KR20030002224A - Barrier membrance for guided tissue regeneration and the preparation thereof - Google Patents

Barrier membrance for guided tissue regeneration and the preparation thereof Download PDF

Info

Publication number
KR20030002224A
KR20030002224A KR1020010038978A KR20010038978A KR20030002224A KR 20030002224 A KR20030002224 A KR 20030002224A KR 1020010038978 A KR1020010038978 A KR 1020010038978A KR 20010038978 A KR20010038978 A KR 20010038978A KR 20030002224 A KR20030002224 A KR 20030002224A
Authority
KR
South Korea
Prior art keywords
membrane
nonwoven fabric
biodegradable polymer
chitosan
spinning
Prior art date
Application number
KR1020010038978A
Other languages
Korean (ko)
Other versions
KR100464930B1 (en
Inventor
정종평
이승진
남성헌
구영
Original Assignee
이승진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이승진 filed Critical 이승진
Priority to KR10-2001-0038978A priority Critical patent/KR100464930B1/en
Publication of KR20030002224A publication Critical patent/KR20030002224A/en
Application granted granted Critical
Publication of KR100464930B1 publication Critical patent/KR100464930B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00179Ceramics or ceramic-like structures
    • A61F2310/00293Ceramics or ceramic-like structures containing a phosphorus-containing compound, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Abstract

PURPOSE: Provided is a shielding membrane for induction of tissue regeneration which has an excellent effect of shielding invasion of epithelial cells and bonding tissues, help a bone tissue to grow and can be conveniently designed in an operation, and a method for producing the same. CONSTITUTION: The shielding membrane comprises two sheets of chitosan non-woven fabric and a porous bio-degradable polymer membrane disposed therebetween. The bio-degradable polymer is formed of bio-degradable polyester polymer such as polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer and polycaprolactone. The bio-degradable polymer membrane has a thickness of 0.01 to 10 mm. The chitosan non-woven fabric includes a foreign substrate ingredient to improve bio-compatibility, a ceramic ingredient to improve the mechanical strength and bone tissue regeneration or a mixture thereof.

Description

조직재생 유도용 차폐막 및 그의 제조방법{Barrier membrance for guided tissue regeneration and the preparation thereof}Barrier membrance for guided tissue regeneration and the preparation

본 발명은 손상된 치조골의 재생을 유도하기 위한 조직재생 유도용 차폐막 및 그 제조방법에 관한 것으로서, 보다 구체적으로는 키토산 부직포 사이에 미세공이 형성된 다공성 생분해성 고분자 막이 샌드위치된 조직재생 유도용 차폐막 및 그 제조방법에 관한 것이다.The present invention relates to a membrane for inducing tissue regeneration for inducing regeneration of damaged alveolar bone and a method of manufacturing the same, and more specifically, a membrane for inducing tissue regeneration in which a porous biodegradable polymer membrane having micropores formed between chitosan nonwoven fabrics and sandwiches thereof is prepared. It is about a method.

치주질환에 의한 치조골 손상의 치료시, 치주질환은 억제되더라도 치주 조직은 재생되지 않을 수도 있으며, 새로운 뼈가 생성되더라도 뼈가 불규칙하게 형성되거나 또는 치은 결체조직으로 대체됨으로써 치주조직 본래의 기능을 잃어버리게 될 수도 있다. 즉, 손상부위에서 치은 결합조직은 골조직이나 치주 인대조직보다 빨리 재생되어 이들 조직 내로 침투되기 때문에 치조골 및 치주 인대조직의 정상적인 재생이 원활히 진행되지 못하고 해부학적 변형 및 기능 상실이 유발되어 치조골의 재도입 수술이 필요하게 된다.In the treatment of alveolar bone damage caused by periodontal disease, the periodontal tissue may not be regenerated even if the periodontal disease is suppressed, and even if new bone is formed, the bone may be irregularly formed or replaced by gingival connective tissue, thereby losing the function of the periodontal tissue. May be In other words, the gingival connective tissue in the damaged area regenerates faster than bone tissue or periodontal ligament tissue and penetrates into these tissues. Therefore, normal regeneration of the alveolar bone and periodontal ligament tissue does not proceed smoothly, and anatomical deformation and loss of function are caused. Surgery is required.

이러한 문제를 해결하기 위하여 현재 시행되고 있는 치조골 재생술은 자가골이식(autografting)으로 손상된 부위를 채워 골형성을 유도하는 방법이 있다. 다른 방법으로는 면역원성을 제거한 사람이나 동물의 뼈를 인위적 골대체 물질로서 이용하거나 상업적으로 시판되는 하이드록시아파타이트(hydroxyapatite) 등을 이용하는 방법이 있다.Alveolar bone regeneration currently being performed to solve this problem is a method of inducing bone formation by filling the damaged area by autografting (autografting). Another method is to use the bones of humans or animals from which immunogenicity has been removed as an artificial bone substitute, or to use commercially available hydroxyapatite.

최근 들어서는 탈회 골분말 및 이로부터 얻어지는 골형성 단백질(bone morphogenic protein)의 골재생 효과에 대한 관심이 집중되고 있으며, 이밖에도 다양한 방법 등이 시험되어 골조직 재생 능력이 입증되고 있기는 하지만 실제로 의료분야에서 환자들에게 널리 적용되지는 못하고 있다. 이에 따라 치주조직 재생에 있어서 새롭게 인공 막을 조직에 도입함으로써 치주조직의 치유를 증진시키고 완전한 치주조직으로의 복원을 꾀하는 동시에, 골이식 결과를 개선시키고 새로운 치조골의 생성을 유도하려는 시도가 활발히 이루어지고 있다.Recently, attention has been focused on the bone regeneration effect of demineralized bone powder and bone morphogenic protein obtained from it. In addition, various methods have been tested to prove bone tissue regeneration ability, It is not widely applied to them. Accordingly, in the regeneration of periodontal tissues, new artificial membranes have been introduced into tissues to promote the healing of periodontal tissues and to restore them to complete periodontal tissues, while improving the results of bone grafts and inducing the production of new alveolar bones. .

손상된 부위에 차폐막을 외과적으로 삽입하여 특정 조직의 회복 및 재생을 개선하려는 기술의 한 예로 천연 혹은 합성 라텍스(latex)나 폴리테트라플로로에틸렌을 그 재질로 갖는 일반적인 조직재생 유도 차폐막을 들 수 있으나, 이러한 조직재생 유도막은 상기한 천연 혹은 합성 라텍스(latex)나 폴리테트라플로로에틸렌이 비분해성을 갖고 있어 이를 제거하기 위한 2차 제거 수술이 필요하다는 문제점을 안고 있다.An example of a technique for surgically inserting a shield into a damaged area to improve recovery and regeneration of a specific tissue is a general tissue regeneration induction shield having a natural or synthetic latex or polytetrafluoroethylene as its material. In addition, the tissue regeneration induction membrane has a problem in that the above-described natural or synthetic latex (latex) or polytetrafluoroethylene is non-degradable, so that a secondary removal surgery is required to remove it.

대한민국 공개번호 제2000-73589호는 섬유 굵기가 0.1 ㎛ ∼ 0.001 ㎛이며 용융방사에 의해 제조된 일측의 생분해성 부직포와, 섬유 굵기가 0.1 ㎛ ∼ 400 ㎛이며 용융방사에 의해 제조된 생분해성 고분자가 적층ㆍ압착된 치주질환 치료용 조직재생 유도용 차폐막을 개시하고 있다. 그러나, 상기에 개시된 조직재생 유도용 차폐막은 용융방사 및 용액 방사를 하여야 한다는 제조공정상의 문제점과 치주질환 치료용 약물이 부직포 내에 형성된 공간(또는 부직포의 매트릭스)에 함입됨으로써 충분한 효과를 거둘 수 없다는 문제점을 안고 있으며, 또한 충분한 기계적 강도를 발휘할 수 없다는 문제점을 안고 있다.Republic of Korea Publication No. 2000-73589 has a fiber thickness of 0.1 ㎛ ~ 0.001 ㎛ and biodegradable nonwoven fabric of one side produced by melt spinning, and a fiber thickness of 0.1 ㎛ ~ 400 ㎛ biodegradable polymer produced by melt spinning Disclosed are a membrane for inducing tissue regeneration for treating periodontal disease laminated and compressed. However, the above described tissue regeneration induction shielding membrane has a problem in manufacturing process that should be melt spinning and solution spinning, and the problem that the drug for treating periodontal disease is not effective enough by being incorporated into the space (or matrix of nonwoven fabric) formed in the nonwoven fabric. It also has a problem that it can not exhibit sufficient mechanical strength.

이에 본 발명자들은 충분한 기계적 강도를 가지면서도 치조골 재생 치료에유용한 개선된 조직재생 유도용 차폐막을 제조하기 위해 예의 연구한 결과, 키토산 부직포 사이에 미세공이 형성된 다공성 생분해성 고분자 막이 샌드위치된 조직재생 유도용 차폐막이 상기한 문제점을 개선할 수 있음을 발견하고 본 발명을 완성하게 되었다.Accordingly, the present inventors have studied intensively to prepare an improved tissue regeneration induction barrier membrane having sufficient mechanical strength and useful for the treatment of alveolar bone regeneration.As a result, a porous biodegradable polymer membrane in which micropores are formed between chitosan nonwoven fabrics is sandwiched in tissue regeneration induction membrane. The present invention has been found to be able to improve the above problems.

따라서, 본 발명의 목적은 키토산 부직포 사이에 미세공이 형성된 다공성 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막을 제공하는 것이다.Accordingly, it is an object of the present invention to provide a membrane for inducing tissue regeneration in which a porous biodegradable polymer membrane having micropores formed between chitosan nonwoven fabrics is sandwiched.

본 발명의 또 다른 목적은 상기 조직 재생 유도용 차폐막의 제조방법을 제공하는 것이다.Still another object of the present invention is to provide a method of manufacturing the membrane for inducing tissue regeneration.

도 1은 시차주사 현미경으로 관찰된 본 발명의 조직재생 유도용 차폐막의 표면이고, 1 is a surface of the tissue regeneration induction shielding membrane of the present invention observed with a differential scanning microscope,

도 2는 시차주사 현미경으로 관찰된 본 발명의 조직재생 유도용 차폐막 사이의 샌드위치된 생분해성 고분자막의 단면도이며, FIG. 2 is a cross-sectional view of a sandwiched biodegradable polymer membrane between tissue inducing shields of the present invention observed with a differential scanning microscope,

도 3a는 시차주사 현미경으로 관찰된 본 발명의 조직재생 유도용 차폐막의 골아세포를 1 일간 부착시킨 결과이며, Figure 3a is a result of attaching the osteoblasts of the tissue-induced shielding membrane of the present invention observed with a differential scanning microscope for 1 day,

도 3b는 시차주사 현미경으로 관찰된 본 발명의 조직재생 유도용 차폐막의 골아세포를 7 일간 부착시킨 결과이다. Figure 3b is a result of attaching the osteoblasts of the tissue regeneration induction shielding membrane of the present invention observed with a differential scanning microscope for 7 days.

<도면의 주요 부분에 관한 부호의 설명><Explanation of symbols on main parts of the drawings>

1: 생분해성 고분자 막2: 키토산 부직포1: biodegradable polymer membrane 2: chitosan nonwoven fabric

상기 목적을 달성하기 위하여, 본 발명에서는 키토산 부직포 사이에 미세공이 형성된 다공성 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막이 제공된다.In order to achieve the above object, the present invention provides a membrane for inducing tissue regeneration in which a porous biodegradable polymer membrane sandwiched with micropores is formed between chitosan nonwoven fabrics.

본 발명에 따른 조직재생 유도용 차폐막은 생분해성 고분자막 내에 형성된 미세공에 의해 차폐막의 선택적인 세포성장 유도기능을 확보하며, 재생저해 세포는 차단하면서 신생하는 효과를 얻을 수 있을 뿐만 아니라, 키토산이 생분해성 고분자막에 사용되는 고분자의 가수 분해에 의해 생성되는 산을 중화시켜 염증반응 및 조직독성을 감소시킬 수 있고, 부직포, 고분자 막, 부직포 순으로 순차 적층함으로써 조직재생 유도용 차폐막의 기계적 강도를 충분히 향상시킬 수 있다.The membrane for inducing tissue regeneration according to the present invention ensures selective cell growth induction function of the membrane by the micropores formed in the biodegradable polymer membrane, and prevents regeneration-inhibiting cells, and obtains the angiogenic effect. Neutralizes the acid produced by hydrolysis of the polymer used in the polymer membrane to reduce the inflammatory reaction and tissue toxicity, and by sequentially laminating the nonwoven fabric, the polymer membrane, and the nonwoven fabric, the mechanical strength of the membrane for inducing tissue regeneration is sufficiently improved. You can.

이하 본 발명의 보다 상세히 설명한다.Hereinafter will be described in more detail of the present invention.

도 1은 시차주사 현미경으로 관찰된 본 발명의 조직재생 유도용 차폐막의 표면이고, 보다 자세하게는도 2에서 시차주사 현미경으로 관찰된 본 발명의 조직재생 유도용 차폐막이 생분해성 고분자막(1)이 키토산 부직포(2) 사이에 샌드위치된 생분해성 고분자막의 단면도를 나타낸다. 상기한 생분해성 고분자막(1)의 내부에 형성된 2 ∼ 10 ㎛의 미세공의 다공성 구조를 확인할 수 있으며 주변의 10 ∼ 30 ㎛ 정도의 재생저해 세포인 결체 조직 세포가 침윤하지 못하도록 차단할 수 있는 충분한 공극이다. 또한, 이로써 상기 형성된 미세공은 차폐막의 선택적인 세포성장 유도기능 확보, 재생저해 세포는 차단하면서 신생하려면 효과를 제공한다. 미세공의 형성은 혼합용매의 사용에 의해 가능하며 이에 대해서는 후술하도록 하겠다. 필요에 따라서는 키토산 부직포, 생분해성 고분자막, 키토산 부직포, 생분해성 고분자막, 키토산 부직포 순으로 추가 적층될 수 있다. 또한, 본 발명 조직재생 유도용 차폐막은 부직포, 고분자 막, 부직포 순으로 순차 적층함으로써 조직재생 유도용 차폐막의 기계적 강도를 충분히 향상시킬 수 있다는 장점이 있다. 1Is the surface of the tissue regeneration induction shielding membrane of the present invention observed with a differential scanning microscope, more specifically2in The membrane for inducing tissue regeneration of the present invention observed by a differential scanning microscope shows a cross-sectional view of a biodegradable polymer membrane in which a biodegradable polymer membrane 1 is sandwiched between chitosan nonwoven fabrics 2. It is possible to confirm the porous structure of the micropores of 2 to 10 μm formed inside the biodegradable polymer membrane 1 and have sufficient pores to block the infiltrating tissue cells, which are regeneration inhibitory cells of about 10 to 30 μm, invading. to be. In addition, the formed micropores thus provide an effect to ensure selective cell growth induction of the barrier membrane, to prevent regeneration while blocking the regeneration cells. The formation of micropores is possible by the use of a mixed solvent, which will be described later. If necessary, chitosan nonwoven fabric, biodegradable polymer membrane, chitosan nonwoven fabric, biodegradable polymer membrane, chitosan nonwoven fabric may be further laminated in this order. In addition, the tissue regeneration induction shielding membrane of the present invention has an advantage that the mechanical strength of the tissue regeneration induction shielding membrane can be sufficiently improved by sequentially stacking the nonwoven fabric, the polymer membrane, and the nonwoven fabric.

본 발명의 생분해성 고분자막의 제조에 사용될 수 있는 생분해성 고분자 물질은 폴리에스테르류로서, 그 예로는 폴리락트산, 폴리글리콜산, 폴리락트산-글리콜산 공중합체 및 폴리카프로락톤들이 응용되고 있다. 폴리락트산은 폴리글리콜산와 함께 생체내 분해성 이식재로 최초 사용된 고분자인데, 이 두가지 고분자는 약물 송달 시스템의 매트릭스나 수술용 재료의 제조에 주로 사용되어 왔다. 항생제, 마약길항제, 피임제, 항암제 등의 체내 송달시 미세하고, 이식제의 형태로 동물에 피하 또는 정맥주사로 적용되어 그 응용성이 입증되었다. 상기 생분해성 고분자막의 두께는 충분한 기계적 강도를 확보하고 효과적인 조직 재생 유도를 위하여 통상 0.01 ∼ 10 mm, 바람직하게는 0.05 ∼ 3 mm 이다.Biodegradable polymer materials that can be used in the preparation of the biodegradable polymer membrane of the present invention are polyesters, and examples thereof include polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer, and polycaprolactone. Polylactic acid is the first polymer used together with polyglycolic acid as an in vivo degradable implant, which has been used primarily in the manufacture of matrixes or surgical materials for drug delivery systems. Antimicrobial agents, antagonists, contraceptives, anticancer drugs, etc. in the delivery of the body in the form of a fine, implanted subcutaneous or intravenous injection to the animal has proved its application. The thickness of the biodegradable polymer membrane is usually 0.01 to 10 mm, preferably 0.05 to 3 mm to ensure sufficient mechanical strength and induce effective tissue regeneration.

부직포의 제조에 사용되는 키토산은 생분해성이며 조직 내에 아민기를 포함하므로, 생분해성 고분자막에 사용되는 폴리락트산, 폴리글리콜산, 폴리락트산-글리콜산 공중합체 등이 생체 내에서 가수 분해될 때 락트산, 글리콜산 등과 같은 산을 생성하여 고분자 제제 주위의 pH가 감소하여 염증반응 및 조직독성을 유발하고, 따라서 혈관조직의 부실 또는 대사능력이 낮아지면 조직이 산분해 산물을 제거할 능력이 적은 부위라면, 국소적으로 독성을 일으킬 가능성은 더욱 커지게 되나, 이를 중화할 수 있어 부작용을 방지할 수 있다.Chitosan used in the production of nonwovens is biodegradable and contains amine groups in the tissues, so that lactic acid, glycols, and the like when polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymers, etc. used in biodegradable polymer membranes are hydrolyzed in vivo If acid is produced, such as acid, the pH around the polymer formulation decreases, causing inflammatory reactions and histotoxicity. Therefore, if the blood vessels are incapacitated or metabolic, the tissues are less capable of removing acid-degrading products. The potential for toxic effects is greater, but can be neutralized to prevent side effects.

또한 세포외 기질의 글리코스아민글라이켄(glycosaminoglycan)과 유사한 구조로 조직 적합성이 탁월하다는 장점을 가지고 있다.In addition, the structure similar to the glycosaminoglycan of the extracellular matrix has the advantage of excellent tissue compatibility.

본 발명에 따른 키토산 부직포의 섬유 굵기는 특별히 제한되지 아니하며, 예를 들면, 0.001 ∼ 400 ㎛ 범위 내에서 자유롭게 할 수 있다. 섬유 굵기는 사용되는 생분해성 고분자의 성질 등에 의해 달라질 수 있으나, 일반적으로 부직포의 방사 방법에 크게 의존한다. 예를 들면, 용액 방사의 경우 0.1 ㎛ ∼ 400 ㎛의 범위의 직경을 갖는 부직포가 얻어지나, 방사시 고전압을 방사구금함에 의해 섬유의 굵기를 0.001 ㎛ 정도로 초극세화할 수 있다.The fiber thickness of the chitosan nonwoven fabric according to the present invention is not particularly limited, and can be freely within, for example, 0.001 to 400 µm. Fiber thickness may vary depending on the nature of the biodegradable polymer used and the like, but generally depends greatly on the spinning method of the nonwoven fabric. For example, in the case of solution spinning, a nonwoven fabric having a diameter in the range of 0.1 µm to 400 µm is obtained, but by spinning and spinning a high voltage during spinning, the thickness of the fiber can be made extremely fine to about 0.001 µm.

본 발명의 키토산 부직포는 생체 적합성을 향상시키는 생체외 기질 성분 및/또는 기계적 강도와 골조직 재생 효과를 향상시키는 세라믹 성분을 추가로 포함하는 것이 바람직하다. 세라믹 성분의 예로는 트리칼슘 포스페이트(TCP) 또는 칼슘 메타포스페이트를 들 수 있다.The chitosan nonwovens of the present invention preferably further comprise an in vitro matrix component that enhances biocompatibility and / or a ceramic component that enhances mechanical strength and bone tissue regeneration effects. Examples of ceramic components include tricalcium phosphate (TCP) or calcium metaphosphate.

통상, 치주질환 치료용 약물은 생분해성 고분자막에 포함된다. 그러나, 반드시 이에 한정되는 것은 아니며, 부직포에 의해 형성된 매트릭스(matrix) 내에 함입될 수도 있다. 치주질환 치료용 약물로는 플루비프로펜, 이부프로펜, 인도메타신, 나프록센, 메페남산, 테트라사이클린, 미노사이클린, 옥시테트라사이클린, 메트로니다졸, 혈소판유래 증식인자(platelet-derived growth factor), 인슐린유사 성장인자, 상피 성장인자, 종양 증식인자 또는 이들의 혼합물이 포함되며, 이들은, 통상, 고분자 중량에 대해 5 내지 20 중량 %의 양으로 첨가되는 것이 바람직하다.Usually, drugs for treating periodontal disease are included in the biodegradable polymer membrane. However, the present invention is not necessarily limited thereto, and may be embedded in a matrix formed by the nonwoven fabric. Drugs for treating periodontal disease include flubiprofen, ibuprofen, indomethacin, naproxen, mephenamic acid, tetracycline, minocycline, oxytetracycline, metronidazole, platelet-derived growth factor, and insulin-like growth factor. , Epidermal growth factor, tumor growth factor or mixtures thereof, and these are usually added in an amount of 5 to 20% by weight based on the weight of the polymer.

상기한 생분해성 고분자막 및/또는 키토산 부직포는 당해분야에서 통상 사용되는 가소제, 계면활성제를 추가로 포함할 수 있으며, 이들의 사용은 당해 분야에널리 공지되어 있다. 예를 들면, 본 출원인이 출원한 대한민국 특허번호 180585를 참조하기 바란다.The biodegradable polymeric membranes and / or chitosan nonwovens described above may further comprise plasticizers, surfactants commonly used in the art, and their use is widely known in the art. For example, refer to Korean Patent No. 180585 filed by the present applicant.

본 발명은 또한 상기 조직재생 유도용 고분자막의 제조방법에 관한 것으로서, 상기 방법은 생분해성 고분자 물질을 방사장치에서 방사하여 키토산 부직포를 얻고, 얻어진 부직포의 표면에 생분해성 고분자 물질의 주용매 및 부용매의 혼합 용액을 도포하여 미세공을 갖는 생분해성 고분자막을 형성시키고, 생분해성 고분자막의 표면에 상기에서 얻어진 키토산 부직포를 적층ㆍ압착한 후 건조하는 단계를 포함한다. 본 명세서에서, 주용매라 함은 생분해성 고분자막의 제조에 사용되는 생분해성 고분자에 대해 0.01 g/ml이상, 바람직하게는 0.05 ∼ 0.2 g/ml의 용해도를 갖고 끓는점이 30 ∼ 70 ℃ 범위내의 용매를 말하며, 부용매라 함은 상기 생분해성 고분자에 대해 0.4 g/ml 이하, 바람직하게는 0.2 ∼ 0.4 g/ml의 용해도를 갖고, 끓는점이 50 ∼ 90 ℃ 범위의 용매를 말한다.The present invention also relates to a method for producing a polymer membrane for inducing tissue regeneration, wherein the method comprises spinning a biodegradable polymer material in a spinning apparatus to obtain a chitosan nonwoven fabric, and a main solvent and a nonsolvent of a biodegradable polymer material on the surface of the obtained nonwoven fabric. And applying a mixed solution of to form a biodegradable polymer membrane having micropores, and laminating and pressing the chitosan nonwoven fabric obtained above on the surface of the biodegradable polymer membrane, followed by drying. In the present specification, the main solvent refers to a solvent having a solubility of 0.01 g / ml or more, preferably 0.05 to 0.2 g / ml, and a boiling point of 30 to 70 ° C. with respect to the biodegradable polymer used in the preparation of the biodegradable polymer membrane. As used herein, the subsolvent refers to a solvent having a solubility of 0.4 g / ml or less, preferably 0.2 to 0.4 g / ml, and a boiling point of 50 to 90 ° C with respect to the biodegradable polymer.

주용매와 부용매의 혼합 용매를 사용하여 생분해성 고분자 물질을 용해시킴으로써 생분해성 고분자막에 미세공을 형성시킬 수 있다. 보다 구체적으로는, 혼합 용액으로 도포된 후, 생분해성 고분자 물질에 대한 용해도가 높고 비점이 낮은 주용매가 먼저 증발되고, 생분해성 고분자에 대한 용해도가 낮고 비점이 높은 부용매의 비율이 상대적으로 증가됨에 따라, 생분해성 고분자의 용해력이 저하되면서 부용매와 생분해성 고분자가 분리된다. 따라서, 부용매가 완전히 증발된 후, 부용매가 존재하던 부위에 미세공이 형성된다. 주용매로 사용될 수 있는 용매의 예로는 메틸렌클로라이드를 들 수 있으며, 부용매로 사용될 수 있는 용매의 예로는 아세트산 에틸, 디옥산 및 클로로포름을 들 수 있다. 주용매 및 부용매의 종류는 사용되는 생분해성 고분자의 종류에 따라 달라질 수 있으며, 또한 당해 분야의 통상의 지식을 가진 자라면, 이를 적절히 선택할 수 있을 것이다.Micropores may be formed in the biodegradable polymer membrane by dissolving the biodegradable polymer material using a mixed solvent of the main solvent and the subsolvent. More specifically, after being applied as a mixed solution, the main solvent having high solubility and low boiling point in the biodegradable polymer material is evaporated first, and the proportion of the low solubility and high boiling point solvent in the biodegradable polymer is relatively increased. As a result, the dissolving power of the biodegradable polymer is lowered and the subsolvent and the biodegradable polymer are separated. Therefore, after the subsolvent is completely evaporated, micropores are formed at the site where the subsolvent was present. Examples of the solvent that can be used as the main solvent include methylene chloride, and examples of the solvent that can be used as the subsolvent include ethyl acetate, dioxane and chloroform. The type of main solvent and subsolvent may vary depending on the type of biodegradable polymer used, and one of ordinary skill in the art will appropriately select it.

부직포를 형성하기 위한 방사방법은 특별히 제한되지 아니하며, 용액방사, 용융방사 및 멜트 브라운 등을 채용할 수 있다. 상기 방법 중 용액 방사를 이용할 경우, 생체적합성 등을 향상시키는 생체외 기질 성분 및/또는 기계적 강도와 골조직 재생 능력을 향상시키는 세라믹 성분(예: TCP, 칼슘 메타포스페이트 등)을 추가로 포함할 수 있어 보다 바람직하다. 용액 방사시, 키토산을 용해시킬수 있는 용매로는 락트산, 아세트산 및 염산을 들 수 있으나, 이들에 한정되는 것은 아니며, 용매의 선택은 당해 분야에서 통상의 지식을 가진 자라면 적절히 변형할 수 있을 것이다. 방사장치부터 방출되는 생분해성 고분자 섬유는 응고조를 통과하면서 응고되고, 세척조를 통과하면서 세척되어 키토산 부직포가 제조된다. 상기 제조방법 상에 응고액은 수산화칼륨과 에틸렌글리콜의 혼합용매, 수산화나트륨과 에틸렌글리콜의 혼합용매, 수산화칼륨 용액, 수산화나트륨 용액, 에탄올, 메탄올 및 아세톤 등을 포함하는 용매에서 선택된 것으로 사용되는 고분자 종류에 따라 다르게 선택될 수 있다. 또한, 상기 세척조에서 사용되는 용액은 메탄올 및 에탄올에서 선택된 것을 증류수에 제조된다.The spinning method for forming the nonwoven fabric is not particularly limited, and solution spinning, melt spinning and melt brown may be employed. When solution spinning is used in the above method, it may further include an in vitro matrix component for improving biocompatibility and / or a ceramic component for improving mechanical strength and bone tissue regeneration ability (eg, TCP, calcium metaphosphate, etc.). More preferred. Solvents capable of dissolving chitosan during solution spinning include, but are not limited to, lactic acid, acetic acid and hydrochloric acid, and the choice of solvent may be appropriately modified by those skilled in the art. The biodegradable polymer fibers released from the spinning device are solidified while passing through the coagulation bath and washed while passing through the washing bath to produce a chitosan nonwoven fabric. The coagulation solution on the preparation method is a polymer selected from a solvent containing a mixed solvent of potassium hydroxide and ethylene glycol, a mixed solvent of sodium hydroxide and ethylene glycol, potassium hydroxide solution, sodium hydroxide solution, ethanol, methanol and acetone It may be selected differently depending on the type. In addition, the solution used in the washing tank is prepared in distilled water that is selected from methanol and ethanol.

상기 생분해성 고분자막의 제조에 사용되는 생분해성 고분자 용액에는 또한 차폐막에 가소성을 부여하기 위하여 가소제를 첨가할 수 있다. 사용가능한 가소제로는 디에틸테레프탈레이트, 폴리에틸렌글리콜, 글리세린 또는 이들의 혼합물이 포함되며, 사용된 고분자의 중량에 대해 10 내지 30 중량 %의 양으로 첨가, 분산시킨다.In the biodegradable polymer solution used in the preparation of the biodegradable polymer membrane, a plasticizer may also be added to impart plasticity to the shielding membrane. Plasticizers that can be used include diethyl terephthalate, polyethylene glycol, glycerin or mixtures thereof, and are added and dispersed in an amount of 10 to 30% by weight based on the weight of the polymer used.

이외에도 고분자 용액에는 친수성 물질 및 계면활성제를 첨가하여 차폐막의 수분 친화성을 증진시킬 수 있다. 상기 친수성 물질로는 하이드록시프로필메틸셀룰로즈(HPMC), 하이드록시프로필셀룰로즈(HPC), 염화나트륨, 글리세린, 키토산, 알기네이트 또는 이들의 혼합물이 포함되며, 사용되는 고분자 중량에 대해 10 내지 20 중량 %의 양으로 고분자 용액에 첨가되는 것이 바람직하다. 또한 이들 첨가물을 고분자 용액에 균일하게 분산시키기 위해 사용되는 계면활성제로는 폴리에틸렌-폴리옥시프로필렌 블록 공중합체(제품명:플루로닉(Pluronics) 또는 폴록사머(Poloxamers)가 포함되며 고분자 중량에 대해 5 내지 15 중량 % 의 양으로 첨가되는 것이 바람직하다.In addition, the hydrophilic material and the surfactant may be added to the polymer solution to enhance the water affinity of the shielding film. The hydrophilic material includes hydroxypropylmethylcellulose (HPMC), hydroxypropylcellulose (HPC), sodium chloride, glycerin, chitosan, alginate, or mixtures thereof, and may contain 10 to 20% by weight based on the weight of the polymer used. It is preferred to be added to the polymer solution in an amount. In addition, the surfactants used to uniformly disperse these additives in the polymer solution include polyethylene-polyoxypropylene block copolymers (product name: Pluronics or Poloxamers), and the polymer weight is 5 to It is preferred to add in an amount of 15% by weight.

이상과 같은 제조된 생분해성 고분자 용액을 키토산 부직포에 도포하여 제조된 차폐막은, 그의 미세공 생성능을 증대시키기 위해 비용매로 처리하는 것이 바람직하다. 비용매 처리는 차폐막을 메탄올, 증류수 또는 아세트산에틸 등의 비용매 중에 12 내지 24시간 동안 침지시키거나 또는 비용매의 증기가 포화된 수조내에 넣고 12 내지 24 시간 동안 방치한 후 꺼내어 건조시킴으로써 수행될 수 있다. 비용매 처리에 의한 미세공 생성능의 증대는 주용매와 비용매간의 용해도 차이에 기인하는 상전이에 의한 다공성 형성 원리를 이용한 것이다.It is preferable to treat the shielding film produced by applying the prepared biodegradable polymer solution to the chitosan nonwoven fabric with a non-solvent in order to increase its micropore generating ability. The nonsolvent treatment can be performed by immersing the shielding membrane in a nonsolvent such as methanol, distilled water or ethyl acetate for 12 to 24 hours or by placing it in a saturated water bath and leaving it for 12 to 24 hours before taking it out and drying it. have. The increase of micropore generating ability by nonsolvent treatment is based on the principle of porosity formation by phase transition due to the difference in solubility between the main solvent and the nonsolvent.

상기에서 제조된 본 발명의 조직재생 유도 차폐막은 손상된 치조골 주위 치근막 또는 이식물이 적용된 악골 부위에 삽입하거나 덧씌운 후 수술용 생분해성 봉합사로 치근에 고정시키거나 생체적합성 접착제를 이용하여 골 조직에 단단히 부착시키면, 차폐막의 내면에는 유도재생이 요구되는 골 조직이 위치하게 되며 외부면에는 결체조직이나 상피조직이 바로 접하여 덮이게 된다.The tissue regeneration inducing membrane of the present invention prepared above is inserted into or overlaid on the damaged alveolar bone or implanted jaw area, and then fixed to the root with a surgical biodegradable suture or secured to bone tissue using a biocompatible adhesive. When attached, the bone tissue that requires induced regeneration is located on the inner surface of the shielding membrane and the connective tissue or epithelial tissue is directly contacted and covered on the outer surface.

이하 본 발명을 실시예에 의해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

단, 하기 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 실시예에 의해 한정되는 것은 아니다.However, the following examples are merely to illustrate the content of the present invention is not limited to the scope of the present invention.

<제조예 1> 키토산 부직포 제조Preparation Example 1 Chitosan Nonwoven Fabric

분자량 200,000인 키토산을 1 % 아세트산 용액에 용해하여 4 % 키토산 용액으로 제조하였다. 이 때, 용액방사 장치의 방사공이 30 공이고 방사공의 직경이 0.2 mm인 방사구금을 사용하였고, 압력이 0.6 ∼ 1.2 atm이며 5 ∼ 6 m/min의 방사속도로 방사하였다. 응고조의 용액이 얼음 400 g에 수산화 칼륨 400 g을 넣어 제조되었고, 세척조의 용액은 에틸렌글리콜 1 kg에 증류수 400 g을 넣어 제조되었다.용액방사 장치부터 방출되는 키토산 섬유는 응고조를 통과하면서 응고되고 세척조를 통과하면서 세척되어 키토산 섬유로 이루어진 키토산 부직포를 제조하였다. 이 때, 키토산 부직포를 이루는 섬유의 굵기는 평균 50 ㎛이다.Chitosan having a molecular weight of 200,000 was dissolved in a 1% acetic acid solution to prepare a 4% chitosan solution. At this time, a spinneret having 30 spinners and a diameter of 0.2 mm spinnerets of the solution spinning device was used, and the pressure was 0.6 to 1.2 atm and spun at a spinning speed of 5 to 6 m / min. The solution of the coagulation bath was prepared by adding 400 g of potassium hydroxide to 400 g of ice, and the solution of the washing bath was prepared by adding 400 g of distilled water to 1 kg of ethylene glycol. The chitosan fibers released from the solution spinning device were solidified while passing through the coagulation bath. It was washed while passing through the washing bath to prepare a chitosan nonwoven fabric consisting of chitosan fibers. At this time, the fiber of the chitosan nonwoven fabric has an average thickness of 50 µm.

<제조예 2> 키토산-TCP 부직포 제조Production Example 2 Manufacture of Chitosan-TCP Nonwoven Fabric

상기 제조예 1의 제조방법에서 분자량 200,000인 키토산을 1 % 아세트산 용액에 용해하여 4 % 키토산 용액에 TCP 50 %를 첨가하여 동일한 방법으로 키토산-TCP 키토산 부직포를 제조하였으며 상기 방사방법으로 제조된 키토산-TCP 섬유의 굵기는 평균 60 ㎛이었다.In the preparation method of Preparation Example 1, chitosan having a molecular weight of 200,000 was dissolved in a 1% acetic acid solution, and TCP 50% was added to the 4% chitosan solution. A chitosan nonwoven fabric was prepared, and the thickness of the chitosan-TCP fibers prepared by the spinning method was 60 μm on average.

<실시예 1> 키토산 부직포 사이에 L-폴리락트산의 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막 제작Example 1 Fabrication of Tissue Induced Shield Membrane with L-polylactic Acid Biodegradable Polymer Membrane Between Chitosan Nonwoven Fabrics

분자량 370,000인 L-폴리락트산 1 g에 6 mL의 염화 메틸렌과 3 mL인 아세트산 에틸을 가하고 여기에 계면활성제인 스판 80을 0.3 mL 가한 후, 교반에 의해 균일한 고분자 용액을 제조하였다.6 mL of methylene chloride and 3 mL of ethyl acetate were added to 1 g of L-polylactic acid having a molecular weight of 370,000, and 0.3 mL of Span 80 as a surfactant was added thereto to prepare a uniform polymer solution by stirring.

상기 용액을 제조예 1에서 제조된 키토산 부직포의 일측에 도포하고 그 위에 제조예 1에서 제조된 키토산 부직포를 추가로 적층한 후 압착하여 상온에서 24 시간 동안 건조 및 진공건조 단계를 거쳐 L-폴리락트산의 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막 제작하였다.The solution was applied to one side of the chitosan nonwoven fabric prepared in Preparation Example 1, and further laminated on the chitosan nonwoven fabric prepared in Preparation Example 1 thereon, followed by drying and vacuum drying at room temperature for 24 hours, followed by L-polylactic acid. A membrane for inducing tissue regeneration in which the biodegradable polymer membrane was sandwiched was fabricated.

도 2에서 보는 바와 같이, 상기 제작된 조직재생 유도용 차폐막의 성상을 시차 주사 현미경으로 관찰한 결과, 차폐막의 표면은 키토산 부직포 층이 나타났고, 막의 내부의 양쪽 바깥은 키토산 부직포 층이 관찰되었고 그 사이에 L-폴리락트산의 생분해성 고분자막이 관찰되었다.As shown in FIG. 2 , as a result of observing the characteristics of the prepared tissue regeneration inducing membrane with a differential scanning microscope, the surface of the membrane showed a chitosan nonwoven layer, and a chitosan nonwoven layer was observed on both sides of the inside of the membrane. In between, a biodegradable polymer membrane of L-polylactic acid was observed.

<실시예 2> 키토산 부직포 사이에 폴리카프로락톤의 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막 제작<Example 2> Fabrication of the membrane for inducing tissue regeneration in which a biodegradable polymer membrane of polycaprolactone was sandwiched between chitosan nonwoven fabrics

분자량 130,000인 폴리카프로락톤 1 g에 6 mL의 염화 메틸렌과 3 mL인 아세트산 에틸을 가하고 여기에 계면활성제인 스판 80을 0.3 mL를 가한 후, 교반에 의해 균일한 고분자 용액을 제조하였다.6 mL of methylene chloride and 3 mL of ethyl acetate were added to 1 g of polycaprolactone having a molecular weight of 130,000, 0.3 mL of Span 80 as a surfactant was added thereto, and a uniform polymer solution was prepared by stirring.

상기 용액을 제조예 1에서 제조된 키토산 부직포의 일측에 도포하고 그 위에 그 위에 제조예 1에서 제조된 키토산 부직포를 추가로 적층한 후 압착하여 상온에서 24 시간 동안 건조 및 진공건조 단계를 거쳐 폴리카프로락톤의 생분해성 고분자 막이 샌드위치된 조직재생 유도용 차폐막 제작을 제작하였다.The solution was applied to one side of the chitosan nonwoven fabric prepared in Preparation Example 1, and the chitosan nonwoven fabric prepared in Preparation Example 1 was further laminated thereon, followed by compression and drying at room temperature for 24 hours, followed by drying and vacuum drying for polycapro. A membrane for inducing tissue regeneration in which a biodegradable polymer membrane of lactone was sandwiched was fabricated.

<실시예 3> 키토산 부직포 사이에 폴리락트산-글리콜산 공중합체의 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막 제작<Example 3> Preparation of a shield membrane for inducing tissue regeneration in which a biodegradable polymer membrane of polylactic acid-glycolic acid copolymer was sandwiched between chitosan nonwoven fabrics

분자량 130,000인 폴리락트산-글리콜산 공중합체 1 g에 6 mL의 염화 메틸렌과 3 mL인 아세트산 에틸을 가하고 여기에 계면활성제인 스판 80을 0.3 mL를 가한 후, 교반에 의해 균일한 고분자 용액을 제조하였다. 이 용액을 상기 제작된 키토산 부직포의 일측에 도포하고 그 위에 상기에 제작한 키토산 부직포를 적층한 후압착하여 상온에서 24 시간 동안 건조시킨 다음 진공 건조시켜 다공성 차폐막을 제조하였다.6 mL of methylene chloride and 3 mL of ethyl acetate were added to 1 g of a polylactic acid-glycolic acid copolymer having a molecular weight of 130,000, and 0.3 mL of Span 80 as a surfactant was added thereto to prepare a uniform polymer solution by stirring. . The solution was applied to one side of the produced chitosan nonwoven fabric, and the chitosan nonwoven fabric prepared above was laminated thereon, pressed, dried at room temperature for 24 hours, and then vacuum dried to prepare a porous shielding membrane.

<실시예 4> 키토산-TCP 부직포 사이에 L-폴리락트산의 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막 제작Example 4 Fabrication of Tissue Induced Shielding Film with Biodegradable Polymeric Membrane of L-Polylactic Acid Between Chitosan-TCP Nonwoven Fabric

분자량 370,000인 L-폴리락트산 1 g에 6 mL의 염화 메틸렌과 3 mL인 아세트산 에틸을 가하고 여기에 계면활성제인 스판 80을 0.3 mL를 가한 후, 교반에 의해 균일한 고분자 용액을 제조하였다.6 mL of methylene chloride and 3 mL of ethyl acetate were added to 1 g of L-polylactic acid having a molecular weight of 370,000, and 0.3 mL of Span 80 as a surfactant was added thereto to prepare a uniform polymer solution by stirring.

상기 용액을 제조예 2에서 제조된 키토산-TCP 키토산 부직포의 일측에 도포하고 그 위에 제조예 2에서 제조된 키토산-TCP 키토산 부직포를 추가로 적층한 후 압착하여 상온에서 24 시간 동안 건조 및 진공건조 단계를 거쳐 조직재생 유도용 차폐막을 제작하였다.The solution was applied to one side of the chitosan-TCP chitosan nonwoven fabric prepared in Preparation Example 2, and the chitosan-TCP chitosan nonwoven fabric prepared in Preparation Example 2 was further laminated thereon, followed by compression and drying for 24 hours at room temperature, followed by vacuum drying. Through the production of a shield membrane for inducing tissue regeneration.

이하 본 발명의 조직재생 유도용 차폐막의 특성을 실험하였다.Hereinafter, the characteristics of the membrane for inducing tissue regeneration of the present invention were tested.

<실험예 1> 기계적 강도 측정Experimental Example 1 Mechanical Strength Measurement

본 발명의 조직 재생 유도용 차폐막의 기계적 강도를 알아보기 위해 인장강도를 측정하였다. 인장강도의 측정은 인스트론 (제품명: Instron 8511 ;Instron corp., USA)이 사용되었고, 500 N의 load cell을 1 mm/min의 속도로 사용한 결과를 하기표 1에 기재하였다.Tensile strength was measured to determine the mechanical strength of the membrane for inducing tissue regeneration of the present invention. Instron (trade name: Instron 8511; Instron corp., USA) was used for the measurement of the tensile strength, and the results of using a 500 N load cell at a speed of 1 mm / min are shown in Table 1 below.

인장강도 측정Tensile Strength Measurement 인장강도 (kPa)Tensile strength (kPa) 실시예 1Example 1 3541.673541.67 실시예 2Example 2 3125.003125.00 실시예 3Example 3 3245.273245.27 실시예 4Example 4 4375.004375.00 키토산으로만 이루어진 부직포Nonwoven fabric consisting of chitosan only 1670 ±7971670 ± 797

상기표 1의 결과에서 보는 바와 같이, 그 결과로 키토산으로만 이루어진 부직포는 1670 ±797 kPa의 인장강도를 가진 반면, 본 발명의 키토산 부직포 사이에 미세공이 형성된 다공성 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막의 경우 3680 ±636 kPa의 향상된 기계적 강도를 보였다.As shown in the results of Table 1 , the resulting nonwoven fabric consisting of chitosan only has a tensile strength of 1670 ± 797 kPa, while the porous biodegradable polymer membrane having micropores formed between the chitosan nonwoven fabric of the present invention induces tissue regeneration. For the shielding membrane, the mechanical strength was improved to 3680 ± 636 kPa.

<실험예 2> 조직재생 유도용 차폐막의 골아세포 부착력 실험Experimental Example 2 Osteoblast Adhesion Test of Tissue Induction Shield Membrane

차폐막이 손상부위를 효과적으로 덮으려면 차폐막 주위의 세포의 부착이 필수적이며 또한 골손상부의 골세포에 의한 부착역시 효과적인 유도조직술식에서 필수적이므로 하기와 같은 방법으로 골아세포 부착력을 실험하였다.In order to effectively cover the damaged area of the membrane, adhesion of cells around the membrane is essential and adhesion by bone cells in bone injury is also essential in effective guided tissue.

골아세포(oseteoblast)를 hematocytometer로 수를 측정하여 complete media(DMEM supplemented with 10 % FBS, 8 μg/ml gentamycine, 10 mM Na β-glycerol phosphate, 50 μg/ml L-ascorbic acid)에 일정밀도로 가하여 분산시켰다. 24 웰 플레이트 바닥에 본 발명의 조직재생 유도용 차폐막을 장착하였다. 셀(cell)이 분산된 액을 30 ul씩 차폐막에 가하였다. 가한 셀(cell)의 밀도는 각 1 x 1 cm2의 매트릭스당 1 x 105cells로 하였다. 세포액을 접종한 상태에서 3 시간동안 37 ℃, 5 % CO2조건의 배양기에서 배양하여 셀이 접착하도록 하였다. 이후 1ml씩 배양액을 가하였으며 배양액은 2 ∼ 3일에 한번씩 교환하였다.Osteoblasts were counted with a hematocytometer and added to a complete media (DMEM supplemented with 10% FBS, 8 μg / ml gentamycine, 10 mM Na β-glycerol phosphate, 50 μg / ml L-ascorbic acid) Dispersed. At the bottom of a 24-well plate, a shield for inducing tissue regeneration of the present invention was mounted. The liquid in which the cell was dispersed was added to the shielding film by 30 ul. The density of the cells added was 1 x 10 5 cells per matrix of 1 x 1 cm 2 . Cell inoculation was incubated for 3 hours in an incubator at 37 ℃, 5% CO 2 condition to allow the cells to adhere. Thereafter, 1 ml of the culture solution was added, and the culture solution was exchanged every 2 to 3 days.

배양 후 1 일과 7 일째에 셀이 부착되어 있는 차폐막을 채취하였다. 각 차폐막에 부착된 세포의 상태 및 분화된 정도를 시차주사 현미경(SEM)하에서 관찰하기 위한 조작은 다음과 같다. 골아세포(oseteoblast)가 부착된 막을 세척하여 부착되지 않은 세포는 제거하고 0.1 M 인산완충 생리식염수(PBS, pH 7.4)에 녹인 2.5 % glutaraldehyde 용액에 4 ℃ 에서 40 분간 전고정하였다. 고정후 0.1 M 인산완충 생리식염액으로 세척하고 다시 0.1 M 인산완충생리식염액에 1 % 농도로 녹인 osmium tetroxide로 0 ℃ 에서 40 분간 후고정하였다. 후고정 후 -70 ℃ 에서 24 시간 보관하였으며 이를 동결건조하였다. 동결건조된 시료는 gold-palladium coating 하여 시차주사 현미경(SEM)으로 관찰하였다.On 1 and 7 days after the culture, the shielding membrane to which cells were attached was collected. The operation for observing the state and differentiation degree of the cells attached to each shielding membrane under differential scanning microscope (SEM) is as follows. The osteoblast-attached membranes were washed to remove unattached cells and pre-fixed for 40 minutes at 4 ° C. in 2.5% glutaraldehyde solution dissolved in 0.1 M phosphate buffered saline (PBS, pH 7.4). After fixation, the resultant was washed with 0.1 M phosphate buffered saline solution, and then fixed in osmium tetroxide dissolved in 0.1 M phosphate buffered saline solution at 1% concentration for 40 minutes at 0 ° C. After fixation, the cells were stored at −70 ° C. for 24 hours and lyophilized. Lyophilized samples were observed by differential scanning microscope (SEM) by gold-palladium coating.

본 발명의 차폐막의 골아세포 부착력 실험의 결과로서도 3a는 실시예 1에서 제조한 차폐막의 골아세포를 1 일간 부착시켜 시차주사 현미경 사진으로 관찰한 결과이며, 본 발명의 조직재생 유도용 차폐막의 1 일째 골아세포 부착결과로 세포는 차폐막에 부착이 개시된 구형 및 신장된 형태를 보였다. 대부분이 세포질이 확장되어 편평한 모양을 나타내어 1 일내에 부착이 안정하게 이루어져 편평한 형태가 관찰되므로 골아세포들의 안정적인 접착을 볼 수 있으며,도 3b는 실시예 1에서 제조한 차폐막의 골아세포를 7 일간 부착결과 세포질의 방사선상으로의 확장 및 세포중심부의 편평화가 관찰되었고, 이 확장된 세포는 겹겹이 층을 이루어 돌기형의 세포 집합체를 형성함을 관찰할 수 있다.As a result of the osteoblast adhesion test of the membrane of the present invention, Figure 3a is a result of observing with a differential scanning micrograph after attaching the osteoblasts of the membrane prepared in Example 1 for 1 day, 1 of the membrane for inducing tissue regeneration of the present invention As a result of osteoblast adhesion, the cells showed spherical and elongated morphology that began to adhere to the shielding membrane. Most of the cytoplasm is expanded to show a flat shape, so that adhesion is stable within 1 day, and thus a flat form is observed, so that the stable adhesion of osteoblasts can be seen. FIG. 3B shows the osteoblasts of the membrane prepared in Example 1 for 7 days. As a result, the expansion of the cytoplasm into the radiographic image and the flattening of the cell center were observed, and it can be observed that these expanded cells form a layered layer forming a dendritic cell aggregate.

따라서 상기도 3a도 3b의 결과로 골아세포들의 안정적인 접착과 분화를볼 수 있었으며 이는 본 발명의 조직재생 유도용 차폐막이 높은 세포 친화성 및 생체 적합성을 보이고 있음을 알 수 있는 결과이다.Therefore, as a result of FIG . 3A and FIG. 3B , stable adhesion and differentiation of osteoblasts were seen, which indicates that the tissue regeneration induction barrier of the present invention showed high cell affinity and biocompatibility.

상기에서 살펴 본 바와 같이, 본 발명의 조직재생 유도용 차폐막은 상피세포 및 결합조직의 침입을 충분히 차단하는 차폐효과가 탁월하고, 골조직의 성장을 도우며 수술시 원하는 만큼 손쉽게 디자인하여 수술편의성이 매우 우수하며 제품 생산성이 우수하고 기계적 강도가 우수하여 기능성이 매우 양호한 효과가 있다.As described above, the tissue regeneration induction shielding membrane of the present invention has an excellent shielding effect that sufficiently blocks the invasion of epithelial cells and connective tissues, helps the growth of bone tissue, and is designed as easily as desired during surgery to provide excellent surgical convenience. It has excellent product productivity and excellent mechanical strength, which has very good functionality.

Claims (15)

키토산 부직포 사이에 미세공이 형성된 다공성 생분해성 고분자막이 샌드위치된 조직재생 유도용 차폐막.A membrane for inducing tissue regeneration in which a porous biodegradable polymer membrane sandwiched with micropores between chitosan nonwoven fabrics is sandwiched. 제 1 항에 있어서, 상기 생분해성 고분자막의 제조에 사용되는 고분자가 생분해성 폴리에스테르 고분자인 것을 특징으로 하는 차폐막.The shielding membrane according to claim 1, wherein the polymer used for producing the biodegradable polymer membrane is a biodegradable polyester polymer. 제 2 항에 있어서, 상기 생분해성 폴리에스테르 고분자가 폴리락트산, 폴리글리콜산, 폴리락트산-글리콜산 공중합체 및 폴리카프로락톤으로 구성되는 군에서 선택되는 것을 특징으로 하는 차폐막.3. The shielding film according to claim 2, wherein the biodegradable polyester polymer is selected from the group consisting of polylactic acid, polyglycolic acid, polylactic acid-glycolic acid copolymer, and polycaprolactone. 제 1 항에 있어서, 상기 생분해성 고분자막의 두께가 0.01 ∼ 10 mm인 것을 특징으로 하는 차폐막.The shielding film according to claim 1, wherein the biodegradable polymer film has a thickness of 0.01 to 10 mm. 제 1 항에 있어서, 상기 키토산 부직포가 생체 적합성을 향상시키는 생체외기질 성분, 기계적 강도와 골조직 재생 효과를 향상시키는 세라믹 성분 및 이들의 혼합물로 구성되는 군에서 선택되는 것을 추가로 포함하는 것을 특징으로 하는 차폐막.The method of claim 1, wherein the chitosan nonwoven fabric further comprises selected from the group consisting of an extracellular matrix component to improve biocompatibility, a ceramic component to improve the mechanical strength and bone tissue regeneration effect, and mixtures thereof. Shielding film. 제 5 항에 있어서, 상기 세라믹 성분이 트리칼슘 포스페이트 또는 칼슘 메타포스페이트인 것을 특징으로 하는 차폐막.6. The shielding film according to claim 5, wherein the ceramic component is tricalcium phosphate or calcium metaphosphate. 제 1 항에 있어서, 상기 키토산 부직포의 섬유 굵기가 0.001 ∼ 400 ㎛인 것을 특징으로 하는 차폐막.The shielding film according to claim 1, wherein the chitosan nonwoven fabric has a fiber thickness of 0.001 to 400 µm. a) 생분해성 고분자 물질을 방사장치에서 방사하여 키토산 부직포를 얻고,a) spinning a biodegradable polymeric material in a spinning device to obtain a chitosan nonwoven fabric, b) 얻어진 부직포의 표면에 생분해성 고분자 물질의 주용매 및 부용매의 혼합 용액을 도포하여 미세공을 갖는 생분해성 고분자막을 형성시키고,b) applying a mixed solution of a main solvent and a subsolvent of a biodegradable polymer material on the surface of the obtained nonwoven fabric to form a biodegradable polymer film having micropores, c) 얻어진 생분해성 고분자막의 표면에 상기에서 얻어진 키토산 부직포를 적층ㆍ압착한 후 건조하는 단계를 포함하는 조직재생 유도 차폐막의 제조방법.c) laminating and pressing the chitosan nonwoven fabric obtained above on the surface of the obtained biodegradable polymer membrane and then drying. 제 8 항에 있어서, 상기 키토산 부직포가 용액방사, 용융방사 또는 멜트브라운에 의해 제조된 것을 특징으로 하는 제조방법.The method of claim 8, wherein the chitosan nonwoven fabric is produced by solution spinning, melt spinning or melt brown. 제 9 항에 있어서, 상기 키토산 부직포가 용액방사에 의해 제조된 것을 특징으로 하는 제조방법.The method of claim 9, wherein the chitosan nonwoven fabric is produced by solution spinning. 제 8 항에 있어서, 상기 주용매가 메틸렌클로라이드인 것을 특징으로 하는 제조방법.9. The method according to claim 8, wherein the main solvent is methylene chloride. 제 8 항에 있어서, 상기 부용매가 아세트산 에틸, 디옥산 및 클로로포름으로 구성되는 군에서 선택되는 것을 특징으로 하는 제조방법.9. A process according to claim 8, wherein said subsolvent is selected from the group consisting of ethyl acetate, dioxane and chloroform. 제 8 항에 있어서, 상기 주용매가 메틸렌클로라이드이고, 부용매가 아세트산 에틸인 것을 특징으로 하는 제조방법.9. The process according to claim 8, wherein the main solvent is methylene chloride and the subsolvent is ethyl acetate. 제 8 항에 있어서, 상기 방사시 응고액은 수산화칼륨과 에틸렌글리콜의 혼합용매, 수산화나트륨과 에틸렌글리콜의 혼합용매, 수산화칼륨 용액, 수산화나트륨 용액, 에탄올, 메탄올 및 아세톤으로 구성되는 군에서 선택되는 것을 특징으로 하는 제조방법.The coagulating solution of the spinning process is selected from the group consisting of a mixed solvent of potassium hydroxide and ethylene glycol, a mixed solvent of sodium hydroxide and ethylene glycol, potassium hydroxide solution, sodium hydroxide solution, ethanol, methanol and acetone Manufacturing method characterized in that. 제 8 항에 있어서, 상기 방사시 용매는 아세트산, 락트산, 염산 등인 것을 특징으로 하는 제조방법.The method of claim 8, wherein the solvent during spinning is acetic acid, lactic acid, hydrochloric acid, and the like.
KR10-2001-0038978A 2001-06-30 2001-06-30 Barrier membrance for guided tissue regeneration and the preparation thereof KR100464930B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0038978A KR100464930B1 (en) 2001-06-30 2001-06-30 Barrier membrance for guided tissue regeneration and the preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0038978A KR100464930B1 (en) 2001-06-30 2001-06-30 Barrier membrance for guided tissue regeneration and the preparation thereof

Publications (2)

Publication Number Publication Date
KR20030002224A true KR20030002224A (en) 2003-01-08
KR100464930B1 KR100464930B1 (en) 2005-01-05

Family

ID=27712855

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0038978A KR100464930B1 (en) 2001-06-30 2001-06-30 Barrier membrance for guided tissue regeneration and the preparation thereof

Country Status (1)

Country Link
KR (1) KR100464930B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571478B1 (en) * 2003-10-28 2006-04-17 이승진 Fibrous porous support made of biodegradable polymer and method for preparing same
KR100803287B1 (en) * 2005-02-28 2008-02-13 재단법인서울대학교산학협력재단 Method for Manufacturing a Barrrier Membrane for Guided Tissue Regeneration Having an Efficient Durability and the Barrier Membrane Using the Method
KR100806696B1 (en) * 2006-10-02 2008-02-27 주식회사 엠씨티티 Composite scaffolds for cell culture comprising synthetic and naturally occurring polymeric materials
KR100845002B1 (en) * 2007-02-23 2008-07-08 부산대학교 산학협력단 Biodegradable porous composite of dual porosity and method for preparing the same
KR100968231B1 (en) * 2007-12-28 2010-07-06 한양대학교 산학협력단 Nonwoven Nanofibrous Membranes for Guiding Bone Tissue Regeneration and Their Preparation Method
WO2012144719A1 (en) 2011-04-22 2012-10-26 주식회사 나이벡 Surface-active collagen membrane by peptide
KR101221339B1 (en) * 2010-09-07 2013-01-11 조선대학교산학협력단 Mebrane for Bone Regeneration and Method thereof
WO2014102431A1 (en) 2012-12-24 2014-07-03 Servicio Andaluz De Salud Resorbable membrane for guided bone regeneration

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738476B1 (en) * 2006-05-08 2007-07-11 주식회사 제노스 Membrane for guided bone regerneration and preparation method thereof
KR101649122B1 (en) 2014-12-09 2016-08-19 오스템임플란트 주식회사 Resorbable periodontal bone regeneration membrane by application a growth factor and method of manufacturing therof
KR101649125B1 (en) 2014-12-09 2016-08-30 오스템임플란트 주식회사 Membrane for guided bone regeneration and method of manufacturing thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1263316B (en) * 1993-02-12 1996-08-05 Fidia Advanced Biopolymers Srl MULTILAYER NON WOVEN FABRIC IN WHICH ONE OF THE LAYERS IS ESSENTIALS ESSENTIALS FROM HYALURONIC ACID ESTERS
KR960015655B1 (en) * 1994-06-22 1996-11-20 이영무 Resolvable chitin fiber and production process thereof
KR0180585B1 (en) * 1995-10-12 1999-03-20 김상응 Biodegradability shielding film for alveolar organ
KR0165642B1 (en) * 1995-05-01 1999-01-15 김상응 Biodegradable membranes for implanting and process for the preparation thereof
KR0141988B1 (en) * 1995-09-15 1998-06-15 김상응 Biodegradable film and process for preparing thereof
KR19980013801A (en) * 1996-08-03 1998-05-15 최좌진 A BAND ATTACHED A NONWOVEN FABRICS CONTAINING THE COMPOSITION OF CHITOSAN
KR100262142B1 (en) * 1997-09-25 2000-08-01 김윤 Drug loaded biodegradable membrane for periodontium regeneration and method for the preparation thereof
KR100336700B1 (en) * 1999-05-12 2002-05-13 오석송 Biodegradable guided tissue regeneration in teriodontal dental therapy and methods of producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100571478B1 (en) * 2003-10-28 2006-04-17 이승진 Fibrous porous support made of biodegradable polymer and method for preparing same
KR100803287B1 (en) * 2005-02-28 2008-02-13 재단법인서울대학교산학협력재단 Method for Manufacturing a Barrrier Membrane for Guided Tissue Regeneration Having an Efficient Durability and the Barrier Membrane Using the Method
KR100806696B1 (en) * 2006-10-02 2008-02-27 주식회사 엠씨티티 Composite scaffolds for cell culture comprising synthetic and naturally occurring polymeric materials
KR100845002B1 (en) * 2007-02-23 2008-07-08 부산대학교 산학협력단 Biodegradable porous composite of dual porosity and method for preparing the same
KR100968231B1 (en) * 2007-12-28 2010-07-06 한양대학교 산학협력단 Nonwoven Nanofibrous Membranes for Guiding Bone Tissue Regeneration and Their Preparation Method
KR101221339B1 (en) * 2010-09-07 2013-01-11 조선대학교산학협력단 Mebrane for Bone Regeneration and Method thereof
WO2012144719A1 (en) 2011-04-22 2012-10-26 주식회사 나이벡 Surface-active collagen membrane by peptide
US9133246B2 (en) 2011-04-22 2015-09-15 Nano Intelligent Biomedical Engineering Corporation Co, Ltd. Surface-active collagen membrane by peptide
WO2014102431A1 (en) 2012-12-24 2014-07-03 Servicio Andaluz De Salud Resorbable membrane for guided bone regeneration

Also Published As

Publication number Publication date
KR100464930B1 (en) 2005-01-05

Similar Documents

Publication Publication Date Title
Liu et al. Current applications of poly (lactic acid) composites in tissue engineering and drug delivery
JP3676374B2 (en) Biodegradable shielding film for transplantation and production method
CN111840649B (en) Composite tissue repair patch prepared by coating process and preparation method thereof
US9457127B2 (en) Micro-fiber webs of poly-4-hydroxybutyrate and copolymers thereof produced by centrifugal spinning
Cirillo et al. A comparison of the performance of mono-and bi-component electrospun conduits in a rat sciatic model
Thuaksuban et al. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response
MX2011009282A (en) Artificial dura mater and manufacturing method thereof.
CN102277737A (en) Preparation method and application of polycaprolactone/natural high-molecular composite porous scaffold
CN105536055B (en) A kind of shape memory type high resiliency active nano fibrous framework and its application
KR100564366B1 (en) Nonwoven nanofibrous membranes for guided tissue regeneration and their fabrication method
KR20150086227A (en) Fibrous Membrane Used for Tissue Repair and Products and Preparation Methods Thereof
JP6118905B2 (en) New scaffold for cardiac repair patches
JP5394600B2 (en) Absorbable medical synthetic coating material, its preparation and its medical use
Gogolewski et al. Resorbable materials of poly (L-lactide) III. Porous materials for medical application
KR100464930B1 (en) Barrier membrance for guided tissue regeneration and the preparation thereof
KR100737167B1 (en) Method for preparing of a porous osteochondral composite scaffold
KR0141988B1 (en) Biodegradable film and process for preparing thereof
Tang et al. Agarose/collagen composite scaffold as an anti-adhesive sheet
JP2009513290A (en) Scleral buckling band and manufacturing method thereof
KR0165642B1 (en) Biodegradable membranes for implanting and process for the preparation thereof
KR100803287B1 (en) Method for Manufacturing a Barrrier Membrane for Guided Tissue Regeneration Having an Efficient Durability and the Barrier Membrane Using the Method
EP3500313B1 (en) Wound dressing comprising polymer fibers
KR0180585B1 (en) Biodegradability shielding film for alveolar organ
KR100341243B1 (en) Moldable drug releasing barrier membranes and their fabrication method
KR100262142B1 (en) Drug loaded biodegradable membrane for periodontium regeneration and method for the preparation thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20091215

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee