and method using particulate hemostatic agent formed from chitosan and comprising polymer mesh material of poly-4-hydroxybutyrate |
JP2009505685A (en) * | 2005-07-13 | 2009-02-12 | ヘムコン, インコーポレイテッド | Hemostasis composition, assembly, system and method using a granular hemostatic agent formed from a hydrophilic polymer foam such as chitosan |
US8287909B2 (en) | 2007-12-19 | 2012-10-16 | Tepha, Inc. | Medical devices containing melt-blown non-wovens of poly-4-hydroxybutyrate and copolymers thereof |
US9833240B2 (en) | 2008-02-18 | 2017-12-05 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9044235B2 (en) | 2008-02-18 | 2015-06-02 | Covidien Lp | Magnetic clip for implant deployment device |
US8753359B2 (en) | 2008-02-18 | 2014-06-17 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US8758373B2 (en) | 2008-02-18 | 2014-06-24 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
US10182898B2 (en) | 2008-02-18 | 2019-01-22 | Covidien Lp | Clip for implant deployment device |
US8808314B2 (en) | 2008-02-18 | 2014-08-19 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US8317808B2 (en) | 2008-02-18 | 2012-11-27 | Covidien Lp | Device and method for rolling and inserting a prosthetic patch into a body cavity |
US10695155B2 (en) | 2008-02-18 | 2020-06-30 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US9005241B2 (en) | 2008-02-18 | 2015-04-14 | Covidien Lp | Means and method for reversibly connecting a patch to a patch deployment device |
US9034002B2 (en) | 2008-02-18 | 2015-05-19 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9398944B2 (en) | 2008-02-18 | 2016-07-26 | Covidien Lp | Lock bar spring and clip for implant deployment device |
US9107726B2 (en) | 2008-02-18 | 2015-08-18 | Covidien Lp | Device and method for deploying and attaching an implant to a biological tissue |
US10159554B2 (en) | 2008-02-18 | 2018-12-25 | Covidien Lp | Clip for implant deployment device |
US8888811B2 (en) | 2008-10-20 | 2014-11-18 | Covidien Lp | Device and method for attaching an implant to biological tissue |
US8906045B2 (en) | 2009-08-17 | 2014-12-09 | Covidien Lp | Articulating patch deployment device and method of use |
US9999424B2 (en) | 2009-08-17 | 2018-06-19 | Covidien Lp | Means and method for reversibly connecting an implant to a deployment device |
US9326841B2 (en) | 2010-03-26 | 2016-05-03 | Tepha, Inc. | Coatings for the manufacture and application of polyhydroxyalkanoate medical devices |
US8747468B2 (en) | 2010-03-26 | 2014-06-10 | Tepha, Inc. | Coatings for the manufacture and application of polyhydroxyalkanoate medical devices |
WO2011119742A3 (en) * | 2010-03-26 | 2013-01-03 | Tepha, Inc. | Coatings for the manufacture and application of polyhydroxyalkanoate medical devices |
US9943393B2 (en) | 2010-03-26 | 2018-04-17 | Tepha, Inc. | Coatings for the manufacture and application of polyhydroxyalkanoate medical devices |
US9968431B2 (en) | 2010-03-26 | 2018-05-15 | Tepha, Inc. | Coatings for the manufacture and application of polyhydroxyalkanoate medical devices |
WO2011119742A2 (en) | 2010-03-26 | 2011-09-29 | Tepha, Inc. | Coatings for the manufacture and application of polyhydroxyalkanoate medical devices |
EP3639861A1 (en) | 2010-03-26 | 2020-04-22 | Tepha, Inc. | Coatings for the manufacture and application of polyhydroxyalkanoate medical devices |
US10227718B2 (en) | 2010-06-15 | 2019-03-12 | Tepha, Inc. | Medical devices containing dry spun non-wovens of poly-4-hydroxybutyrate and copolymers |
US9511169B2 (en) | 2010-06-15 | 2016-12-06 | Tepha, Inc. | Medical devices containing dry spun non-wovens of poly-4-hydroxybutyrate and copolymers with anisotropic properties |
WO2011159784A1 (en) | 2010-06-15 | 2011-12-22 | Tepha, Inc. | Medical devices containing dry spun non-wovens of poly-4-hydroxybutyrate and copolymers |
US8758374B2 (en) | 2010-09-15 | 2014-06-24 | University Of Utah Research Foundation | Method for connecting nerves via a side-to-side epineurial window using artificial conduits |
US9931121B2 (en) | 2011-10-17 | 2018-04-03 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
US10842494B2 (en) | 2011-10-17 | 2020-11-24 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
US10772633B2 (en) | 2011-10-17 | 2020-09-15 | University Of Utah Research Foundation | Methods and devices for connecting nerves |
WO2013142879A1 (en) * | 2012-03-23 | 2013-09-26 | Cytograft Tissue Engineering, Inc. | Tissue-engineered heart valve for transcatheter repair |
WO2015167807A1 (en) | 2014-04-30 | 2015-11-05 | Tepha, Inc. | Three-dimensional resorbable implants for tissue reinforcement and hernia repair |
WO2016057083A2 (en) | 2014-05-16 | 2016-04-14 | Tepha, Inc. | Medical devices containing dry spun non-wovens of poly-4-hydroxybutyrate and copolymers with anisotropic properties |
US11944709B2 (en) | 2014-08-15 | 2024-04-02 | Tepha, Inc. | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof |
US10874771B2 (en) | 2014-09-22 | 2020-12-29 | Tepha, Inc. | Oriented P4HB implants containing antimicrobial agents |
US10525172B2 (en) * | 2014-09-22 | 2020-01-07 | Tepha, Inc. | Oriented P4HB implants containing antimicrobial agents |
US20160082160A1 (en) * | 2014-09-22 | 2016-03-24 | Tepha, Inc. | Oriented p4hb implants containing antimicrobial agents |
US10227713B2 (en) | 2014-12-11 | 2019-03-12 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
US10626521B2 (en) | 2014-12-11 | 2020-04-21 | Tepha, Inc. | Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof |
US11828006B2 (en) | 2014-12-11 | 2023-11-28 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
US10590566B2 (en) | 2014-12-11 | 2020-03-17 | Tepha, Inc. | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof |
WO2018217574A1 (en) | 2017-05-25 | 2018-11-29 | Tepha, Inc. | Continuous formation of tubes of poly-4-hydroxybutyrate and copolymers thereof |
US11040170B2 (en) | 2017-05-25 | 2021-06-22 | Tepha, Inc. | Continuous formation of tubes of poly-4-hydroxybutyrate and copolymers thereof |
EP3700594A4 (en) * | 2017-10-24 | 2021-07-28 | Davol Inc. | Soft tissue repair implants comprising hydroxybutyrate |
AU2018355245B2 (en) * | 2017-10-24 | 2024-01-25 | Davol Inc. | Soft tissue repair implants comprising hydroxybutyrate |
WO2022092014A1 (en) | 2020-10-26 | 2022-05-05 | 三菱瓦斯化学株式会社 | Bioabsorbable fiber-like medical material |
KR20230097008A (en) | 2020-10-26 | 2023-06-30 | 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 | Bioabsorbable fibrous medical material |
Also Published As
Publication number | Publication date |
---|---|
AU2004238229B2 (en) | 2007-07-12 |
EP2860292A3 (en) | 2015-10-14 |
ES2527857T3 (en) | 2015-01-30 |
WO2004101002A3 (en) | 2006-10-26 |
US10111738B2 (en) | 2018-10-30 |
US20150073444A1 (en) | 2015-03-12 |
EP2860292A2 (en) | 2015-04-15 |
ES2819189T3 (en) | 2021-04-15 |
US9125719B2 (en) | 2015-09-08 |
US20040234576A1 (en) | 2004-11-25 |
US20140248331A1 (en) | 2014-09-04 |
AU2004238229A1 (en) | 2004-11-25 |
EP1638615A2 (en) | 2006-03-29 |
CA2525132C (en) | 2011-06-28 |
US9333066B2 (en) | 2016-05-10 |
US8758657B2 (en) | 2014-06-24 |
US8034270B2 (en) | 2011-10-11 |
US20140246802A1 (en) | 2014-09-04 |
PT1638615E (en) | 2015-02-04 |
JP2007525601A (en) | 2007-09-06 |
DK1638615T3 (en) | 2015-01-12 |
US10314683B2 (en) | 2019-06-11 |
CA2525132A1 (en) | 2004-11-25 |
US20110318395A1 (en) | 2011-12-29 |
EP1638615B1 (en) | 2014-10-29 |
US20160324619A1 (en) | 2016-11-10 |
US10136982B2 (en) | 2018-11-27 |
EP2860292B1 (en) | 2020-07-22 |
US20130300018A1 (en) | 2013-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10314683B2 (en) | Polyhydroxyalkanoate medical textiles and fibers | |
US8084125B2 (en) | Non-curling polyhydroxyalkanoate sutures | |
US10590566B2 (en) | Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof | |
JP5280839B2 (en) | Absorbable / biodegradable composite yarn and property-adjusting surgical implant formed therefrom | |
US20090162276A1 (en) | Medical devices containing melt-blown non-wovens of poly-4-hydroxybutyrate and copolymers thereof | |
RU2650648C2 (en) | Absorbable monofilament fibers based on a copolymer of p-dioxanone and glycolide retaining strength in the medium term after implantation | |
DiRuscio | Characteristics, In Vitro, and In Vivo Degradation Behaviors of Synthetic Biodegradable Polyaxial and Amphiphilic Copolyesters Used for Surgical Sutures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2525132 Country of ref document: CA Ref document number: 2006501302 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004238229 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004760859 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2004238229 Country of ref document: AU Date of ref document: 20040430 Kind code of ref document: A |
|
WWP | Wipo information: published in national office |
Ref document number: 2004238229 Country of ref document: AU |
|
WWP | Wipo information: published in national office |
Ref document number: 2004760859 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2004238229 Country of ref document: AU |