WO2004098894A1 - Fluid jetting head and fluid jetting device - Google Patents

Fluid jetting head and fluid jetting device Download PDF

Info

Publication number
WO2004098894A1
WO2004098894A1 PCT/JP2004/006332 JP2004006332W WO2004098894A1 WO 2004098894 A1 WO2004098894 A1 WO 2004098894A1 JP 2004006332 W JP2004006332 W JP 2004006332W WO 2004098894 A1 WO2004098894 A1 WO 2004098894A1
Authority
WO
WIPO (PCT)
Prior art keywords
reservoir
forming substrate
piezoelectric element
pressure generating
liquid
Prior art date
Application number
PCT/JP2004/006332
Other languages
French (fr)
Japanese (ja)
Inventor
Shiro Yazaki
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to US10/545,069 priority Critical patent/US7618130B2/en
Priority to JP2005506017A priority patent/JP4484821B2/en
Publication of WO2004098894A1 publication Critical patent/WO2004098894A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1607Production of print heads with piezoelectric elements
    • B41J2/161Production of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1623Manufacturing processes bonding and adhesion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1628Manufacturing processes etching dry etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1626Manufacturing processes etching
    • B41J2/1629Manufacturing processes etching wet etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1631Manufacturing processes photolithography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles
    • B41J2/1621Manufacturing processes
    • B41J2/1632Manufacturing processes machining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14201Structure of print heads with piezoelectric elements
    • B41J2/14233Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm
    • B41J2002/14241Structure of print heads with piezoelectric elements of film type, deformed by bending and disposed on a diaphragm having a cover around the piezoelectric thin film element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14419Manifold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Definitions

  • Liquid injection head and liquid injection device Liquid injection head and liquid injection device
  • the present invention relates to a liquid ejecting head and a liquid ejecting apparatus that eject droplets, and more particularly, to an ink jet recording head and an ink jet recording apparatus that eject ink droplets from a nozzle opening.
  • a part of the pressure generating chamber that communicates with the nozzle opening for discharging ink droplets
  • An ink jet recording head has been put to practical use in which the diaphragm is deformed by a piezoelectric element to press the ink in the pressure generating chamber to discharge ink droplets from nozzle openings.
  • a uniform piezoelectric material layer is formed by a film forming technique over the entire surface of a diaphragm, and this piezoelectric material layer is applied to a pressure generating chamber by a lithographic method.
  • a piezoelectric element is formed so as to be divided into different shapes and independent of each pressure generating chamber.
  • Such a piezoelectric element has a problem that it tends to burst due to an external environment such as moisture (humidity).
  • moisture humidity
  • Japanese Patent Application Laid-Open No. 2000-296666 discloses a structure for preventing the destruction of the piezoelectric element, a flow path forming substrate in which a pressure generating chamber is formed, A structure is disclosed in which a reservoir forming substrate having a piezoelectric element holding portion is joined, and the piezoelectric element is sealed in the piezoelectric element holding portion.
  • a flow path forming substrate provided with a plurality of pressure generating chambers communicating with the nozzle openings, a piezoelectric element for generating a pressure change in each pressure generating chamber, and a reservoir as a common liquid chamber for the pressure generating chambers And a nozzle plate having a nozzle opening joined to the other surface side of the flow path forming substrate.
  • a piezoelectric element holding portion capable of sealing the space is provided in a region facing the piezoelectric element on the reservoir forming substrate, with a space secured so as not to hinder the movement of the piezoelectric element.
  • An ink supply path for supplying the ink in the reservoir to each of the pressure generating chambers is provided at one longitudinal end of each of the pressure generating chambers.
  • the piezoelectric element is formed in the piezoelectric element holding portion, the moisture contained in the ink in the reservoir passes through the joint between the flow path forming substrate and the reservoir forming substrate, and the piezoelectric element is held. There is a possibility that the piezoelectric element may break into the inside of the unit and be destroyed. Therefore, in any case, it is necessary to sufficiently secure the distance between the piezoelectric element and the reservoir, specifically, the length of the joint between the piezoelectric element holding part and the reservoir. On the other hand, in order to improve the ink supply characteristics, it is necessary to shorten the length of the ink supply path.
  • the ink in the pressure generation chamber flows out to the reservoir side via the ink supply path together with the ink discharge because the pressure is generated in the pressure generation chamber at the time of ink discharge. For this reason, if there is a space between each ink supply path and the reservoir, which is composed only of the flow path forming substrate, the ink flowing out of each pressure generating chamber to the reservoir side will be in the pressure generating chamber in that space. Flow in both directions (the direction in which nozzles and nozzles are arranged) and the longitudinal direction of the pressure generating chamber (the direction orthogonal to the direction in which nozzles are arranged). For this reason, the flow of the ink flowing out of the adjacent pressure generating chambers interferes with each other, so-called crosstalk occurs, and there is a problem that stable ink ejection characteristics cannot be obtained.
  • the joint between the piezoelectric element holding portion and the reservoir is shortened in accordance with the length of the ink supply path, the joint area between the flow path forming substrate and the reservoir forming substrate is reduced, and sufficient joining strength is obtained. Can not be obtained. Also, if the ink supply path is made relatively long in order to secure the connection between the piezoelectric element holding section and the reservoir, the cross-sectional area of the ink supply path becomes substantially large, and the meniscus attenuation characteristics deteriorate. Therefore, there is a problem that high-speed driving becomes impossible.
  • an object of the present invention is to provide a liquid ejecting head and a liquid ejecting apparatus capable of preventing occurrence of crosstalk and obtaining stable liquid ejection characteristics.
  • a flow path forming substrate in which a plurality of pressure generating chambers communicating with a nozzle opening are arranged in parallel, and a flow path forming substrate provided through a diaphragm.
  • a piezoelectric element comprising an electrode, a piezoelectric layer, and an upper electrode; and a reservoir which is joined to a surface of the flow path forming substrate on the piezoelectric element side and constitutes a part of a reservoir which is a common liquid chamber of each pressure generating chamber.
  • a second aspect of the present invention first in one aspect, the communication path liquid jet head relationship between the width W l and width w 2 of the pressure generating chamber and satisfies the W l ⁇ w 2 of Nime
  • a third aspect of the present invention in the first or second aspect, wherein the relationship between the width W l and before Symbol width w 3 of the liquid supply path of the communication passage meet W l ⁇ 2 X w 3 In the liquid jet head.
  • the communication passage having a predetermined size by providing the communication passage having a predetermined size, desired liquid supply characteristics can be secured.
  • the length of the communication path Is not less than the thickness of the flow path forming substrate.
  • the fourth aspect that is powerful, by providing a communication path having a predetermined length or more, the occurrence of crosstalk is more effectively prevented.
  • a distance between an end of the partition wall on the reservoir section side and the reservoir section is shorter than a thickness of the flow path forming substrate.
  • a sixth aspect of the present invention is the liquid jet head according to any one of the first to fifth aspects, wherein the piezoelectric element is covered with an insulating film made of an inorganic insulating material.
  • the piezoelectric layer is covered with the insulating film made of the inorganic insulating material having a low moisture permeability, the piezoelectric layer (piezoelectric element) due to moisture (moisture) is deteriorated. Destruction) is reliably prevented over a long period of time.
  • a seventh aspect of the present invention in the sixth aspect, wherein the insulating film is in the head to the liquid jet, characterized in that it consists of A l 2 0 3.
  • the piezoelectric element is covered with the insulating film made of a metal oxide having a very low moisture permeability, the piezoelectric layer can be reliably prevented from being broken due to the external environment.
  • the reservoir forming substrate can secure a space in a region facing the piezoelectric element to such an extent that the movement of the piezoelectric element is not hindered.
  • the liquid ejecting head is provided with a piezoelectric element holding portion, and a region of the reservoir forming substrate between the piezoelectric element holding portion and the reservoir portion is a joint portion with the flow path forming substrate. .
  • the partition wall is extended to the vicinity of the boundary between the flow path forming substrate and the reservoir forming substrate on the side of the reservoir section, whereby the rigidity of both substrates is ensured, and the liquid supply path is formed.
  • the partition wall side of the reservoir portion is provided.
  • the end is in the liquid projection head, which is located in a region facing the joining portion.
  • the ninth aspect it is possible to reliably prevent the end of the partition from protruding into the communication portion, which is an obstacle to forming the reservoir.
  • a tenth aspect of the present invention is the liquid jet head according to the eighth or ninth aspect, wherein the length of the joining portion is at least 200 ⁇ .
  • the length of the joint portion with the reservoir forming substrate on one end side in the longitudinal direction of the pressure generating chamber of the flow channel forming substrate is set to a predetermined amount or more, so that the liquid contained in the reservoir can be included. Moisture that does not substantially permeate into the piezoelectric element holding portion, and the rupture of the piezoelectric element is prevented. In addition, the rigidity between the flow path forming substrate and the reservoir forming substrate is increased.
  • an atmosphere opening hole having one end communicating with the piezoelectric element holding portion and the other end being open to the atmosphere.
  • the piezoelectric element holding portion is opened to the atmosphere through the air opening hole, no dew condensation occurs in the piezoelectric element holding portion, and the piezoelectric element breaks down due to the condensation. It is reliably prevented.
  • a twenty-second aspect of the present invention is the liquid jet head according to any one of the first to eleventh aspects, wherein the thickness of the flow path formation substrate is 100 ⁇ or less. is there.
  • the pressure generating chambers can be arranged at a relatively high density while maintaining the rigidity of the partition wall between the adjacent pressure generating chambers.
  • the pressure generation chamber is formed by anisotropic etching on a silicon single crystal substrate.
  • a liquid jet head having a high-density nozzle opening can be relatively easily manufactured.
  • a fifteenth aspect of the present invention is a liquid ejecting apparatus including the liquid ejecting bed according to any one of the first to thirteenth aspects.
  • the liquid discharge characteristics are substantially stable and the reliability is improved.
  • Liquid ejecting apparatus can be realized. Brief description of the drawings.
  • FIG. 1 is an exploded perspective view of a head according to the first embodiment.
  • FIG. 2 is a plan view and a cross-sectional view of the head according to the first embodiment.
  • FIG. 3 is a cross-sectional view illustrating a flow channel structure of the head according to the first embodiment.
  • FIG. 4 is a sectional view of another head according to the first embodiment.
  • FIG. 5 is a diagram showing the relationship between the number of simultaneous ejections and the crosstalk rate.
  • FIG. 6 is a cross-sectional view showing a manufacturing process of the head according to the first embodiment.
  • FIG. 7 is a sectional view showing a manufacturing process of the head according to the first embodiment.
  • FIG. 8 is a schematic diagram showing an example of a recording head. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is an exploded perspective view of an ink jet recording head according to Embodiment 1
  • FIG. 2 is a schematic plan view of FIG. 1 and a cross-sectional view taken along line AA ′.
  • the flow path forming substrate 10 is composed of a silicon single crystal substrate having a plane orientation (110) in this embodiment, and has elasticity composed of silicon dioxide formed in advance by thermal oxidation on both surfaces.
  • a film 50 and a mask pattern 51 used as a mask when forming a pressure generating chamber described later are provided.
  • the pressure generating chambers 12 divided by the plurality of partition walls 11 are arranged in the width direction on the flow path forming substrate 10 by anisotropic etching from the other side, that is, the nozzle
  • the pressure generating chamber 12, the ink supply path 14, and the communication path 1 are arranged at one end in the longitudinal direction (the direction orthogonal to the direction in which the nozzles are arranged).
  • 0 and a communication portion 13 forming a part of a reservoir 11 ′ ′ 0 serving as a common ink chamber for each pressure generating chamber 12 are formed.
  • the ink supply path 14 communicates with one longitudinal end of the pressure generating chamber 12 and has a smaller cross-sectional area than the pressure generating chamber 12.
  • the ink supply path 1 4 is formed to have a width smaller than the width of the pressure generating chamber 12 by narrowing the flow path on the side of the pressure generating chamber 12 between the reservoir 110 and each of the pressure generating chambers 12 in the width direction.
  • the ink supply path 14 is formed by reducing the width of the flow path from one side.
  • the ink supply path is formed by reducing the width of the flow path from both sides. Is also good.
  • each communication passage 100 is formed by extending the partition walls 11 on both sides in the width direction of the pressure generating chamber 12 to the communication portion 13 side to define a space between the ink supply passage 14 and the communication portion 13. It is formed by things. The communication passage 100 will be described later in detail.
  • the anisotropic etching is performed by utilizing the difference in the etching rate of the silicon single crystal substrate.
  • the substrate is immersed in an alkaline solution such as KOH, the substrate is gradually eroded, and the first (111) surface is perpendicular to the (110) surface.
  • a second (.1 1 1) plane which forms an angle of about 70 degrees with the (1 1 1) plane of the above and forms an angle of about 35 degrees with the above (1 110) plane appears, and (1 1 This is performed by using the property that the etching rate of the (1 1 1) plane is about 1Z180 compared to the etching rate of the 0) plane.
  • precision processing is performed based on parallelogram-shaped depth processing formed by two first (1 1 1) planes and two diagonal second (1 1 1) planes.
  • the pressure generating chambers 12 can be arranged at a high density.
  • each pressure generating chamber 12 is formed by the first (11 1) surface, and the short side is formed by the second (11 1) surface.
  • the pressure generating chamber 12 is formed by etching until it reaches the elastic film 50 substantially through the flow path forming substrate 10.
  • the amount of the elastic film 50 which is affected by the solution for etching the silicon single crystal substrate is extremely small.
  • the thickness of the flow path forming substrate 10 may be selected in accordance with the arrangement density of the pressure generating chambers 12, and the arrangement density of the pressure generating chambers 12 may be, for example, per inch. If the number is about 180 (180 dpi), the thickness of the flow path forming substrate 10 may be about 220 ⁇ m. For example, when the array is arranged at a relatively high density of 200 dpi or more. In this case, it is preferable that the thickness of the flow path forming substrate 10 is 100 ⁇ or less, particularly, 70 zm. This is because the arrangement density can be increased while maintaining the rigidity of the partition wall 11 between the adjacent pressure generating chambers 12.
  • a nozzle plate 20 having a nozzle opening 21 formed therein is joined to the opening surface side of the flow path forming substrate 10.
  • a nozzle plate 20 has a thickness of, for example, 0.05 to 1 mm and is made of glass ceramics, a silicon single crystal substrate, or stainless steel.
  • the nozzle plate 20 entirely covers one surface of the flow path forming substrate i0 with one surface, and also serves as a reinforcing plate for protecting the flow path forming substrate 10 from impacts and external forces.
  • the size of the pressure generating chamber 12 for applying the ink droplet ejection pressure to the ink and the size of the nozzle opening 21 for ejecting the ink droplet depend on the amount of the ejected ink droplet, the ejection speed, and the ejection frequency. Optimized accordingly. For example, when recording 360 ink drops per inch, the nozzle opening 21 needs to be formed with a diameter of several tens of ⁇ m with high accuracy.
  • an insulating film 50 having a thickness of, for example, 0.4 ⁇ is placed on an elastic film 50 having a thickness of, for example, about 1.0 ⁇ m.
  • a piezoelectric element 300 is formed by laminating an upper electrode film 80 of about 0.05 / xm in a process described later.
  • the piezoelectric element 300 refers to a portion including the lower electrode film 60, the piezoelectric layer 70, and the upper electrode film 80.
  • any one of the electrodes of the piezoelectric element 300 is used as a common electrode, and the other electrode and the piezoelectric layer 70 are patterned for each of the pressure generating chambers 12.
  • a portion which is constituted by either one of the patterned electrodes and the piezoelectric layer 70 and in which a piezoelectric strain is generated by applying a voltage to both electrodes is referred to as a piezoelectric active portion.
  • the lower electrode film 60 is used as a common electrode of the piezoelectric element 300
  • the upper electrode film 80 is used as a separate electrode of the piezoelectric element 300. There is no problem even if it is reversed.
  • a piezoelectric active portion is formed for each pressure generating chamber.
  • the piezoelectric element 300 and a vibration plate whose displacement is generated by driving the piezoelectric element 300 are collectively referred to as a piezoelectric actuator.
  • the elastic film 50, the insulator film 55, and the lower electrode film 60 function as a diaphragm.
  • Examples of the material of the piezoelectric layer 70 include a ferroelectric piezoelectric material such as lead zirconate titanate (PZT), niobium, nickel, magnesium, bismuth, and iron.
  • PZT lead zirconate titanate
  • a relaxor ferroelectric or the like to which a metal such as rubidium is added may be used.
  • Its composition, characteristics of the piezoelectric element 70 may be chosen, as appropriate, in consideration of the use and the like, for example, P b T i O a ( PT), P b Z r 0 3. (PZ), P b (Z r x T i! _ x) 0 3 (P ZT), P b (M g!
  • each upper electrode film 80 which is an individual electrode of the piezoelectric element 300 composed of the piezoelectric layer 70, is made of, for example, gold (Au) or the like, and one end of which is a through hole 33 described later.
  • the lead electrode 90 extended to the region corresponding to the above is connected.
  • the piezoelectric element 300 is covered with an insulating film 200 made of an inorganic insulating material.
  • the connection portions 60 a in which each layer constituting the piezoelectric element 300 and the pattern region of the lead electrode 90 are connected to a drive IC (not shown) of the lower electrode film 60 and the lead electrode 90 via connection wiring, Except for the region facing 90a, it is covered with the insulating film 200. That is, the surfaces (the upper surface and the end surface) of the lower electrode film 60, the piezoelectric layer 70, the upper electrode film 80, and the lead electrode 90 in the pattern region are covered with the insulating film 200.
  • an inorganic insulating material is not limited especially, for example, acid I arsenide aluminum (A l 2 0 3), tantalum pentoxide (T a 2 0 5 ), although silicon (S i 0 2) or the like dioxide and the like, it is preferable to use a suitably acid Ihiarumi Niumu (a l. 0 3).
  • an organic insulating material such as a resin is used as the material of the insulating film, for example, the same thickness as the insulating film of the inorganic insulating material is used.
  • the insulating film 200 made of such an inorganic insulating material has extremely low moisture permeability even in a thin film, the insulating film 200 allows the lower electrode film 60, the piezoelectric layer 70, and the upper electrode By covering the surfaces of the electrode film 80 and the lead electrode 90, it is possible to prevent rupture due to moisture (moisture) of the piezoelectric layer 70.
  • these layers and the insulating film 200 are formed. Even if moisture invades from between, it is possible to prevent moisture from reaching the piezoelectric layer 7, and it is possible to more reliably prevent breakage due to moisture in the piezoelectric layer 70.
  • a reservoir forming substrate 30 is bonded on the flow path forming substrate 10 on which the piezoelectric elements 300 are formed.
  • the reservoir forming substrate 30 is provided with a reservoir portion 32 that constitutes a part of the reservoir 110, and is provided outside the pressure generating chambers 12 in the longitudinal direction.
  • the reservoir portion 32 is formed so as to penetrate the reservoir forming substrate 30 in the thickness direction and to extend in the width direction of the pressure generating chamber 12.
  • the elastic film 50 and the insulator film 5 Reservoirs 110 which are communicated with the communicating portions 13 of the flow path forming substrate 10 via the through portions provided in 5 and serve as common ink chambers of the pressure generating chambers 12 are respectively formed. ing.
  • the thickness of the reservoir forming substrate 30 is, for example, 200 to 400 ⁇ .
  • such a reservoir forming substrate 30 is provided with a piezoelectric element holding portion 31 capable of securing a space in a region facing the piezoelectric element 300 so as not to hinder its movement. I have. That is, the piezoelectric element 300 is formed in the piezoelectric element holding section 31.
  • the reservoir forming substrate 30 is provided with an atmosphere opening hole 31a whose one end communicates with the piezoelectric element holding portion 31 and whose other end is open to the atmosphere. That is, the piezoelectric element holding portion 31 is opened to the atmosphere through the air opening hole 3 ia without sealing the piezoelectric element 300.
  • the other end of the open-to-air hole 31 a is provided, for example, on the surface of the reservoir forming substrate 30 on the side opposite to the piezoelectric element holding portion 31 side.
  • FIG. 3 is a cross-sectional view showing the flow path structure of the ink jet recording head according to the first embodiment.
  • the communication paths 100 are provided independently for each of the pressure generating chambers 12 between each ink supply path 14 and the communication section 13, and each of the pressure supply chambers An individual flow path is formed between the generation chamber 12 and the reservoir 110.
  • the partition walls 11 on both sides in the width direction of the pressure generation chamber 12 are extended to near the end of the reservoir section 32 on the pressure generation chamber 12 side. That is, in the present embodiment, the partition walls 11 on both sides in the width direction of the pressure generation chamber 12 extend to the vicinity of the end on the side of the reservoir part 32 at the junction between the flow path forming substrate 10 and the reservoir forming substrate 30. Is established.
  • a wall 11a is formed between each ink supply path 14 and the communication portion 13 and ink is supplied by the wall 11a.
  • Each communication path 100 is formed by partitioning a space between the path 14 and the communication portion 13.
  • the width of the communication path 1 00 is preferably a relatively wider, for example, the relationship between the width w 2 of the width Wl and the pressure generating chamber 1 2 of the communication passage 1 00, satisfy the Wl ⁇ W 2 Is desirable. Furthermore, the relationship between the width w 3 of ⁇ path 1 00 having a width Wl and the ink supply path 14, it is desirable that meets w 1 ⁇ 2 Xw 3. Thus, by providing the communication path 100 with a predetermined size, desired ink supply characteristics can be obtained.
  • the ink an ink having a viscosity in a range of about 2.0 to 12.2 OmPa ⁇ sec in a use environment in a temperature range of about 10 to 40 ° C is used.
  • a normal ink has a viscosity in the range of about 2.0 to 6.5 mPa ⁇ sec
  • a high-viscosity pigment ink has a viscosity of about 8 to 1 lm. Sec within the range of Pa.sec.
  • the length of the communication passage 100 (see FIG. 3) be equal to or longer than a predetermined length by providing the wall portion 11a with a predetermined length or longer. It is preferable that the length of the communication passage 100 be equal to or greater than the thickness of the passage forming substrate 10. Note that the length 1 ⁇ of the communication passage 100 corresponds to a region where the width Wl of the communication passage 100 is secured. As a result, at the time of ink ejection, the ink flowing out from the adjacent ink supply path 14 to the reservoir 110 side flows separately to the reservoir 110 along the communication path 100, so that the inks flow out from each other. Therefore, the occurrence of crosstalk can be effectively prevented without interfering with the communication.
  • the thickness of the flow path forming substrate 10 is set to about 70 ⁇
  • the length of the communication path 100 is set to about 100 ⁇ .
  • the length L (see FIG. 2) of the joint between the flow path forming substrate 10 and the reservoir forming substrate 30 between the piezoelectric element holding portion 31 and the reservoir 110 is 200 / m or more.
  • the distance between the piezoelectric element holding portion 31 and the reservoir portion 32 can be ensured, and the water contained in the ink in the reservoir 110 can be prevented from entering the piezoelectric element holding portion 31. It is possible to reliably prevent the piezoelectric element 300 from bursting.
  • the joint area between the flow path forming substrate 10 and the reservoir forming substrate 30 is increased, there is also an effect that the flexibility of both substrates can be sufficiently ensured and the durability of the head can be improved.
  • the end of the wall portion 11 a forming the communication passage 100 on the reservoir portion 32 side is in a region opposed to a joint portion where the flow passage forming substrate 10 and the reservoir forming substrate 30 are joined. Is preferably located. If the end of the wall portion 11a protrudes into the communication portion 13, the elastic film 50 and the insulator film 55 separating the communication portion 13 and the reservoir portion 32 will be broken in a manufacturing process described later. This is an obstacle to the formation of the reservoir 110.
  • the distance S between the end of the partition 11 on the side of the reservoir 32 and the reservoir 32 is set shorter than the thickness of the flow path forming substrate 10. Is preferred.
  • the partition wall 11 extends to near the end of the reservoir section 32 on the pressure generating chamber 12 side, and the space between the ink supply path 14 and the communication section 13 (reservoir 110), specifically, Specifically, the space formed only by the flow path forming substrate 10 and extending in the width direction of the pressure generating chamber 12 can be divided and reduced by the wall portion 1 l.a, so that the flow out of the adjacent communication path 10 OA It is possible to reduce the interference between the inks, and to prevent the occurrence of crosstalk.
  • a through hole 33 penetrating the reservoir forming substrate 30 in the thickness direction is provided in a region of the reservoir forming substrate 30 opposite to the reservoir portion 32.
  • the lead electrode 90 pulled out from each piezoelectric element 300 is exposed in the through hole 33 near the end.
  • a material having substantially the same thermal expansion coefficient as that of the flow path forming substrate 10 for example, glass, a ceramic material, or the like. It was formed using a silicon single crystal substrate of the same material as 10.
  • a compliance substrate 40 including a sealing film 41 and a fixing plate 42 is joined to a region corresponding to the reservoir portion 32 of the reservoir forming substrate 30.
  • the sealing film 41 is made of a material having low rigidity and flexibility (for example, a polyphenylene sulfide (PPS) film having a thickness of 6 ⁇ ).
  • PPS polyphenylene sulfide
  • the fixing plate 42 is formed of a hard material such as a metal (for example, stainless steel (SUS) having a thickness of 30 ⁇ ).
  • the area of the fixing plate 42 facing the reservoir 110 is an opening 43 completely removed in the thickness direction, so that one surface of the reservoir 110 has a flexible seal. It is sealed only by the blocking film 41.
  • the ink jet recording head of the present embodiment described above takes in ink from an ink supply means (not shown), fills the inside from the reservoir 110 to the nozzle opening 21 with ink, and then drives the drive IC (not shown).
  • a driving voltage is applied between the lower electrode film 60 and the upper electrode film 80 corresponding to the pressure generating chambers 12 according to the driving signals of the elastic film 50, the insulator film 55, and the piezoelectric element.
  • By displacing 300 the pressure in each pressure generating chamber 12 increases, and ink droplets are ejected from nozzle opening 21.
  • '' (Test example)
  • a space provided with only a flow path forming substrate in a direction in which the pressure generating chambers are arranged between the ink supply path and the reservoir without providing a communication path, and a head provided with a communication path (Example).
  • a head provided with (Comparative Example) was prepared, and a test was performed to compare the crosstalk rates (%) of the two. 'Specifically, one reference nozzle (reference nozzle) is determined, and the ejection speed when ink is ejected only from this reference nozzle is set to the reference value “0” (zero). When the ink was simultaneously ejected from the nozzles, the ejection speed of the ink droplet ejected from the reference nozzle was measured.
  • the rate of increase in the ejection speed of the reference nozzle that is, the crosstalk rate
  • the crosstalk ratio of the head of the example was relatively reduced by about 0.10% as compared with the head of the comparative example. Therefore, by providing the communication path as in the head of the embodiment, it is possible to reduce the occurrence of crosstalk during ink ejection.
  • FIGS. 6 and 7 are longitudinal sectional views of the pressure generating chamber 12.
  • FIG. 6 ('a) a silicon single crystal substrate wafer to be the flow channel forming substrate 10 is thermally oxidized in a diffusion furnace at about 110 ° C, and each surface is elastically deformed.
  • FIG. 6 (b) an insulator film 55 made of zirconia or the like is formed on the elastic film 50.
  • FIG. 6 (b) an insulator film 55 made of zirconia or the like is formed on the elastic film 50.
  • a lower electrode film 60 made of, for example, platinum and iridium is formed on the entire surface of the insulator film 55, and then patterned into a predetermined shape.
  • a piezoelectric layer 70 made of, for example, lead zirconate titanate (PZT) and an upper electrode film 80 made of, for example, iridium are sequentially laminated. Are simultaneously patterned to form a piezoelectric element 300.
  • a lead electrode 90 made of, for example, gold (Au) is formed over the entire surface of the flow path forming substrate 10 and each piezoelectric element 300 is formed. Putter Jung every time.
  • an inorganic insulating material in this embodiment, is patterned into a predetermined shape to form the insulating film 2 0 0 consisting Sani ⁇ aluminum (A l 2 0 3) . That is, the insulating film 200 is formed on the entire surface of the flow path forming substrate 10, and then the connecting portion 60 a of the lower electrode film 60 and the connecting portion 90 a of the lead electrode 90 are formed.
  • the insulating film 200 in the opposing region is removed.
  • the layers other than the layers constituting the piezoelectric element 300, the leads, and the pattern regions of the electrodes 90 are also removed.
  • the insulating film 200 only the region facing the connecting portions 60a and 90a may be removed.
  • the insulating film 200 constitutes the piezoelectric element 300 except for the connecting portion 60a of the lower electrode film 60 and the connecting portion 90a of the lead electrode 90. What is necessary is just to form so that each layer and the pattern area of the lead electrode 90 may be covered.
  • the method for removing the insulating film 200 is not particularly limited. For example, it is preferable to use dry etching such as ion milling. As a result, the insulating film 200 can be selectively and satisfactorily removed.
  • the piezoelectric element holding portion 31, the reservoir portion 32, etc. are formed in advance on the piezoelectric element 300 side of the flow path forming substrate 10 via an adhesive. Then, the reservoir forming substrate 30 is joined. It should be noted that such a reservoir forming substrate 30 will be described later.
  • the silicon single crystal substrate (flow path forming substrate 100) is anisotropically etched with the alkali solution thus formed to form the pressure generating chamber 12, the communication section 13, the ink supply path 14, and the communication path 100.
  • the mask pattern 51 is formed on the surface of the flow path forming substrate 10 opposite to the bonding surface with the reservoir forming substrate 30, the mask pattern 51 is formed.
  • the pressure generating chamber 12, the communication section 13, the ink supply path 14, and the communication path 100 are formed by anisotropically etching the flow path forming substrate 10 via the mask pattern 51.
  • the surface of the reservoir forming substrate 30 is sealed with a protective film or the like.
  • the reservoir 110 is formed by breaking the elastic film 50 and the insulator film 55 at the boundary between the reservoir portion 32 and the communication portion 13.
  • the ink supply path 14 and the like can be provided so as to penetrate in the thickness direction of the flow path forming substrate 10, if the mask pattern 51 is patterned with high precision, the ink supply path The path 14 and the communication path 100 can be formed with high accuracy. Therefore, stable ink ejection characteristics can be obtained.
  • a nozzle plate 20 having a nozzle opening 21 formed on the surface of the flow path forming substrate 10 opposite to the reservoir forming substrate 30 is joined.
  • the compliance substrate 40 is bonded on the reservoir forming substrate 30, and the driving IC is mounted on the reservoir forming substrate 30, and the connection portion between the lower electrode film 60 and each lead electrode 90 is formed.
  • Each of the piezoelectric elements 300 and the drive IC is electrically connected by connecting 600 a and 90 a to the drive IC by connection wiring composed of bonding wires.
  • the drive IC is mounted on the reservoir forming substrate 30 in this manner, the substrates such as the flow path forming substrate 10 and the reservoir forming substrate 30 are divided into chip sizes, as shown in FIG. Such an ink jet recording head according to the present embodiment is described.
  • the flow path is narrowed in the width direction.
  • the ink supply path 14 is formed, but the invention is not limited thereto.
  • the ink supply path may be formed by narrowing the flow path in the thickness direction of the flow path forming substrate.
  • the ink supply path is formed by, for example, performing anisotropic etching (/, one fetching) on the flow path forming substrate in the thickness direction.
  • the piezoelectric element 300 is formed in the piezoelectric element holding portion 31 of the reservoir forming substrate 30.
  • the present invention is not limited to this, and the piezoelectric element holding portion 31 may not be provided. .
  • the piezoelectric layer 70 caused by moisture (humidity) is formed. Blasting is reliably prevented.
  • the piezoelectric element 300 is covered with the insulating film 200.
  • the piezoelectric element may not be covered with the insulating film.
  • One end of the reservoir forming substrate 30 is communicated with the piezoelectric element holding portion 31 and the other end is provided with an air opening hole 31 a that is open to the atmosphere, and the piezoelectric element holding portion 31 is opened to the atmosphere.
  • the present invention is not limited to this, and the piezoelectric element holding portion may be sealed without providing the air opening hole. In this case, destruction of the piezoelectric element due to moisture (moisture) from the open-to-air hole is reliably prevented.
  • a thin-film ink jet recording head manufactured by applying a film forming and lithography process has been described as an example.
  • the present invention is not limited to this.
  • the present invention can also be applied to a thick-film ink jet recording head formed by a method such as sticking.
  • FIG. 8 is a schematic view showing an example of the ink jet recording apparatus.
  • the recording heads 1A and 1B having ink jet recording heads are provided with detachable cartridges 2A and 2B constituting an ink supply means.
  • the carriage 3 on which 1 A and 1 B are mounted is provided on a carriage shaft 5 attached to the apparatus main body 4 so as to be movable in the axial direction.
  • This record header 1A and 1B For example, it is assumed that a black ink composition and a color ink composition are respectively discharged.
  • the driving force of the driving motor 6 is transmitted to the carriage 3 via a plurality of gears and a timing belt 7 (not shown), so that the carriage 3 on which the recording heads 1A and 1B are mounted moves along the carriage shaft 5.
  • the apparatus body 4 is provided with a platen 8 along a carriage axis 5, and a recording sheet S, which is a recording medium such as paper fed by a paper feed roller (not shown), is conveyed on the platen 8. It has become so.
  • an ink jet recording head and an ink jet recording apparatus which eject ink as a liquid ejecting head are described as an example.
  • the present invention is widely applied to a liquid ejecting head. It is intended for liquid ejecting apparatuses in general.
  • liquid ejecting heads include recording heads used in image recording devices such as printers, color material ejecting heads used in the manufacture of color filters such as liquid crystal displays, organic EL displays, and FEDs (surface emitting displays). And the like, and an electrode material injection head used for forming an electrode, and a biological organic material injection head used for manufacturing a biochip.

Abstract

A fluid jetting head capable of preventing crosstalk from occurring and providing stable fluid jetting characteristics and a fluid jetting device, the fluid jetting head wherein partition walls (11) on the lateral both sides of pressure generating chambers (12) are extended near the pressure generating chamber (12) side end part of a reservoir part (32), and fluid supply passages (14) formed to have a width smaller than the width of the pressure generating chambers (12) in communication with the pressure generating chambers (12) and communication passages (100) allowing the fluid supply passages (14) to communicate with a communication part (13) and formed to have a width larger than the width of the fluid supply passages (14) are provided by dividing each of the pressure generating chambers (12) by the partition walls (11) (wall parts 11a). Thus, the occurrence of the crosstalk can be prevented and the stable fluid jetting characteristics can be provided.

Description

液体噴射へッド及ぴ液体噴射装置  Liquid injection head and liquid injection device
技術分野 Technical field
本発明は、 液滴を吐出する液体噴射ヘッド及び液体噴射装置に関し、 特に、 ノ ズル開口から ンク滴を吐出させるインクジヱット式記録へッド及びインクジェ ット式記録装置に関する。 背景技術  The present invention relates to a liquid ejecting head and a liquid ejecting apparatus that eject droplets, and more particularly, to an ink jet recording head and an ink jet recording apparatus that eject ink droplets from a nozzle opening. Background art
インク滴を吐出するノズル開口と連通する圧力発生室の一部を振動板で構成し A part of the pressure generating chamber that communicates with the nozzle opening for discharging ink droplets
、 この振動板を圧電素子により変形させて圧力発生室のィンクを加圧してノズル 開口からインク滴を吐出させるインクジエツト式記録へッドが実用化されている 。 例えば、 このようなィンクジエツト式記録へッドとしては、 振動板の表面全体 に亙って成膜技術により均一な圧電材料層を形成し、 この圧電材料層をリソグラ フィ法により圧力発生室に対応する形状に切り分けて各圧力発生室毎に独立する ように圧電素子を形成したものがある。 このような圧電素子は、 水分 (湿気) 等 の外部環境に起因して破壌され易いという問題がある。 例えば、 圧力発生室の共 通の液体室であるリザーバには、 水分を含むインクが充填されているため、 この リザーバと圧電素子との間の距離をある程度確保する必要がある。 An ink jet recording head has been put to practical use in which the diaphragm is deformed by a piezoelectric element to press the ink in the pressure generating chamber to discharge ink droplets from nozzle openings. For example, as such an ink jet recording head, a uniform piezoelectric material layer is formed by a film forming technique over the entire surface of a diaphragm, and this piezoelectric material layer is applied to a pressure generating chamber by a lithographic method. There is a type in which a piezoelectric element is formed so as to be divided into different shapes and independent of each pressure generating chamber. Such a piezoelectric element has a problem that it tends to burst due to an external environment such as moisture (humidity). For example, since the reservoir, which is a common liquid chamber of the pressure generating chamber, is filled with ink containing water, it is necessary to secure a certain distance between the reservoir and the piezoelectric element.
ここで、 例えば、 特開 2 0 0 0— 2 9 6 6 1 6号公報には、 このような圧電素 子の破壊を防止する構造として、 圧力発生室が形成される流路形成基板に、 圧電 素子保持部を有するリザーバ形成基板を接合し、 この圧電素子保持部内に圧電素 子を密封するようにした構造が開示されている。 具体的には、 ノズル開口に連通 する複数の圧力発生室が設けられた流路形成基板と、 各圧力発生室内に圧力変化 を生じさせる圧電素子と、 圧力発生室の共通の液体室であるリザーバの少なくと も一部を構成するリザーバ部が設けられたリザーバ形成基板と、 流路形成基板の 他方面側に接合されたノズル開口を有するノズルプレートとを有する。 そして、 リザーバ形成基板の圧電素子に対向する領域に 、 圧電素子の運動を阻害しない 程度の空間を確保した状態で、 その空間を密封可能な圧電素子保持部が設けられ ている。 なお、 各圧力発生室の長手方向一端部側には、 リザーバ内のインクを各 圧力発生室に供給するためのインク供給路が設けられている。 Here, for example, Japanese Patent Application Laid-Open No. 2000-296666 discloses a structure for preventing the destruction of the piezoelectric element, a flow path forming substrate in which a pressure generating chamber is formed, A structure is disclosed in which a reservoir forming substrate having a piezoelectric element holding portion is joined, and the piezoelectric element is sealed in the piezoelectric element holding portion. Specifically, a flow path forming substrate provided with a plurality of pressure generating chambers communicating with the nozzle openings, a piezoelectric element for generating a pressure change in each pressure generating chamber, and a reservoir as a common liquid chamber for the pressure generating chambers And a nozzle plate having a nozzle opening joined to the other surface side of the flow path forming substrate. A piezoelectric element holding portion capable of sealing the space is provided in a region facing the piezoelectric element on the reservoir forming substrate, with a space secured so as not to hinder the movement of the piezoelectric element. ing. An ink supply path for supplying the ink in the reservoir to each of the pressure generating chambers is provided at one longitudinal end of each of the pressure generating chambers.
しかしながら、 上述した圧電素子を圧電素子保持部内に形成したへッドの構造 においても、 リザーバ内のインクに含まれる水分が流路形成基板とリザーバ形成 基板との接合部分を透過して圧電素子保持部内に浸入して圧電素子が破壊されて しまう虞がある。 したがって、 何れにしても、 圧電素子とリザーバ部との間の距 離、 具体的には、 圧電素子保持部とリザーバとの間の接合部分の長さを十分に確 保する必要がある。 これに対し、 インク供給特性を向上するには、 インク供給路 の長さを短くする必要がある。 このため、 圧電素子保持部とリザーバとの間の接 合部分を十分に確保しょうとすると、 インク供給路とリザーバとの間に圧力発生 室の並設方向に亘つて流路形成基板のみで構成される空間が形成される。  However, even in the above-described head structure in which the piezoelectric element is formed in the piezoelectric element holding portion, the moisture contained in the ink in the reservoir passes through the joint between the flow path forming substrate and the reservoir forming substrate, and the piezoelectric element is held. There is a possibility that the piezoelectric element may break into the inside of the unit and be destroyed. Therefore, in any case, it is necessary to sufficiently secure the distance between the piezoelectric element and the reservoir, specifically, the length of the joint between the piezoelectric element holding part and the reservoir. On the other hand, in order to improve the ink supply characteristics, it is necessary to shorten the length of the ink supply path. For this reason, if a sufficient connection between the piezoelectric element holding portion and the reservoir is to be ensured, only the flow path forming substrate is formed between the ink supply path and the reservoir in the direction in which the pressure generating chambers are juxtaposed. Is formed.
このような構造のインクジェット式記録ヘッドでは、 インク吐出の際、 圧力発 生室内に圧力変化を生じさせる関係上、 インク吐出と共に圧力発生室内のィンク がインク供給路を介してリザーバ側に流出する。 このため、 各インク供給路とリ ザーバとの間に流路形成基板のみで構成される空間が存在すると、 各] £力発生室 からリザーパ側に流出するインクは、 その空間内で圧力発生室の並設方向 (ノ,ズ ルの並設方向) 及び圧力発生室の長手方向 (ノズルの並設方向と直交する方向) の両方向に流れる。 このため、 隣接する圧力発生室から流出したインクの流れが 干渉して、 いわゆるクロストークが発生し、 安定したインク吐出特性が得られな いという問題がある。  In the ink jet recording head having such a structure, the ink in the pressure generation chamber flows out to the reservoir side via the ink supply path together with the ink discharge because the pressure is generated in the pressure generation chamber at the time of ink discharge. For this reason, if there is a space between each ink supply path and the reservoir, which is composed only of the flow path forming substrate, the ink flowing out of each pressure generating chamber to the reservoir side will be in the pressure generating chamber in that space. Flow in both directions (the direction in which nozzles and nozzles are arranged) and the longitudinal direction of the pressure generating chamber (the direction orthogonal to the direction in which nozzles are arranged). For this reason, the flow of the ink flowing out of the adjacent pressure generating chambers interferes with each other, so-called crosstalk occurs, and there is a problem that stable ink ejection characteristics cannot be obtained.
なお、 インク供給路の長さにあわせて、 圧電素子保持部とリザーバとの間の接 合部分を短くすると、 流路形成基板とリザーバ形成基板との接合面積が小さくな り、 十分な接合強度が得られない。 また、 圧電素子保持部とリザーバとの間の接 合部分を確保するために、 インク供給路を比較的長くすると、 インク供給路の断 面積が実質的に大きくなり、 メニスカスの減衰特性が低下して、 高速駆動が不可 能となるという問題もある。  If the joint between the piezoelectric element holding portion and the reservoir is shortened in accordance with the length of the ink supply path, the joint area between the flow path forming substrate and the reservoir forming substrate is reduced, and sufficient joining strength is obtained. Can not be obtained. Also, if the ink supply path is made relatively long in order to secure the connection between the piezoelectric element holding section and the reservoir, the cross-sectional area of the ink supply path becomes substantially large, and the meniscus attenuation characteristics deteriorate. Therefore, there is a problem that high-speed driving becomes impossible.
なお、 このような各問題は、 ィンクを吐出するィンクジェット式記録へッドだ けでなく、 勿論、 インク以外の液体を噴射する他の液体噴射ヘッドにおいても、 同様に存在する。 発明の開示 Such problems exist not only in the ink jet recording head for ejecting ink but also in other liquid ejecting heads for ejecting liquids other than ink. Disclosure of the invention
本発明は、 このような事情に鑑み、 クロストークの発生を防止でき且つ安定し た液体吐出特性を得ることができる液体噴射へッド及ぴ液体噴射装置を提供する ことを目的とする。  In view of such circumstances, an object of the present invention is to provide a liquid ejecting head and a liquid ejecting apparatus capable of preventing occurrence of crosstalk and obtaining stable liquid ejection characteristics.
上記目的を解決する本発明の第 1の態様は、 ノズル開口に連通する複数の圧力 発生室が並設された流路形成基板と、 該流路形成基板に振動板を介して設けられ た下電極、 圧電体層及び上電極からなる圧電素子と、 前記流路形成基板の前記圧 電素子側の面に接合されて各圧力発生室の共通の液体室であるリザーバの一部を 構成するリザーバ部が設けられたリザーバ形成基板とを具備し、 前記リザーバが 前記リザーバ部と前記流路形成基板に設けられた連通部とから構成され、 前記圧 力発生室の幅方向両側の隔壁が前記リザーバ部の前記圧力発生室側の端部近傍ま で延設されることで、 前記圧力発生室に連通して当該圧力発生室の幅より小さい 幅を有する液体供給路と、 この液体供給路と前記連通部とを連通すると共に前記 液体供給路の幅より大きい幅を有する連通路とが、 前記隔壁により前記圧力発生 室毎に区画して設けられていることを特徴とする液体噴射へッドにある。  According to a first aspect of the present invention for solving the above-mentioned object, there is provided a flow path forming substrate in which a plurality of pressure generating chambers communicating with a nozzle opening are arranged in parallel, and a flow path forming substrate provided through a diaphragm. A piezoelectric element comprising an electrode, a piezoelectric layer, and an upper electrode; and a reservoir which is joined to a surface of the flow path forming substrate on the piezoelectric element side and constitutes a part of a reservoir which is a common liquid chamber of each pressure generating chamber. A reservoir formed substrate provided with a reservoir, wherein the reservoir is composed of the reservoir and a communication portion provided in the flow path substrate, and partitions on both sides in the width direction of the pressure generating chamber are formed in the reservoir. A liquid supply passage communicating with the pressure generation chamber and having a width smaller than the width of the pressure generation chamber by extending to a portion near the end of the pressure generation chamber on the side of the pressure generation chamber; And a liquid supply passage for communicating with the communication portion. And a communication passage having a width larger than the width of the pressure generation chamber.
力かる第 1の態様では、 各液体供給路とリザーバとの間のそれぞれに違通路を 個別に設けることで、 クロストークの発生が防止され、 安定した液体吐出特性が 得られる。  In the vigorous first aspect, crosstalk is prevented from occurring by separately providing different paths between each liquid supply path and the reservoir, and stable liquid ejection characteristics can be obtained.
本発明の第 2の態様は、 第 1の態様において、 前記連通路の幅 W l と前記圧力 発生室の幅 w 2 との関係が W l ≥w 2 を満たすことを特徴とする液体噴射ヘッド にめ 。 A second aspect of the present invention, first in one aspect, the communication path liquid jet head relationship between the width W l and width w 2 of the pressure generating chamber and satisfies the W l ≥w 2 of Nime
かかる第 2の態様では、 所望の液体供給特性を確保できる。 ―  In the second aspect, desired liquid supply characteristics can be secured. ―
本発明の第 3の態様は、 第 1又は 2の態様において、 前記連通路の幅 W l と前 記液体供給路の幅 w 3 との関係が W l ≥ 2 X w 3 を満たすことを特徴とする液体 噴射へッドにある。 ' A third aspect of the present invention, in the first or second aspect, wherein the relationship between the width W l and before Symbol width w 3 of the liquid supply path of the communication passage meet W l ≥ 2 X w 3 In the liquid jet head. '
かかる第 3の態様では、 所定の大きさの連通路とすることで、 所望の液体供給 特性を確保できる。  In the third aspect, by providing the communication passage having a predetermined size, desired liquid supply characteristics can be secured.
本発明の第 4の態様は、 第 1〜 3の何れかの態様において、 前記連通路の長さ が前記流路形成基板の厚さ以上であることを特徴とする液体噴射へッドにある。 力かる第 4の態様では、 所定の長さ以上の連通路を設けることで、 クロストー クの発生がより効果的に防止される。 According to a fourth aspect of the present invention, in any one of the first to third aspects, the length of the communication path Is not less than the thickness of the flow path forming substrate. In the fourth aspect that is powerful, by providing a communication path having a predetermined length or more, the occurrence of crosstalk is more effectively prevented.
本発明の第 5の態様は、 第 1〜4の何れかの態 において、 前記隔壁の前記リ ザーバ部側の端部と当該リザーバ部との間の距離が前記流路形成基板の厚さより 短いことを特徴とする液体嘖射ヘッドにある。  In a fifth aspect of the present invention, in any one of the first to fourth aspects, a distance between an end of the partition wall on the reservoir section side and the reservoir section is shorter than a thickness of the flow path forming substrate. The liquid ejection head is characterized in that:
かかる第 5の態様では、 リザーパ部の圧力発生室側の端部近傍まで隔壁のリザ ーパ部側の端部が延設されるため、 クロストークの発生が防止される。  In the fifth aspect, since the end of the partition on the side of the reservoir is extended to near the end of the reservoir on the side of the pressure generating chamber, the occurrence of crosstalk is prevented.
本発明の第 6の態様は、 第 1〜 5の何れかの態様において、 前記圧電素子は、 無機絶縁材料からなる絶縁膜によって覆われていることを特徴とする液体噴射へ ッド【こめる。  A sixth aspect of the present invention is the liquid jet head according to any one of the first to fifth aspects, wherein the piezoelectric element is covered with an insulating film made of an inorganic insulating material.
かかる第 6の態様では、 水分透過率の低い無機絶縁材料からなる絶縁膜によつ て圧電体層が覆われるため、 水分 (湿気) に起因する圧電体層 (圧電素子) の劣 ィ匕 (破壊) が長期に渡って確実に防止される。  In the sixth aspect, since the piezoelectric layer is covered with the insulating film made of the inorganic insulating material having a low moisture permeability, the piezoelectric layer (piezoelectric element) due to moisture (moisture) is deteriorated. Destruction) is reliably prevented over a long period of time.
本発明の第 7の態様は、 第 6の態様において、 前記絶縁膜は、 A l 2 0 3 から なることを特徴とする液体噴射へッドにある。 A seventh aspect of the present invention, in the sixth aspect, wherein the insulating film is in the head to the liquid jet, characterized in that it consists of A l 2 0 3.
力かる第 7の態様では、 水分透過率の極めて低い金属酸化物からなる絶縁膜に よって圧電素子が覆われるため、 外部環境に起因する圧電体層の破壊が確実に防 止される。  In the vigorous seventh aspect, since the piezoelectric element is covered with the insulating film made of a metal oxide having a very low moisture permeability, the piezoelectric layer can be reliably prevented from being broken due to the external environment.
本発明の第 8の態様は、 第 1〜7の何れかの態様において、 前記リザーバ形成 基板には、 前記圧電素子に対向する領域に当該圧電素子の運動を阻害しない程度 の空間を確保可能な圧電素子保持部が設けられ、 且つリザーバ形成基板の前記圧 電素子保持部と前記リザーパ部との間の領域が前記流路形成基板との接合部分で あることを特徴とする液体噴射ヘッドにある。  According to an eighth aspect of the present invention, in any one of the first to seventh aspects, the reservoir forming substrate can secure a space in a region facing the piezoelectric element to such an extent that the movement of the piezoelectric element is not hindered. The liquid ejecting head is provided with a piezoelectric element holding portion, and a region of the reservoir forming substrate between the piezoelectric element holding portion and the reservoir portion is a joint portion with the flow path forming substrate. .
かかる第 8の態様では、 流路形成基板とリザーパ形成基板との接合部分のリザ ーバ部側の境界近傍まで隔壁を延設することにより、 両基板の剛性が確保され、 且つ、 液体供給路と連通部との間に連通路を個別に設けることで、 クロストーク の発生が防止される。  In the eighth aspect, the partition wall is extended to the vicinity of the boundary between the flow path forming substrate and the reservoir forming substrate on the side of the reservoir section, whereby the rigidity of both substrates is ensured, and the liquid supply path is formed. By separately providing communication paths between the communication part and the communication part, occurrence of crosstalk is prevented.
本発明の第 9の態様は、 第 8の態様において、 前記隔壁の前記リザーバ部側の 端部は、 前記接合部分に対向する領域内に位置していることを特徴とする液体嘖 射へッドにある。 According to a ninth aspect of the present invention, in the eighth aspect, the partition wall side of the reservoir portion is provided. The end is in the liquid projection head, which is located in a region facing the joining portion.
かかる第 9の態様では、 隔壁の端部が連通部内に突出することでリザ一バを形 成する際の障害となるのを確実に防止できる。  According to the ninth aspect, it is possible to reliably prevent the end of the partition from protruding into the communication portion, which is an obstacle to forming the reservoir.
本発明の第 1 0の態様は、 第 8又は 9の態様において、 前記接合部分の長さが 2 0 0 μ πι以上であることを特徴とする液体噴射へッドにある。  A tenth aspect of the present invention is the liquid jet head according to the eighth or ninth aspect, wherein the length of the joining portion is at least 200 μπι.
かかる第 1 0の態様では、 流路形成基板の圧力発生室の長手方向一端部側にあ るリザーパ形成基板との接合部分の長さを所定量以上とすることで、 リザーパ内 の液体に含まれる水分が圧電素子保持部内に実質的に透過することはなく、 圧電 素子の破壌が防止される。 また、 流路形成基板とリザーバ形成基板との剛性が高 められる。  In the tenth aspect, the length of the joint portion with the reservoir forming substrate on one end side in the longitudinal direction of the pressure generating chamber of the flow channel forming substrate is set to a predetermined amount or more, so that the liquid contained in the reservoir can be included. Moisture that does not substantially permeate into the piezoelectric element holding portion, and the rupture of the piezoelectric element is prevented. In addition, the rigidity between the flow path forming substrate and the reservoir forming substrate is increased.
本発明の第 1 1の態様は、 第 8〜1 0の何れかの態様において、.一端が前記圧 電素子保持部に連通すると共に他端が大気に開放される大気開放孔を具備するこ とを特徴とする液体噴射へッドにある。  According to a eleventh aspect of the present invention, in any one of the eighth to tenth aspects, there is provided an atmosphere opening hole having one end communicating with the piezoelectric element holding portion and the other end being open to the atmosphere. The liquid jet head is characterized in that:
かかる第 1 1の態様では、 圧電素子保持部が大気開放孔を介して大気に開放さ れるため、 圧電素子保持部内に結露が生じることはなく、 この結露に起因する圧 電素子の破壌が確実に防止される。  In the eleventh aspect, since the piezoelectric element holding portion is opened to the atmosphere through the air opening hole, no dew condensation occurs in the piezoelectric element holding portion, and the piezoelectric element breaks down due to the condensation. It is reliably prevented.
本発明の第 1 2の態様は、 第 1〜1 1の何れかの態様において、 前記流路形成 基板の厚さは、 1 0 0 πι以下であることを特徴とする液体噴射へッドにある。 かかる第 1 2の態様では、 隣接する圧力発生室間の隔壁の剛性を保ちつつ、 圧 力発生室を比較的高密度に配列することができる。  A twenty-second aspect of the present invention is the liquid jet head according to any one of the first to eleventh aspects, wherein the thickness of the flow path formation substrate is 100 πι or less. is there. In the first and second aspects, the pressure generating chambers can be arranged at a relatively high density while maintaining the rigidity of the partition wall between the adjacent pressure generating chambers.
本発明の第 1 3の態様は、 第 1〜1 2の何れかの態様において、 前記圧力発生 室がシリコン単結晶基板に異方性ェツチングにより形成されたものであることを 特徴とする液体噴射ヘッドにある。 ' かかる第 1 3の態様では、 高密度のノズル開口を有する液体噴射へッドを比較 的容易に 造することができる。  According to a thirteenth aspect of the present invention, in any one of the first to thirteenth aspects, the pressure generation chamber is formed by anisotropic etching on a silicon single crystal substrate. In the head. 'In the thirteenth aspect, a liquid jet head having a high-density nozzle opening can be relatively easily manufactured.
本発明の第 1 4の態様は、 第 1〜 1 3の何れかの態様の液体噴射べッドを具備 することを特徴とする液体噴射装置にある。  A fifteenth aspect of the present invention is a liquid ejecting apparatus including the liquid ejecting bed according to any one of the first to thirteenth aspects.
かかる第 1 4の態様では、 液体吐出特性が実質的に安定し且つ信頼性を向上し た液体噴射装置を実現することができる。 図面の簡単な説明 . In the fourteenth aspect, the liquid discharge characteristics are substantially stable and the reliability is improved. Liquid ejecting apparatus can be realized. Brief description of the drawings.
第 1図は、 実施形態 1に係るへッドの分解斜視図である。  FIG. 1 is an exploded perspective view of a head according to the first embodiment.
第 2図は、 実施形態 1に係るへッドの平面図及ぴ断面図である。  FIG. 2 is a plan view and a cross-sectional view of the head according to the first embodiment.
第 3図は、 実施形態 1に係るへッドの流路構造を示す断面図である。  FIG. 3 is a cross-sectional view illustrating a flow channel structure of the head according to the first embodiment.
第 4図は、 実施形態 1に係る他のへッドの断面図である。  FIG. 4 is a sectional view of another head according to the first embodiment.
第 5図は、 同時吐出数とクロストーク率との関係を示す図である。  FIG. 5 is a diagram showing the relationship between the number of simultaneous ejections and the crosstalk rate.
第 6図は、 実施形態 1に係るへッドの製造工程を示す断面図である。  FIG. 6 is a cross-sectional view showing a manufacturing process of the head according to the first embodiment.
第 7図は、 実施形態 1に係るヘッドの製造工程を示す断面図である。  FIG. 7 is a sectional view showing a manufacturing process of the head according to the first embodiment.
第 8図は、 記録ヘッドの一例を示す概略図である。 本発明を実施するための最良の形態  FIG. 8 is a schematic diagram showing an example of a recording head. BEST MODE FOR CARRYING OUT THE INVENTION
' 以下に本発明を実施形態に基づいて詳細に説明する。  'Hereinafter, the present invention will be described in detail based on embodiments.
(実施形態 1 )  (Embodiment 1)
第 1図は、 実施形態 1に係るィンクジヱット式記録へッドの分解斜視図であり 、 第 2図は、 第 1図の概略平面図及びその A— A' 断面図である。 図示するよう に、 流路形成基板 1 0は、.本実施形態では面方位 (1 1 0 ) のシリコン単結晶基 板からなり、 その両面には予め熱酸化により形成した二酸化シリコンからなる弾 性膜 5 0、 及ぴ後述する圧力発生室を形成する際にマスクとして用いられるマス クパターン 5 1が設けられている。  FIG. 1 is an exploded perspective view of an ink jet recording head according to Embodiment 1, and FIG. 2 is a schematic plan view of FIG. 1 and a cross-sectional view taken along line AA ′. As shown in the figure, the flow path forming substrate 10 is composed of a silicon single crystal substrate having a plane orientation (110) in this embodiment, and has elasticity composed of silicon dioxide formed in advance by thermal oxidation on both surfaces. A film 50 and a mask pattern 51 used as a mask when forming a pressure generating chamber described later are provided.
この流路形成基板 1 0には、 その他方面側から異方性エッチングすることによ り、 複数の隔壁 1 1によって区画された圧力発生室 1 2が幅方向に並設され、 つ まり、 ノズルの並設方向と平行して配列され、 且つその長手方向 (ノズノレの並設 方向と直交する方向) の一端部側には、 圧力発生室 1 2と共に、 インク供給路 1 4と、 連通路 1 0 0と、 各圧力発生室 1 2の共通のインク室となるリザーパ 1 1 ' 0の一部を構成する連通部 1 3とが形成されている。  The pressure generating chambers 12 divided by the plurality of partition walls 11 are arranged in the width direction on the flow path forming substrate 10 by anisotropic etching from the other side, that is, the nozzle The pressure generating chamber 12, the ink supply path 14, and the communication path 1 are arranged at one end in the longitudinal direction (the direction orthogonal to the direction in which the nozzles are arranged). 0 and a communication portion 13 forming a part of a reservoir 11 ′ ′ 0 serving as a common ink chamber for each pressure generating chamber 12 are formed.
インク供給路 1 4は、 圧力発生室 1 2の長手方向一端部側に連通し且つ圧力発 生室 1 2より小さい断面積を有する。 例えば、 本実施形態では、 インク供給路 1 4は、 リザーパ 1 1 0と各圧力発生室 1 2との間の圧力発生室 1 2側の流路を幅 方向に絞ることで、 圧力発生室 1 2の幅より小さい幅で形成されている。 なお、 ■ このように、 本実施形態では、 流路の幅を片側から絞ることでインク供給路 14 を形成したが、 '·流路の幅を両側から絞ることでィンク供給路を形成してもよい。 . また、 各連通路 1 00は、 圧力発生室 1 2の幅方向両側の隔壁 1 1を連通部 1 3 側 延設してインク供給路 14と連通部 1 3との間の空間を区画することで形成 されている。 なお、 連通路 1 00については、 詳しく後述する。 The ink supply path 14 communicates with one longitudinal end of the pressure generating chamber 12 and has a smaller cross-sectional area than the pressure generating chamber 12. For example, in the present embodiment, the ink supply path 1 4 is formed to have a width smaller than the width of the pressure generating chamber 12 by narrowing the flow path on the side of the pressure generating chamber 12 between the reservoir 110 and each of the pressure generating chambers 12 in the width direction. . In this embodiment, as described above, in the present embodiment, the ink supply path 14 is formed by reducing the width of the flow path from one side. However, the ink supply path is formed by reducing the width of the flow path from both sides. Is also good. Further, each communication passage 100 is formed by extending the partition walls 11 on both sides in the width direction of the pressure generating chamber 12 to the communication portion 13 side to define a space between the ink supply passage 14 and the communication portion 13. It is formed by things. The communication passage 100 will be described later in detail.
ここで、 異方性エッチングは、 シリコン単結晶基板のエッチングレートの違い を利用して行われる。 例えば、 本実施形態では、 シリコン単結晶基板を KOH等 のアルカリ溶液に浸漬すると、 徐々に侵食されて (1 1 0) 面に垂庳な第 1の ( 1 1 1) 面と、 この第 1の (1 1 1) 面と約 70度の角度をなし且つ上記 (1 1 0) 面と約 3 5度の角度をなす第 2の (.1 1 1) 面とが出現し、 (1 1 0) 面の エッチングレートと比較して (1 1 1) 面のエッチングレートが約 1Z180で あるという性質を利用して行われる。 かかる異方性エッチングにより、 二つの第 1の (1 1 1) 面と斜めの二つの第 2の (1 1 1) 面とで形成される平行四辺形 状の深さ加工を基本として精密加工を行うことができ、 圧力発生室 1 2を高密度 に配列することができる。  Here, the anisotropic etching is performed by utilizing the difference in the etching rate of the silicon single crystal substrate. For example, in the present embodiment, when a silicon single crystal substrate is immersed in an alkaline solution such as KOH, the substrate is gradually eroded, and the first (111) surface is perpendicular to the (110) surface. A second (.1 1 1) plane which forms an angle of about 70 degrees with the (1 1 1) plane of the above and forms an angle of about 35 degrees with the above (1 110) plane appears, and (1 1 This is performed by using the property that the etching rate of the (1 1 1) plane is about 1Z180 compared to the etching rate of the 0) plane. By such anisotropic etching, precision processing is performed based on parallelogram-shaped depth processing formed by two first (1 1 1) planes and two diagonal second (1 1 1) planes. The pressure generating chambers 12 can be arranged at a high density.
本実施形態では、 各圧力発生室 1 2の長辺を第 1の (1 1 1) 面で、 短辺を第 2の (1 1 1) 面で形成している。 この圧力発生室 1 2は、 流路形成基板 1 0を ほぼ貫通して弾性膜 50に達するまでエッチングすることにより形成されている 。 ここで、 弾性膜 50は、 シリコン単結晶基板をェツチングするアル力リ溶液に 侵される量がきわめて小さい。  In the present embodiment, the long side of each pressure generating chamber 12 is formed by the first (11 1) surface, and the short side is formed by the second (11 1) surface. The pressure generating chamber 12 is formed by etching until it reaches the elastic film 50 substantially through the flow path forming substrate 10. Here, the amount of the elastic film 50 which is affected by the solution for etching the silicon single crystal substrate is extremely small.
このような流路形成基板 1 0の厚さは、 圧力発生室 1 2の配列密度に合わせて 最適な厚さを選択すればよく、 圧力発生室 1 2の配列密度が、 例えば、 1インチ 当たり 1 80個 (1 80 d p i) 程度であれば、 流路形成基板 1 0の厚さは、 2 2 0 μ m程度であればよいが、 例えば、 200 d p i以上と比較的高密度に配列 する場合には、 流路形成基板 1 0の厚さは 1 00 μΐη以下、 特に 70 zmと比較 的薄くするのが好ましい。 これは、 ,接する圧力発生室 1 2間の隔壁 1 1の剛性 を保ちつつ、 配列密度を高くできるからである。 また、 流路形成基板 1 0の開口面側には、 ノズル開口 2 1が穿設されたノズル プレート 2 0が接合されている。 このようなノズルプレート 2 0は、 厚さが例え ば、 0 . 0 5〜 1 mmで、 ガラスセラミックス、 シリコン単結晶基板又は不鲭鋼 などからなる。 ノズルプレート 2 0は、 一方の面で流路形成基板 i 0の一面を全 面的に覆い、 流路形成基板 1 0を衝撃や外力から保護する補強板の役目も果たす 。 ここで、 インク滴吐出圧力をインクに与える圧力発生室 1 2の大きさと、 イン ク滴を吐出するノズル開口 2 1の大きさとは、 吐出するインク滴の量、 吐出スピ ード、 吐出周波数に応じて最適化される。 例えば、 1インチ当たり 3 6 0個のィ ンク滴を記録する場合、 ノズル開口 2 1は数十 μ mの直径で精度よく形成する必 要がある。 The thickness of the flow path forming substrate 10 may be selected in accordance with the arrangement density of the pressure generating chambers 12, and the arrangement density of the pressure generating chambers 12 may be, for example, per inch. If the number is about 180 (180 dpi), the thickness of the flow path forming substrate 10 may be about 220 μm. For example, when the array is arranged at a relatively high density of 200 dpi or more. In this case, it is preferable that the thickness of the flow path forming substrate 10 is 100 μΐη or less, particularly, 70 zm. This is because the arrangement density can be increased while maintaining the rigidity of the partition wall 11 between the adjacent pressure generating chambers 12. Further, a nozzle plate 20 having a nozzle opening 21 formed therein is joined to the opening surface side of the flow path forming substrate 10. Such a nozzle plate 20 has a thickness of, for example, 0.05 to 1 mm and is made of glass ceramics, a silicon single crystal substrate, or stainless steel. The nozzle plate 20 entirely covers one surface of the flow path forming substrate i0 with one surface, and also serves as a reinforcing plate for protecting the flow path forming substrate 10 from impacts and external forces. Here, the size of the pressure generating chamber 12 for applying the ink droplet ejection pressure to the ink and the size of the nozzle opening 21 for ejecting the ink droplet depend on the amount of the ejected ink droplet, the ejection speed, and the ejection frequency. Optimized accordingly. For example, when recording 360 ink drops per inch, the nozzle opening 21 needs to be formed with a diameter of several tens of μm with high accuracy.
一方、 流路形成基板 1 0の開口面とは反対側には、 厚さが例えば、 約 1 . 0 μ mの弾性膜 5 0の上に、 厚さが例えば、 0 . 4 μ πιの絶縁体膜 5 5を介して、 厚 さが例えば、 約 0 . 2 μ παの下電極膜 6 0と、 厚さが例えば、 約 1 . Ο μ πιの圧 電体層 7 0と、 厚さが例えば、 約 0 . 0 5 /x mの上電極膜 8 0とが、 後述するプ ロセ'スで積層形成されて、 圧電素子 3 0 0を構成している。 ここで、 圧電素子 3 0 0は、 下電極膜 6 0、 圧電体層 7 0、 及び上電極膜 8 0を含む部分をいう。 一 般的には、 圧電素子 3 0 0の何れか一方の電極を共通電極とし、 他方の電極及ぴ 圧電体層 7 0を各圧力発生室 1 2毎にパターユングして構成する。 そして、 ここ ではパターユングされた何れか一方の電極及び圧電体層 7 0から構成され、 両電 極への電圧の印加により圧電歪みが生じる部分を圧電体能動部という。 本実施形 態では、 下電極膜 6 0を圧電素子 3 0 0の共通電極とし、 上電極膜 8 0を圧電素 子 3 0 0の倜別電極としているが、 駆動回路や配線の都合でこれを逆にしても支 障はない。 何れの場合においても、 圧力発生室毎に圧電体能動部が形成されてい ることになる。 また、 ここでは、 圧電素子 3 0 0と当該圧電素子 3 Ό 0の駆動に より変位が生じる振動板とを合わせて圧電ァクチユエータと称する。 なお、 上述 した例では、 弾性膜 5 0、 絶縁体膜 5 5及び下電極膜 6 0が振動板として作用す る。  On the other hand, on the side opposite to the opening surface of the flow path forming substrate 10, an insulating film 50 having a thickness of, for example, 0.4 μππι is placed on an elastic film 50 having a thickness of, for example, about 1.0 μm. Through the body film 55, the lower electrode film 60 having a thickness of, for example, about 0.2 μπα, the piezoelectric layer 70 having a thickness of, for example, about 1.2 μππ, and the thickness For example, a piezoelectric element 300 is formed by laminating an upper electrode film 80 of about 0.05 / xm in a process described later. Here, the piezoelectric element 300 refers to a portion including the lower electrode film 60, the piezoelectric layer 70, and the upper electrode film 80. Generally, any one of the electrodes of the piezoelectric element 300 is used as a common electrode, and the other electrode and the piezoelectric layer 70 are patterned for each of the pressure generating chambers 12. Here, a portion which is constituted by either one of the patterned electrodes and the piezoelectric layer 70 and in which a piezoelectric strain is generated by applying a voltage to both electrodes is referred to as a piezoelectric active portion. In the present embodiment, the lower electrode film 60 is used as a common electrode of the piezoelectric element 300, and the upper electrode film 80 is used as a separate electrode of the piezoelectric element 300. There is no problem even if it is reversed. In any case, a piezoelectric active portion is formed for each pressure generating chamber. Further, here, the piezoelectric element 300 and a vibration plate whose displacement is generated by driving the piezoelectric element 300 are collectively referred to as a piezoelectric actuator. In the example described above, the elastic film 50, the insulator film 55, and the lower electrode film 60 function as a diaphragm.
圧電体層 7 0の材料としては、 例えば、 チタン酸ジルコン酸鉛 ( P Z T) 等の 強誘電性圧電性材料に、 ニオブ、 ニッケル、 マグネシウム、 ビスマス又はイツテ ルビゥム等の金属を添加したリラクサ強誘電体等を用いてもよい。 その組成は、 圧電素子の特性、 用途等を考慮して適宜選択すればよいが、 例えば、 P b T i O a (PT) 、 P b Z r 03 . (P Z) 、 P b (Z r x T i ! _ x ) 03 (P ZT) 、 P b (M g ! / 3 N b 2 / 3 ) 03 -P b T i 03 (PMN-PT) 、 P b ( Z n ! / 3 N b 2 / 3 ) 03 -P b T i 03 (P ZN-PT) 、 P b (N i x x a Nb 2 / 3 ) 03 -P b T i 03 (PNN-PT) 、 P b ( I n1 χ 2 Nb ' / 2 ) 03 - P b T i O 3 (P I N-PT) 、 P b (S C l / 3 T a 1 / 2 ) O a -P b T i 03 (P ST— PT) 、 P b (S c 1 / 3 Nb 1 / 2 ) 03 -P b T i〇3 (P SN— PT) 、 B i S c 03 — P b T i 03 (B S— PT) 、 B i Yb 03 -P b T i 03 (BY— PT) 等が挙げられる。 Examples of the material of the piezoelectric layer 70 include a ferroelectric piezoelectric material such as lead zirconate titanate (PZT), niobium, nickel, magnesium, bismuth, and iron. A relaxor ferroelectric or the like to which a metal such as rubidium is added may be used. Its composition, characteristics of the piezoelectric element 70 may be chosen, as appropriate, in consideration of the use and the like, for example, P b T i O a ( PT), P b Z r 0 3. (PZ), P b (Z r x T i! _ x) 0 3 (P ZT), P b (M g! / 3 N b 2/3) 0 3 -P b T i 0 3 (PMN-PT), P b (Z n! / 3 N b 2/3) 0 3 -P b T i 0 3 (P ZN-PT), P b (N i xx a Nb 2/3) 0 3 -P b T i 0 3 (PNN-PT), P b (I n 1 χ 2 Nb '/ 2) 0 3 -P b T i O 3 (PI N-PT), P b (S C l / 3 T a 1/2 ) O a -P b T i 0 3 (P ST— PT), P b (S c 1/3 Nb 1/2 ) 0 3 -P b T i〇 3 (P SN— PT), B i S c 0 3 — P b T i 0 3 (BS- PT), B i Yb 0 3 -P b T i 0 3 (BY- PT) , and the like.
そして、 このような圧電体層 70で構成される圧電素子 300の個別電極であ る各上電極膜 80の一端部には、 例えば、 金 (Au) 等からなり一端が後述する 貫通孔 3 3に対応する領域にまで延設されたリード電極 90が接続されている。 また、 圧電素子 300は、 無機絶縁材料からなる絶縁膜 200によつて覆われて いる。 例えば、 本実施形態では、 圧電素子 300を構成する各層及びリード電極 90のパターン領域が、 下電極膜 60及びリード電極 90の図示しない駆動 I C と接続配線を介して接続される接続部 60 a、 90 aに対向する領域を除いて、 絶縁膜 200によって覆われている。 すなわち、 パターン領域の下電極膜 6 0、 圧電体層 70、 上電極膜 80及ぴリード電極 90の表面 (上面及ぴ端面) が絶縁 膜 200によって覆われている。  One end of each upper electrode film 80, which is an individual electrode of the piezoelectric element 300 composed of the piezoelectric layer 70, is made of, for example, gold (Au) or the like, and one end of which is a through hole 33 described later. The lead electrode 90 extended to the region corresponding to the above is connected. Further, the piezoelectric element 300 is covered with an insulating film 200 made of an inorganic insulating material. For example, in the present embodiment, the connection portions 60 a, in which each layer constituting the piezoelectric element 300 and the pattern region of the lead electrode 90 are connected to a drive IC (not shown) of the lower electrode film 60 and the lead electrode 90 via connection wiring, Except for the region facing 90a, it is covered with the insulating film 200. That is, the surfaces (the upper surface and the end surface) of the lower electrode film 60, the piezoelectric layer 70, the upper electrode film 80, and the lead electrode 90 in the pattern region are covered with the insulating film 200.
ここで、 このような絶縁膜 200の材料としては、 無機絶縁材料であれば、 特 に限定されず、 例えば、 酸ィヒアルミニウム (A l 2 03 ) 、 五酸化タンタル (T a 2 05 ) 、 二酸化ケイ素 (S i 02 ) 等が挙げられるが、 好適には酸ィヒアルミ ニゥム (A l。 03 ) を用いるのがよい。 特に、 酸ィ匕アルミニウムを用いた場合 、 絶縁膜 200が、 1 00 nm程度の薄膜で形成されていても、 高湿度環境下で の水分透過を十分に防ぐことができる。 なお、 絶縁膜の材料として、 例えば、 樹 脂等の有機絶縁材料を用いるとなると、 上記無機絶縁材料の絶縁膜と同程度の薄Here, as the material of such an insulating film 200, if an inorganic insulating material is not limited especially, for example, acid I arsenide aluminum (A l 2 0 3), tantalum pentoxide (T a 2 0 5 ), although silicon (S i 0 2) or the like dioxide and the like, it is preferable to use a suitably acid Ihiarumi Niumu (a l. 0 3). In particular, when aluminum oxide is used, even if the insulating film 200 is formed as a thin film having a thickness of about 100 nm, it is possible to sufficiently prevent moisture permeation in a high humidity environment. When an organic insulating material such as a resin is used as the material of the insulating film, for example, the same thickness as the insulating film of the inorganic insulating material is used.
' さでは、 水分透過を十分に防ぐことができない。 また、 水分透過を防ぐために絶 縁膜の膜厚を厚くすると、 圧電素子の運動を妨げるという事態を招く虞がある。 このような無機絶縁材料からなる絶縁膜 2 0 0は、 薄膜でも水分の透過性が極 めて低いため、 この絶縁膜 2 0 0によって、 下電極膜 6 0、 圧電体層 7 0、 上電 極膜 8 0及ぴリード電極 9 0の表面を覆うことにより、 圧電体層 7 0の水分 (湿 気) に起因する破壌を防止することができる。 また、 接続部 6 0 a, 9 0 aを除 いて、 圧電素子 3 0 0を構成する各層及びリード電極 9 0の表面を覆うようにす ることで、 これらの層と絶縁膜 2 0 0との間から水分が侵入した場合でも、 圧電 体層 7ひまで水分が達するのを防ぐことができ、 圧電体層 7 0の水分に起因する 破壌をより確実に防止することができる。 'Well, we cannot fully prevent water permeation. Further, if the thickness of the insulating film is increased in order to prevent moisture permeation, there is a possibility that the movement of the piezoelectric element may be hindered. Since the insulating film 200 made of such an inorganic insulating material has extremely low moisture permeability even in a thin film, the insulating film 200 allows the lower electrode film 60, the piezoelectric layer 70, and the upper electrode By covering the surfaces of the electrode film 80 and the lead electrode 90, it is possible to prevent rupture due to moisture (moisture) of the piezoelectric layer 70. In addition, by covering the layers constituting the piezoelectric element 300 and the surface of the lead electrode 90 except for the connection portions 60a and 90a, these layers and the insulating film 200 are formed. Even if moisture invades from between, it is possible to prevent moisture from reaching the piezoelectric layer 7, and it is possible to more reliably prevent breakage due to moisture in the piezoelectric layer 70.
また、 圧電素子 3 0 0が形成された流路形成基板 1 0上には、 リザーパ形成基 板 3 0が接合されている。 そして、 このリザーパ形成基板 3 0には、 リザーバ 1 1 0の一部を構成するリザーバ部 3 2が、 各圧力発生室 1 2の長手方向外側に設 けられている。 このリザーパ部 3 2は、 本実施形態では、 リザーバ形成基板 3 0 を厚さ方向に貫通して圧力発生室 1 2の幅方向に亘つて形成されており、 弾性膜 5 0、 及び絶縁体膜 5 5に設けられた貫通部を介して流路形成基板 1 0の連通部 1 3と連通され、 各圧力発生室 1 2の共通のインク室となるリザーバ 1 1 0をそ れぞれ構成している。 なお、 このようなリザーパ形成基板 3 0の厚さは、 例えば 、 2 0 0〜4 0 0 μ πιである。  In addition, a reservoir forming substrate 30 is bonded on the flow path forming substrate 10 on which the piezoelectric elements 300 are formed. The reservoir forming substrate 30 is provided with a reservoir portion 32 that constitutes a part of the reservoir 110, and is provided outside the pressure generating chambers 12 in the longitudinal direction. In the present embodiment, the reservoir portion 32 is formed so as to penetrate the reservoir forming substrate 30 in the thickness direction and to extend in the width direction of the pressure generating chamber 12. The elastic film 50 and the insulator film 5 Reservoirs 110 which are communicated with the communicating portions 13 of the flow path forming substrate 10 via the through portions provided in 5 and serve as common ink chambers of the pressure generating chambers 12 are respectively formed. ing. The thickness of the reservoir forming substrate 30 is, for example, 200 to 400 μπι.
また、 このようなリザーパ形成基板 3 0には、 本実施形態では、 圧電素子 3 0 0に対向する領域にその運動を阻害しない程度の空間を確保可能な圧電素子保持 部 3 1が設けられている。 すなわち、 圧電素子 3 0 0は、 圧電素子保持部 3 1内 に形成されている。  Further, in the present embodiment, such a reservoir forming substrate 30 is provided with a piezoelectric element holding portion 31 capable of securing a space in a region facing the piezoelectric element 300 so as not to hinder its movement. I have. That is, the piezoelectric element 300 is formed in the piezoelectric element holding section 31.
さらに、 本実施形態.では、 このリザーパ形成基板 3 0には、 一端が圧電素子保 持部 3 1に連通すると共に他端が大気に開放される大気開放孔 3 1 aが設けられ ている。 すなわち、 圧電素子保持部 3 1は、 圧電素子 3 0 0を密封することなく 、 大気開放孔 3 i aによって大気に開放される。 これにより、 圧電素子保持部 3 1内に結露が生じるのを防止でき、 この結露に起因する圧電素子 3 0 0の破壌を 確実に防止できる。 なお、 このような大気開放孔 3 1 aの他端は、 例えば、 リザ ーバ形成基板 3 0の圧電素子保持部 3 1側とは反対側の面上に設けられ.た配線や この配線上に実装される駆動 I C等と干渉しない領域で大気に開放される。 また、 このようなリザーバ形成基板 30のリザーバ 1 1 0と流路形成基板 1 0 の各圧力発生室 1 2とは、 ィンク供給路 14及び連通路 1 00を介してそれぞれ 連通している。 ここで、 第 3図を参照して連通路 1 00について詳述する。 なお 、 第 3図は、 実施形態 1に係るィンクジヱット式記録へッドの流路構造を示す断 面図である。 第 3図に示すように、 連通路 1 00は、 各インク供給路 14と連通 部 1 3との間に各圧力発生室 1 2毎にそれぞれ独立して設けられ、 インク供給路 14と共に各圧力発生室 1 2とリザーパ 1 1 0との間の個別の流路を構成してい る。 Further, in the present embodiment, the reservoir forming substrate 30 is provided with an atmosphere opening hole 31a whose one end communicates with the piezoelectric element holding portion 31 and whose other end is open to the atmosphere. That is, the piezoelectric element holding portion 31 is opened to the atmosphere through the air opening hole 3 ia without sealing the piezoelectric element 300. As a result, it is possible to prevent dew condensation from occurring in the piezoelectric element holding portion 31, and it is possible to reliably prevent the piezoelectric element 300 from breaking due to the dew condensation. The other end of the open-to-air hole 31 a is provided, for example, on the surface of the reservoir forming substrate 30 on the side opposite to the piezoelectric element holding portion 31 side. It is open to the atmosphere in a region that does not interfere with the drive IC mounted on the device. Further, the reservoir 110 of the reservoir forming substrate 30 and the pressure generating chambers 12 of the flow path forming substrate 10 communicate with each other via the ink supply path 14 and the communication path 100. Here, the communication passage 100 will be described in detail with reference to FIG. FIG. 3 is a cross-sectional view showing the flow path structure of the ink jet recording head according to the first embodiment. As shown in FIG. 3, the communication paths 100 are provided independently for each of the pressure generating chambers 12 between each ink supply path 14 and the communication section 13, and each of the pressure supply chambers An individual flow path is formed between the generation chamber 12 and the reservoir 110.
具体的には、 リザーバ部 3 2の圧力発生室 1 2側の端部近傍まで、 圧力発生室 1 2の幅方向両側の隔壁 1 1が延設されている。 すなわち、 本実施形態では、 圧 力発生室 1 2の幅方向両側の隔壁 1 1が、 流路形成基板 1 0とリザーバ形成基板 30との接合部分のリザーパ部 3 2側の端部近傍まで延設されている。 そして、 このように各隔壁 1 1を延設することにより、 各インク供給路 14と連通部 1 3 とのそれぞれの間に壁部 1 1 aが形成され、 この壁部 1 1 aによりインク供給路 1 4と連通部 1 3との間の空間が区画されることにより各連通路 1 00が形成さ れている。  Specifically, the partition walls 11 on both sides in the width direction of the pressure generation chamber 12 are extended to near the end of the reservoir section 32 on the pressure generation chamber 12 side. That is, in the present embodiment, the partition walls 11 on both sides in the width direction of the pressure generation chamber 12 extend to the vicinity of the end on the side of the reservoir part 32 at the junction between the flow path forming substrate 10 and the reservoir forming substrate 30. Is established. By extending each partition 11 in this manner, a wall 11a is formed between each ink supply path 14 and the communication portion 13 and ink is supplied by the wall 11a. Each communication path 100 is formed by partitioning a space between the path 14 and the communication portion 13.
また、 連通路 1 00の幅は、 比較的広く形成することが好ましく、 例えば、 連 通路 1 00の幅 Wl と圧力発生室 1 2の幅 w2 との関係が、 Wl ≥w2 を満たし ていることが望ましい。 さらに、 違通路 1 00の幅 Wl とインク供給路 14の幅 w3 との関係が、 w1 ≥ 2 Xw3 を満たしていることが望ましい。 このように、 連通路 1 00を所定の大きさに設けることで、 所望のインク供給特性を得ること ができる。 ここで、 インクとしては、 使用環境が約 1 0〜40°Cの温度範囲にお いて、 粘度が約 2. 0〜1 2. OmP a · s e cの範囲内のものを使用する。 具 体的には、 通常のィンクとしては、 粘度が約 2. 0〜6. 5mP a · s e cの範 囲内のものが挙げられ、 高粘度である顔料インクとしては、 粘度が約 8〜1 lm P a . s e cの範囲内のものが挙げられる。 The width of the communication path 1 00 is preferably a relatively wider, for example, the relationship between the width w 2 of the width Wl and the pressure generating chamber 1 2 of the communication passage 1 00, satisfy the Wl ≥W 2 Is desirable. Furthermore, the relationship between the width w 3 of違通path 1 00 having a width Wl and the ink supply path 14, it is desirable that meets w 1 ≥ 2 Xw 3. Thus, by providing the communication path 100 with a predetermined size, desired ink supply characteristics can be obtained. Here, as the ink, an ink having a viscosity in a range of about 2.0 to 12.2 OmPa · sec in a use environment in a temperature range of about 10 to 40 ° C is used. Specifically, a normal ink has a viscosity in the range of about 2.0 to 6.5 mPa · sec, and a high-viscosity pigment ink has a viscosity of about 8 to 1 lm. Sec within the range of Pa.sec.
このように本実施形態では、 流路形成基板 1 0の圧力発生室 1 2の長手方向一 端部にあるリザーバ形成基板 3 0との接合部分に対向する領域、 具体的には、 各 インク供給路 14とリザーバ 1 1 0との間に、 壁部 1 1 aによって圧力発生室 1 2毎に独立して連通路 1 0 0を所定幅で設けるようにしたので、 インク吐出の際 、 隣接するインク供給路 1 4からリザーパ 1 1 0側へ流出する'インク同士が干渉 することがなく、 クロストークの発生を防止できる。 したがって、 隣接するノズ ル開口 2 1からインク滴を吐出させるか否かに関係なく、 安定したインク吐出特 性を得ることができる。 また、 クロストークを発生させることなくインク供給路 1 4を短くすることができ、 メニスカスの減衰特性を実質的に高めてヘッドの高 速駆動を実現することも可能となる。 As described above, in the present embodiment, the region facing the joint with the reservoir forming substrate 30 at one end in the longitudinal direction of the pressure generating chamber 12 of the flow path forming substrate 10, specifically, each ink supply Between the channel 14 and the reservoir 110, the wall 1 1a creates a pressure chamber 1 Since the communication path 100 is provided with a predetermined width independently for each of the two inks, the ink flowing from the adjacent ink supply path 14 to the reservoir 110 side during ink discharge may interfere with each other. Therefore, the occurrence of crosstalk can be prevented. Therefore, regardless of whether or not ink droplets are ejected from the adjacent nozzle opening 21, stable ink ejection characteristics can be obtained. In addition, the ink supply path 14 can be shortened without generating crosstalk, and the high-speed driving of the head can be realized by substantially increasing the meniscus attenuation characteristics.
また、 本発明では、 壁部 1 1 aを所定の長さ以上に設けることで、 連通路 1 0 0の長さ (第 3図参照) を所定の長さ以上とするのが好ましく、 具体的には 、 連通路 1 0 0の長さ 流路形成基板 1 0の厚さ以上とするのが好ましい。 なお 、 連通路 1 0 0の長さ 1^は、 連通路 1 0 0の幅 W l を確保する領域に対応して いる。 これにより、 インク吐出の際、 隣接するインク供給路 1 4からリザーバ 1 1 0側へ流出するインク同士が、 連通路 1 0 0に沿ってリザーバ 1 1 0にそれぞ れ個別に流出するため相互に干渉することがなく、 クロストークの発生を有効に 防止することができる。 例えば、 本実施形態では、 流路形成基板 1 0の厚さを約 7 0 μ πιとし、 連通路 1 0 0の長さを約 1 0 0 μ ΐηとした。 なお、 このように連 通路 1 0 0の長さを流路形成基板 1 0の厚さ以上とすることで、 詳細は後述する 1 リザーバ形成基板 3 0の圧電素子保持部 3 1とリザーパ部 3 2との間の流路 形成基板 1 0との接合部分の長さ Lを十分に確保することができる。 Further, in the present invention, it is preferable that the length of the communication passage 100 (see FIG. 3) be equal to or longer than a predetermined length by providing the wall portion 11a with a predetermined length or longer. It is preferable that the length of the communication passage 100 be equal to or greater than the thickness of the passage forming substrate 10. Note that the length 1 ^ of the communication passage 100 corresponds to a region where the width Wl of the communication passage 100 is secured. As a result, at the time of ink ejection, the ink flowing out from the adjacent ink supply path 14 to the reservoir 110 side flows separately to the reservoir 110 along the communication path 100, so that the inks flow out from each other. Therefore, the occurrence of crosstalk can be effectively prevented without interfering with the communication. For example, in the present embodiment, the thickness of the flow path forming substrate 10 is set to about 70 μππ, and the length of the communication path 100 is set to about 100 μπη. By setting the length of the communication path 100 to be equal to or greater than the thickness of the flow path forming substrate 10 in this manner, the piezoelectric element holding portion 31 and the reservoir portion 3 of the reservoir forming substrate 30 described later in detail will be described. 2, the length L of the joint portion with the flow path forming substrate 10 can be sufficiently ensured.
ここで、 圧電素子保持部 3 1とリザーバ 1 1 0との間の流路形成基板 1 0とリ ザーバ形成基板 3 0との接合部分の長さ L (第 2図参照) は、 2 0 0 / m以上で あることが好ましい。 これにより、 圧電素子保持部 3 1とリザーパ部 3 2との距 離を確保でき、 リザーバ 1 1 0内のィンクに含まれる水分が圧電素子保持部 3 1 内 侵入するのを防止でき、 水分によって圧電素子 3 0 0が破壌されるのを確実 に防止することができる。 また、 流路形成基板 1 0とリザーバ形成基板 3 0との 接合面積が大きくなるので、 両基板の爾性を十分に確保でき、 ヘッドの耐久性を 向上できるという効果もある。  Here, the length L (see FIG. 2) of the joint between the flow path forming substrate 10 and the reservoir forming substrate 30 between the piezoelectric element holding portion 31 and the reservoir 110 is 200 / m or more. As a result, the distance between the piezoelectric element holding portion 31 and the reservoir portion 32 can be ensured, and the water contained in the ink in the reservoir 110 can be prevented from entering the piezoelectric element holding portion 31. It is possible to reliably prevent the piezoelectric element 300 from bursting. In addition, since the joint area between the flow path forming substrate 10 and the reservoir forming substrate 30 is increased, there is also an effect that the flexibility of both substrates can be sufficiently ensured and the durability of the head can be improved.
なお、 連通路 1 0 0を形成する壁部 1 1 aのリザーパ部 3 2側の端部は、 流路 形成基板 1 0とリザーバ形成基板 3 0とが接合される接合部分に対向する領域内 に位置していることが好ましい。 壁部 1 1 aの端部が連通部 1 3内に突出してい ると、 後述する製造プロセスにおいて、 連通部 1 3とリザーパ部 3 2とを隔てる 弾性膜 5 0及び絶縁体膜 5 5を破ってリザーバ 1 1 0を形成する際の障害となる からである。 Note that the end of the wall portion 11 a forming the communication passage 100 on the reservoir portion 32 side is in a region opposed to a joint portion where the flow passage forming substrate 10 and the reservoir forming substrate 30 are joined. Is preferably located. If the end of the wall portion 11a protrudes into the communication portion 13, the elastic film 50 and the insulator film 55 separating the communication portion 13 and the reservoir portion 32 will be broken in a manufacturing process described later. This is an obstacle to the formation of the reservoir 110.
また、 本発明では、 隔壁 1 1 (壁部 1 1 a ) のリザーバ部 3 2側の端部とその リザーバ部 3 2との距離を小さくするのが好ましい。 具体的には、 第 4図に示す ように、 隔壁 1 1のリザーバ部 3 2側の端部とそのリザーバ部 3 2との間の距離 Sを流路形成基板 1 0の厚さより短くするのが好ましい。 これにより、 リザーバ 部 3 2の圧力発生室 1 2側の端部近傍まで隔壁 1 1が延設され、 インク供給路 1 4と連通部 1 3 (リザーバ 1 1 0 ) との間の空間、 具体的には、 流路形成基板 1 0のみで構成され圧力発生室 1 2の幅方向に広がる空間を壁部 1 l .aによって区 画して小さくできるため、 隣り合う連通路 1 0 O Aから流出するインク同士の干 渉を低減でき、 クロストークの発生を防止できる。  In the present invention, it is preferable to reduce the distance between the end of the partition 11 (wall 11a) on the reservoir 32 side and the reservoir 32. Specifically, as shown in FIG. 4, the distance S between the end of the partition 11 on the side of the reservoir 32 and the reservoir 32 is set shorter than the thickness of the flow path forming substrate 10. Is preferred. As a result, the partition wall 11 extends to near the end of the reservoir section 32 on the pressure generating chamber 12 side, and the space between the ink supply path 14 and the communication section 13 (reservoir 110), specifically, Specifically, the space formed only by the flow path forming substrate 10 and extending in the width direction of the pressure generating chamber 12 can be divided and reduced by the wall portion 1 l.a, so that the flow out of the adjacent communication path 10 OA It is possible to reduce the interference between the inks, and to prevent the occurrence of crosstalk.
また、 リザーバ形成基板 3 0のリザーバ部 3 2とは反対側の領域には、 リザ一 パ形成基板 3 0を厚さ方向に貫通した貫通孔 3 3が設けられている。 そして、 各 圧電素子 3 0 0から引き出されたリード電極 9 0は、 その端部近傍が貫通孔 3 3 内で露出されている。 このようなリザーパ形成基板 3 0としては、 流路形成基板 1 0の熱膨張率と略同一の材料、 例えば、 ガラス、 セラミック材料等を用いるこ とが好ましく、 本実施形態では、 流路形成基板 1 0と同一材料のシリコン単結晶 基板を用いて形成した。  Further, in a region of the reservoir forming substrate 30 opposite to the reservoir portion 32, a through hole 33 penetrating the reservoir forming substrate 30 in the thickness direction is provided. The lead electrode 90 pulled out from each piezoelectric element 300 is exposed in the through hole 33 near the end. As such a reservoir forming substrate 30, it is preferable to use a material having substantially the same thermal expansion coefficient as that of the flow path forming substrate 10, for example, glass, a ceramic material, or the like. It was formed using a silicon single crystal substrate of the same material as 10.
なお、 リザーバ形成基板 3 0のリザーパ部 3 2に対応する領域には、 封止膜 4 1及ぴ固定板 4 2からなるコンプライアンス基板 4 0が接合されている。 ここで 、 封止膜 4 1は、 剛性が低く可撓性を有する材料 (例えば、 厚さが 6 μ πιのポリ フエ二レンサルファイド (P P S ) フィルム).からなり、 この封止膜 4 1によつ てリザーバ部 3 2の一方面が封止されている。 また、 固定板 4 2は、 金属等の硬 質の材料 (例えば、 厚さが 3 0 μ παのステンレス鋼 (S U S ) 等) で形成される 。 この固定板 4 2のリザーパ 1 1 0に対向する領域は、 厚さ方向に完全に除去さ れた開口部 4 3となっているため、 リザーパ 1 1 0の一方面は可撓性を有する封 止膜 4 1のみで封止されている。 以上説明した本実施形態のィンクジェット式記録へッドは、 図示しないィンク 供給手段からインクを取り込み、 リザーバ 1 1 0からノズル開口 2 1に至るまで 内部をインクで満たした後、 図示しない駆動 I Cからの駆動信号に従い、 圧力発 生室 1 2に対応するそれぞれの下電極膜 6 0と上電極膜 8 0との間に駆動電圧を 印加し、 弾性膜 5 0、 絶縁体膜 5 5及び圧電素子 3 0 0を変位させることにより 、 各圧力発生室 1 2内の圧力が高まりノズル開口 2 1からインク滴が吐出する。 ' (試験例) Note that a compliance substrate 40 including a sealing film 41 and a fixing plate 42 is joined to a region corresponding to the reservoir portion 32 of the reservoir forming substrate 30. Here, the sealing film 41 is made of a material having low rigidity and flexibility (for example, a polyphenylene sulfide (PPS) film having a thickness of 6 μππι). Thus, one surface of the reservoir 32 is sealed. The fixing plate 42 is formed of a hard material such as a metal (for example, stainless steel (SUS) having a thickness of 30 μπα). The area of the fixing plate 42 facing the reservoir 110 is an opening 43 completely removed in the thickness direction, so that one surface of the reservoir 110 has a flexible seal. It is sealed only by the blocking film 41. The ink jet recording head of the present embodiment described above takes in ink from an ink supply means (not shown), fills the inside from the reservoir 110 to the nozzle opening 21 with ink, and then drives the drive IC (not shown). A driving voltage is applied between the lower electrode film 60 and the upper electrode film 80 corresponding to the pressure generating chambers 12 according to the driving signals of the elastic film 50, the insulator film 55, and the piezoelectric element. By displacing 300, the pressure in each pressure generating chamber 12 increases, and ink droplets are ejected from nozzle opening 21. '' (Test example)
ここで、 連通路を設けたヘッド (実施例) と、 連通路を設けずインク供給路と リザーバとの間に各圧力発生室の並設方向に亘って流路形成基板のみで構成され る空間を設けたヘッド (比較例) とを用意し、 両者のクロストーク率 (%) を比 較する試験を行った。'具体的には、 基準となる一つのノズル (基準ノズル) を決 め、 この基準ノズルのみからインクを吐出させた時の吐出速度を基準値 「0」 ( ゼロ) とし、 基準ノズルとその両側のノズルから同時にインクを吐出させた時に 基準ノズルから吐出されるインク滴の吐出速度を測定した。 そして、 同時にイン ク吐出させるノズル数を 2つずつ増加させながら、 基準ノズルにおける吐出速度 の推移 (変化率) を調べた。 その結果を第 5図に示す。 なお、 第 5図では、 基準 ノズルにおける吐出速度の変化率をクロストーク率 (%) として示す。  Here, a space provided with only a flow path forming substrate in a direction in which the pressure generating chambers are arranged between the ink supply path and the reservoir without providing a communication path, and a head provided with a communication path (Example). A head provided with (Comparative Example) was prepared, and a test was performed to compare the crosstalk rates (%) of the two. 'Specifically, one reference nozzle (reference nozzle) is determined, and the ejection speed when ink is ejected only from this reference nozzle is set to the reference value “0” (zero). When the ink was simultaneously ejected from the nozzles, the ejection speed of the ink droplet ejected from the reference nozzle was measured. Then, while increasing the number of nozzles for simultaneous ink discharge by two, the transition (change rate) of the discharge speed at the reference nozzle was examined. Figure 5 shows the results. In FIG. 5, the rate of change of the discharge speed at the reference nozzle is shown as a crosstalk rate (%).
第 5図に示すように、 比較例のヘッドは、 同時吐出数が 2 0個程度になると、 基準ノズルにおける吐出速度の増加率、 すなわち、 クロストーク率が 2 0 %程度 まで增加し、 最終的には 2 5 %近くまで増加している。 これに対し、 実施例のへ ッドは、 '同時吐出数が 2 0個程度になると、 比較例と同じ推移で 1 5 %程度まで 增加しているが、.その後は 2 0 %より小さい範囲内で安定して推移している。 こ の結果から明らかなように、 実施例のヘッドは、 比較例のヘッドと比べて、 クロ ストーク率が相対的に.1 0 %程度低下していることが分かった。 したがって、 実 施例のヘッドのように、 連通路を設けることで、 インク吐出の際、 クロストーク の発生を低減できる。  As shown in FIG. 5, in the head of the comparative example, when the number of simultaneous ejections becomes about 20, the rate of increase in the ejection speed of the reference nozzle, that is, the crosstalk rate, increases to about 20%. Has increased to nearly 25%. On the other hand, in the head of the embodiment, when the number of simultaneous ejections becomes about 20 pieces, it increases to about 15% with the same transition as the comparative example, but thereafter, the range of less than 20% It has been stable within. As is clear from these results, it was found that the crosstalk ratio of the head of the example was relatively reduced by about 0.10% as compared with the head of the comparative example. Therefore, by providing the communication path as in the head of the embodiment, it is possible to reduce the occurrence of crosstalk during ink ejection.
以上、 本発明のインクジェット式記録ヘッドの一例について説明したが、 その 製造方法については特に限定されるものではない。 なお、 以下に、 第 6図及ぴ第. 7図を参照して、 本実施形態に係るインクジエツト式記録へッドの製造方法の一 例を説明する。 第 6図及び第 7図は圧力発生室 1 2の長手方向の断面図である。 まず、 第 6図 (' a ) に示すように、 流路形成基板 1 0となるシリコン単結晶基 板のウェハを約 1 1 0 0 °Cの拡散炉で熱酸化して、 各面に弾性膜 5 0を形成した 後、 第 6図 (b ) に示すように、 この弾性膜 5 0上に酸化ジルコニァ等から ¾る 絶縁体膜 5 5を形成する。 次に、 第 6図 (c ) に示すように、 例えば、 白金とィ リジゥムとからなる下電極膜 6 0を絶縁体膜 5 5の全面に形成後、 所定形状にパ ターニングする。 次に、 第 6図 (d ) に示すように、 例えば、 チタン酸ジルコン 酸鉛 ( P Z T) からなる圧電体層 7 0と、 例えば、 イリジウムからなる上電極膜 8 0とを順次積層し、 これらを同時にパターユングして圧電素子 3 0 0を形成す る。 As described above, an example of the ink jet recording head of the present invention has been described, but the manufacturing method is not particularly limited. In the following, referring to FIGS. 6 and 7, one example of a method for manufacturing an ink jet recording head according to the present embodiment will be described. An example will be described. 6 and 7 are longitudinal sectional views of the pressure generating chamber 12. FIG. First, as shown in Fig. 6 ('a), a silicon single crystal substrate wafer to be the flow channel forming substrate 10 is thermally oxidized in a diffusion furnace at about 110 ° C, and each surface is elastically deformed. After forming the film 50, as shown in FIG. 6 (b), an insulator film 55 made of zirconia or the like is formed on the elastic film 50. Next, as shown in FIG. 6 (c), for example, a lower electrode film 60 made of, for example, platinum and iridium is formed on the entire surface of the insulator film 55, and then patterned into a predetermined shape. Next, as shown in FIG. 6 (d), a piezoelectric layer 70 made of, for example, lead zirconate titanate (PZT) and an upper electrode film 80 made of, for example, iridium are sequentially laminated. Are simultaneously patterned to form a piezoelectric element 300.
次いで、 第 7図 (a ) に示すように、 例えば、 金 (A u ) 等からなるリード電 極 9 0を流路形成基板 1 0の全面に亘つて形成すると共に、 各圧電素子 3 0 0毎 にパターユングする。 以上が膜形成プロセスである。 次に、 第 7図 (b ) に示す ように、 無機絶縁材料、 本実施形態では、 酸ィ匕アルミニウム (A l 2 0 3 ) から なる絶縁膜 2 0 0を形成すると共に所定形状にパターニングする。 すなわち、 絶 縁膜 2 0 0を流路 ¾成基板 1 0の全面に形成し、 その後、 下電極膜 6 0の接続部 6 0 a及ぴリ一ド電極 9 0の接続部 9 0 aに対向する領域の絶縁膜 2 0 0を除去 する。 なお、 本実施形態では、 接続部 6 0 a , 9 0 aに対向する領域と共に、 圧 電素子 3 0 0を構成する各層及ぴリード、電極 9 0のパターン領域以外も除去する ようにしている。 勿論、 絶縁膜 2 0 0は、 接続部 6 0 a, 9 0 aに対向する領域 のみが除去されていてもよい。 何れにしても、 絶縁膜 2 0 0は、 下電極膜 6 0の 接続部 6 0 a及ぴリ一ド電極 9 0の接続部 9 0 aを除いて、 圧電素子 3 0 0を構 成する各層及びリード電極 9 0のパターン領域を覆うように形成されていればよ い。 また、 絶縁膜 2 0 0の除去方法は、 特に限定されないが、 例えば、 イオンミ リング等のドライエッチングを用いることが好ましい。 これにより、 絶縁膜 2 0 0を選択的に良好に除去することができる。 Next, as shown in FIG. 7 (a), a lead electrode 90 made of, for example, gold (Au) is formed over the entire surface of the flow path forming substrate 10 and each piezoelectric element 300 is formed. Putter Jung every time. The above is the film forming process. Next, as shown in FIG. 7 (b), an inorganic insulating material, in this embodiment, is patterned into a predetermined shape to form the insulating film 2 0 0 consisting Sani匕aluminum (A l 2 0 3) . That is, the insulating film 200 is formed on the entire surface of the flow path forming substrate 10, and then the connecting portion 60 a of the lower electrode film 60 and the connecting portion 90 a of the lead electrode 90 are formed. The insulating film 200 in the opposing region is removed. Note that, in the present embodiment, in addition to the regions facing the connection portions 60 a and 90 a, the layers other than the layers constituting the piezoelectric element 300, the leads, and the pattern regions of the electrodes 90 are also removed. . Of course, in the insulating film 200, only the region facing the connecting portions 60a and 90a may be removed. In any case, the insulating film 200 constitutes the piezoelectric element 300 except for the connecting portion 60a of the lower electrode film 60 and the connecting portion 90a of the lead electrode 90. What is necessary is just to form so that each layer and the pattern area of the lead electrode 90 may be covered. The method for removing the insulating film 200 is not particularly limited. For example, it is preferable to use dry etching such as ion milling. As a result, the insulating film 200 can be selectively and satisfactorily removed.
次に、 第 7図 ( c ) に示すように、 流路形成基板 1 0の圧電素子 3 0 0側に接 着剤を介して予め圧電素子保持部 3 1、 リザーパ部 3 2等が形成されたリザーパ 形成基板 3 0を接合する。 なお、 このようなリザーバ形成基板 3 0には、 後述す るプロセスにて、 流路形成基板 1 0を異方性エッチングして圧力発生室 1 2等を 形成する際に、 各圧電素子 3 0 0をアルカリ溶液から保護するという役割もある その後は、 前述したアルカリ溶液によるシリコン単結晶基板 (流路形成基板 1 0 ) の異方性エッチングを行い、 圧力発生室 1 2、 連通部 1 3及びインク供給路 1 4、 連通路 1 0 0を形成する。 具体的には、 第 7図 (d ) に示すように、 流路 形成基板 1 0のリザーバ形成基板 3 0との接合面とは反対側の面にマスクパター ン 5 1を形成した後、 このマスクパターン 5 1を介して流路形成基板 1 0を異方 性エッチングすることにより、 圧力発生室 1 2、 連通部 1 3、 インク供給路 1 4 及ぴ連通路 1 0 0を形成する。 なお、 このように異方性エッチングを行う際には 、 リザーバ形成基板 3 0の表面を保護フィルム等で封止した状態で行う。 また、 このとき、 リザーバ部 3 2と連通部 1 3との境界にある弾性膜 5 0及び絶縁体膜 5 5を破ってリザーパ 1 1 0を形成する。 このように、 本実施形態では、 ィンク 供給路 1 4等を流路形成基板 1 0の厚さ方向に貫通して設けることができるため 、 マスクパターン 5 1を高精度にパターエングすれば、 インク供給路 1 4や連通 路 1 0 0等を高精度に形成できる。 したがって、 安定したインク吐出特性が得ら れる。 Next, as shown in FIG. 7 (c), the piezoelectric element holding portion 31, the reservoir portion 32, etc. are formed in advance on the piezoelectric element 300 side of the flow path forming substrate 10 via an adhesive. Then, the reservoir forming substrate 30 is joined. It should be noted that such a reservoir forming substrate 30 will be described later. When forming the pressure generating chambers 12 and the like by anisotropically etching the flow path forming substrate 10 in the process described above, it also has a role of protecting each piezoelectric element 300 from an alkaline solution. The silicon single crystal substrate (flow path forming substrate 100) is anisotropically etched with the alkali solution thus formed to form the pressure generating chamber 12, the communication section 13, the ink supply path 14, and the communication path 100. Specifically, as shown in FIG. 7 (d), after a mask pattern 51 is formed on the surface of the flow path forming substrate 10 opposite to the bonding surface with the reservoir forming substrate 30, the mask pattern 51 is formed. The pressure generating chamber 12, the communication section 13, the ink supply path 14, and the communication path 100 are formed by anisotropically etching the flow path forming substrate 10 via the mask pattern 51. When performing the anisotropic etching, the surface of the reservoir forming substrate 30 is sealed with a protective film or the like. At this time, the reservoir 110 is formed by breaking the elastic film 50 and the insulator film 55 at the boundary between the reservoir portion 32 and the communication portion 13. As described above, in the present embodiment, since the ink supply path 14 and the like can be provided so as to penetrate in the thickness direction of the flow path forming substrate 10, if the mask pattern 51 is patterned with high precision, the ink supply path The path 14 and the communication path 100 can be formed with high accuracy. Therefore, stable ink ejection characteristics can be obtained.
次いで、 流路形成基板 1 0のリザーバ形成基板 3 0とは反対側の面にノズル開 口 2 1が穿設されたノズルプレート 2 0を接合する。 なお、 その後、 リザーパ形 成基板 3 0上にコンプライアンス基板 4 0を接合すると共に、 リザーバ形成基板 3 0上に駆動 I Cを実装し、 下電極膜 6 0及び各リ一ド電極 9 0の接続部 6 0 a , 9 0 aと駆動 I Cとをボンディングワイヤからなる接続配線によって接続する ことで、 各圧電素子 3 0 0と駆動 I Cとを電気的に接続する。 このようにしてリ ザーバ形成基板 3 0に駆動 I Cを実装した後は、 流路形成基板 1 0、 リザーパ形 成基板 3 0等の各基板をチップサイズに分割することにより、 第 1図に示すよう な本実施形態のインクジェット式記録ヘッドとする。  Next, a nozzle plate 20 having a nozzle opening 21 formed on the surface of the flow path forming substrate 10 opposite to the reservoir forming substrate 30 is joined. After that, the compliance substrate 40 is bonded on the reservoir forming substrate 30, and the driving IC is mounted on the reservoir forming substrate 30, and the connection portion between the lower electrode film 60 and each lead electrode 90 is formed. Each of the piezoelectric elements 300 and the drive IC is electrically connected by connecting 600 a and 90 a to the drive IC by connection wiring composed of bonding wires. After the drive IC is mounted on the reservoir forming substrate 30 in this manner, the substrates such as the flow path forming substrate 10 and the reservoir forming substrate 30 are divided into chip sizes, as shown in FIG. Such an ink jet recording head according to the present embodiment is described.
(他の実施形態)  (Other embodiments)
以上、 本発明の実施形態について説明したが、 勿論、 本発明は上述の実施形態 に限定されるものではない。 例えば、 上述した実施形態では、 流路を幅方向に絞 ることでインク供給路 1 4を形成したが、 これに限定されず、 流路形成基板の厚 さ方向に流路を絞ることでインク供給路を形成してもよい。 なお、 この場合には 、 インク供給路は、 例えば、 流路形成基板を厚さ方向に異方性エッチング (/、一 フェッチング) することにより形^される。 As described above, the embodiments of the present invention have been described, but of course, the present invention is not limited to the above embodiments. For example, in the above-described embodiment, the flow path is narrowed in the width direction. Thus, the ink supply path 14 is formed, but the invention is not limited thereto. The ink supply path may be formed by narrowing the flow path in the thickness direction of the flow path forming substrate. In this case, the ink supply path is formed by, for example, performing anisotropic etching (/, one fetching) on the flow path forming substrate in the thickness direction.
また、 上述した実施形態では、 圧電素子 3 0 0をリザーバ形成基板 3 0の圧電 素子保持部 3 1内に形成したが、 これに限定されず、 圧電素子保持部 3 1を設け なくてもよい。 この場合でも、 圧電素子 3 0 0及び'リード電極 9 0の表面は、 無 機絶縁材料からなる絶縁膜 2 0 0によって覆われているため、 水分 (湿気) に起 因する圧電体層 7 0の破壌は、 確実に防止される。  In the above-described embodiment, the piezoelectric element 300 is formed in the piezoelectric element holding portion 31 of the reservoir forming substrate 30. However, the present invention is not limited to this, and the piezoelectric element holding portion 31 may not be provided. . Even in this case, since the surfaces of the piezoelectric element 300 and the lead electrode 90 are covered with the insulating film 200 made of an inorganic insulating material, the piezoelectric layer 70 caused by moisture (humidity) is formed. Blasting is reliably prevented.
さらに、 上述した実施形態では、 圧電素子 3 0 0を絶縁膜 2 0 0によって覆う ようにしたが、 これに限定されず、 圧電素子を絶縁膜によって覆わなくてもよい さらに、 上述の実施形態では、 リザーバ形成基板 3 0に一端が圧電素子保持部 3 1に連通すると共に他端が大気に開放される大気開放孔 3 1 aを設けて圧電素 子保持部 3 1を大気開放したが、 これに限定されず、 大気開放孔を設けずに圧電 素子保持部を密封してもよい。 この場合、 大気開放孔からの水分 (湿気) に起因 する圧電素子の破壊は、 確実に防止される。  Further, in the above-described embodiment, the piezoelectric element 300 is covered with the insulating film 200. However, the present invention is not limited to this. The piezoelectric element may not be covered with the insulating film. One end of the reservoir forming substrate 30 is communicated with the piezoelectric element holding portion 31 and the other end is provided with an air opening hole 31 a that is open to the atmosphere, and the piezoelectric element holding portion 31 is opened to the atmosphere. However, the present invention is not limited to this, and the piezoelectric element holding portion may be sealed without providing the air opening hole. In this case, destruction of the piezoelectric element due to moisture (moisture) from the open-to-air hole is reliably prevented.
また、 上述の実施形態では、 成膜及びリソグラフィプロセスを応用して製造さ れる薄膜型のインクジエツト式記録へッドを例にしたが、 勿論これに限定される ものではなく、 例えば、 グリーンシートを貼付する等の方法により形成される厚 膜型のィンクジェット式記録へッドにも本発明を採用することができる。  Further, in the above-described embodiment, a thin-film ink jet recording head manufactured by applying a film forming and lithography process has been described as an example. However, the present invention is not limited to this. The present invention can also be applied to a thick-film ink jet recording head formed by a method such as sticking.
さらに、 これら各実施形態のインクジエツト式記録へッドは、 インクカートリ ッジ等と連通するインク流路を具備する記録へッドュニットの一部を構成して、 インクジェット式記録装置に搭載される。 第 8図は、 そのインクジェット式記録 装置の一例を示す概略図である。 第 8図に示すように、 インクジェット式記録へ ッドを有する記録へッドュニット 1 A及び 1 Bは、 ィンク供給手段を構成する力 ートリッジ 2 A及び 2 Bが着脱可能に設けられ、 この記録へッドュニット 1 A及 ぴ 1 Bを搭載したキヤリッジ 3は、 装置本体 4に取り付けられたキヤリッジ軸 5 に軸方向移動自在に設けられている。 この記録へッドュニット 1 A及び 1 Bは、 例えば、 それぞれブラックインク組成物及ぴカラーインク組成物を吐出するもの としている。 Further, the ink jet recording head of each of the embodiments constitutes a part of a recording head having an ink flow path communicating with an ink cartridge or the like, and is mounted on an ink jet recording apparatus. FIG. 8 is a schematic view showing an example of the ink jet recording apparatus. As shown in FIG. 8, the recording heads 1A and 1B having ink jet recording heads are provided with detachable cartridges 2A and 2B constituting an ink supply means. The carriage 3 on which 1 A and 1 B are mounted is provided on a carriage shaft 5 attached to the apparatus main body 4 so as to be movable in the axial direction. This record header 1A and 1B For example, it is assumed that a black ink composition and a color ink composition are respectively discharged.
そして、 駆動モータ 6の駆動力が図示しない複数の歯車およびタイミングベル ト 7を介してキヤリッジ 3に伝達されることで、 記録へッドュニット 1 A及び 1 Bを搭載したキャリッジ 3はキャリッジ軸 5に沿って移動される。 一方、 装置本 体 4にはキヤリッジ軸 5に沿ってプラテン 8が設けられており、 図示しない給紙 ローラなどにより給紙された紙等の記録媒体である記録シート Sがプラテン 8上 を搬送されるようになっている。  Then, the driving force of the driving motor 6 is transmitted to the carriage 3 via a plurality of gears and a timing belt 7 (not shown), so that the carriage 3 on which the recording heads 1A and 1B are mounted moves along the carriage shaft 5. Moved. On the other hand, the apparatus body 4 is provided with a platen 8 along a carriage axis 5, and a recording sheet S, which is a recording medium such as paper fed by a paper feed roller (not shown), is conveyed on the platen 8. It has become so.
なお、 上述した実施形態では、 液体噴射ヘッドとしてインクを吐出するインク ジ工ット式記録へッド及びインクジエツト式記録装置を一例として説明したが、 本発明は、 広く液体噴射へッド及ぴ液体噴射装置全般を対象としたものである。 液体噴射ヘッドとしては、 例えば、 プリンタ等の画像記録装置に用いられる記録 へッド、 液晶ディスプレー等のカラーフィルタの製造に用いられる色材噴射へッ ド、 有機 E Lディスプレー、 F E D (面発光ディスプレー) 等の電極形成に用い られる電極材料噴射へッド、 バイオ c h i p製造に用いられる生体有機物噴射へ ッド等を挙げることができる。  In the above-described embodiment, an ink jet recording head and an ink jet recording apparatus which eject ink as a liquid ejecting head are described as an example. However, the present invention is widely applied to a liquid ejecting head. It is intended for liquid ejecting apparatuses in general. Examples of liquid ejecting heads include recording heads used in image recording devices such as printers, color material ejecting heads used in the manufacture of color filters such as liquid crystal displays, organic EL displays, and FEDs (surface emitting displays). And the like, and an electrode material injection head used for forming an electrode, and a biological organic material injection head used for manufacturing a biochip.

Claims

請求の範囲 The scope of the claims
1 . ノズル開口に連通する複数の圧力発生室が並設された流路形成基板と、 該 流路形成基板に振動板を介して設けられた下電極、 圧電体層及び上電極からなる 圧電素子と、 前記流路形成基板の前記圧電素子側の面に接合されて各圧力発生室 の共通の液体室であるリザーバの一部を構成するリザーバ部が設けられたリザ一 バ形成基板とを具備し、 1. A flow path forming substrate in which a plurality of pressure generating chambers communicating with the nozzle openings are arranged in parallel, and a piezoelectric element including a lower electrode, a piezoelectric layer, and an upper electrode provided on the flow path forming substrate via a diaphragm. And a reservoir forming substrate provided with a reservoir part which is joined to the surface of the flow path forming substrate on the side of the piezoelectric element and constitutes a part of a reservoir which is a common liquid chamber of each pressure generating chamber. And
前記リザーパが前記リザーバ部と前記流路形成基板に設けられた連通部とから構 成され、 前記圧力発生室の幅方向両側の隔壁が前記リザーバ部の前記圧力発生室 側の端部近傍まで延設されることで、 前記圧力発生室に連通して当該圧力発生室 の幅より小さい幅を有する液体供給路と、 この液体供給路と前記連通部とを連通 すると共に前記液体供給路の幅より大きい幅を有する連通路とが、 前記隔壁によ り前記圧力発生室毎に区画して設けられていることを特徴とする液体噴射へッ ' 2 . 請求の範囲 1において、 前記連通路の幅 W l と前記圧力発生室の幅 w 2 と の関係が W l ≥w 2 を満たすことを特徴とする液体噴射ヘッド。 The reservoir includes the reservoir portion and a communication portion provided in the flow path forming substrate, and partition walls on both sides in the width direction of the pressure generation chamber extend to near the end of the reservoir portion on the pressure generation chamber side. The liquid supply passage communicating with the pressure generating chamber and having a width smaller than the width of the pressure generating chamber, the liquid supply passage communicating with the liquid supply passage and the communication portion, and the liquid supply passage having a width smaller than the width of the liquid supply passage. A liquid jet head, wherein a communication passage having a large width is provided for each of the pressure generating chambers by the partition wall. 2. The width of the communication passage according to claim 1, W l and the liquid jet head relation between the width w 2 of the pressure generating chambers and satisfies the W l ≥w 2.
3 . 請求の範囲 1又は 2において、 前記連通路の幅 W l と前記液体供給路の幅 w 3 との関係が W l ≥ 2 X w 3 を満たすことを特徴とする液体噴射ヘッド。 3. In the range 1 or 2 according to the liquid jet head relationship between the width W l and the width w 3 of the liquid supply path of the communication passage and satisfies the W l ≥ 2 X w 3.
4 . 請求の範囲 1〜3の何れかにおいて、 前記違通路の長さが前記流路形成基 板の厚さ以上であることを特徴とする液体噴射へッド。  4. The liquid jet head according to any one of claims 1 to 3, wherein a length of the different passage is equal to or greater than a thickness of the flow passage forming substrate.
5 . 請求の範囲 1〜 4の何れかにおいて、 前記隔壁の前記リザーパ部側の端部 と当該リザーバ部との間の距離が前記流路形成基板の厚さより短いことを特徴と する液体噴射へッド。  5. The liquid ejecting apparatus according to any one of claims 1 to 4, wherein a distance between an end of the partition on the reservoir side and the reservoir is shorter than a thickness of the flow path forming substrate. Good.
6 . 請求の範囲 1〜5の何れかにおいて、 前記圧電素子は、 無機絶縁材料から なる絶縁膜によって覆われていることを特徴とする液体噴射へッド。  6. The liquid jet head according to any one of claims 1 to 5, wherein the piezoelectric element is covered with an insulating film made of an inorganic insulating material.
7 . 請求の範囲 6において、 前記絶縁膜は、 A l 2 0 3からなることを特徴と する液体噴射へッド。 7. In the range 6, wherein said insulating film head to the liquid jet, characterized in that it consists of A l 2 0 3.
8 . 請求の範囲 1〜7の何れかにおいて、 前記リザーバ形成基板には、 前記圧 電素子に対向する領域に当該圧電素子の運動を阻害しない程度の空間を確保可能 な圧電素子保持部が設けられ、—且つ前記リザーパ形成基板の前記圧電素子保持部 と前記リザーパ部との間の領域が前記流路形成基板との接合部分であることを特 徴とする液体噴射へッド。 8. In any one of claims 1 to 7, the reservoir forming substrate can secure a space in a region facing the piezoelectric element so as not to hinder the movement of the piezoelectric element. A liquid ejecting device, wherein a region between the piezoelectric element holding portion and the reservoir portion of the reservoir forming substrate is a joint portion with the flow path forming substrate. Head.
9 . 請求の範囲 8において、 前記隔壁の前記リザーパ部側の端部は、 前記接合 部分に対向する領域内に位置していることを特徴とする液体噴射へッド。  9. The liquid jet head according to claim 8, wherein an end of the partition wall on the reservoir side is located in a region facing the joining portion.
1 0 . 請求の範囲 8又は 9において、 前記接合部分の長さが 2 0 0 μ πι以上で あることを特徴とする液体噴射へッド。  10. The liquid jet head according to claim 8, wherein the length of the bonding portion is 200 μπι or more.
1 1 . 請求の範囲 8〜 1 0の何れかにおいて、 一端が前記圧電素子保持部に連 通すると共に他端が大気に開放される大気開放孔を具備することを特徴とする液 体嘖射へッド。  11. The liquid spray according to any one of claims 8 to 10, characterized in that one end is connected to the piezoelectric element holding portion and the other end is provided with an air opening hole that is open to the atmosphere. Head.
1 2 . 請求の範囲 1〜 1 1の何れかにおいて、 前節流路形成基板の厚さは、 1 0 0 μ m以下であることを特徴とする液体噴射へッド。  12. The liquid jet head according to any one of claims 1 to 11, wherein the thickness of the passage forming substrate is 100 μm or less.
1 3 . 請求の範囲 1〜 1 2の何れかにおいて、 前記圧力発生室がシリコン単結 晶基板に異方性ェツチングにより形成されたものであることを特徴とする液体嘖 射へッド。  13. The liquid projection head according to any one of claims 1 to 12, wherein the pressure generation chamber is formed on a silicon single crystal substrate by anisotropic etching.
1 4 . 請求の範囲 1〜 1 3の何れかの液体噴射へッドを具備することを特徴と する液体噴射装置。  14. A liquid ejecting apparatus comprising the liquid ejecting head according to any one of claims 1 to 13.
PCT/JP2004/006332 2003-05-06 2004-04-30 Fluid jetting head and fluid jetting device WO2004098894A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/545,069 US7618130B2 (en) 2003-05-06 2004-04-30 Liquid jet head and liquid jet apparatus
JP2005506017A JP4484821B2 (en) 2003-05-06 2004-04-30 Liquid ejecting head and liquid ejecting apparatus

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003-128258 2003-05-06
JP2003128258 2003-05-06
JP2003-358331 2003-10-17
JP2003358331 2003-10-17
JP2004074396 2004-03-16
JP2004-074396 2004-03-16

Publications (1)

Publication Number Publication Date
WO2004098894A1 true WO2004098894A1 (en) 2004-11-18

Family

ID=33436990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006332 WO2004098894A1 (en) 2003-05-06 2004-04-30 Fluid jetting head and fluid jetting device

Country Status (2)

Country Link
JP (1) JP4484821B2 (en)
WO (1) WO2004098894A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175741A (en) * 2004-12-22 2006-07-06 Brother Ind Ltd Inkjet head and method of manufacturing the same
JP2007261215A (en) * 2006-03-29 2007-10-11 Seiko Epson Corp Manufacturing method for liquid jet head, and liquid jet head

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122679A (en) * 1988-11-01 1990-05-10 Tokin Corp Laminated piezoelectric actuator
JPH09262980A (en) * 1996-03-29 1997-10-07 Citizen Watch Co Ltd Ink-jet head
JP2000296616A (en) * 1998-08-21 2000-10-24 Seiko Epson Corp Ink jet recording head and ink jet recording apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122679A (en) * 1988-11-01 1990-05-10 Tokin Corp Laminated piezoelectric actuator
JPH09262980A (en) * 1996-03-29 1997-10-07 Citizen Watch Co Ltd Ink-jet head
JP2000296616A (en) * 1998-08-21 2000-10-24 Seiko Epson Corp Ink jet recording head and ink jet recording apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175741A (en) * 2004-12-22 2006-07-06 Brother Ind Ltd Inkjet head and method of manufacturing the same
JP4662027B2 (en) * 2004-12-22 2011-03-30 ブラザー工業株式会社 Ink jet head and manufacturing method thereof
JP2007261215A (en) * 2006-03-29 2007-10-11 Seiko Epson Corp Manufacturing method for liquid jet head, and liquid jet head

Also Published As

Publication number Publication date
JP4484821B2 (en) 2010-06-16
JPWO2004098894A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4450238B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP4258668B2 (en) Liquid ejecting head and liquid ejecting apparatus
US8201926B2 (en) Liquid ejecting head, liquid ejecting apparatus, and actuator
JP4553129B2 (en) Liquid ejecting head and liquid ejecting apparatus
US20090085985A1 (en) Liquid jet head, method for manufacturing the liquid jet head, and liquid jet apparatus
US11114604B2 (en) Method of manufacturing MEMS device and MEMS device
US7618130B2 (en) Liquid jet head and liquid jet apparatus
JP2007216474A (en) Liquid jet head and liquid jet device
JP2006248166A (en) Liquid ejection head and liquid ejection device
JP2008221825A (en) Liquid jetting head and liquid jetting device
JP2006218776A (en) Liquid injection head and liquid injection apparatus
US20050134654A1 (en) Liquid jet head and liquid jet apparatus
CN109484030B (en) Liquid ejecting head, liquid ejecting apparatus, and piezoelectric device
WO2004098894A1 (en) Fluid jetting head and fluid jetting device
JP4883291B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2008030309A (en) Liquid jetting head and liquid jetting apparatus
JP2006281603A (en) Bonding method, manufacturing method of liquid jetting head, bonded substrate, liquid jetting head, and liquid jetting device
JP2009220371A (en) Liquid ejection head and liquid ejection device
JP5447786B2 (en) Liquid ejecting head, liquid ejecting apparatus, and actuator device
JP2000246896A (en) Ink jet recording head and ink jet recorder
JP4492059B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP2005153243A (en) Liquid jetting head, its manufacturing method and liquid jetting apparatus
JP4475042B2 (en) Method for manufacturing liquid jet head
JP2006224609A (en) Method for manufacturing liquid injection head
JP2009208369A (en) Liquid injection head and liquid injection apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005506017

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048031841

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2006098058

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10545069

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10545069

Country of ref document: US

122 Ep: pct application non-entry in european phase