JPH07275344A - Medical material for soft tissue - Google Patents

Medical material for soft tissue

Info

Publication number
JPH07275344A
JPH07275344A JP6090534A JP9053494A JPH07275344A JP H07275344 A JPH07275344 A JP H07275344A JP 6090534 A JP6090534 A JP 6090534A JP 9053494 A JP9053494 A JP 9053494A JP H07275344 A JPH07275344 A JP H07275344A
Authority
JP
Japan
Prior art keywords
tissue
copolymer
blood vessel
polyester copolymer
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6090534A
Other languages
Japanese (ja)
Inventor
Yasuharu Noisshiki
泰晴 野一色
Shigeru Komatsuzaki
茂 小松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP6090534A priority Critical patent/JPH07275344A/en
Publication of JPH07275344A publication Critical patent/JPH07275344A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a material with high bio-compatibility and prevent problems on the safety such as cytotoxic effect, etc., by composing the material with fiber aggregate and polyester copolymer with a 3-hydroxybutylate unit and a 4-hydroxybutylate unit shown by the specific formulae. CONSTITUTION:A medical material for soft tissue consists of fiber aggregate and polyester copolymer with 3-hydroxybutylate shown by the formula I and 4-hydroxybutylate shown by the formula II. This medical material for soft tissue has good decomposition and absorption to biomedical tissue, and holds the designated shape even after decomposition and absorption. The copolymer is covered by the tissue as it penetrates into the biomedical tissue and the decomposition and absorption of this material gradually progresses by the action of the tissue. Even in a case fiber aggregate consisting of a material with a strong foreign matter reaction such as polyglycol acid, etc., the decomposition and absorption of the copolymer into biomedical tissue is good and it suppresses the foreign matter reaction with biomedical tissue.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、人工血管、人工皮膚、
手術用縫合糸、癒着防止材および血管修復材等に適した
軟組織用医療用材料に関する。
The present invention relates to an artificial blood vessel, artificial skin,
The present invention relates to a medical material for soft tissue, which is suitable as a surgical suture, an adhesion preventing material, a blood vessel repairing material and the like.

【0002】[0002]

【従来の技術】人工血管、人工皮膚、手術用縫合糸、癒
着防止材および血管修復材等に用いられる軟組織用医療
用材料には、柔軟性、強度等の力学的適合性、毒性がな
いこと等の安全性の他、生分解性、即ち生体組織の侵入
に応じて該組織に分解吸収されることが求められる。
2. Description of the Related Art Medical materials for soft tissues used for artificial blood vessels, artificial skin, surgical sutures, anti-adhesion materials and blood vessel repair materials have no mechanical compatibility such as flexibility and strength, and no toxicity. In addition to safety, etc., it is required to be biodegradable, that is, to be decomposed and absorbed by a biological tissue depending on the invasion of the tissue.

【0003】手術用縫合糸等に用いられるポリグリコー
ル酸、ポリ乳酸等の脂肪族ポリエステルは、柔軟性に欠
けるために柔軟性に富む生体との適合性が悪い。そのた
め生体の動きにつれて生体との境界面に機械的刺激が生
じる。また加水分解性で生体組織の侵入と無関係に分解
するため生体組織の修復性に追従できず、生体組織との
間に不調和が生じ、生体に炎症反応を引き起す等の欠点
があった。
Since aliphatic polyesters such as polyglycolic acid and polylactic acid used for surgical sutures and the like lack flexibility, they are poorly compatible with a flexible living body. Therefore, a mechanical stimulus occurs on the boundary surface with the living body as the living body moves. Further, since it is hydrolyzable and decomposes irrespective of invasion of living tissue, it cannot follow the repairability of living tissue, causing incongruity with living tissue and causing an inflammatory reaction in the living body.

【0004】人工皮膚等に用いられるコラーゲン、ゼラ
チン、キチン等の動物由来材料は、生体組織の侵入に応
じた該組織への分解吸収を制御するため、異種蛋白質な
どの他の動物の材料によって引き起こされる抗原抗体反
応の活性(抗原性)を低下させるため、あるいは過剰の
分解を制御するため、架橋を施す必要があり、そのう
え、架橋剤が残存することによる細胞毒性の問題が生じ
る、等の欠点があった。
Animal-derived materials such as collagen, gelatin, chitin, etc. used for artificial skin and the like are caused by other animal materials such as heterologous proteins in order to control the degradation and absorption into living tissues in response to the invasion of the tissues. In order to reduce the activity of antigen-antibody reaction (antigenicity) or to control excessive decomposition, it is necessary to carry out cross-linking, and in addition, there is a problem of cytotoxicity due to the remaining cross-linking agent. was there.

【0005】編物または織物と動物由来材料を組合わせ
た軟組織用医療用材料の例として、ゼラチンまたはコラ
ーゲンの架橋物でポリエステル繊維編物または織物を目
詰まりさせた人工血管が知られている。しかし、ゼラチ
ンまたはコラーゲンの架橋物に弾性がないため人工血管
全体が固くなって柔軟性が損なわれるので、過度に伸張
すると柔軟性のないコラーゲンやゼラチンは編物などか
ら剥離することがある。また、架橋剤が残存することに
よる細胞毒性の問題がある、等の問題点があった。
As an example of a soft tissue medical material in which a knitted fabric or a woven fabric is combined with an animal-derived material, an artificial blood vessel in which a polyester fiber knitted fabric or a woven fabric is clogged with a cross-linked product of gelatin or collagen is known. However, since the gelatin or the crosslinked material of collagen has no elasticity, the whole artificial blood vessel becomes hard and the flexibility is impaired. Therefore, if it is excessively stretched, the inflexible collagen or gelatin may be separated from the knitted fabric or the like. Further, there is a problem that there is a problem of cytotoxicity due to the remaining crosslinking agent.

【0006】更に、編物または織物と脂肪族ポリエステ
ルを組合わせた軟組織用医療用材料の例として、ポリエ
ステル等の編物または織物から成る多孔質構造体等の非
吸収性の透水性層と、ポリグリコール酸、ポリ乳酸等か
ら成る吸収性材料層を少なくとも含む非透水性層とが積
層され、該非透水性層を血液と接触する側とした生体器
官用補綴材が提案されている(特開平2−206457
号公報)。しかし、この補綴材は、非透水性のため表面
に血液凝固物が析出した場合に血液凝固物内からの体液
の排出が不十分となり、血液凝固物が蓄積する。そのう
え、この材料が非透水性であるため生体組織との接着性
に欠けるという問題点があった。また吸収性材料層の組
成を最適化して生体組織への吸収期間を最適化しても吸
収性材料層が生体組織の侵入と無関係に分解吸収される
という問題点もあった。そのため、これら補綴材からな
る人工皮膚や人工血管では必ずしも満足すべき結果は得
られていない。
Further, as an example of a soft tissue medical material in which a knitted fabric or a woven fabric is combined with an aliphatic polyester, a non-absorbable water-permeable layer such as a porous structure made of a knitted fabric or a woven fabric such as polyester, and polyglycol. A prosthetic material for living organs has been proposed in which a water-impermeable layer including at least an absorbent material layer made of acid, polylactic acid, or the like is laminated, and the water-impermeable layer is placed on the side that comes into contact with blood (Japanese Patent Laid-Open No. HEI 2- 206457
Issue). However, since this prosthetic material is impermeable to water, when blood coagulation deposits on the surface, the discharge of body fluid from the inside of the blood coagulation becomes insufficient and the blood coagulation accumulates. In addition, since this material is water impermeable, there is a problem that it lacks adhesiveness to living tissue. Further, even if the composition of the absorptive material layer is optimized to optimize the absorption period into the biological tissue, there is a problem that the absorptive material layer is decomposed and absorbed regardless of invasion of the biological tissue. Therefore, satisfactory results have not always been obtained with artificial skin and artificial blood vessels made of these prosthetic materials.

【0007】一方、人工血管、心臓、血管用パッチ等に
用いる血管修復材には、生体適合性、生体組織との縫合
性、伸縮性、柔軟性等、種々の特性が要求される。
On the other hand, various properties such as biocompatibility, sutureability with living tissue, stretchability, and flexibility are required for a blood vessel repair material used for artificial blood vessels, hearts, patches for blood vessels and the like.

【0008】ポリエステル繊維編物または織物は、生体
組織との縫合性に優れているが、血液の漏洩を防ぐため
に繊維の間隔を小さくしなければ、心臓、血管用パッチ
に適用することが困難であった。そのため、伸縮性・柔
軟性を有するポリエステル繊維編物または織物は心臓・
血管用パッチにはほとんど使用されていなかった。ま
た、繊維間隙を広くしたものでは使用直前に血液に触れ
させて血栓を繊維間隙の網目に形成させ、これにより目
詰まりさせる方法、もしくはコラーゲンやゼラチンなど
の生体内吸収性物質で目詰まりさせる方法があるが、基
材に伸展性が10%以上あれば目詰まりがはずれ、出血
の危険性をはらんでいる。
[0008] Polyester fiber knitted fabrics or woven fabrics are excellent in sutureability with living tissues, but are difficult to apply to heart and vascular patches unless the distance between the fibers is made small in order to prevent blood leakage. It was Therefore, a polyester fiber knitted or woven fabric that has elasticity and flexibility is
It was rarely used in vascular patches. If the fiber gap is wide, a method of contacting blood immediately before use to form a thrombus in the mesh of the fiber gap and thereby clogging, or a method of clogging with a bioabsorbable substance such as collagen or gelatin However, if the extensibility of the base material is 10% or more, the clogging is removed and there is a risk of bleeding.

【0009】架橋結合を有するポリビニルアルコールま
たはビニルアルコール系共重合体と伸縮性繊維編物また
は織物からなる医療用複合構造物が、湿潤状態における
生体適合性、伸縮性、柔軟性に優れ、人工血管等に好適
であること(特公平4−1631号公報第1欄第2〜1
3行、同第3欄第18〜24行)が知られている。しか
し、この医療用複合構造物は、基本的に水膨潤性の材質
から形成されているため通常使用される乾燥状態では伸
縮性・柔軟性が発揮されず取扱いにくい、架橋結合の導
入過程が煩雑である、架橋剤の残存による細胞毒性を引
き起こす恐れがある、ポリビニルアルコールやビニルア
ルコール系共重合体が生体内で分解されずに残存するた
め、生体組織の侵入による器質化が良好でない等の問題
があった。
A medical composite structure comprising a polyvinyl alcohol or vinyl alcohol-based copolymer having a cross-linking bond and a stretchable fiber knitted fabric or a woven fabric is excellent in biocompatibility, stretchability and flexibility in a wet state, and an artificial blood vessel or the like. (Japanese Patent Publication No. 4-1631, column 1, columns 2 to 1)
3 lines, column 3, lines 18-24). However, since this medical composite structure is basically formed of a water-swellable material, it is difficult to handle because it does not exhibit elasticity and flexibility in a normally used dry state, and the process of introducing a crosslinkage is complicated. There is a possibility that it may cause cytotoxicity due to the remaining cross-linking agent, and that polyvinyl alcohol and vinyl alcohol-based copolymers remain without being decomposed in the living body, resulting in poor organizing due to invasion of living tissue. was there.

【0010】[0010]

【発明が解決しようとする課題】本発明の目的は、生体
適合性、伸縮性、柔軟性が良好で、かつ細胞毒性等の安
全上の問題を引き起こさず、前記問題点を解消した新規
な軟組織用医療用材料を提供する点にある。
DISCLOSURE OF THE INVENTION An object of the present invention is to provide a novel soft tissue which has good biocompatibility, stretchability and flexibility, does not cause safety problems such as cytotoxicity and solves the above problems. The point is to provide medical materials for medical use.

【0011】[0011]

【課題を解決するための手段】本発明の第一は、繊維の
集合体および下記式(1)で示される3−ヒドロキシブ
チレート単位と下記式(2)で示される4−ヒドロキシ
ブチレート単位とを有するポリエステル共重合体からな
ることを特徴とする軟組織用医療用材料に関する。
The first aspect of the present invention is to provide an aggregate of fibers and a 3-hydroxybutyrate unit represented by the following formula (1) and a 4-hydroxybutyrate unit represented by the following formula (2). A medical material for soft tissue, comprising a polyester copolymer having

【0012】本発明の第二は、前記軟組織用医療用材料
により形成されていることを特徴とする人工血管または
血管修復材に関する。
A second aspect of the present invention relates to an artificial blood vessel or a blood vessel repair material, which is formed of the above-mentioned medical material for soft tissue.

【0013】(繊維集合体について)本発明の繊維集合
体は、編物、織物、不織布、ネットあるいはこれらの任
意の組み合せによる積層体であることができる。
(Regarding Fiber Aggregate) The fiber aggregate of the present invention may be a knitted fabric, a woven fabric, a non-woven fabric, a net, or a laminate of any combination thereof.

【0014】本発明の軟組織用医療用材料を構成する繊
維集合体の構造、並びに集合体を構成する繊維の素材及
び性状は特に制限されない。そのような素材の例として
は、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共
重合体、ポリジオキサノンの如き生体吸収性の素材;ポ
リエチレンテレフタレートに代表されるポリエステル、
ポリエーテルエステル、ポリウレタン、ナイロン、レー
ヨン、ポリプロピレン、ポリテトラフルオロエチレン、
綿、絹などの如き非生体吸収性の素材;が挙げられる。
その中でも、生体組織との適合性の観点からポリエステ
ルが好ましく、ポリエステルの中でもポリエチレンテレ
フタレートが特に好ましい。
The structure of the fiber assembly constituting the medical material for soft tissue of the present invention and the material and properties of the fibers constituting the assembly are not particularly limited. Examples of such materials include bioabsorbable materials such as polyglycolic acid, polylactic acid-polyglycolic acid copolymers and polydioxanone; polyesters represented by polyethylene terephthalate,
Polyetherester, polyurethane, nylon, rayon, polypropylene, polytetrafluoroethylene,
Non-bioabsorbable materials such as cotton and silk.
Among them, polyester is preferable from the viewpoint of compatibility with living tissue, and polyethylene terephthalate is particularly preferable among the polyesters.

【0015】繊維集合体は、伸縮性を有するものが好ま
しいが、とくに人工血管や血管修復材に用いる繊維集合
体は、少なくとも1方向の弾性伸度が10%以上、好ま
しくは20%以上の伸縮性をもつものが、人工血管や血
管修復材を形成するうえで好適である。繊維集合体の各
繊維間の間隔は、それが人工血管や血管修復材に用いる
場合には、通常、約1〜5000μm、好ましくは20
〜2000μmの間隔を有するようにしたものが、生体
組織の侵入による器質化の点で好適である。繊維の性状
は特に制限されないが、太さ0.01〜50デニール程
度のものは編物または織物の製造上好ましい。
The fiber aggregate is preferably stretchable, but especially the fiber aggregate used for artificial blood vessels and vascular repair materials has an elastic elongation of 10% or more, preferably 20% or more, in at least one direction. Those having properties are suitable for forming an artificial blood vessel or a blood vessel repair material. When used in an artificial blood vessel or a vascular repair material, the distance between the fibers of the fiber assembly is usually about 1 to 5000 μm, preferably 20.
A material having a distance of ˜2000 μm is preferable from the viewpoint of organizing by invasion of living tissue. The property of the fiber is not particularly limited, but a fiber having a thickness of about 0.01 to 50 denier is preferable for producing a knitted fabric or a woven fabric.

【0016】本発明の軟組織用医療用材料を構成する生
分解性ポリエステル共重合体は、下記式(1)
The biodegradable polyester copolymer constituting the soft tissue medical material of the present invention has the following formula (1):

【化3】 で示される3−ヒドロキシブチレート(以下3HBとい
う)単位と下記式(2)
[Chemical 3] 3-hydroxybutyrate (hereinafter referred to as 3HB) unit represented by the following formula (2)

【化4】 で示される4−ヒドロキシブチレート(以下4HBとい
う)単位を有する共重合体である(以下この共重合体を
3HB・4HBポリエステル共重合体と称する)。3H
B・4HBポリエステル共重合体は生体組織中に存在す
るリパーゼ・エステラーゼ等により酵素分解を受け、生
体内に残らない。
[Chemical 4] Is a copolymer having a 4-hydroxybutyrate (hereinafter referred to as 4HB) unit (hereinafter, this copolymer is referred to as a 3HB / 4HB polyester copolymer). 3H
The B4HB polyester copolymer is enzymatically decomposed by lipase / esterase and the like existing in the living tissue and does not remain in the living body.

【0017】本発明の軟組織用医療用材料を構成する3
HB・4HBポリエステル共重合体の製造は従来より公
知の方法によればよく格別限定されない。代表的な3H
B・4HBポリエステル共重合体の製造方法は、例え
ば、特開昭64−48821号公報第2頁右下欄第1行
〜第4頁右上欄第18行、特開平1−222788号公
報第2頁左下欄第2行〜第4頁左上欄第4行、特開平1
−304891号公報第2頁左下欄第11行〜第4頁左
上欄第17行、特開平2−27992号公報第2頁左下
欄第2行〜第4頁左上欄第3行、特開平4−32509
4号公報第2欄第19行〜第3欄第39行、特開平4−
326932号公報第2欄第7行〜第4欄第2行に記載
されている。
Constituting the medical material for soft tissue of the present invention 3
The HB / 4HB polyester copolymer may be produced by a conventionally known method and is not particularly limited. Typical 3H
The production method of the B.4HB polyester copolymer is described, for example, in JP-A-64-48821, page 2, lower right column, line 1 to page 4, upper right column, line 18, JP-A-1-222788. Lower left column, line 2 to page 4 Upper left column, line 4
-304891, page 2, lower left column, line 11 to page 4, upper left column, line 17; JP-A-2-27992, page 2, lower left column, line 2 to page 4, upper left column, line 3; -32509
No. 4, column 2, line 19 to column 3, line 39, JP-A-4-
No. 326932, column 2, line 7 to column 4, line 2.

【0018】これら公知の代表的方法においては、ヒド
ロキシブチレート重合体生産能を有する菌体を、ヒドロ
キシブチレートの基質となる炭素源とクエン酸の存在下
に、培地または培養液の窒素および/またはリンを制限
して培養し、菌体内に共重合体を蓄積せしめる。なお、
ポリエステル生成のための培養に先立って菌体を増殖さ
せるための前段培養を行ってもよい。
In these known representative methods, cells capable of producing a hydroxybutyrate polymer are treated with nitrogen and / or nitrogen of a culture medium in the presence of a carbon source serving as a substrate for hydroxybutyrate and citric acid. Alternatively, phosphorus is restricted and cultured to accumulate the copolymer in the microbial cells. In addition,
A pre-stage culture for growing the bacterial cells may be performed prior to the culture for producing the polyester.

【0019】前記菌体の例としては、アルカリゲネス
フェカリス(ATCC8750)、アルカリゲネス ル
ーランディ(ATCC15749)、アルカリゲネス
ラタス(ATCC29712)、アルカリゲネス アク
アマリヌス(ATCC14400)、アルカリゲネス
ユウトロファス(ATCC17699)等のアルカリゲ
ネス属が挙げられる。培地は菌体が資化し得る物質であ
れば特に制限されない。その例としては、酵母エキス、
ポリペプトン、肉エキスの如き天然物;グルコースの如
き糖類;硫酸アンモニウムの如き無機窒素化合物;リン
酸水素ナトリウム、リン酸水素カリウム、硫酸マグネシ
ウムの如き無機塩;が挙げられる。
As an example of the bacterial cells, Alcaligenes
Fekaris (ATCC 8750), Alcaligenes Rulandi (ATCC15749), Alcaligenes
Rattus (ATCC29712), Alcaligenes Aquamarinus (ATCC14400), Alcaligenes
Examples include the genera Alcaligenes such as Yutrophus (ATCC17699). The medium is not particularly limited as long as it is a substance that can be assimilated by the cells. Examples include yeast extract,
Natural products such as polypeptone and meat extract; sugars such as glucose; inorganic nitrogen compounds such as ammonium sulfate; inorganic salts such as sodium hydrogen phosphate, potassium hydrogen phosphate and magnesium sulfate.

【0020】ヒドロキシブチレートの基質となる炭素源
として用いられる化合物の例としては、4−ヒドロキシ
酪酸、4−クロロ酪酸の如き酪酸誘導体;4−ヒドロキ
シ酪酸ナトリウム等、前記酪酸誘導体の無機塩;γ−ブ
チロラクトン;下記一般式 HO(CH2)nOH (n=2,4,6,8,10,
12) で表される脂肪族ジオール類;が挙げられる。使用量は
特に制限されないが、好ましくは3〜100g/1、特
に好ましくは3〜50g/1とする。使用量を変えるこ
とにより3HB・4HBポリエステル共重合体の4HB
単位含量を変えることができる。一般に、使用量が増え
ると4HB単位含量は高くなる傾向にある。
Examples of the compound used as a carbon source serving as a substrate of hydroxybutyrate include butyric acid derivatives such as 4-hydroxybutyric acid and 4-chlorobutyric acid; inorganic salts of the butyric acid derivative such as sodium 4-hydroxybutyrate; - butyrolactone; following general formula HO (CH 2) nOH (n = 2,4,6,8,10,
12) Aliphatic diols represented by The amount used is not particularly limited, but is preferably 3 to 100 g / 1, and particularly preferably 3 to 50 g / 1. 4HB of 3HB / 4HB polyester copolymer by changing the amount used
The unit content can be changed. Generally, as the amount used increases, the 4HB unit content tends to increase.

【0021】特に約60モル%以上の4HB単位を含有
するポリエステル共重合体を得るには、クエン酸および
/またはクエン酸塩を培養系に加えることが好ましい。
クエン酸塩の具体例としては、ナトリウム塩、カリウム
塩およびアンモニウム塩が挙げられる。クエン酸やクエ
ン酸塩の量は、使用した微生物の菌株および所望の共重
合体組成などによって異なるが、培地もしくは培養液1
リットルに対し、通常、0.3〜40g程度、好ましく
は1〜30g程度である。使用量が多すぎると得られる
共重合体の量が減少する。
It is preferable to add citric acid and / or citrate to the culture system, in particular to obtain a polyester copolymer containing about 60 mol% or more of 4HB units.
Specific examples of the citrate salt include sodium salt, potassium salt and ammonium salt. The amount of citric acid or citrate varies depending on the strain of the microorganism used, the desired copolymer composition, etc.
It is usually about 0.3 to 40 g, preferably about 1 to 30 g per liter. If the amount used is too large, the amount of the copolymer obtained will decrease.

【0022】ポリエステル生成のための培養に先立って
菌体を増殖させるための前段培養を行った場合には、前
段の培養によって得られた培養液から微生物の菌体を、
ろ過および遠心分離のような通常の固液分離手段により
分離回収し、回収された菌体を後段の培養に付するか、
または、前段の培養において窒素および/またはリンを
実質的に枯渇させて、菌体を分離回収することなく、こ
の培養液を後段の培養に移行させることができる。
When the pre-stage culture for growing the microbial cells is carried out prior to the culturing for producing the polyester, the microbial cells are removed from the culture solution obtained by the pre-culture.
Separation and collection by an ordinary solid-liquid separation means such as filtration and centrifugation, and subjecting the collected bacterial cells to subsequent culture, or
Alternatively, nitrogen and / or phosphorus can be substantially depleted in the first-stage culture, and this culture solution can be transferred to the second-stage culture without separating and recovering the bacterial cells.

【0023】ポリエステル生成のための培養により得ら
れた培養液から、例えば、ろ過および遠心分離などの通
常の固液分離手段によって菌体を分離回収し、この菌体
を洗浄、乾燥して乾燥菌体を得る。該乾燥菌体から、常
法により、クロロホルムやアセトンのような有機溶剤で
3HB・4HBポリエステル共重合体を抽出し、この抽
出液にヘキサンのような貧溶媒を加えて共重合体を沈殿
させることにより、3HB・4HBポリエステル共重合
体が得られる。
From the culture broth obtained by culturing for polyester production, for example, cells are separated and recovered by a usual solid-liquid separation means such as filtration and centrifugation, and the cells are washed, dried and dried. Get the body. From the dried cells, a 3HB / 4HB polyester copolymer is extracted by an ordinary method with an organic solvent such as chloroform or acetone, and a poor solvent such as hexane is added to the extract to precipitate the copolymer. Thereby, a 3HB / 4HB polyester copolymer is obtained.

【0024】ポリエステル生成のための培養及び場合に
より行われる前段培養においては、pHを、通常、6〜
10、好ましくは6.5〜9.5とし、好気的に培養す
る。溶存酸素濃度は、通常、0.5〜40ppm、好ま
しくは5〜20ppmとする。培養温度は、通常、20
〜40℃程度、好ましくは25〜35℃程度とする。こ
れらの条件をはずして培養した場合には、乾燥菌体内に
生成蓄積するポリエステル量が極めて低くなり、工業的
に製造するには有利ではない。
In the culture for producing polyester and optionally the pre-culture, the pH is usually 6 to
10, preferably 6.5 to 9.5, and cultivated aerobically. The dissolved oxygen concentration is usually 0.5 to 40 ppm, preferably 5 to 20 ppm. The culture temperature is usually 20
-40 degreeC, Preferably it is 25-35 degreeC. When the culture is performed under these conditions, the amount of polyester produced and accumulated in the dried cells is extremely low, which is not advantageous for industrial production.

【0025】本発明の軟組織用医療用材料を構成する3
HB・4HBポリエステル共重合体の4HB単位含有量
は、通常30〜99モル%、好ましくは40〜98モル
%、特に好ましくは60〜95モル%である。4HB単
位の含量が低すぎると柔軟性、弾性が低下するほか、生
体組織の侵入に応じた該組織への分解吸収が遅くなりす
ぎて本発明の効果が充分に得られない。高すぎると柔軟
性および弾性が低下傾向になる。3HB単位の含有量
は、通常、1〜70モル%、好ましくは2〜60モル
%、さらに好ましくは5〜40モル%である。また、3
HB・4HBポリエステル共重合体は4HB及び3HB
単位以外のモノマー単位を有していてもよい。4HB及
び3HB単位以外のモノマー単位の含有量は、通常、3
0モル%、好ましくは20モル%以下、さらに好ましく
は10モル%以下である。
Constituting the medical material for soft tissue of the present invention 3
The 4HB unit content of the HB-4HB polyester copolymer is usually 30 to 99 mol%, preferably 40 to 98 mol%, and particularly preferably 60 to 95 mol%. If the content of the 4HB unit is too low, the flexibility and elasticity are lowered, and the decomposition and absorption into the tissue due to the invasion of living tissue become too slow, so that the effect of the present invention cannot be sufficiently obtained. If it is too high, flexibility and elasticity tend to decrease. The content of the 3HB unit is usually 1 to 70 mol%, preferably 2 to 60 mol%, more preferably 5 to 40 mol%. Also, 3
HB-4HB polyester copolymer is 4HB and 3HB
It may have a monomer unit other than the unit. The content of monomer units other than 4HB and 3HB units is usually 3
It is 0 mol%, preferably 20 mol% or less, more preferably 10 mol% or less.

【0026】また、3HB・4HBポリエステル共重合
体の融点は、通常、37〜185℃、好ましくは40〜
180℃、更に好ましくは45〜170℃、分子量は、
通常、約20,000〜5,000,000、好ましく
は50,000〜2,000,000、より好ましくは
100,000〜1,000,000(ゲルパーミエー
ションクロマトグラフィー法によるポリスチレン標準試
料換算値)である。分子量が小さすぎると弾性が低下
し、大きすぎると軟組織用医療用材料の製造が困難にな
る。融点が低すぎると軟組織用医療用材料からなる人工
血管等の構造安定性が悪くなり、高すぎると軟組織用医
療用材料の製造が困難になる。
The melting point of the 3HB / 4HB polyester copolymer is generally 37 to 185 ° C., preferably 40 to 185 ° C.
180 ° C, more preferably 45 to 170 ° C, the molecular weight is
Usually, about 20,000 to 5,000,000, preferably 50,000 to 2,000,000, more preferably 100,000 to 1,000,000 (converted to polystyrene standard sample by gel permeation chromatography) ). If the molecular weight is too small, the elasticity decreases, and if it is too large, it becomes difficult to produce a medical material for soft tissues. If the melting point is too low, the structural stability of the artificial blood vessel or the like made of the soft tissue medical material will be poor, and if it is too high, the production of the soft tissue medical material will be difficult.

【0027】本発明の軟組織用医療用材料は、編物また
は織物などの繊維集合体および3HB・4HBポリエス
テル共重合体からなるものである。本発明の軟組織用医
療用材料は、通常、繊維集合体の少なくとも一部が3H
B・4HBポリエステル共重合体によって覆われている
ものであるが、繊維と繊維との間に3HB・4HBポリ
エステル共重合体が介在しているだけのものであっても
よい。本発明の軟組織用医療用材料において、繊維集合
体と3HB・4HBポリエステル共重合体との重量比率
は、繊維集合体100重量部に対して、3HB・4HB
ポリエステル共重合体が、通常、0.1〜1000重量
部、好ましくは0.5〜500重量部、更に好ましくは
1〜300重量部である。本発明の軟組織用医療用材料
を得る方法としては、溶液状態の3HB・4HBポリエ
ステル共重合体を使用して、繊維集合体を浸漬・乾燥処
理、浸漬・貧溶媒処理、型枠使用の凍結乾燥処理する方
法等が挙げられる。この場合、必要に応じ本発明の目的
が損なわれない範囲で他の成分を溶液中に含んでいても
よい。溶融状態の3HB・4HBポリエステル共重合体
を使用した処理方法の例としては、3HB・4HBポリ
エステル共重合体のフィルムまたは粉末を編物または織
物と接触させた状態で該共重合体の融点以上に加熱する
方法や該共重合体のフィルムまたは粉末を編物または織
物と接触させた状態で有機溶剤または接着剤を用いて両
者を接着する方法が挙げられる。
The medical material for soft tissue of the present invention comprises a fiber assembly such as a knitted fabric or a woven fabric and a 3HB / 4HB polyester copolymer. In the medical material for soft tissues of the present invention, at least a part of the fiber assembly is usually 3H.
Although it is covered with the B.4HB polyester copolymer, it may be only the 3HB.4HB polyester copolymer interposed between the fibers. In the medical material for soft tissues of the present invention, the weight ratio of the fiber aggregate to the 3HB / 4HB polyester copolymer is 3HB / 4HB with respect to 100 parts by weight of the fiber aggregate.
The amount of the polyester copolymer is usually 0.1 to 1000 parts by weight, preferably 0.5 to 500 parts by weight, more preferably 1 to 300 parts by weight. As a method for obtaining the medical material for soft tissues of the present invention, a solution-state 3HB / 4HB polyester copolymer is used to soak / dry a fiber assembly, soak / poor solvent treatment, and freeze-dry using a mold. Examples include a method of processing. In this case, other components may be included in the solution, if necessary, within a range that does not impair the object of the present invention. As an example of the treatment method using the melted 3HB / 4HB polyester copolymer, a film or powder of the 3HB / 4HB polyester copolymer is heated to a temperature equal to or higher than the melting point of the copolymer in contact with a knitted fabric or a woven fabric. And a method of adhering the film or powder of the copolymer with an organic solvent or an adhesive in a state where the film or powder of the copolymer is brought into contact with the knitted fabric or the woven fabric.

【0028】前記浸漬・乾燥処理は、極めて一般的な方
法であり、本発明の場合の浸漬液の共重合体濃度は、
0.01〜30(w/v)%、好ましくは0.1〜10
(w/v)%、特に好ましくは0.2〜5(w/v)%
である。なお、単位の(w/v)%は、100mlの溶
媒に溶解する溶質のg数を表わすものである。
The above-mentioned dipping / drying treatment is a very general method, and the copolymer concentration of the dipping liquid in the case of the present invention is
0.01-30 (w / v)%, preferably 0.1-10
(W / v)%, particularly preferably 0.2 to 5 (w / v)%
Is. The unit (w / v)% represents the number of solutes dissolved in 100 ml of solvent.

【0029】前記浸漬・貧溶媒処理は、前記浸漬・乾燥
処理を行った後、ひきつづいて貧溶媒で処理を行う方法
である。貧溶媒での処理温度については全く制限はな
く、低温、室温、高温いずれでもよい。貧溶媒としては
ヘキサン、シクロヘキサンなどの炭化水素、メタノー
ル、エタノール、イソプロパノールなどのアルコール、
あるいは水等を挙げることができる。
The dipping / poor solvent treatment is a method in which, after the dipping / drying treatment, the treatment with a poor solvent is continued. The treatment temperature with the poor solvent is not particularly limited, and may be low temperature, room temperature, or high temperature. As a poor solvent, hydrocarbons such as hexane and cyclohexane, alcohols such as methanol, ethanol and isopropanol,
Or water etc. can be mentioned.

【0030】型枠使用の凍結乾燥処理は、共重合体の前
記浸漬液に、繊維集合体を浸漬したのち凍結乾燥する方
法である。凍結乾燥は、凍結状態を保ったまま乾燥でき
ればとくに制限はなく、通常は−50℃〜50℃、好ま
しくは−20℃〜室温程度に融点をもちかつ共重合体を
溶解できる溶媒が使用され、そのような溶媒の例として
はジオキサン、ベンゼン等が挙げられる。凍結温度は通
常は液体窒素温度〜50℃程度であり、エタノールにド
ライアイスを投入し、ドライアイスの固まりがエタノー
ル中に残っているときのエタノールの温度〜10℃程度
の条件で行われる。一般的な傾向としては急速に凍結し
たのち凍結乾燥すると得られる多孔構造が緻密になる場
合が多く、ゆっくりと凍結させて凍結乾燥すると得られ
る多孔構造が粗になる場合が多い。また、構造を制御す
るために特定の面を冷却体に接触させて特定の面のみを
他と異なった構造とすることもできる。乾燥は凍結物が
融解しない範囲の温度条件であれば得られる多孔構造に
大きな影響はないが、乾燥を速やかに行うために減圧度
を5Torr以下、好ましくは2Torr以下、さらに
好ましくは1Torr以下として、棚段式の乾燥機の場
合には棚段の温度を溶媒の融点付近あるいは融点以上に
して乾燥する場合が多い。
The freeze-drying treatment using a mold is a method in which the fiber assembly is immersed in the immersion liquid of the copolymer and then freeze-dried. Lyophilization is not particularly limited as long as it can be dried while maintaining a frozen state, and a solvent having a melting point of usually -50 ° C to 50 ° C, preferably -20 ° C to room temperature and capable of dissolving a copolymer is used, Examples of such a solvent include dioxane, benzene and the like. The freezing temperature is usually liquid nitrogen temperature to about 50 ° C., and dry ice is put into ethanol, and the temperature of ethanol when a mass of dry ice remains in ethanol is about 10 ° C. As a general tendency, the porous structure obtained by freeze-drying rapidly followed by freeze-drying is often dense, and the porous structure obtained by freezing slowly and freeze-drying is often coarse. Further, in order to control the structure, it is possible to bring a specific surface into contact with the cooling body so that only the specific surface has a different structure. Drying does not have a great influence on the obtained porous structure under the temperature condition in which the frozen substance does not thaw, but in order to perform the drying quickly, the degree of reduced pressure is set to 5 Torr or less, preferably 2 Torr or less, and more preferably 1 Torr or less, In the case of a tray-type dryer, drying is often performed with the temperature of the tray near or above the melting point of the solvent.

【0031】多孔構造とする方法としては、浸漬・貧溶
媒処理、凍結乾燥処理において特定の溶剤に可溶な微粒
子をポリエステル共重合体の溶液に分散させた状態で共
重合体処理物を作製しておき該微粒子を溶解しかつ共重
合体を溶解しない溶剤にて処理して該微粒子のみ溶解除
去する方法、発泡剤を含有させて成形する方法あるいは
これらの方法を併用する方法等もあるが、とくに、凍結
乾燥処理は、柔軟性および弾性の高い多孔質の材料が得
られるので好適である。
As a method for forming a porous structure, fine particles soluble in a specific solvent are dispersed in a solution of a polyester copolymer in a dipping / poor solvent treatment or freeze-drying treatment to prepare a copolymer-treated product. There is also a method of dissolving the fine particles and treating with a solvent which does not dissolve the copolymer to dissolve and remove only the fine particles, a method of incorporating a foaming agent or a method of using these methods in combination. Particularly, the freeze-drying treatment is suitable because a porous material having high flexibility and elasticity can be obtained.

【0032】本発明の軟組織用医療用材料の厚さは特に
制限されないが、短時間に分解吸収を達成することによ
る生体内の異物の速やかな除去、及び副作用の抑制の観
点から、1000μm以下が好ましく、50μm以下が
特に好ましい。但し、厚さが大きい場合であっても、該
材料の構造の一部または全部を多孔質にすれば、分解吸
収を短時間に行うことができる。
The thickness of the medical material for soft tissue of the present invention is not particularly limited, but it is preferably 1000 μm or less from the viewpoint of rapid removal of foreign substances in the living body by achieving decomposition and absorption in a short time and suppression of side effects. It is preferably 50 μm or less, and particularly preferably 50 μm or less. However, even if the thickness is large, if part or all of the structure of the material is made porous, decomposition and absorption can be performed in a short time.

【0033】本発明の軟組織用医療用材料は生体組織へ
の分解吸収が良好であり、分解吸収後も所定の形状が保
持される。その機構は、3HB・4HBポリエステル共
重合体が生体組織の侵入に伴い該組織に覆われ、この組
織の作用により3HB・4HBポリエステル共重合体の
分解吸収が穏やかに進行するためと推定される。また、
ポリグリコール酸等、異物反応の強い素材からなる繊維
集合体を用いた場合であっても、3HB・4HBポリエ
ステル共重合体の生体組織への分解吸収が良好であるの
で、生体との異物反応が抑制される。
The medical material for soft tissue of the present invention is well decomposed and absorbed into living tissue, and maintains a predetermined shape even after the decomposition and absorption. It is presumed that the mechanism is that the 3HB / 4HB polyester copolymer is covered by the tissue as the biological tissue invades, and the action of this tissue causes the degradation and absorption of the 3HB / 4HB polyester copolymer to proceed gently. Also,
Even when a fiber assembly made of a material having a strong foreign body reaction such as polyglycolic acid is used, the 3HB / 4HB polyester copolymer is well decomposed and absorbed into the living tissue, so that the foreign body reaction with the living body does not occur. Suppressed.

【0034】本発明の軟組織用医療用材料を腹腔内の漿
膜欠損部に縫合した場合、軟組織用医療用材料が生体組
織に覆われ、該組織の上に漿膜が再生する。そして、本
発明の軟組織用医療用材料は、該材料を覆う生体組織の
作用により、漿膜欠損の治癒に伴って表面から徐々に分
解し、最終的に生体組織に吸収されて、繊維の集合体が
生体組織に覆われる。
When the soft tissue medical material of the present invention is sutured to the serosa defect in the abdominal cavity, the soft tissue medical material is covered with living tissue and the serosa is regenerated on the tissue. And, the medical material for soft tissue of the present invention is gradually decomposed from the surface with the healing of serosa defect by the action of the biological tissue covering the material, and finally absorbed into the biological tissue, and an aggregate of fibers. Are covered with living tissue.

【0035】本発明の軟組織用医療用材料は、人工血
管、人工皮膚、手術用縫合糸、癒着防止材、血管修復材
等に好適に用いられる。
The medical material for soft tissue of the present invention is suitably used for artificial blood vessels, artificial skin, surgical sutures, adhesion preventing materials, blood vessel repairing materials and the like.

【0036】(人工血管または血管修復材について)本
発明の人工血管や血管修復材は、前記の軟組織用医療材
料により形成されてなるものである。本発明の人工血管
または血管修復材は、軟組織用医療材料が少なくとも1
方向の引張試験において、通常、歪み10%以内に、好
ましくは歪み20%以内に降伏点をもたないものであ
る。ここにいう少なくとも1方向の引張試験において歪
み10%以内に降伏点をもたないとは、種々の方向への
引張試験を行ったとき、歪み10%以内に降伏点が存在
せず、かつ破断点も存在しない方向が少なくとも一つ存
在することをいう。
(About artificial blood vessel or blood vessel repair material) The artificial blood vessel or blood vessel repair material of the present invention is formed of the above-mentioned medical material for soft tissue. The artificial blood vessel or vascular repair material of the present invention comprises at least one medical material for soft tissue.
In the tensile test in the direction, the strain does not usually have a yield point within 10% of strain, preferably within 20% of strain. The tensile test in at least one direction referred to here does not have a yield point within 10% of strain, and when a tensile test in various directions is performed, there is no yield point within 10% of strain and the fracture It means that there is at least one direction in which there are no points.

【0037】本発明の人工血管や血管修復材を得る方法
としては、繊維の集合体を管状、シート状などの所望の
形状に形成した後、軟組織用医療用材料を得るための方
法と同じ方法によって、3HB・4HBポリエステル共
重合体で処理する方法または軟組織用医療用材料を得た
後、形成する方法が挙げられる。形成のしやすさの観点
から前者の方法が好適である。
The method for obtaining the artificial blood vessel and the blood vessel repair material of the present invention is the same as the method for obtaining a medical material for soft tissue after forming a fiber aggregate into a desired shape such as a tubular shape or a sheet shape. Examples of the method include a method of treating with a 3HB / 4HB polyester copolymer or a method of forming after obtaining a medical material for soft tissue. The former method is preferable from the viewpoint of ease of formation.

【0038】本発明の人工血管や血管修復材は、通常、
漏血を起こさない程度の透水性を持つ。ここにいう透水
性とは、120mmHgの水圧をかけた際壁面1cm2
当り1分間に水が通過する量である。血圧の高い動脈系
・左心系には、漏血を防ぐために、透水性が100ml
/cm2/min/120mmHg以下のものを使用す
ることが好ましく、50ml/cm2/min/120
mmHg以下のものを使用することが特に好ましい。一
方、静脈系・右心系には、生体組織の伸展による内膜の
形成の観点から、透水性が100ml/cm2/min
/120mmHg以上のものを使用することが好まし
く、200ml/cm2/min/120mmHg以上
のものを使用することが特に好ましい。
The artificial blood vessel and the blood vessel repair material of the present invention are usually
Has water permeability that does not cause blood leakage. The water permeability referred to here means a wall surface of 1 cm 2 when a water pressure of 120 mmHg is applied.
This is the amount of water that can pass in one minute. The arterial system and the left heart system with high blood pressure have a water permeability of 100 ml to prevent blood leakage.
/ Cm 2 / min / 120 mmHg or less is preferably used, and 50 ml / cm 2 / min / 120
It is particularly preferable to use one having a diameter of mmHg or less. On the other hand, the venous system / right heart system has a water permeability of 100 ml / cm 2 / min from the viewpoint of the formation of the intima by the extension of the biological tissue.
/ 120 mmHg or more is preferably used, and particularly preferably 200 ml / cm 2 / min / 120 mmHg or more is used.

【0039】本発明の人工血管や血管修復材は表面を粗
面にしたり、透水性を高めるため多孔質状などとするこ
ともできる。これにより、本発明の血管修復材は血管内
面における血液凝固物の接着性に優れたものとなる。表
面を粗面とするには、通常、前記方法により3HB・4
HBポリエステル共重合体を多孔質形状とするか、編物
または織物の繊維の間隔及び太さを調節する。
The artificial blood vessel and the blood vessel repairing material of the present invention may have a roughened surface or may be made porous so as to enhance water permeability. As a result, the vascular repair material of the present invention has excellent adhesion of blood coagulation on the inner surface of the blood vessel. To make the surface rough, it is usually 3HB-4 according to the above method.
The HB polyester copolymer is made into a porous shape, or the spacing and thickness of the fibers of the knitted or woven fabric are adjusted.

【0040】本発明の人工血管や血管修復材には、生体
組織と縫合する時の取扱い性を改良するために、界面活
性物質を用いて、公知の方法による表面処理を施しても
よい。用いられる界面活性物質の例としては、レシチン
等のリン脂質が挙げられる。表面処理方法の例として
は、リン脂質水溶液によるディッピング処理や、脂肪族
ポリエステルとリン脂質との混合液によるディッピング
処理などが挙げられる。
The artificial blood vessel or vascular repair material of the present invention may be subjected to surface treatment by a known method using a surface-active substance in order to improve the handleability when sutured to a living tissue. Examples of the surfactant used include phospholipids such as lecithin. Examples of the surface treatment method include dipping treatment with an aqueous phospholipid solution and dipping treatment with a mixed liquid of an aliphatic polyester and a phospholipid.

【0041】本発明の人工血管や血管修復材は、血液、
フィブリン糊等によるプレクロッティング処理を施し
て、または施さずに、生体に適用することができる。
The artificial blood vessel and the blood vessel repair material of the present invention are blood,
It can be applied to a living body with or without pre-clotting treatment with fibrin glue or the like.

【0042】本発明の人工血管や血管修復材は生体組織
の侵入による器質化が良好である。その理由は、3HB
・4HBポリエステル共重合体それ自体が異物性がな
く、細胞親和性の高いことに加えてこれがもつ酵素分解
性または加水分解性のため、体液との接触により徐々に
3HB・4HBポリエステル共重合体部分が分解し、生
じた空隙に生体組織が侵入していくことの他、適度な伸
縮性・柔軟性をもつために生体組織及び血流との物理的
な適合性が良いためと考えられる。
The artificial blood vessel and the blood vessel repair material of the present invention are well organized by the invasion of biological tissue. The reason is 3HB
-The 4HB polyester copolymer itself has no foreign substance and has high cell affinity, and in addition, due to its enzymatic degradability or hydrolyzability, the 3HB / 4HB polyester copolymer part is gradually contacted with the body fluid. It is thought that this is because the biological tissue is invaded and the living tissue invades into the resulting void, and because it has appropriate elasticity and flexibility, it has good physical compatibility with the biological tissue and blood flow.

【0043】本発明の人工血管や血管修復材は、生体適
合性、伸縮性、柔軟性が良好である。また、生体組織と
縫合する時の取扱い性に優れている。10%以上伸展さ
せても、脂肪族ポリエステル部分と基材との間に解離が
生じることもないため、取扱い性が良好で出血の危険性
が低く安全である。本発明の人工血管や血管修復材は、
使用部位及び目的に応じて、シート状、直管状、曲管
状、クリンプ付管状等、任意の形状とすることができ
る。
The artificial blood vessel and the blood vessel repair material of the present invention have good biocompatibility, stretchability and flexibility. Moreover, it is excellent in handleability when suturing to a biological tissue. Even if stretched by 10% or more, dissociation does not occur between the aliphatic polyester portion and the base material, so that the handleability is good and the risk of bleeding is low and it is safe. The artificial blood vessel and blood vessel repair material of the present invention,
It may be in any shape such as a sheet shape, a straight tubular shape, a curved tubular shape, a crimped tubular shape, or the like, depending on the use site and purpose.

【0044】クリンプを付けた管状の編物または織物を
使用して作成した本発明の血管修復材を使用する場合に
は、脂肪族ポリエステルが分解し生体内に吸収された後
に血管径を広げることができる。この径の拡大は生体の
必要に応じて(例えば、生体の成長に応じて)自然に行
われる場合もあるが、医師の判断によりバルーン付き血
管内カテーテル等を使用して行うこともできる。従来、
小児の心疾患等に伴って肺動脈管等に人工血管を使用す
る場合には、小児の成長に応じて再手術を行う必要があ
ったが、本発明の人工血管または血管修復材を使用する
ことにより、人工血管を交換するための手術の回数を最
小限に抑えることができる。
When the vascular repair material of the present invention prepared by using a crimped tubular knit or woven fabric is used, it is possible to widen the blood vessel diameter after the aliphatic polyester is decomposed and absorbed in the living body. it can. The expansion of the diameter may be naturally performed according to the need of the living body (for example, according to the growth of the living body), but can also be performed using a balloon-equipped intravascular catheter or the like at the discretion of the doctor. Conventionally,
When an artificial blood vessel is used for a pulmonary artery tube or the like due to a child's heart disease or the like, it is necessary to perform re-operation according to the growth of the child, but the artificial blood vessel or the vascular repair material of the present invention should be used. Thereby, the number of operations for replacing the artificial blood vessel can be minimized.

【0045】本発明の血管修復材は、心臓・血管用パッ
チとして血管壁に使用される場合、拍動による衝撃を吸
収する役割を果たす。これにより、心臓・血管の血流の
乱れ及び新生血管壁や付着血栓層の肥厚を抑えることが
できる。
The vascular repair material of the present invention plays a role of absorbing a shock caused by pulsation when it is used as a heart / blood vessel patch on a blood vessel wall. As a result, it is possible to suppress disturbance of blood flow in the heart and blood vessels and thickening of the new blood vessel wall and the attached thrombus layer.

【0046】本発明の態様を以下に示す。 (1)繊維集合体および3−ヒドロキシブチレート単位
と4−ヒドロキシブチレート単位とを有するポリエステ
ル共重合体からなる軟組織用医療用材料。 (2)前記3HB・4HBポリエステル共重合体の4H
B単位含有量が30〜99モル%である前記(1)の軟
組織用医療用材料。 (3)前記4HB単位含有量が40〜98モル%である
前記(2)の軟組織用医療用材料。 (4)前記4HB単位含有量が60〜95モル%である
前記(2)の軟組織用医療用材料。 (5)前記3HB・4HBポリエステル共重合体の数平
均分子量が20,000〜5,000,000である前
記(2)、(3)または(4)の軟組織用医療用材料。 (6)厚さが1000μm以下である前記(1)、
(2)、(3)、(4)または(5)の軟組織用医療用
材料。 (7)多孔質構造をもつ前記(1)、(2)、(3)、
(4)、(5)または(6)の軟組織用医療用材料。 (8)3HB・4HBポリエステル共重合体の融点が3
7〜185℃である前記(1)、(2)、(3)、
(4)、(5)、(6)または(7)の軟組織用医療用
材料よりなる人工血管または血管修復材。 (9)前記繊維集合体の少なくとも1方向の弾性伸度が
10%以上である前記(8)の人工血管または血管修復
材。 (10)前記繊維集合体を構成する各繊維が約5〜50
00μmの間隔を有するものである前記(8)または
(9)の人工血管または血管修復材。 (11)前記繊維集合体を構成する繊維の太さが5〜5
0デニールである前記(9)または(10)の人工血管
または血管修復材。 (12)心臓・血管用パッチである前記(9)、(1
0)または(11)の人工血管または血管修復材。 (13)軟組織用医療用材料が少なくとも1方向の引張
試験において歪み10%以内に降伏点をもたないもので
あることを特徴とする人工血管または血管修復材。
Aspects of the present invention are shown below. (1) A medical material for soft tissue, which comprises a fiber aggregate and a polyester copolymer having 3-hydroxybutyrate units and 4-hydroxybutyrate units. (2) 4H of the 3HB / 4HB polyester copolymer
The soft tissue medical material according to (1) above, wherein the B unit content is 30 to 99 mol%. (3) The medical material for soft tissues according to (2), wherein the 4HB unit content is 40 to 98 mol%. (4) The medical material for soft tissue according to (2), wherein the 4HB unit content is 60 to 95 mol%. (5) The medical material for soft tissue according to (2), (3) or (4), wherein the 3HB / 4HB polyester copolymer has a number average molecular weight of 20,000 to 5,000,000. (6) The above (1), which has a thickness of 1000 μm or less,
The medical material for soft tissue according to (2), (3), (4) or (5). (7) The above (1), (2), (3) having a porous structure,
The medical material for soft tissue according to (4), (5) or (6). (8) The melting point of the 3HB / 4HB polyester copolymer is 3
7 to 185 ° C. (1), (2), (3),
An artificial blood vessel or a blood vessel repairing material comprising the soft tissue medical material of (4), (5), (6) or (7). (9) The artificial blood vessel or vascular repair material according to (8), wherein the elastic elongation of the fiber assembly in at least one direction is 10% or more. (10) Each of the fibers constituting the fiber assembly is about 5 to 50
The artificial blood vessel or vascular repair material according to the above (8) or (9), which has an interval of 00 μm. (11) The thickness of the fibers forming the fiber assembly is 5 to 5
The artificial blood vessel or vascular repair material according to the above (9) or (10), which has 0 denier. (12) The above-mentioned (9), (1) which is a patch for heart and blood vessels.
The artificial blood vessel or the blood vessel repair material according to 0) or (11). (13) An artificial blood vessel or a vascular repair material, characterized in that the medical material for soft tissue does not have a yield point within a strain of 10% in a tensile test in at least one direction.

【0047】[0047]

【実施例】以下、参考例、実施例、比較例、試験例に基
づいて、本発明を具体的に説明する。
EXAMPLES The present invention will be specifically described below based on Reference Examples, Examples, Comparative Examples and Test Examples.

【0048】参考例1(3HB・4HBポリエステル共
重合体の製造) 培地A(酵母エキス10g、ポリペプトン10g、肉エ
キス5g、(NH42SO4 5gを脱イオン水に溶解し
て1リットルとし、pH7.0に調整したもの)200
mlを2リットルのフラスコに入れ、菌体〔アルカリゲ
ネス ユウトロファス(ATCC17699)〕を28
℃で24時間培養し、遠心分離により菌体B0を分離し
た。
Reference Example 1 (Production of 3HB / 4HB Polyester Copolymer) Medium A (10 g of yeast extract, 10 g of polypeptone, 5 g of meat extract, 5 g of (NH 4 ) 2 SO 4 was dissolved in deionized water to 1 liter. , Adjusted to pH 7.0) 200
Add ml to a 2 liter flask, and add the bacterial cells [Alkaligenes eutrophus (ATCC17699)] to 28
After culturing at 24 ° C. for 24 hours, bacterial cells B0 were separated by centrifugation.

【0049】培地B(Na2HPO4 4.4g、KH2
4 1.2g、MgSO4 0.2g、4−ヒドロキシ酪
酸ナトリウム15.0g、クエン酸ナトリウム5.0g
を脱イオン水に溶解して1リットルとし、pH7.0に
調整したもの)1リットル当たり菌体B0の4gを懸濁
させた。この懸濁液100mlを500mlの坂口フラ
スコに入れ、28℃で48時間培養し、遠心分離により
菌体B1を分離した。
Medium B (4.4 g of Na 2 HPO 4 , KH 2 P
O 4 1.2 g, MgSO 4 0.2 g, sodium 4-hydroxybutyrate 15.0 g, sodium citrate 5.0 g
Was dissolved in deionized water to 1 liter and adjusted to pH 7.0) 4 g of the bacterium B0 was suspended per 1 liter. 100 ml of this suspension was put into a 500 ml Sakaguchi flask, cultured at 28 ° C. for 48 hours, and bacterial cells B1 were separated by centrifugation.

【0050】得られた菌体B1を蒸留水で洗浄し、これ
を減圧乾燥して乾燥菌体Bd1を得た。このようにして
得られた乾燥菌体Bd1から熱クロロホルムでポリエス
テル共重合体を抽出し、抽出液を濃縮後、多量のヘキサ
ンに滴下してポリエステル共重合体を沈殿させ、該沈殿
をろ取、乾燥してポリエステル共重合体を分離し、3H
B・4HBポリエステル共重合体を得た。
The obtained bacterial cell B1 was washed with distilled water and dried under reduced pressure to obtain dried bacterial cell Bd1. A polyester copolymer was extracted from the dried bacterial cells Bd1 thus obtained with hot chloroform, and the extract was concentrated and then dropped into a large amount of hexane to precipitate the polyester copolymer, and the precipitate was collected by filtration, Dry to separate the polyester copolymer and
A B.4HB polyester copolymer was obtained.

【0051】3HB・4HBポリエステル共重合体は、
収量が1.0g/1、組成が4HB80%、3HB20
%、Tgは−43℃、融点は53℃、数平均分子量は約
600,000であった。なお、組成は 1H−NMR
(溶媒(1)CDCl3)で分析し、数平均分子量はゲ
ルパーミエーションクロマトグラフィー法によるポリス
チレン標準試料換算値で示した。
The 3HB / 4HB polyester copolymer is
Yield 1.0g / 1, composition 4HB80%, 3HB20
%, Tg was −43 ° C., melting point was 53 ° C., and number average molecular weight was about 600,000. The composition is 1 H-NMR.
(Solvent (1) CDCl 3 ) was used for analysis, and the number average molecular weight was shown as a polystyrene standard sample conversion value by gel permeation chromatography.

【0052】参考例2 培地Bに代えて培地C(クエン酸ナトリウムを含有しな
い以外は培地Bと同様に調製したもの)を用い、懸濁液
の量を50mlとした他は参考例1と同様にして菌体B
0を培養し、3HB・4HBポリエステル共重合体を得
た。該共重合体は、収量が1.1g/1、組成が4HB
50%、3HB50%、Tgは−11℃、融点は51
℃、数平均分子量は約610,000であった。組成及
び数平均分子量は参考例1と同様にして求めた。
Reference Example 2 Same as Reference Example 1 except that medium C (prepared in the same manner as medium B except that sodium citrate was not contained) was used instead of medium B, and the amount of suspension was 50 ml. And then mycelium B
0 was cultured to obtain a 3HB / 4HB polyester copolymer. The copolymer had a yield of 1.1 g / 1 and a composition of 4HB.
50%, 3HB50%, Tg-11 ° C, melting point 51
The temperature and the number average molecular weight were about 610,000. The composition and the number average molecular weight were determined in the same manner as in Reference Example 1.

【0053】参考例3 培地Bに代えて培地C(クエン酸ナトリウムを含有しな
い以外は培地Bと同様に調製したもの)を用い、懸濁液
の量を500mlとし、2000mlの坂口フラスコを
用いた他は参考例1と同様にして菌体B0を培養し、3
HB・4HBポリエステル共重合体を得た。該共重合体
は、収量が1.2g/1、組成が4HB20%、3HB
80%、Tgは−9℃、融点は163℃、数平均分子量
は約500,000であった。組成及び数平均分子量は
参考例1と同様にして求めた。
Reference Example 3 Instead of the medium B, the medium C (prepared in the same manner as the medium B except that sodium citrate was not contained) was used, the amount of the suspension was 500 ml, and a 2000 ml Sakaguchi flask was used. Others were cultured in the same manner as in Reference Example 1 and 3
An HB / 4HB polyester copolymer was obtained. The copolymer has a yield of 1.2 g / 1, a composition of 4HB 20%, 3HB
80%, Tg was -9 ° C, melting point was 163 ° C, and number average molecular weight was about 500,000. The composition and the number average molecular weight were determined in the same manner as in Reference Example 1.

【0054】参考例1〜3で得られた各共重合体をリン
酸緩衝液中でRhizopus delemarに由来
するリパーゼ(生化学工業製)およびRhizopus
arrhizusに由来するリパーゼ(ベーリンガー
マンハイム製)により処理したところ、いずれも分解す
ることが確認された。
Each of the copolymers obtained in Reference Examples 1 to 3 was treated with Rhizopus delemar-derived lipase (manufactured by Seikagaku Corporation) and Rhizopus in a phosphate buffer.
When treated with lipase derived from arrhizus (manufactured by Boehringer Mannheim), it was confirmed that all of them decomposed.

【0055】比較例1 参考例1で得られた3HB・4HBポリエステル共重合
体の4gを200mlのクロロホルムに溶解して得られ
る2(w/v)%クロロホルム溶液200mlを調製
し、このものを直径15cmのガラスシャーレ上に流延
し、徐々にクロロホルムを揮散させて、厚さ約200μ
mのフィルムを作成した。このフィルムを4cm四方に
切断して試料1を得た。
Comparative Example 1 200 ml of a 2 (w / v)% chloroform solution obtained by dissolving 4 g of the 3HB / 4HB polyester copolymer obtained in Reference Example 1 in 200 ml of chloroform was prepared. Cast on a 15 cm glass petri dish, gradually evaporate chloroform to a thickness of about 200 μm.
m film was made. This film was cut into a 4 cm square to obtain a sample 1.

【0056】比較例2 参考例2で得られた3HB・4HBポリエステル共重合
体を用いた以外は比較例1と同様にして試料2を得た。
Comparative Example 2 Sample 2 was obtained in the same manner as Comparative Example 1 except that the 3HB / 4HB polyester copolymer obtained in Reference Example 2 was used.

【0057】比較例3 参考例3で得られた3HB・4HBポリエステル共重合
体を用いた以外は比較例1と同様にして試料3を得た。
Comparative Example 3 Sample 3 was obtained in the same manner as Comparative Example 1 except that the 3HB / 4HB polyester copolymer obtained in Reference Example 3 was used.

【0058】実施例1 参考例1で得られた3HB・4HBポリエステル共重合
体の2(w/v)%クロロホルム溶液10mlを調製
し、このものを直径15cmのガラスシャーレ上に流延
し、徐々にクロロホルムを揮散させて、厚さ約10μm
のフィルムを作成した。該フィルム上にポリグリコール
酸メッシュ(「デキソンメッシュ」、型番号#2、Da
vis+Geck,Inc.製)を乗せ、上から軽く押
さえた状態で90℃オーブン中で30分間処理して、フ
ィルムとポリグリコール酸メッシュを貼り合わせ、この
ものを4cm四方に切断して試料4を得た。
Example 1 10 ml of a 2 (w / v)% chloroform solution of the 3HB / 4HB polyester copolymer obtained in Reference Example 1 was prepared, and this was cast on a glass petri dish having a diameter of 15 cm and gradually added. Chloroform is volatilized to the thickness of about 10 μm
I made a film. Polyglycolic acid mesh ("Dexon mesh", model number # 2, Da on the film
vis + Geck, Inc. (Manufactured by Seisakusho Co., Ltd.), lightly pressed from above, and treated in an oven at 90 ° C. for 30 minutes, a film and a polyglycolic acid mesh were stuck together, and this was cut into 4 cm squares to obtain sample 4.

【0059】比較例4 実施例1で使用したポリグリコール酸メッシュをそのま
ま4cm四方に切断して試料5を得た。
Comparative Example 4 Sample 5 was obtained by cutting the polyglycolic acid mesh used in Example 1 as it was into a 4 cm square.

【0060】比較例5 3HB・4HBポリエステル共重合体溶液に代えてポリ
カプロラクトン(Aldrich製)の2(w/v)%
クロロホルム溶液を用いた以外は実施例1と同様にして
試料6を得た。
Comparative Example 5 2 (w / v)% of polycaprolactone (manufactured by Aldrich) in place of the 3HB / 4HB polyester copolymer solution
Sample 6 was obtained in the same manner as in Example 1 except that the chloroform solution was used.

【0061】比較例6 3HB・4HBポリエステル共重合体溶液に代えてポリ
(L−乳酸)(Polyscience製)の2(w/
v)%クロロホルム溶液を用いた以外は比較例1と同様
にして試料7を得た。
Comparative Example 6 2 (w / w) of poly (L-lactic acid) (manufactured by Polyscience) was used instead of the 3HB / 4HB polyester copolymer solution.
v) Sample 7 was obtained in the same manner as in Comparative Example 1 except that the% chloroform solution was used.

【0062】実施例2 市販のポリエステル繊維製人工血管a1(長さ7cm、
内径8mm、透水性:1200ml/cm2/min/
120mmHg)を、パスツールピペットを用いて、参
考例1で得られた3HB・4HBポリエステル共重合体
の1(w/v)%クロロホルム溶液で内側から含浸さ
せ、次いでヘキサン溶媒中に漬けて、クロロホルム溶液
中の3HB・4HBポリエステル共重合体を析出させる
とともにクロロホルムを除去し、窒素気流中で乾燥し
た。上記のクロロホルム溶液含浸〜乾燥の操作を3回く
り返して3HB・4HBポリエステル共重合体で処理さ
れた人工血管a2を得た。次いで、テフロン製の棒(外
径8mm)に人工血管a2をはめ、該人工血管a2の外
周にポリエステルメッシュを巻き付け、参考例1で得ら
れた3HB・4HBポリエステル共重合体の3(w/
v)%1,4−ジオキサン溶液中に浸し、このものを凍
結乾燥した後外周のポリエステルメッシュを剥離し、テ
フロン製の棒から外して、多孔質の試料a3を得た。該
試料a3の透水性は10ml/cm2/min/120
mmHgであった。透水率は、試料に120mmHgに
相当する水圧をかけ、試料壁面1cm2当りの1分間の
水の流出量を求めることにより測定した。試料a3を走
査型電子顕微鏡で観察したところ、ポリエステル繊維
と、厚さ10〜30μm、孔径1〜20μmの3HB・
4HBポリエステル共重合体多孔質層とが一体化してい
た。
Example 2 Commercially available polyester fiber artificial blood vessel a1 (length 7 cm,
Inner diameter 8 mm, water permeability: 1200 ml / cm 2 / min /
120 mmHg) was impregnated with a 1 (w / v)% chloroform solution of the 3HB / 4HB polyester copolymer obtained in Reference Example 1 from the inside using a Pasteur pipette, and then immersed in a hexane solvent to form chloroform. The 3HB / 4HB polyester copolymer in the solution was precipitated, chloroform was removed, and the mixture was dried in a nitrogen stream. The above operations of impregnation with chloroform and drying were repeated three times to obtain an artificial blood vessel a2 treated with a 3HB / 4HB polyester copolymer. Next, the artificial blood vessel a2 was fitted onto a Teflon rod (outer diameter 8 mm), and a polyester mesh was wrapped around the outer circumference of the artificial blood vessel a2, and 3 (w / w) of the 3HB / 4HB polyester copolymer obtained in Reference Example 1 was used.
v) It was dipped in a 1,4-dioxane solution and freeze-dried, and then the polyester mesh on the outer periphery was peeled off and removed from the Teflon rod to obtain a porous sample a3. The water permeability of the sample a3 is 10 ml / cm 2 / min / 120.
It was mmHg. The water permeability was measured by applying a water pressure corresponding to 120 mmHg to the sample and determining the outflow amount of water per 1 cm 2 of the sample wall surface for 1 minute. When the sample a3 was observed with a scanning electron microscope, it was found that the polyester fiber was 3HB with a thickness of 10 to 30 μm and a pore diameter of 1 to 20 μm.
The 4HB polyester copolymer porous layer was integrated.

【0063】試験例1 体重約3Kgの家兎を用いて、ペントバルビタールナト
リウム全身麻酔下に、腹部を剃毛・消毒の後、皮膚及び
腹壁を正中切開し、腹壁内側に3cm四方の漿膜欠損を
8箇所作成した。試料1〜6を漿膜欠損部に縫合し、腹
壁切開部、皮膚切開部の順に縫合した。この時、試料
4、6はポリグリコール酸メッシュ側を漿膜欠損部に当
てて縫合した。試料7は固いために縫合できなかった。
10週間飼育後に麻酔下に脱血死させ、開腹して評価し
た。
Test Example 1 Using a rabbit having a body weight of about 3 kg, under general anesthesia of pentobarbital sodium, the abdomen was shaved and disinfected, and then the skin and abdominal wall were midline incised, and a serosa defect of 3 cm square was formed on the inside of the abdominal wall. Created 8 places. Samples 1 to 6 were sutured to the serosa defect, and the abdominal wall incision and the skin incision were sutured in this order. At this time, Samples 4 and 6 were sutured by applying the polyglycolic acid mesh side to the serosal defect. Sample 7 was too stiff to be sutured.
After breeding for 10 weeks, the animals were exsanguinated to death under anesthesia, and laparotomy was performed for evaluation.

【0064】各実験部位を肉眼で評価したところ、試料
5を縫合した部位では、腹壁と腸管との間に癒着が観察
された。その他の試料を縫合した部位では癒着は観察さ
れなかった。
When each experimental site was visually evaluated, adhesion was observed between the abdominal wall and the intestinal tract at the site where Sample 5 was sutured. No adhesion was observed at the site where the other samples were sutured.

【0065】各実験部位の断面をヘマトキシリン−エオ
ジン染色により組織学的に観察した。その結果、試料
1、2及び3では、各試料の表面にマクロファージ及び
繊維芽細胞が接着しているが、3HB・4HBポリエス
テル共重合体は表面部分のみが分解しているだけで全体
が完全に分解していない。
The cross section of each experimental site was observed histologically by hematoxylin-eosin staining. As a result, in Samples 1, 2 and 3, macrophages and fibroblasts were adhered to the surface of each sample, but the 3HB / 4HB polyester copolymer was completely decomposed only on the surface part. Not disassembled.

【0066】試料4(実施例1)のポリグリコール酸メ
ッシュは周囲が生体組織で覆われ、3HB・4HBポリ
エステル共重合体は全体が完全に分解しているのが観察
された。また、試料を縫合した部位には漿膜が再生して
おり、異物反応も弱かった。
It was observed that the polyglycolic acid mesh of Sample 4 (Example 1) was covered with living tissue on the periphery and the 3HB / 4HB polyester copolymer was completely decomposed entirely. In addition, the serosa regenerated at the site where the sample was sutured, and the foreign body reaction was also weak.

【0067】試料5は異物反応が強く漿膜の再生も部分
的であった。
Sample 5 had a strong foreign body reaction and partial regeneration of the serosa.

【0068】試料6のポリグリコール酸メッシュは周囲
が生体組織で覆われていたが、ポリカプロラクトン部は
ほとんど分解していなかった。また、試料を縫合した部
位には漿膜が再生していたが、異物反応が見られた。
The periphery of the polyglycolic acid mesh of Sample 6 was covered with living tissue, but the polycaprolactone portion was hardly decomposed. Although the serosa was regenerated at the site where the sample was sutured, a foreign body reaction was observed.

【0069】試験例2 試料a3を5.5cmに切断し、雑種成犬の胸部大動脈
に移植した。該移植はプレクロッティング処理なしで行
うことができた。人工血管壁面からの出血は認められな
かった。試料a3は柔軟で、柔軟な動脈壁の性状および
形状によく適応し、縫合性も良好であった。10週間後
に麻酔下に脱血死させ、開胸して評価した。試料a3は
良好に開存し、大動脈としての機能を保っていた。試験
例1と同様にして組織学的に観察した結果、試料a3へ
の組織の侵入は良好であり、3HB・4HBポリエステ
ル共重合体がほぼ全面的に分解しているのが観察され
た。また、異物反応は弱く、試料a3内面には一部で内
皮化が観察された。
Test Example 2 Sample a3 was cut into 5.5 cm and transplanted into the thoracic aorta of a mixed breed dog. The transplant could be done without pre-clotting treatment. No bleeding from the wall of the artificial blood vessel was observed. The sample a3 was soft and well adapted to the shape and shape of the soft arterial wall, and had good sutureability. After 10 weeks, the blood was killed by exsanguination under anesthesia, and the chest was opened for evaluation. Sample a3 was well patent and maintained the function as an aorta. As a result of histological observation performed in the same manner as in Test Example 1, it was found that the penetration of the tissue into the sample a3 was good and that the 3HB / 4HB polyester copolymer was almost completely decomposed. Further, the foreign body reaction was weak, and endothelization was partially observed on the inner surface of the sample a3.

【0070】実施例3 弾性伸度が約100%のポリエステル製編物(横メリヤ
ス平編、3デニール、繊維間隔:横250μm、縦50
0μm)を7×9cmに裁断し、3HB・4HBポリエ
ステル共重合体の2(w/v)%クロロホルム溶液中に
浸漬した後、直径15cmのガラスシャーレ上でクロロ
ホルムを揮散させて、3HB・4HBポリエステル共重
合体で被覆された編物を作成した。同様に、3HB・4
HBポリエステル共重合体の2(w/v)%クロロホル
ム溶液40mlをガラスシャーレ上に流延し、徐々にク
ロロホルムを揮散させて、厚さ約40μmのフィルムを
作成した。このフィルム上に3HB・4HBポリエステ
ル共重合体で被覆された編物を乗せ、上から軽く押さえ
た状態で90℃オーブン中で30分間処理して、血管修
復材試料11を得た。試料11を走査型電子顕微鏡(以
下SEMと記す)で観察したところ、編物とフィルムの
2層構造となっており、フィルム側の面は平滑であっ
た。
Example 3 A polyester knitted fabric having an elastic elongation of about 100% (horizontal knitted plain knit, 3 denier, fiber interval: 250 μm in width, 50 in length)
(0 μm) is cut into 7 × 9 cm and immersed in a 2 (w / v)% chloroform solution of 3HB / 4HB polyester copolymer, and then chloroform is volatilized on a glass petri dish having a diameter of 15 cm to give 3HB / 4HB polyester. A knitted fabric coated with a copolymer was prepared. Similarly, 3HB / 4
40 ml of a 2 (w / v)% chloroform solution of HB polyester copolymer was cast on a glass petri dish, and chloroform was gradually vaporized to form a film having a thickness of about 40 μm. A knitted fabric coated with a 3HB / 4HB polyester copolymer was placed on this film, which was lightly pressed from the top and treated in a 90 ° C. oven for 30 minutes to obtain a vascular repair material sample 11. When the sample 11 was observed with a scanning electron microscope (hereinafter referred to as SEM), it had a two-layer structure of a knit and a film, and the film side surface was smooth.

【0071】実施例4 試料11を、3HB・4HBポリエステル共重合体フィ
ルム面を下にして、15×13cmステンレス製トレー
に置き、90℃オーブン中で30分間処理し、放冷し
て、トレーに密着させた。その上に3HB・4HBポリ
エステル共重合体の2(w/v)%1,4−ジオキサン
溶液19mlを注ぎ、このものを凍結乾燥して、血管修
復材試料12を得た。試料12をSEMで観察したとこ
ろ、フィルム層と孔径約100μmの多孔質層の間に編
物が挟まれている3層構造となっており、多孔質層の表
面は粗面、フィルム層の表面はほぼ平滑な面となってい
た。
Example 4 Sample 11 was placed on a 15 × 13 cm stainless steel tray with the 3HB / 4HB polyester copolymer film side down, treated in a 90 ° C. oven for 30 minutes, allowed to cool, and placed in a tray. I made them stick. 19 ml of a 2 (w / v)% 1,4-dioxane solution of the 3HB / 4HB polyester copolymer was poured on it, and this was freeze-dried to obtain a vascular repair material sample 12. When the sample 12 was observed by SEM, it had a three-layer structure in which a knit was sandwiched between a film layer and a porous layer having a pore size of about 100 μm. The surface of the porous layer was rough and the surface of the film layer was The surface was almost smooth.

【0072】実施例5 実施例4で用いた2(w/v)%1,4−ジオキサン溶
液に代えて卵製レシチン(和光純薬工業製)を5重量%
含む3HB・4HBポリエステル共重合体の2(w/
v)%1,4−ジオキサン溶液を使用した以外は実施例
4と同様にして血管修復材試料13を得た。試料13を
SEMで観察したところ試料12と同様の構造であっ
た。
Example 5 5% by weight of egg lecithin (manufactured by Wako Pure Chemical Industries, Ltd.) was used in place of the 2 (w / v)% 1,4-dioxane solution used in Example 4.
Containing 3HB / 4HB polyester copolymer 2 (w /
v) A vascular repair material sample 13 was obtained in the same manner as in Example 4 except that the 1,4-dioxane solution was used. When the sample 13 was observed by SEM, it had the same structure as the sample 12.

【0073】実施例6 厚さ1mmのアルミニウム材を使用して7×9cmの型
枠を作成し、該型枠に試料11を3HB・4HBポリエ
ステル共重合体フィルム面が下になるようにセットし、
15×13cmステンレス製トレーの底面との間に1m
mの間隔ができるようにして、該トレー上に置いた。そ
の上に3HB・4HBポリエステル共重合体の2(w/
v)%1,4−ジオキサン溶液38mlを注ぎ、このも
のを凍結乾燥して、血管修復材試料14を得た。試料1
4をSEMで観察したところ、多孔質層の中間に編物が
存在する構造となっており、ステンレス製トレー底面側
の多孔質層は孔径約10μm、他の面の側の多孔質層は
孔径約100μmであり、表面はいずれも粗面となって
いた。
Example 6 A 7 × 9 cm mold was prepared using an aluminum material having a thickness of 1 mm, and the sample 11 was set in the mold so that the 3HB / 4HB polyester copolymer film surface faced down. ,
1m between the bottom of a 15 x 13 cm stainless steel tray
It was placed on the tray with an interval of m. On top of that, 2 (w / 3HB / 4HB polyester copolymer)
v) 38 ml of a 1,4-dioxane solution was poured, and this was freeze-dried to obtain a vascular repair material sample 14. Sample 1
4 was observed by SEM, a knit was present in the middle of the porous layer. The porous layer on the bottom side of the stainless steel tray had a pore diameter of about 10 μm, and the porous layer on the other surface side had a pore diameter of about 10 μm. It was 100 μm, and the surface was rough.

【0074】実施例7 実施例3で用いたものと同じポリエステル製編物を内径
12mm、長さ3cmの管状にヒートシーラーで融着し
て成形し、外径10mmのガラスU字管にはめて150
℃にて熱処理して、内径10mmのクリンプ付ポリエス
テル製編物曲管a11を得た。この曲管a11を3HB
・4HBポリエステル共重合体の2(w/v)%クロロ
ホルム溶液中に浸漬し、外径10mmのガラスU字管に
はめて窒素気流中にて乾燥して、3HB・4HBポリエ
ステル共重合体で被覆されたクリンプ付ポリエステル製
編物曲管a22を作成した。曲管a22の外周をポリエ
ステルメッシュで巻き付け、次いで3HB・4HBポリ
エステル共重合体の3(w/v)%1,4−ジオキサン
溶液中に浸し、このものを凍結乾燥した後外周のポリエ
ステルメッシュを剥離し、ガラスU字管から外して、血
管修復材試料15を得た。試料15をSEMで観察した
ところ、ポリエステル製編物と孔径1〜20μmの3H
B・4HBポリエステル共重合体多孔質層とが一体化し
ていた。
Example 7 The same polyester knitted fabric as used in Example 3 was fused and formed into a tube having an inner diameter of 12 mm and a length of 3 cm by a heat sealer, and fitted into a glass U-shaped tube having an outer diameter of 10 mm to give 150.
Heat treatment was performed at 0 ° C. to obtain a crimped polyester knitted tube a11 having an inner diameter of 10 mm. This curved tube a11 is 3HB
・ Immersed in a 2 (w / v)% chloroform solution of 4HB polyester copolymer, fitted in a glass U-shaped tube with an outer diameter of 10 mm, and dried in a nitrogen stream, and then coated with 3HB / 4HB polyester copolymer. A crimped polyester knitted curved tube a22 was prepared. The outer circumference of the curved pipe a22 is wrapped with a polyester mesh, and then immersed in a 3 (w / v)% 1,4-dioxane solution of a 3HB / 4HB polyester copolymer, which is freeze-dried, and then the outer polyester mesh is peeled off. Then, the blood vessel was removed from the glass U-shaped tube to obtain a vascular repair material sample 15. When the sample 15 was observed by SEM, it was 3H with a polyester knitted fabric and a pore size of 1 to 20 μm.
The B / 4HB polyester copolymer porous layer was integrated.

【0075】試験例3 血管修復材試料11〜15及び各試料を構成するポリエ
ステル製編物を幅20mmの短冊状に切断し、引張試験
機(TENSILON UTM−250、オリエンテッ
ク社製)を用いて、引張速度200mm/min、室温
で測定した。なお、引張方向はすべて横方向とし、引張
応力は試験片単位幅当りの荷重として求めた。引張強さ
及び破壊時歪みは、試料が破壊した時の引張強さ及び歪
みとして求めた。結果を表1に示す。
Test Example 3 The blood vessel restoration material samples 11 to 15 and the polyester knitted fabrics constituting each sample were cut into strips having a width of 20 mm, and a tensile tester (TENSILON UTM-250, manufactured by Orientec Co., Ltd.) was used. The tensile speed was 200 mm / min and the measurement was performed at room temperature. The tensile directions were all lateral, and the tensile stress was determined as the load per unit width of the test piece. The tensile strength and strain at break were determined as the tensile strength and strain when the sample broke. The results are shown in Table 1.

【0076】[0076]

【表1】 注*)試料11では降伏点は存在しなかった。[Table 1] Note *) Sample 11 had no yield point.

【0077】試験例4 犬の右心室の一部を切開し、適宜切断した血管修復材試
料11〜14を縫合し閉胸した。2週間後に麻酔下に脱
血死させ、開胸して評価した。なお縫合は、試料11で
は平滑な共重合体フィルム側を、試料12、13では多
孔質層側を、試料14では孔径約100μmの多孔質層
側を、それぞれ血液面側にして行った。各試料とも柔軟
で、右心の柔軟な筋肉壁内性状及び形状によく適応し、
縫合性も良好であった。試料13は水濡れ性に優れてい
たが、他の試料も使用上不都合はなかった。
Test Example 4 A part of the right ventricle of a dog was incised, and appropriately cut vascular repair material samples 11 to 14 were sutured and the chest was closed. Two weeks later, the blood was killed by exsanguination under anesthesia, and the chest was opened for evaluation. The suturing was carried out with the smooth copolymer film side in Sample 11, the porous layer side in Samples 12 and 13, and the porous layer side with a pore size of about 100 μm in Sample 14 as the blood surface side. Each sample is flexible and adapts well to the flexible muscle wall properties and shape of the right heart,
The sutureability was also good. Sample 13 was excellent in water wettability, but other samples did not cause any inconvenience in use.

【0078】開胸した状態を肉眼で評価したところ、い
ずれの試料も柔軟性を保っていた。また、いずれの試料
も異常な反応はみられなかった。
When the thoracotomy was visually evaluated, all the samples were flexible. No abnormal reaction was observed in any of the samples.

【0079】試料の断面をヘマトキシリン−エオジン染
色し、光学顕微鏡により組織学的に観察した結果、試料
11では血液面側の平滑な共重合体フィルム上に大きな
血液凝固塊が形成していたが、ポリエステル製編物への
外側からの組織の侵入状態は良好であった。
A cross section of the sample was stained with hematoxylin-eosin and observed histologically by an optical microscope. As a result, in Sample 11, a large blood clot was formed on the smooth copolymer film on the blood surface side. The state of invasion of the tissue into the polyester knitted fabric from the outside was good.

【0080】試料12及び13では多孔質層上に薄く安
定な血液凝固物層が形成しており、多孔質層の一部は組
織の侵入による器質化が起き始めていたが、フィルム層
へは組織が侵入していなかった。
In Samples 12 and 13, a thin and stable blood coagulum layer was formed on the porous layer, and part of the porous layer was beginning to become organized due to invasion of tissue, but the film layer had tissue. Was not invading.

【0081】試料14では、孔径約100μmの多孔質
層上に薄く安定な血液凝固物層が形成しており、多孔質
層への繊維芽細胞、平滑弁細胞、毛細血管等の侵入によ
る組織の形成も良好で、内表面を内皮細胞が覆うという
内皮化も進行していた。また、共重合体の分解も始まっ
ていた。
In Sample 14, a thin and stable blood coagulation layer was formed on the porous layer having a pore size of about 100 μm, and the tissue was formed by the invasion of fibroblasts, smooth valve cells, capillaries, etc. into the porous layer. The formation was good, and endothelialization was progressing in which the inner surface was covered with endothelial cells. Moreover, the decomposition of the copolymer has also started.

【0082】試験例5 犬の肺動脈の一部を切除し血管修復材試料15に置き換
えた。該試料は柔軟で、極めて柔軟で伸展性に富む肺動
脈壁の形状と性状によく適応し、縫合性も良好であっ
た。2週間後に麻酔下に脱血死させ、開胸して評価し
た。試料15は肺動脈管としての機能を保っていた。試
験例4と同様にして組織学的に観察した結果、肺動脈管
の内側には薄く安定な血液凝固物層が形成しており、多
孔質層の一部は組織の侵入による器質化が起き始めてい
た。また、共重合体の分解も始まっていた。
Test Example 5 A dog pulmonary artery was partially excised and replaced with a vascular repair material sample 15. The sample was flexible, and was well adapted to the shape and properties of the pulmonary artery wall, which was extremely flexible and highly expandable, and had good sutureability. Two weeks later, the blood was killed by exsanguination under anesthesia, and the chest was opened for evaluation. Sample 15 retained its function as a pulmonary artery tube. As a result of histological observation in the same manner as in Test Example 4, a thin and stable blood coagulation layer was formed inside the pulmonary artery duct, and a part of the porous layer began to be organized due to invasion of tissue. I was there. Moreover, the decomposition of the copolymer has also started.

【0083】試験例6 犬の右心室より肺動脈へ血管修復材試料15で管状にし
た人工血管でバイパスを作り、次に本来の肺動脈の起始
部を結紮し、すべての肺動脈血をバイパス経由で流すよ
うにした。植え込み3ケ月後にレントゲン検査によりバ
イパス部分の形状を調べたところ、植え込み時の形態を
良好に保っていた。次にカテーテルの先端につけたバル
ーンによりバイパスの内径を2倍に拡張したところ無理
なく拡張することができ、血行動態にも変化は認められ
なかった。その後3ケ月経過して再びレントゲン検査に
よりバイパス部分の形状を調べたところ拡張された状態
のままの形態を保っていた。すなわち、本材料により任
意の時期に任意のサイズで、その柔軟性と生体内分解性
を利用することにより拡張させることのできる「成長さ
せうる血管修復材、成長させうる人工血管」を創生させ
ることができた。
Test Example 6 From the right ventricle of a dog to the pulmonary artery, a bypass was created with an artificial blood vessel made into a tubular shape with the vascular repair material sample 15, then the origin of the original pulmonary artery was ligated, and all pulmonary arterial blood was passed through the bypass. I let it flow. When the shape of the bypass portion was examined by an X-ray test three months after the implantation, the morphology at the time of implantation was kept good. Next, when the inner diameter of the bypass was doubled with a balloon attached to the tip of the catheter, it could be reasonably expanded, and no change in hemodynamics was observed. Three months later, when the shape of the bypass portion was examined again by X-ray examination, the shape remained in the expanded state. That is, the present material creates a “growth-prone vascular repair material, a growth-promoting artificial blood vessel” that can be expanded at any time, in any size, and by utilizing its flexibility and biodegradability. I was able to.

【0084】[0084]

【発明の効果】本発明によれば、生体組織の侵入に応じ
て該組織に分解吸収され、力学的適合性、安全性を満足
した軟組織用医療用材料が得られる。本発明の軟組織用
医療用材料は、人工血管、人工皮膚、手術用縫合糸、癒
着防止材等に好適に用いられる。細胞培養で調べた結
果、本発明の軟組織用医療用材料は、コラーゲン膜より
細胞の生着、移動、増殖が良好であった。特に、レシチ
ン等のリン脂質などで改質したものはさらに良好となっ
た。本発明の人工血管または血管修復材は、生体適合
性、伸縮性、柔軟性が良好であり、生体組織と縫合する
時の取扱い性に優れている。
EFFECTS OF THE INVENTION According to the present invention, there is obtained a medical material for soft tissue, which is decomposed and absorbed by a living tissue according to the invasion of the living tissue and satisfies mechanical compatibility and safety. The medical material for soft tissues of the present invention is suitably used for artificial blood vessels, artificial skin, surgical sutures, adhesion preventive materials and the like. As a result of examination by cell culture, the medical material for soft tissue of the present invention showed better cell engraftment, migration and proliferation than the collagen membrane. In particular, those modified with phospholipids such as lecithin were even better. The artificial blood vessel or the blood vessel repair material of the present invention has good biocompatibility, stretchability, and flexibility, and is excellent in handleability when sutured to a biological tissue.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 繊維の集合体および下記式(1) 【化1】 で示される3−ヒドロキシブチレート単位と下記式
(2) 【化2】 で示される4−ヒドロキシブチレート単位とを有するポ
リエステル共重合体からなることを特徴とする軟組織用
医療用材料。
1. A fiber assembly and the following formula (1): 3-hydroxybutyrate unit represented by the following formula (2) A medical material for soft tissue comprising a polyester copolymer having a 4-hydroxybutyrate unit represented by
【請求項2】 請求項1記載の軟組織用医療用材料によ
り形成されていることを特徴とする人工血管または血管
修復材。
2. An artificial blood vessel or a vascular repair material, which is formed of the medical material for soft tissue according to claim 1.
JP6090534A 1994-04-05 1994-04-05 Medical material for soft tissue Pending JPH07275344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090534A JPH07275344A (en) 1994-04-05 1994-04-05 Medical material for soft tissue

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090534A JPH07275344A (en) 1994-04-05 1994-04-05 Medical material for soft tissue

Publications (1)

Publication Number Publication Date
JPH07275344A true JPH07275344A (en) 1995-10-24

Family

ID=14001084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090534A Pending JPH07275344A (en) 1994-04-05 1994-04-05 Medical material for soft tissue

Country Status (1)

Country Link
JP (1) JPH07275344A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032536A1 (en) * 1997-12-22 1999-07-01 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
WO2000051662A1 (en) * 1999-03-04 2000-09-08 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
US6245537B1 (en) 1997-05-12 2001-06-12 Metabolix, Inc. Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation
EP1132446A2 (en) 1995-07-20 2001-09-12 The Procter & Gamble Company Nonwoven materials comprising biodegradable copolymers
EP1141075A1 (en) 1998-12-21 2001-10-10 The Procter & Gamble Company Biodegradable pha copolymers
EP1140232A1 (en) 1998-12-21 2001-10-10 The Procter & Gamble Company Absorbent articles comprising biodegradable pha copolymers
EP1140231A1 (en) 1998-12-21 2001-10-10 The Procter & Gamble Company Plastic articles comprising biodegradable pha copolymers
EP1141099A1 (en) 1998-12-21 2001-10-10 The Procter & Gamble Company Films comprising biodegradable pha copolymers
JP2002539854A (en) * 1999-03-25 2002-11-26 メタボリックス,インコーポレイテッド Medical devices and medical applications of polyhydroxyalkanoate polymers
EP1298992A2 (en) 2000-06-09 2003-04-09 The Procter & Gamble Company Agricultural items and methods comprising biodegradable copolymers
US6610764B1 (en) 1997-05-12 2003-08-26 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6828357B1 (en) 1997-07-31 2004-12-07 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6867248B1 (en) 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
WO2006022358A1 (en) * 2004-08-24 2006-03-02 Teijin Limited Laminated body
AU2004242432B2 (en) * 1999-03-04 2007-07-05 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
EP1878451A1 (en) * 1999-03-04 2008-01-16 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
KR101460011B1 (en) * 2013-06-26 2014-11-11 주식회사서륭 Artficial blood stent applied with teflon fablics
KR20150124028A (en) * 2014-04-25 2015-11-05 주식회사서륭 Manufacturing method of teflon fablic for artficial blood stent
US9555155B2 (en) 2014-12-11 2017-01-31 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US10111738B2 (en) 2003-05-08 2018-10-30 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
WO2019044836A1 (en) 2017-08-29 2019-03-07 三菱瓦斯化学株式会社 Polyester including 4-hydroxybutyrate units
US10500303B2 (en) 2014-08-15 2019-12-10 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US10626521B2 (en) 2014-12-11 2020-04-21 Tepha, Inc. Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof
CN111263647A (en) * 2017-10-24 2020-06-09 达沃有限公司 Soft tissue repair implants containing hydroxybutyrate
WO2020230807A1 (en) 2019-05-13 2020-11-19 三菱瓦斯化学株式会社 Aliphatic polyester copolymer

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1132446A2 (en) 1995-07-20 2001-09-12 The Procter & Gamble Company Nonwoven materials comprising biodegradable copolymers
US8771720B2 (en) 1997-05-12 2014-07-08 Metabolix, Inc. Medical device comprising polyhydroxyalkanoate having pyrogen removed using oxidizing agent
US6610764B1 (en) 1997-05-12 2003-08-26 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6623749B2 (en) 1997-05-12 2003-09-23 Metabolix, Inc. Medical device containing polyhydroxyalkanoate treated with oxidizing agent to remove endotoxin
US7906135B2 (en) 1997-05-12 2011-03-15 Metabolix, Inc. Medical device comprising polyhydroxyalkanoate having pyrogen removed
US6867248B1 (en) 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US6245537B1 (en) 1997-05-12 2001-06-12 Metabolix, Inc. Removing endotoxin with an oxdizing agent from polyhydroxyalkanoates produced by fermentation
US7244442B2 (en) 1997-05-12 2007-07-17 Metabolix, Inc. Method for making devices using polyhydroxyalkanoate having pyrogen removed
US6878758B2 (en) 1997-05-12 2005-04-12 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
US8231889B2 (en) 1997-05-12 2012-07-31 Metabolix, Inc. Method of forming medical devices having pyrogen removed for in vivo application
US6828357B1 (en) 1997-07-31 2004-12-07 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
EP2258742A1 (en) * 1997-12-22 2010-12-08 Metabolix, Inc. Polyhydroxyalkanoate compositons having controlled degradation rates
WO1999032536A1 (en) * 1997-12-22 1999-07-01 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
EP1659142A1 (en) * 1997-12-22 2006-05-24 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
EP2196484A1 (en) * 1997-12-22 2010-06-16 Metalbolix Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
EP1140232A1 (en) 1998-12-21 2001-10-10 The Procter & Gamble Company Absorbent articles comprising biodegradable pha copolymers
EP1141099A1 (en) 1998-12-21 2001-10-10 The Procter & Gamble Company Films comprising biodegradable pha copolymers
EP1140231A1 (en) 1998-12-21 2001-10-10 The Procter & Gamble Company Plastic articles comprising biodegradable pha copolymers
EP1141075A1 (en) 1998-12-21 2001-10-10 The Procter & Gamble Company Biodegradable pha copolymers
JP2002537906A (en) * 1999-03-04 2002-11-12 テファ, インコーポレイテッド Bioabsorbable, biocompatible polymers for tissue manipulation
WO2000051662A1 (en) * 1999-03-04 2000-09-08 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
US6514515B1 (en) 1999-03-04 2003-02-04 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
AU2004242432B2 (en) * 1999-03-04 2007-07-05 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
EP1878451A1 (en) * 1999-03-04 2008-01-16 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
US6746685B2 (en) 1999-03-04 2004-06-08 Tepha, Inc. Bioabsorbable, biocompatible polymers for tissue engineering
JP2002539854A (en) * 1999-03-25 2002-11-26 メタボリックス,インコーポレイテッド Medical devices and medical applications of polyhydroxyalkanoate polymers
EP1298992A2 (en) 2000-06-09 2003-04-09 The Procter & Gamble Company Agricultural items and methods comprising biodegradable copolymers
US10111738B2 (en) 2003-05-08 2018-10-30 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US10136982B2 (en) 2003-05-08 2018-11-27 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
US10314683B2 (en) 2003-05-08 2019-06-11 Tepha, Inc. Polyhydroxyalkanoate medical textiles and fibers
WO2006022358A1 (en) * 2004-08-24 2006-03-02 Teijin Limited Laminated body
KR101460011B1 (en) * 2013-06-26 2014-11-11 주식회사서륭 Artficial blood stent applied with teflon fablics
KR20150124028A (en) * 2014-04-25 2015-11-05 주식회사서륭 Manufacturing method of teflon fablic for artficial blood stent
US10500303B2 (en) 2014-08-15 2019-12-10 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US11944709B2 (en) 2014-08-15 2024-04-02 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US11426484B2 (en) 2014-08-15 2022-08-30 Tepha, Inc. Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof
US10590566B2 (en) 2014-12-11 2020-03-17 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US10227713B2 (en) 2014-12-11 2019-03-12 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US10626521B2 (en) 2014-12-11 2020-04-21 Tepha, Inc. Methods of manufacturing mesh sutures from poly-4-hydroxybutyrate and copolymers thereof
US11828006B2 (en) 2014-12-11 2023-11-28 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
US9555155B2 (en) 2014-12-11 2017-01-31 Tepha, Inc. Methods of orienting multifilament yarn and monofilaments of poly-4-hydroxybutyrate and copolymers thereof
KR20200046051A (en) 2017-08-29 2020-05-06 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polyester comprising 4-hydroxybutyrate units
WO2019044836A1 (en) 2017-08-29 2019-03-07 三菱瓦斯化学株式会社 Polyester including 4-hydroxybutyrate units
US11466120B2 (en) 2017-08-29 2022-10-11 Mitsubishi Gas Chemical Company, Inc. Polyester containing 4-hydroxybutyrate unit
CN111263647A (en) * 2017-10-24 2020-06-09 达沃有限公司 Soft tissue repair implants containing hydroxybutyrate
WO2020230807A1 (en) 2019-05-13 2020-11-19 三菱瓦斯化学株式会社 Aliphatic polyester copolymer
KR20220007866A (en) 2019-05-13 2022-01-19 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 aliphatic polyester copolymer

Similar Documents

Publication Publication Date Title
JPH07275344A (en) Medical material for soft tissue
US7084082B1 (en) Collagen material and its production process
US6015844A (en) Composite surgical material
US5879383A (en) Blood contact surfaces using endothelium on a subendothelial matrix
JP3765828B2 (en) Biologically reorganizable collagen graft prosthesis
US5789465A (en) Composite surgical material
US5632776A (en) Implantation materials
JP3023176B2 (en) Tissue equivalent
JPS6096257A (en) Artificial organ
JPH0798057B2 (en) Biocompatible elastomeric article and method of making the same
EP0349505A2 (en) A novel surgical material
WO1992009312A1 (en) Implant material
GB2280372A (en) Composite surgical material
JP3521226B2 (en) Crosslinked composite biomaterial
Nojiri et al. Aorta-coronary bypass grafting with heparinized vascular grafts in dogs: a preliminary study
WO2003051420A1 (en) Lumen formation-inducible material and instrument to be inserted into the body
KR20030002224A (en) Barrier membrance for guided tissue regeneration and the preparation thereof
WO2000035372A2 (en) Multiple matrices for engineered tissues
JP3687995B2 (en) Artificial blood vessel and manufacturing method thereof
JPH04336072A (en) Living body affinity base material
JPH05269196A (en) Multilayered artificial blood vessel
JPH04288165A (en) Organ implant and manufacture thereof
KR101582202B1 (en) Vascular Patch using Cocoon and Method for manufacturing thereof
JP3003208B2 (en) Vascular prostheses and patches
CN116942908B (en) Absorbable biological isolation composite membrane material and preparation method thereof