WO2004097805A1 - Thin-film magnetic head, production method therefor, and magnetic storage unit - Google Patents

Thin-film magnetic head, production method therefor, and magnetic storage unit Download PDF

Info

Publication number
WO2004097805A1
WO2004097805A1 PCT/JP2003/005524 JP0305524W WO2004097805A1 WO 2004097805 A1 WO2004097805 A1 WO 2004097805A1 JP 0305524 W JP0305524 W JP 0305524W WO 2004097805 A1 WO2004097805 A1 WO 2004097805A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
pole layer
head
magnetic
layer
Prior art date
Application number
PCT/JP2003/005524
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Yamada
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/005524 priority Critical patent/WO2004097805A1/en
Publication of WO2004097805A1 publication Critical patent/WO2004097805A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/3136Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure for reducing the pole-tip-protrusion at the head transducing surface, e.g. caused by thermal expansion of dissimilar materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • G11B5/3106Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing where the integrated or assembled structure comprises means for conditioning against physical detrimental influence, e.g. wear, contamination
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/40Protective measures on heads, e.g. against excessive temperature 

Definitions

  • the present invention relates to a composite thin I-head having a recording head and a reproducing head, a method of manufacturing the same, and a magnetic storage device.
  • the small head of the self-recorded head and the playback head of the light head especially the write gap of the recording head, the read gap of the playback head, and the core width of these heads Emphasis is placed on narrowing
  • FIG. 1A is a cross-sectional view of a conventional thin hard head
  • FIG. 1B is a configuration diagram of an air bearing surface.
  • Ru head 1 0 to thin film magnetic is opposite to the magnetic recording medium 2 0 which moves in the direction of the arrow, AlTiC (A 1 2 ⁇ 3- ⁇ i C ) from Do ' It comprises a reproducing head 12 formed on the substrate 11 and a recording head 13 formed on the reproducing head 12, and performs recording and reproduction on the magnetic recording medium 20.
  • An MR element, a GMR element, or the like is used as the magnetic sensing element 14 of the reproducing head 12, and a sense current of about 1 O mA flows to detect a magnetic field from the magnetic recording medium 20.
  • the recording head 13 includes a lower magnetic pole layer 15 and an upper magnetic pole layer 16 forming a magnetic circuit, and a laminated coil 18 wound around these magnetic circuits.
  • a recording current of a high-frequency pulse having a magnitude of 30 mA to 60 mA flows through the coil 18 to record information.
  • the coercive force of the magnetic recording medium 20 is increased as the recording density is increased, and a larger recording magnetic field, that is, a larger recording current is required to secure the overwrite characteristics. Therefore, the heat generated from coil 18 It is important to radiate heat efficiently.
  • the heat generated by the coil 18 of the recording head 13 flows mainly in three directions of the substrate 11, the upper insulating film 19, and the air bearing surface 21 and is radiated to the outside.
  • the lower and upper shield layers 24 and 25 of the lower magnetic pole layer 15 and the reproducing head 12 are made of a metal material and have high thermal conductivity, and the substrate material of the substrate 11 is thermally conductive. Since the rate is about 21 W / (m-K), heat radiation in this direction is good. Further, since the lower and upper shield layers 24 and 25 are exposed on the surface of the air bearing 21, heat is also dissipated in the direction of the air bearing surface 21.
  • the upper insulating film 19 is made of aluminum oxide having a low thermal conductivity (a thermal conductivity of about 15 W / (m- K)), it is usually formed with a film thickness of 6 to several tens / m, so it is difficult to dissipate heat.
  • the top pole layer 16 also has a tapered tip 16-1 exposed on the air bearing surface 21 so that the heat conduction path is narrow and heat is not easily dissipated! /, The structure. Therefore, heat generation of the coil 18 is likely to be accumulated.
  • the temperature rises and thermal expansion causes the tip portions of the upper magnetic pole layer 16 and the lower magnetic pole layer 15, and furthermore, the magneto-sensitive element 14 to protrude from the air bearing surface 21 in the direction of the magnetic recording medium 20. .
  • the thin air head 10 is likely to come into contact with the magnetic recording medium 20 and further crashes.
  • the upper magnetic pole layer 16 has an inclined portion 16-2 from the far end to the air bearing ring surface 33 to the tip 16-1. And a few ⁇ ! There is a step of ⁇ 1 ⁇ ⁇ ⁇ . Therefore, if the upper insulating film 19 is simply made thinner, the upper magnetic pole layer 16 may not be completely covered, and the function as a protective film is deteriorated by an external environment, for example, acid or alkaline. There is.
  • a reproducing head 12 is first formed on the substrate 11, and then a recording head 13 is formed on the reproducing head 12. Is done. Therefore, when manufacturing the recording head 13, in particular, a heat treatment step or the application of a magnetic field In the process of heat treatment, there is a problem that the characteristics of the reproducing head 12 are deteriorated, for example, the previously formed magneto-sensitive element 14 is thermally damaged or the magnetic orientation is disturbed.
  • the read head 12 is formed of a laminate of ultra-thin thin films of about several nm, it is easily broken by static electricity during handling, such as transfer between devices, and production yield is reduced. There is a problem of poor stability.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-28085 4 21 Disclosure of the Invention
  • an object of the present invention is to provide a novel thin-film magnetic head, a method of manufacturing the same, and a magnetic storage device which solve the above-mentioned problems.
  • a more specific object of the present invention is to provide a thin-film magnetic head and a magnetic storage device that prevent thermal damage due to heat generation of a coil and an MR element, have high operation reliability, and are capable of high-density recording.
  • Another specific object of the present invention is to provide a method for manufacturing a thin head, which prevents performance deterioration and yield reduction due to thermal damage or the like of an MR element and simplifies the manufacturing process. It is to share the tree.
  • a composite head comprising a substrate, a recording head, and a reproducing head, wherein the recording head is formed between the substrate and the reproducing head;
  • An upper magnetic pole layer magnetically connected to the lower magnetic pole layer and facing the lower magnetic pole layer;
  • a thin-film magnetic head is provided in which the coil is formed in a single layer and the lower pole layer and the upper pole layer are substantially parallel.
  • the recording head is formed between the substrate and the reproducing head.
  • Heat generated from the coil of the recording head can be transmitted to the substrate, the air bearing surface facing the magnetic recording medium, and the reproducing head, so that heat can be efficiently radiated. Therefore, it is possible to prevent heat failure such as disconnection of the coil due to a rise in temperature, and protrusion of the lower and upper pole layers toward the air bearing surface. As a result, a highly reliable thin ⁇ -air head can be realized.
  • the spacing between the reproducing head and the magnetic recording medium can be stabilized, and a thin ⁇ -head capable of reducing the spacing and enabling high-density recording can be realized.
  • the lower magnetic pole layer and the upper magnetic pole layer are formed substantially in parallel, a flat underlayer required for the magneto-sensitive element of the reproducing head formed on the recording head can be easily formed. be able to.
  • a magnetic storage device including the above thin-film magnetic head. According to the present invention, it is possible to realize a magnetic storage device capable of high-density recording with high reliability.
  • the tat self-recording head includes a lower magnetic pole layer formed on the substrate, an upper magnetic pole layer magnetically connected to the lower magnetic pole layer, and facing the lower magnetic pole layer, and the lower magnetic pole layer and the upper magnetic pole.
  • the non-magnetic insulating film is polished and flattened, whereby the magneto-sensitive element of the reproducing head can be formed with good flatness. Also, since the coil is formed in a single layer, the amount of polishing can be reduced, and the manufacturing process time can be shortened.
  • FIG. 1 is a cross-sectional view of a conventional thin head
  • FIG. 1B is a configuration diagram of an air bearing surface of the thin J head shown in FIG. 1A.
  • FIG. 2 is a diagram showing a state where the thin-film magnetic head according to the first embodiment of the present invention flies above a magnetic recording medium.
  • FIG. 3 is a view of the thin air manifold shown in FIG. 2 as viewed from the air bearing surface side.
  • FIG. 4A is an enlarged cross-sectional view showing a main part of the thin-film magnetic head of FIG. 3, and FIG.
  • FIG. 4 is a configuration diagram of an air bearing surface of the thin-film magnetic head shown in FIG. 4A.
  • FIG. 5 is a plan view of the recording head.
  • FIG. 6A is an enlarged cross-sectional view showing a main part of a thin-film magnetic head according to a first modification of the first embodiment
  • FIG. 6B is an air view of the thin-film magnetic head shown in FIG. 6A. It is a block diagram of a bearing surface.
  • FIG. 7A is an enlarged cross-sectional view showing a main part of a thin air head according to a second modification of the first embodiment
  • FIG. 7B is a thin air head shown in FIG. 7A
  • FIG. 2 is a configuration diagram of an air bearing surface of FIG.
  • FIG. 8A is a cross-sectional view showing an enlarged main part of the perpendicular magnetic recording head according to the second embodiment of the present invention
  • FIG. 8B is a sectional view of the perpendicular magnetic recording head shown in FIG. 8A
  • FIG. 3 is a configuration diagram of an air bearing surface.
  • FIG. 9A is an enlarged cross-sectional view showing a manufacturing process (No. 1) of the thin head according to the present invention
  • FIG. 9B is a configuration diagram of an air bearing surface thereof.
  • FIG. 10A is an enlarged cross-sectional view showing a manufacturing process (part 2) of the thin ⁇ -air head according to the present invention
  • FIG. 10 is a configuration diagram of an air bearing surface thereof.
  • FIG. 11A is an enlarged sectional view showing a manufacturing process (part 3) of the thin-film magnetic head according to the present invention
  • FIG. 11B is a configuration diagram of an air bearing surface thereof.
  • FIG. 12A is an enlarged cross-sectional view showing a manufacturing process (part 4) of the thin-room air head according to the present invention
  • FIG. 12B is a configuration diagram of an air bearing surface thereof.
  • FIG. 13A is an enlarged cross-sectional view illustrating a manufacturing process (part 5) of the thin-film magnetic head according to the present invention
  • FIG. 13B is a configuration diagram of an air bearing surface thereof.
  • FIG. 14A is an enlarged sectional view showing a manufacturing process (part 6) of the thin air head according to the present invention
  • FIG. 14B is a configuration diagram of an air bearing surface thereof.
  • FIG. 15 is a diagram showing a main part of the magnetic storage device according to the present invention.
  • FIG. 2 is a diagram showing a state in which a thin air head according to an embodiment of the present invention flies above a magnetic recording medium.
  • the thin-film magnetic head 30 of the present embodiment obtains a flying force by the air flow (the direction of the arrow AIR) flowing over the magnetic recording medium 31 moving in the direction of the arrow ME to obtain the slider 3.
  • the inflow end 3 2-1 of the magnetic recording medium 3 1 is high, and the outflow end 3 2-2 floats while maintaining a low attitude.
  • FIG. 3 is a view of the thin-film magnetic head 30 of FIG. 2 as viewed from the air bearing surface 33 side.
  • the thin-film magnetic head 30 includes a pad 34 for adjusting a flying height and a flying posture on an air bearing surface 33 of a slider 32, and a slider on an outflow end 3 2 1 2 side.
  • a composite head 34 is formed on 32 (hereinafter, the slider is referred to as a substrate), and a recording head 35 and a reproducing head 36 are formed along the direction of air flow from the slider 32. They are arranged in order.
  • FIG. 4A is a cross-sectional view showing a recording head and a reproducing head of the thin head 30 of FIG. 3 in an enlarged manner
  • FIG. 4B is a configuration diagram of the air bearing surface 33.
  • the thin head 30 is composed of a substrate 32, a recording head 35 formed on the substrate 32, and a recording head 3 formed on the substrate 32.
  • 5 consists of a regenerative head formed on 3 and 6 forces.
  • the recording head 35 includes a lower insulating film 37 made of an inorganic material formed on the substrate 32, a lower magnetic pole layer 38 formed on the lower insulating film 37, and a lower magnetic pole layer 38. Magnetically connected through the magnetic layer 40, the lower magnetic pole layer 38 and the nonmagnetic insulating film 39A,
  • the tip sub-pole 4 2, the lower pole layer 3 8 and the upper pole layer 4 1 It is composed of a coil 43 and the like formed in the magnetic insulating films 39A and 39B.
  • the lower insulating film 37 is made of an inorganic material, for example, aluminum oxide, and has a thickness of 5 ⁇ m. From the viewpoint of heat conduction, the thickness is preferably 1 ⁇ to 5 zm.
  • the lower insulating film 37 is preferably made of A 1 N. It has higher thermal conductivity than aluminum oxide and can transmit heat efficiently.
  • the thickness of the lower magnetic pole layer 38 and the upper magnetic pole layer 4 is 1.0 ⁇ ! It is set in the range of ⁇ 5.0, and can be formed by plating method, sputtering method, vacuum evaporation method, CVD method and the like.
  • the coil 43 is formed as a single layer on the lower magnetic pole layer 38 via a non-magnetic insulating film 39 A serving as a recording gap. By forming the coil 43 in a single layer, inductance can be reduced, delay in rise time can be suppressed, and high-speed writing can be performed.
  • the upper magnetic pole layer 41 formed on the coil 43 can be formed with good flatness.
  • the flatness of the reproducing head 36 formed on the upper magnetic pole layer 41, particularly the flatness of the MR element 48 can be improved, and the film thickness of the laminated thin film of the MR element 48 can be improved. Can be formed uniformly.
  • FIG. 5 is a plan view of the recording head 35.
  • the coil 43 is almost completely sandwiched between the lower magnetic pole layer 38 and the upper magnetic pole layer 41, and the lower magnetic pole layer 38 and the upper magnetic pole layer 41 are exposed on the air bearing surface 33. I have. Therefore, the heat of the coil 43 is efficiently radiated to the air bearing surface 33 through the lower magnetic pole layer 38 and the upper magnetic pole layer 41. As a result, heat is not stored near the coil 43, so that disconnection of the coil 43 due to temperature rise can be avoided. Further, since the lower magnetic pole layer 38 and the upper magnetic pole layer 41 are formed so as to be exposed on the bearing surface 33, heat generated by the coil 43 is transferred through the lower magnetic pole layer 38 and the upper magnetic pole layer 41. The heat can be dissipated to the outside from the air bearing surface 33, and the heat dissipation ability is improved.
  • the upper tip sub-pole 42 can be formed of the same material as the above-described upper pole layer 41, and in particular, a material having a high saturation magnetic flux density, for example, F e C o It is preferable to use AlO. Prevent magnetic saturation at the connection with the upper magnetic pole layer 41 and prevent leakage of a magnetic field from the air bearing surface 33 side of the upper magnetic pole layer 41 toward the facing magnetic recording medium (not shown). Can be.
  • the reproducing head 36 includes a nonmagnetic insulating film 44 formed on the upper magnetic pole layer 41, a lower shield layer 45 formed on the nonmagnetic insulating film 44, and a lower shield layer 4.
  • MR element 48 formed on non-magnetic insulating film 46 A on top of 5 and conductive material electrically connected to both sides of MR element 48 to supply sense current to MR element 48 From the terminal 49, the upper shield layer 51 formed on the MR element 48 and the terminal 49 via the nonmagnetic insulating film 46B, and the upper nonmagnetic insulating film 52 covering the upper shield layer 51. It is configured.
  • Lower shielding layer 4 5 and the upper shield layer 5 a soft magnetic material having a high magnetic flux density, if example embodiment N i F e (N i: 7 5 mass 0/0, F e: 2 5 weight 0/0), etc.
  • the same soft magnetic material as the lower and upper magnetic pole layers described above can be used, and can be formed by a plating method, a sputtering method, a vacuum evaporation method, a CVD method, or the like.
  • MR element 48 a known laminated MR element can be used. Further, a GMR element or a TMR element may be used. Among the GMR elements, a current-perpendicular-to-plane (CPP) type spin valve element that allows a sense current to flow vertically through the stacked thin films may be used.
  • CPP current-perpendicular-to-plane
  • the upper non-magnetic insulating film 52 is made of an insulating material made of an inorganic material, such as an aluminum oxide film or a hydrogenated carbon film, and has a thickness of 1 ⁇ ! It is set in the range of ⁇ 5 um. Since the surface of the upper shield layer 51 is flat, the upper nonmagnetic insulating film 52 can be made thinner than before. Therefore, even if an aluminum oxide film having a relatively low thermal conductivity is used, Heat can be radiated to the outside via the upper non-magnetic insulating film 52.
  • the thin air head 30 of the present embodiment can efficiently transfer heat generated by the recording current to the three directions of the substrate 32, the air bearing surface, and the upper insulating film 52, and efficiently Heat can be dissipated. Heat is not stored in the recording head 35, and the temperature rise is avoided, thereby preventing heat failure such as disconnection of the coil 43 and protrusion of the lower and upper pole layers 38, 41 and the MR element 48 outside the air bearing surface 33. be able to. As a result, contact with the magnetic recording medium and head crash can be prevented to realize a highly reliable thin head.
  • heat generated by the sense current flowing in the MR element 48 can be radiated in the same manner, and the phenomenon in which the change in magnetic resistance due to the temperature rise of the MR element becomes unstable can be avoided.
  • a highly reliable thin ⁇ -head can be realized.
  • FIG. 6 is an enlarged sectional view showing a recording head and a reproducing head of a thin-film magnetic head according to a first modification of the present embodiment
  • FIG. 6B is a configuration diagram of an air bearing surface.
  • parts corresponding to the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
  • the thin-film magnetic head 55 is configured such that the recording head 56 is formed between the substrate 32 and the lower insulating film 37 of the recording head 35 of the first embodiment.
  • the configuration is the same as that of the recording head 35 of the first embodiment except that a heat conductive layer 58 is provided therebetween.
  • the heat conductive layer 58 is formed between the substrate 32 and the lower insulating film 37 by a non-magnetic metal material or an intermetallic compound exposed on the air bearing surface 33, for example, Au, Ag, Cu, A1, Materials having high thermal conductivity such as W, Pt, Pd, Rh, Ir, Ni, Mo, Fe, Zn, and alloys and intermetallic compounds thereof are exemplified. Further, it is preferable to use a material having a high specific resistance. When a material having a small specific resistance is used as the heat conductive layer 58, an eddy current is induced by the pulsed recording current, and the rise of the recording current is delayed due to the influence of the eddy current.
  • the substrate 32 and air can be suppressed while suppressing an increase in NLTS (non-in-line transistor on shift).
  • Bearing surface 33 Thermal conductivity in three directions can be improved.
  • the heat conduction layer 58 may further extend in the Y direction (the width direction of the slider 32) shown in FIG. According to the present modification, the heat generated from the coil 43 can be enhanced by the heat conductive layer 58 in the direction of the substrate 32 and the air bearing surface 33 to further facilitate heat radiation. .
  • FIG. 7A is a cross-sectional view schematically illustrating a recording head and a reproducing head of a thin-film magnetic head according to a second modification of the present embodiment
  • FIG. 7B is a diagram illustrating a configuration of an air bearing surface.
  • the thin magnetic head 60 of the present modified example has an upper magnetic pole layer 63 of the recording head 61 and a lower sinored layer of the reproducing head 62.
  • the lower sinored layer 45 of the reproducing head 36 of the first embodiment shown in FIGS. 4A and 4B is shared with the upper magnetic pole layer 41 of the recording head 35.
  • the thin flame-retardant bed 60 of the present modification is configured in the same manner as the first embodiment.
  • the upper magnetic pole layer 41 of the first embodiment is exposed on the air bearing surface 33. Therefore, the upper magnetic pole layer 63 having the function of the lower shield layer can be formed without changing the process of forming the upper magnetic pole layer 63 at all, and the process of forming the lower shield layer and the non-magnetic insulating film can be performed. Since it can be omitted, the manufacturing process can be simplified.
  • FIG. 8A is an enlarged cross-sectional view showing a recording head for a perpendicular magnetic recording head and a reproducing head according to a second embodiment of the present invention
  • FIG. 8B is a configuration diagram of an air bearing surface. .
  • parts corresponding to the parts described above are denoted by the same reference numerals, and description thereof will be omitted. I do.
  • the perpendicular magnetic recording head 70 of the present embodiment has a single-pole recording head 71 formed on the substrate 32 and a recording head 7. It consists of a reproduction head 36 formed on 1.
  • the recording head 71 includes a lower insulating film 37 made of an inorganic material formed on a substrate 32, an auxiliary pole layer 72 formed on the lower insulating film 37, and an auxiliary pole layer 7 formed on the lower insulating film 37.
  • the main magnetic pole layer 7 3 which is magnetically connected to the main magnetic pole layer 7 through the magnetic layer 40 and the auxiliary magnetic pole layer 72 and the nonmagnetic insulating films 75 A and 75 B.
  • the reproducing head 36 has the same configuration as in the first embodiment described above.
  • the reproducing head 36 includes a nonmagnetic insulating film 44 formed on the main magnetic pole layer 73, a lower shield layer 45 formed on the nonmagnetic insulating film 44, and a lower shield layer 45.
  • An MR element 48 formed via a nonmagnetic insulating film 46 A, a terminal 49 for supplying a sense current to the MR element 48, and a nonmagnetic insulating film 4 on the MR element 48 and the terminal 49.
  • the upper shield layer 51 includes an upper non-magnetic insulating film 52 covering the upper shield layer 51.
  • the main magnetic pole layer 73 and the auxiliary magnetic pole layer 72 of the recording head 71 are formed of the same material as the upper magnetic pole layer 41 and the lower magnetic pole layer 38 of the first embodiment, and have substantially the same thickness. It is.
  • the main magnetic pole tip sub-magnetic pole 74 is formed of the same material as the upper tip sub-magnetic pole 42 of the first embodiment.
  • the perpendicular magnetic recording head 70 of the present embodiment is similar to the first embodiment of the present embodiment. In addition, it has effects such as good thermal conductivity, high-efficiency heat dissipation, and high-speed writing.
  • FIG. A is a cross-sectional view showing an enlarged main part of the thin-film magnetic head
  • FIG. B is a configuration diagram of the air bearing surface.
  • a heat conductive layer 58 made of aluminum fluoride is formed with a thickness of 3 ⁇ m by a sputtering method.
  • a lower insulating film 37 made of aluminum oxide is formed on the heat conductive layer 58 with a thickness of about 2 / Zm.
  • the lower magnetic pole layer 38 of the metal layer 56 is selectively formed to a thickness of 1 to 4 ⁇ m by a plating method.
  • a plating seed layer made of NiFe may be formed to a thickness of several tens nm by sputtering prior to film formation by plating.
  • the lower magnetic pole layer 38 may be trimmed with an ion beam or the like to form a lower magnetic pole having a width substantially the same as that of the write track, facing an upper magnetic sub-pole 42 described later.
  • the soft magnetic material of high saturation magnetic flux density for example, N i F e (N i: 5 0 mass 0/0, F e: 5 0 mass 0/0) consisting of a thickness
  • a lower tip sub-magnetic pole of 0.2-1.'0 m may be provided.
  • the writability can be improved by concentrating the recording magnetic field leaking from the lower magnetic pole layer 38.
  • a nonmagnetic insulating film 39 A made of aluminum oxide and formed on the lower magnetic pole layer 38 on the air bearing surface 33 side to form a recording gap on the lower magnetic pole layer 38 is further formed by sputtering.
  • a nonmagnetic insulating film 39 A is provided.
  • Form contact honoré 39 A-1 For example, the nonmagnetic insulating film 39A is selectively removed by a photoresist method and an etching method.
  • the contact hole 3 9 A- 1 Odor Te N i F e (N i: 8 0 Weight 0/0, F e: 2 0 Mass 0/0)
  • the magnetic layer 40 for forming a magnetic path is selectively formed to a thickness of about 0.35 ⁇ 5 / ⁇ m by plating. Thereby, the magnetic layer 40 is connected to the lower magnetic pole layer 38.
  • a resist film (not shown) is further formed on the nonmagnetic insulating film 39A by photolithography and patterned to form a soft film having a high saturation magnetic flux density.
  • An upper tip auxiliary magnetic pole 42 made of a magnetic material, for example, FeCoAlO is selectively formed to a thickness of 0.3 ⁇ m to 1.0 ⁇ m by a sputtering method.
  • the upper tip sub-pole 4 2 has a lower tip sub-pole, and the ⁇ faces the lower tip sub-pole It is provided as follows.
  • the upper tip auxiliary magnetic pole 42 may be a laminated film made of a plurality of different soft magnetic materials.
  • the shape of the upper tip magnetic pole 42 may be formed so that the cross-sectional area becomes gradually smaller in the direction toward the lower magnetic pole layer 38. Further, a soft magnetic material may be used so that the saturation magnetic flux density increases from the base to the tip of the upper tip auxiliary magnetic pole 42. By avoiding saturation of the magnetic flux density, a larger recording magnetic field can be generated.
  • the upper tip sub-pole may be formed simultaneously with the above-described magnetic layer 40 using the same material. The manufacturing process can be simplified. In the steps shown in FIGS. 11 and 11B, a recording coil 43 made of, for example, Cu is formed on the nonmagnetic insulating film 39A to a thickness of about 1 to 2 zm by a plating method. Form selectively.
  • the pattern of the coil 43 is formed by, for example, a photoresist method.
  • a Cu seed layer may be formed by a sputtering method.
  • a single-layer coil 43 is formed by winding the magnetic layer 40.
  • the lead portion 47 of the coil 43 is provided farther from the air bearing surface 33 of the magnetic layer 40.
  • a nonmagnetic insulating film 39B made of aluminum oxide is formed to a thickness of about 4 ⁇ m by sputtering so as to cover the structure of FIGS. 11A and B. Form with.
  • the nonmagnetic insulating film 39B is exposed by a CMP method or a mechanical method to expose the upper tip sub-pole 42 and the upper surface of the magnetic layer 40, and the surface roughness of the force nonmagnetic insulating film 39B is reduced to the average surface roughness. Polishing is performed until Ra is within the range of 0.05 to 0.5 nm.
  • MR elements 48 which will be described later and are formed by laminating thin films having a thickness of several nm, can be uniformly laminated.
  • the polishing method is preferably a CMP method.
  • the surface roughness can be uniformly polished over the entire substrate. Further, it is preferable to use a polishing agent having a high polishing rate for aluminum oxide forming an insulating film. Also, polishing may be performed in multiple stages using abrasives having different particle diameters of the slurry.
  • the upper tip auxiliary magnetic pole 42 and the magnetic layer 40 can be efficiently exposed, and the surface roughness can be controlled within the above range.
  • the surface of the upper magnetic pole layer 41 described later may be further flattened.
  • FIG. 1 3 A ⁇ Pi Figure 1 3 B steps Next, on the structure of FIG. 1 2 A ⁇ Pi B, for example, N i F e (N i: 8 0 Weight 0/0, F e: 2 0 selectively formed to a thickness of 0. 5 / X m ⁇ 3 ⁇ m by mass 0/0) the upper magnetic pole layer 4 1 spatter method consisting.
  • Upper pole layer 4 1 For example, a pattern of the upper magnetic pole layer 41 is formed by, for example, a photoresist method, and after depositing NiFe, the resist film is formed by lift-off.
  • the upper magnetic pole layer 41 may be formed to have a thickness of 0.2 ⁇ m to 1.0 m.
  • the upper magnetic pole layer 41 is flat, there is no need for processing such as ion milling, so that it can be made thinner.
  • the upper magnetic pole layer 41 is formed so as to be exposed on the air bearing surface 33. Heat radiation to the outside is facilitated, and a rise in the temperature of the recording head can be suppressed.
  • a magnetic path including the lower magnetic pole layer 38 is formed, and a flat recording head is formed. Is done.
  • a recording current to the coil 43 By applying a recording current to the coil 43, a recording magnetic field is formed on the air bearing surface 33 side of the recording gap between the lower magnetic pole layer 38 and the upper tip auxiliary magnetic pole 42.
  • a nonmagnetic insulating film 44 made of aluminum oxide is further formed on the upper magnetic pole layer 41 by sputtering for about 2! Formed with a thickness of ⁇ 4 ⁇ . Then, the non-magnetic insulating film 4 4 on the N i F e (N i: 7 5 mass 0 /, F e:. 2 5 mass 0/0) of the lower shield layer 4 5 consisting of about 2 m by sputtering It is formed with a thickness.
  • the lower shield layer 45 is overlaid with, for example, aluminum oxide having a thickness of 50 nm.
  • a 50 nm non-magnetic insulating film 46 A is formed.
  • a thin film for forming the MR element 48 is laminated on the nonmagnetic insulating film 46A by a known method, and the MR element 48 is formed by patterning by RIE or the like. In addition, it is not limited to the MR element, and may be a GMR element or a TMR element.
  • terminals (leads) 49 connected to the MR element 48 are formed on both sides using a conductive material.
  • a nonmagnetic insulating film 46B made of aluminum oxide is formed to a thickness of 50 nm to 150 nm so as to cover the MR element 48 and the terminal 49.
  • the upper shield layer 5 made of NiFe (Ni: 75% by mass, Fe: 25% by mass) is further formed on the nonmagnetic insulating film 46B. 1 is formed by a sputtering method. Next, so as to cover the upper shield layer 51.
  • the upper insulating film 52 is formed to a thickness of 0.5 / m to 5 // m (preferably, 0,0 to 2 / im). Since the upper shield layer surface is formed flat, the thickness of the upper insulating film 52 can be reduced, and heat can be easily radiated through the upper insulating film 52. Also, by making the upper insulating film 52 thinner, the sputtering time can be greatly reduced.
  • the reproducing head 36 is formed after the recording head 56 is formed, the electrostatic rupture of the MR element 48 or the magnetic field It is possible to avoid performance degradation such as random disturbance of orientation.
  • the coil 18 on which the upper magnetic pole layer 16 is laminated is connected to the upper magnetic pole layer tip 16 1 on the air bearing surface 21 side.
  • the coil 18 on which the upper magnetic pole layer 16 is laminated is connected to the upper magnetic pole layer tip 16 1 on the air bearing surface 21 side.
  • the method for manufacturing a thin I-head according to the present invention when the upper tip sub-magnetic pole 42 and the upper magnetic pole layer 41 are connected, the surface of the nonmagnetic insulating film 39 B is flattened.
  • the resist film is formed on the flat non-magnetic insulating film 39 A, and the groove depth may be the thickness of the upper tip sub-pole. Therefore, the aspect ratio is small. Therefore, pattern formation by exposure can be performed with high precision, and the width of the upper tip auxiliary magnetic pole 42 corresponding to the write track width can be controlled with high precision. As a result, the track width can be reduced to achieve a higher track density.
  • FIG. 15 is a diagram showing a main part of the magnetic storage device according to the present invention.
  • the magnetic storage device 80 generally comprises a housing 81.
  • the housing 81 includes a hub 82 driven by a spindle (not shown), a magnetic recording medium 83 fixed to and rotated by the knob 82, an actuator unit 84, and an actuator unit.
  • An arm 85, a suspension 86, and a thin-film magnetic head 88 supported by the suspension 86 are provided.
  • the magnetic storage device 80 of the present embodiment is characterized by a thin-film magnetic head 88.
  • the thin-film magnetic head 88 is, for example, the magnetic head according to the first embodiment, the first and second modifications of the first embodiment, and also the second embodiment.
  • the basic configuration of the magnetic storage device 80 is not limited to that shown in FIG.
  • the magnetic recording medium 83 used in the present invention is not limited to a magnetic disk.
  • the thin-film magnetic head 88 has excellent heat conductivity and heat dissipation performance, and has high operation reliability. Therefore, the magnetic storage device 80 can prevent the magnetic storage medium 83 from being damaged or head crash due to the protrusion of the lower and upper pole layers and the MR element from the air bearing surface due to the temperature rise, and can be used for a long time. Operating reliability over a wide range. Further, since the spacing between the thin magnetic head 88 and the magnetic recording medium 83 is stabilized, the spacing can be further reduced, and high-density recording can be performed. Industrial applicability
  • a thin-film magnetic head and a magnetic storage device that can prevent a failure due to heat generated from a coil and an MR element in a thin air head, have high operation reliability, and can perform high-density recording. it can. Further, it is possible to provide a method for manufacturing a thin hard head which prevents performance deterioration and yield reduction due to thermal damage of the MR element and simplifies the manufacturing process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Heads (AREA)

Abstract

A thin-film magnetic head (30) comprising a recording head (35) formed on a substrate (32), and a reproducing head (36) formed on the recording head (35), wherein the recording head (35) comprises a lower magnetic pole layer (38), an upper magnetic pole layer (41) magnetically connected with the lower magnetic pole layer (38) via a magnetic layer (40) and formed to face the lower magnetic pole layer (38) across a non-magnetic insulation films (39A), (39B), an upper tip-end sub-magnetic pole (42) magnetically connected with the upper magnetic pole layer (41) on an air bearing surface (33) side and having a width accommodating a recording track width, and a coil (43) formed between the lower magnetic pole layer (38) and the upper magnetic pole layer (41). The coil (43) is formed in a single layer, and the lower magnetic pole layer (38) and the upper magnetic pole layer (41) are formed almost in parallel to each other. Heat generated from the coil (43) is conducted in the directions of the substrate (32), the air bearing surface (33) and the reproducing head (36) to be efficiently dissipated, thereby preventing failures due to heat.

Description

明細書 薄膨兹気へッド、 その製造方法、 および磁気記憶装置 技術分野  Description Thin expansion head, manufacturing method thereof, and magnetic storage device
本発明は、 記録へッドと再生へッドを備えた複合型の薄 I»気へッド、 その製 造方法、 および磁気記憶装置に関する。  The present invention relates to a composite thin I-head having a recording head and a reproducing head, a method of manufacturing the same, and a magnetic storage device.
近年磁気記憶装置の大容量化に伴い、 磁気記録媒体の記録密度は年 1 0 0 %増 の高い伸びを示している。 この高密度記録技術の進歩は、 主に磁気記録媒体の低 ノイズ化、 及ぴ薄麵気ヘッドの高感度ィ匕によるものである。 高記録密度ィ匕に伴 レ、、 薄 «気へッドの記録へッドゃ再生へッドの小型化が図られている。 背景技術  In recent years, as the capacity of magnetic storage devices has increased, the recording density of magnetic recording media has increased by as much as 100% per year. This advance in high-density recording technology is mainly due to lower noise in magnetic recording media and higher sensitivity of thin magnetic heads. With the high recording density, the size of the recording head and the reproducing head of the head has been reduced. Background art
薄羅気へッドの己録へッドゃ再生へッドの小型ィヒは、 特に記録へッドのライ トギャップ、 再生へッドのリードギャップ、 及ぴこれらのへッドのコア幅の狭小 化に重点が置かれている。  The small head of the self-recorded head and the playback head of the light head, especially the write gap of the recording head, the read gap of the playback head, and the core width of these heads Emphasis is placed on narrowing
図 1 Aは、 従来の薄難気へッドの断面図、 図 1 Bはエアベアリング面の構成 図である。 図 1 Aおよび図 1 Bを参照するに、 薄膜磁気へッド 1 0は矢印方向に 移動する磁気記録媒体 2 0と対向して、 アルチック (A 1 2 θ3- Τ i C) よりな 'る基板 1 1上に形成された再生へッド 1 2と、 再生へッド 1 2上に形成された記 録ヘッド 1 3などから構成され、 磁気記録媒体 2 0に記録及び再生を行う。 再生 へッド 1 2の感磁素子 1 4には MR素子、 GMR素子等が用いられ、 磁気記録媒 体 2 0からの磁界を検知するために〜 1 O mA程度のセンス電流が流される。 一 方記録へッド 1 3は、 磁気回路を形成する下部磁極層 1 5および上部磁極層 1 6 と、 これらの磁気回路の周りを卷回する積層されたコイル 1 8等から構成されて いる。 コイル 1 8には情報を記録するために 3 0 mA〜6 0 mAの大きさの高周 波パルスの記録電流が流される。 特に高密度記録化に伴レヽ磁気記録媒体 2 0の保 磁力が增加し、 オーバーライト特性を確保するためにより大きな記録磁界、 すな わち大きな記録電流が必要となる。 したがって、 コイル 1 8からの発熱を外部に 効率的に放熱することが重要となる。 FIG. 1A is a cross-sectional view of a conventional thin hard head, and FIG. 1B is a configuration diagram of an air bearing surface. Referring to Figure 1 A and FIG. 1 B, Ru head 1 0 to thin film magnetic is opposite to the magnetic recording medium 2 0 which moves in the direction of the arrow, AlTiC (A 1 2 θ3- Τ i C ) from Do ' It comprises a reproducing head 12 formed on the substrate 11 and a recording head 13 formed on the reproducing head 12, and performs recording and reproduction on the magnetic recording medium 20. An MR element, a GMR element, or the like is used as the magnetic sensing element 14 of the reproducing head 12, and a sense current of about 1 O mA flows to detect a magnetic field from the magnetic recording medium 20. On the other hand, the recording head 13 includes a lower magnetic pole layer 15 and an upper magnetic pole layer 16 forming a magnetic circuit, and a laminated coil 18 wound around these magnetic circuits. . A recording current of a high-frequency pulse having a magnitude of 30 mA to 60 mA flows through the coil 18 to record information. In particular, the coercive force of the magnetic recording medium 20 is increased as the recording density is increased, and a larger recording magnetic field, that is, a larger recording current is required to secure the overwrite characteristics. Therefore, the heat generated from coil 18 It is important to radiate heat efficiently.
記録へッド 1 3のコイル 1 8で発生した熱は、主に基板 1 1、上部絶縁膜 1 9、 及びエアベアリング面 2 1の 3方向に流れ外部に放熱される。 これらのうち、 基 板 1 1方向には、コイル 1 8力、ら下部磁極層 1 5、約 5 m厚程度の絶縁膜 2 2、 再生へッド 1 2、 及び絶縁膜 2 3を介して基板 1 1を通じて放熱される。 下部磁 極層 1 5、 再生へッド 1 2の下部及ぴ上部シールド層 2 4、 2 5は金属材料が用 いられているので熱伝導率が高く、 基板 1 1材料のアルチックは熱伝導率が 2 1 W/ (m - K) 程度あるので、 この方向の放熱は良好である。 さらに、 下部及び 上部シールド層 2 4、 2 5は、 エアベアリング 2 1面に露出されているので、 ェ ァベアリング面 2 1方向にも放熱される。  The heat generated by the coil 18 of the recording head 13 flows mainly in three directions of the substrate 11, the upper insulating film 19, and the air bearing surface 21 and is radiated to the outside. Of these, in the direction of the substrate 11, the coil 18 force, the lower magnetic pole layer 15, the insulating film 22 about 5 m thick, the reproducing head 12 and the insulating film 23 Heat is dissipated through the substrate 11. The lower and upper shield layers 24 and 25 of the lower magnetic pole layer 15 and the reproducing head 12 are made of a metal material and have high thermal conductivity, and the substrate material of the substrate 11 is thermally conductive. Since the rate is about 21 W / (m-K), heat radiation in this direction is good. Further, since the lower and upper shield layers 24 and 25 are exposed on the surface of the air bearing 21, heat is also dissipated in the direction of the air bearing surface 21.
しかし、 コイル 1 8から上部磁極層 1 6を介して上部絶縁膜 1 9方向の放熱に ついては、 上部絶縁膜 1 9が熱伝導率の低い酸化アルミニウム (熱伝導率約 1 5 W/ (m - K) ) により通常 6 〜数十/ mの膜厚で形成されているので放熱さ れにくい。 さらに、 上部磁極層 1 6もエアベアリング面 2 1に露出する先端部 1 6 - 1が先細となつて熱伝導の経路が狭くなつており放熱されにく!/、構造となつ ている。 したがって、 コイル 1 8の発熱が蓄積され易い。 その結果、 温度が上昇 し熱膨張により上部磁極層 1 6及ぴ下部磁極層 1 5の先端部、 さらには感磁素子 1 4がエアベアリング面 2 1から磁気記録媒体 2 0方向に突出してしまう。 その 結果、 薄 «気ヘッド 1 0が磁気記録媒体 2 0と接触し易くなり、 さらにはクラ ッシュしてしまう。  However, regarding heat radiation from the coil 18 to the upper insulating film 19 via the upper magnetic pole layer 16, the upper insulating film 19 is made of aluminum oxide having a low thermal conductivity (a thermal conductivity of about 15 W / (m- K)), it is usually formed with a film thickness of 6 to several tens / m, so it is difficult to dissipate heat. In addition, the top pole layer 16 also has a tapered tip 16-1 exposed on the air bearing surface 21 so that the heat conduction path is narrow and heat is not easily dissipated! /, The structure. Therefore, heat generation of the coil 18 is likely to be accumulated. As a result, the temperature rises and thermal expansion causes the tip portions of the upper magnetic pole layer 16 and the lower magnetic pole layer 15, and furthermore, the magneto-sensitive element 14 to protrude from the air bearing surface 21 in the direction of the magnetic recording medium 20. . As a result, the thin air head 10 is likely to come into contact with the magnetic recording medium 20 and further crashes.
この対策として、 上部絶縁膜 1 9を薄膜化して放熱能力を上げることも考えら れる。 し力 し、 上部磁極層 1 6には、 コイル 1 8が積層されているため、 エアべ 了リング面 3 3に対して遠い方から先端部 1 6 - 1にかけて傾斜部 1 6— 2を有 し、 数 μ π!〜 1 Ο μ πιの段差がある。 したがって、 上部絶縁膜 1 9を単に薄膜化 すると上部磁極層 1 6が完全に覆われないおそれがあり、 外部環境、 例えば酸や アル力リなどから保護膜としての機能が低下してしまうという問題がある。 また、 薄 «気へッド 1 0の製造工程においては、 基板 1 1上にまず再生へッ ド 1 2力 S形成され、 次いで再生へッド 1 2上に記録へッド 1 3が形成される。 し たがって記録ヘッド 1 3を作製する際、 特に熱処理工程、 あるいは磁界を印加し て熱処理する工程において、 先に形成された感磁素子 1 4が熱的ダメージを受け あるいは磁気的な配向等が乱れる等、 再生へッド 1 2の特性が劣化するという問 題がある。 また、 再生ヘッド 1 2は数 n m程度の極薄の薄膜の積層体より形成さ れているので、 装置間の移送等のハンドリングの際に静電気により破壌されやす く、 歩留まりが低下して生産安定性に劣るという問題がある。 As a countermeasure, it is conceivable to increase the heat dissipation capacity by reducing the thickness of the upper insulating film 19. Since the coil 18 is laminated on the upper magnetic pole layer 16, the upper magnetic pole layer 16 has an inclined portion 16-2 from the far end to the air bearing ring surface 33 to the tip 16-1. And a few μπ! There is a step of ~ 1 Ο μ πι. Therefore, if the upper insulating film 19 is simply made thinner, the upper magnetic pole layer 16 may not be completely covered, and the function as a protective film is deteriorated by an external environment, for example, acid or alkaline. There is. In the manufacturing process of the thin head 10, a reproducing head 12 is first formed on the substrate 11, and then a recording head 13 is formed on the reproducing head 12. Is done. Therefore, when manufacturing the recording head 13, in particular, a heat treatment step or the application of a magnetic field In the process of heat treatment, there is a problem that the characteristics of the reproducing head 12 are deteriorated, for example, the previously formed magneto-sensitive element 14 is thermally damaged or the magnetic orientation is disturbed. In addition, since the read head 12 is formed of a laminate of ultra-thin thin films of about several nm, it is easily broken by static electricity during handling, such as transfer between devices, and production yield is reduced. There is a problem of poor stability.
特許文献 1 特開 2 0 0 0— 2 8 5 4 2 1号公報 発明の開示  Patent Document 1: Japanese Patent Application Laid-Open No. 2000-28085 4 21 Disclosure of the Invention
そこで、 本発明は上記の課題を解決した新規力 有用な薄 «気ヘッド、 その 製造方法、 および磁気記憶装置を提供することを概括課題とする。  Therefore, an object of the present invention is to provide a novel thin-film magnetic head, a method of manufacturing the same, and a magnetic storage device which solve the above-mentioned problems.
本発明のより具体的な課題は、 コイル及び MR素子の発熱による熱的障害を防 止し、 動作信頼性が高く、 高密度記録可能な薄藤気ヘッド及び磁気記憶装置を 提供することである。 また、 本発明の他の具体的な課題は、 MR素子の熱的ダメ ージ等に起因する性能劣化及び歩留まり低下を防止し、 製造工程の簡 匕を図る 薄 «気へッドの製造方法を樹共することである。  A more specific object of the present invention is to provide a thin-film magnetic head and a magnetic storage device that prevent thermal damage due to heat generation of a coil and an MR element, have high operation reliability, and are capable of high-density recording. . Another specific object of the present invention is to provide a method for manufacturing a thin head, which prevents performance deterioration and yield reduction due to thermal damage or the like of an MR element and simplifies the manufacturing process. It is to share the tree.
本発明の一観点によれば、  According to one aspect of the invention,
基板と、記録へッドと、再生へッドょりなる複合型の薄薩気へッドであって、 前記記録へッドは、 基板と再生へッドとの間に形成され、  A composite head comprising a substrate, a recording head, and a reproducing head, wherein the recording head is formed between the substrate and the reproducing head;
前記基板上に形成された下部磁極層と、  A lower magnetic pole layer formed on the substrate,
磁気的に接続され、 前記下部磁極層と対向する上部磁極層と、  An upper magnetic pole layer magnetically connected to the lower magnetic pole layer and facing the lower magnetic pole layer;
前記下部磁極層と上部磁極層との間に形成されたコイルとを有し、  Having a coil formed between the lower pole layer and the upper pole layer,
前記コィルが単層に形成され、 下部磁極層と上部磁極層とが略平行である薄膜 磁気へッドが提供される。  A thin-film magnetic head is provided in which the coil is formed in a single layer and the lower pole layer and the upper pole layer are substantially parallel.
本発明によれば、 記録ヘッドが基板と再生ヘッドとの間に形成されている。 記 録へッドのコイルからの発熱を、 基板、 磁気記録媒体に対向するエアベアリング 面、 及び再生へッド方向に伝え効率よく放熱することができる。 したがって、 温 度上昇によるコィルの断線や、 下部及び上部磁極層のエアベアリング面側への突 出などの熱による障害を防止することができる。 その結果、 高信頼性の薄 β気 ヘッドを実現することができる。 さらに、 上記突出を防止することにより、 記録 及び再生へッドと磁気記録媒体間のスペーシングを安定化することができ、 スぺ 一シングを低減して高密度記録が可能な薄 β気へッドを実現することができる。 また、 下部磁極層と上部磁極層とは略平行に形成されているので、 記録へッド の上部に形成される再生へッドの感磁素子に要求される平坦な下地を容易に形成 することができる。 According to the present invention, the recording head is formed between the substrate and the reproducing head. Heat generated from the coil of the recording head can be transmitted to the substrate, the air bearing surface facing the magnetic recording medium, and the reproducing head, so that heat can be efficiently radiated. Therefore, it is possible to prevent heat failure such as disconnection of the coil due to a rise in temperature, and protrusion of the lower and upper pole layers toward the air bearing surface. As a result, a highly reliable thin β-air head can be realized. Furthermore, by preventing the above protrusion, In addition, the spacing between the reproducing head and the magnetic recording medium can be stabilized, and a thin β-head capable of reducing the spacing and enabling high-density recording can be realized. Further, since the lower magnetic pole layer and the upper magnetic pole layer are formed substantially in parallel, a flat underlayer required for the magneto-sensitive element of the reproducing head formed on the recording head can be easily formed. be able to.
本発明の他の観点によれば、 上記の薄膜磁気へッドを備えた磁気記憶装置が提 供される。 本発明によれば、 高信頼性カゝっ高密度記録可能な磁気記憶装置を実現 することができる。  According to another aspect of the present invention, there is provided a magnetic storage device including the above thin-film magnetic head. According to the present invention, it is possible to realize a magnetic storage device capable of high-density recording with high reliability.
本発明のその他の観点によれば、  According to another aspect of the present invention,
基板と、 該基板上に形成された記録へッドと、 該記録へッド上に形成された再 生へッドよりなり、  A substrate, a recording head formed on the substrate, and a reproducing head formed on the recording head,
前 tat己録ヘッドは、 前記基板上に形成された下部磁極層と、 該下部磁極層と磁 気的に接続され、 下部磁極層と対向する上部磁極層と、 前記下部磁極層と上部磁 極層との間の非磁性絶縁膜中に形成されたコイルと、 磁気記録媒体と対向する側 におレ、て前記上部磁極層と磁気的に接続され、 記録ギヤップ部を形成した磁極部 とよりなる薄 «気へッドの製造方法であって、  The tat self-recording head includes a lower magnetic pole layer formed on the substrate, an upper magnetic pole layer magnetically connected to the lower magnetic pole layer, and facing the lower magnetic pole layer, and the lower magnetic pole layer and the upper magnetic pole. A coil formed in the non-magnetic insulating film between the first magnetic layer and the magnetic recording medium, and a magnetic pole part magnetically connected to the upper magnetic pole layer on the side facing the magnetic recording medium to form a recording gap. A method of manufacturing a thin head,
前記コィル及ぴ磁極部を前記非磁性絶縁膜により埋め込む工程と、  Embedding the coil and the magnetic pole portion with the nonmagnetic insulating film;
前記非磁性絶縁膜を平坦化して前記磁極部を露出させる平坦化工程とを含む薄 β気へッドの製造方法が提供される。  A flattening step of flattening the nonmagnetic insulating film to expose the magnetic pole portion.
本発明によれば、 非磁性絶縁膜を研磨して平坦化することにより再生へッドの 感磁素子を平坦性良く形成することができる。 また、 コイルは単層に形成されて いるので、 研磨量を低減することができ、 製造プロセス時間を短縮化することが できる。 図面の簡単な説明  According to the present invention, the non-magnetic insulating film is polished and flattened, whereby the magneto-sensitive element of the reproducing head can be formed with good flatness. Also, since the coil is formed in a single layer, the amount of polishing can be reduced, and the manufacturing process time can be shortened. BRIEF DESCRIPTION OF THE FIGURES
図 1 Αは従来の薄 «気へッドの断面図、 図 1 Bは、 図 1 Aに示す薄 J»気へ ッドのエアベアリング面の構成図である。  FIG. 1 is a cross-sectional view of a conventional thin head, and FIG. 1B is a configuration diagram of an air bearing surface of the thin J head shown in FIG. 1A.
図 2は、 本発明の第 1実施例に係る薄膜磁気へッドが磁気記録媒体上を浮上す る様子を示す図である。 ' 図 3は、 図 2に示す薄 J«気へッドのエアベアリング面側から見た図である。 図 4 Aは、 図 3の薄膜磁気へッドの要部を拡大して示す断面図、 図 4 Bは、 図FIG. 2 is a diagram showing a state where the thin-film magnetic head according to the first embodiment of the present invention flies above a magnetic recording medium. ' FIG. 3 is a view of the thin air manifold shown in FIG. 2 as viewed from the air bearing surface side. FIG. 4A is an enlarged cross-sectional view showing a main part of the thin-film magnetic head of FIG. 3, and FIG.
4 Aに示す薄膜磁気へッドのエアベアリング面の構成図である。 FIG. 4 is a configuration diagram of an air bearing surface of the thin-film magnetic head shown in FIG. 4A.
図 5は、 記録へッドの平面図である。  FIG. 5 is a plan view of the recording head.
図 6 Aは、 第 1実施例の第 1変形例に係る薄膜磁気へッドの要部を拡大して示 す断面図、 図 6 Bは、 図 6 Aに示す薄膜磁気へッドのエアベアリング面の構成図 である。  FIG. 6A is an enlarged cross-sectional view showing a main part of a thin-film magnetic head according to a first modification of the first embodiment, and FIG. 6B is an air view of the thin-film magnetic head shown in FIG. 6A. It is a block diagram of a bearing surface.
図 7 Aは、 第 1実施例の第 2変形例に係る薄 «気へッドの要部を拡大して示 す断面図、 図 7 Bは、 図 7 Aに示す薄 »気へッドのエアベアリング面の構成図 である。  FIG. 7A is an enlarged cross-sectional view showing a main part of a thin air head according to a second modification of the first embodiment, and FIG. 7B is a thin air head shown in FIG. 7A. FIG. 2 is a configuration diagram of an air bearing surface of FIG.
図 8 Aは、 本発明の第 2実施例に係る垂直磁気記録へッドの要部を拡大して示 す断面図、 図 8 Bは、 図 8· Aに示す垂直磁気記録へッドのエアベアリング面の構 成図である。  FIG. 8A is a cross-sectional view showing an enlarged main part of the perpendicular magnetic recording head according to the second embodiment of the present invention, and FIG. 8B is a sectional view of the perpendicular magnetic recording head shown in FIG. 8A. FIG. 3 is a configuration diagram of an air bearing surface.
図 9 Aは本発明に係る薄聽気へッドの製造工程 (その 1 )を示す拡大断面図、 図 9 Bはそのエアベアリング面の構成図である。  FIG. 9A is an enlarged cross-sectional view showing a manufacturing process (No. 1) of the thin head according to the present invention, and FIG. 9B is a configuration diagram of an air bearing surface thereof.
図 1 O Aは本発明に係る薄 β気へッドの製造工程 (その 2 ) を示す拡大断面 図、 図 1 0 Βはそのエアベアリング面の構成図である。  FIG. 10A is an enlarged cross-sectional view showing a manufacturing process (part 2) of the thin β-air head according to the present invention, and FIG. 10 is a configuration diagram of an air bearing surface thereof.
図 1 1 Αは本発明に係る薄膜磁気ヘッドの製造工程 (その 3 ) を示す拡大断面 図、 図 1 1 Bはそのエアベアリング面の構成図である。  FIG. 11A is an enlarged sectional view showing a manufacturing process (part 3) of the thin-film magnetic head according to the present invention, and FIG. 11B is a configuration diagram of an air bearing surface thereof.
図 1 2 Aは本発明に係る薄廳気へッドの製造工程 (その 4 ) を示す拡大断面 図、 図 1 2 Bはそのエアベアリング面の構成図である。  FIG. 12A is an enlarged cross-sectional view showing a manufacturing process (part 4) of the thin-room air head according to the present invention, and FIG. 12B is a configuration diagram of an air bearing surface thereof.
図 1 3 Aは本発明に係る薄膜磁気ヘッドの製造工程 (その 5 ) を示す拡大断面 図、 図 1 3 Bはそのエアベアリング面の構成図である。  FIG. 13A is an enlarged cross-sectional view illustrating a manufacturing process (part 5) of the thin-film magnetic head according to the present invention, and FIG. 13B is a configuration diagram of an air bearing surface thereof.
図 1 4 Aは本発明に係る薄 気ヘッドの製造工程 (その 6 ) を示す拡大断面 図、 図 1 4 Bはそのエアベアリング面の構成図である。  FIG. 14A is an enlarged sectional view showing a manufacturing process (part 6) of the thin air head according to the present invention, and FIG. 14B is a configuration diagram of an air bearing surface thereof.
図 1 5は本発明に係る磁気記憶装置の要部を示す図である。  FIG. 15 is a diagram showing a main part of the magnetic storage device according to the present invention.
符号の説明: 3 0 · 5 5 ■ 6 0 · 7 0…薄難気へッド、 3 3…エアべアリン グ面、 3 5 · 5 6 · 6 1 · 7 1 ···記録へッド、 3 6 · 6 2…再生へッド、 3 8 ··· 下部磁極層、 4 1…上部磁極層、 4 2 ···上部先端副磁極、 4 3…コイル、 4 8 ··' MR素子、 5 2 ···上部絶縁膜、 5 8…熱伝導層、 7 0 ···垂直磁気記録ヘッド、 7 2…捕助磁極層、 7 3…主磁極層、 8 0…磁気記憶装置 発明を実施するための最良の態様 Explanation of symbols: 3 0 · 5 5 ■ 6 · 7 0 ... thin and hard head, 3 3 ... air bearing surface, 35 · 5 6 · 6 1 · 7 1 ··· recording head 3 6 · 6 2 · · · playback head, 3 · · · · lower pole layer, 4 1 · · · upper pole layer, 4 2 · · · top tip sub-pole, 4 3 · · coil, 4 8 · · · ' MR element, 52 · · · · upper insulating film, 58 · · · thermal conductive layer, 70 · · · perpendicular magnetic recording head, 72 · · · auxiliary magnetic pole layer, 73 · · · main magnetic pole layer, 80 ... magnetic storage device BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面に基づいて本発明による実施例に係る薄膜磁気ヘッドついて説明す る。  Hereinafter, a thin film magnetic head according to an embodiment of the present invention will be described with reference to the drawings.
[第 1実施例]  [First embodiment]
図 2は、 本発明の実施例に係る薄 ¾気へッドが磁気記録媒体上を浮上する様 子を示す図である。 図 2を参照するに、 本実施例の薄膜磁気ヘッド 3 0は、 矢印 ME方向に移動する磁気記録媒体 3 1上を流れる空気流 (矢印 A I Rの方向) に より、浮上力を得てスライダ 3 2の流入端 3 2 - 1が磁気記録媒体 3 1力、ら高く、 流出端 3 2— 2が低い姿勢を保って浮上する。 エアベアリング面 3 3の流出端 3 FIG. 2 is a diagram showing a state in which a thin air head according to an embodiment of the present invention flies above a magnetic recording medium. Referring to FIG. 2, the thin-film magnetic head 30 of the present embodiment obtains a flying force by the air flow (the direction of the arrow AIR) flowing over the magnetic recording medium 31 moving in the direction of the arrow ME to obtain the slider 3. The inflow end 3 2-1 of the magnetic recording medium 3 1 is high, and the outflow end 3 2-2 floats while maintaining a low attitude. Outflow end 3 of air bearing surface 3 3
2— 2には複合型へッド 3 4が設けられている。 2-2 is provided with a composite head 3 4.
図 3は、 図 2の薄膜磁気へッド 3 0のエアベアリング面 3 3側から見た図であ る。 図 3を参照するに、 薄膜磁気ヘッド 3 0は、 スライダ 3 2のエアベアリング 面 3 3には、 浮上量および浮上姿勢を調整するためのパッド 3 4と、 流出端 3 2 一 2側のスライダ 3 2 (以下、スライダを基板と称する。)上には複合型へッド 3 4が形成され、 スライダ 3 2から空気流の向きに沿って記録ヘッド 3 5、 再生へ ッド 3 6がこの順に配置されている。  FIG. 3 is a view of the thin-film magnetic head 30 of FIG. 2 as viewed from the air bearing surface 33 side. Referring to FIG. 3, the thin-film magnetic head 30 includes a pad 34 for adjusting a flying height and a flying posture on an air bearing surface 33 of a slider 32, and a slider on an outflow end 3 2 1 2 side. A composite head 34 is formed on 32 (hereinafter, the slider is referred to as a substrate), and a recording head 35 and a reproducing head 36 are formed along the direction of air flow from the slider 32. They are arranged in order.
図 4 Aは、 図 3の薄 気へッド 3 0の記録へッド及ぴ再生へッドを拡大して 示す断面図、 図 4 Bは、 エアベアリング面 3 3の構成図である。 図 4 A及ぴ図 4 Bを参照するに、 薄 S«気へッド 3 0は、 基板 3 2と、 基板 3 2上に形成された 記録へッド 3 5と、 記録へッド 3 5上に形成された再生へッド 3 6力、ら構成され ている。 記録ヘッド 3 5は、 基板 3 2上に形成された、 無機材料よりなる下部絶 縁膜 3 7と、 下部絶縁膜 3 7上に形成された下部磁極層 3 8と、 下部磁極層 3 8 と磁性層 4 0を介して磁気的に接続され、下部磁極層 3 8と非磁性絶縁膜 3 9 A、 FIG. 4A is a cross-sectional view showing a recording head and a reproducing head of the thin head 30 of FIG. 3 in an enlarged manner, and FIG. 4B is a configuration diagram of the air bearing surface 33. Referring to FIGS. 4A and 4B, the thin head 30 is composed of a substrate 32, a recording head 35 formed on the substrate 32, and a recording head 3 formed on the substrate 32. 5 consists of a regenerative head formed on 3 and 6 forces. The recording head 35 includes a lower insulating film 37 made of an inorganic material formed on the substrate 32, a lower magnetic pole layer 38 formed on the lower insulating film 37, and a lower magnetic pole layer 38. Magnetically connected through the magnetic layer 40, the lower magnetic pole layer 38 and the nonmagnetic insulating film 39A,
3 9 Bを挟んで対向して形成された上部磁極層 4 1と、 エアベアリング面 3 3側 において上部磁極層 4 1と磁気的に接続され、 記録されるトラック幅に対応する 幅を有する上部先端副磁極 4 2と、 下部磁極層 3 8と上部磁極層 4 1との間の非 磁性絶縁膜 3 9 A、 3 9 B中に形成されたコイル 4 3などから構成されている。 下部絶縁膜 3 7は、 無機材料、 例えば酸ィ匕アルミニウムよりなり、 5 μ mの厚 さで形成されている。 熱を伝導する観点からは、 厚さは 1 μ ΐη〜5 z mであるこ とが好ましい。 1 μ m未満ではピンホールが発生し易く、 5 μ mを超えると伝導 し難くなり、 放熱効果が低下してしまう。 また、 下部絶縁膜 3 7は、 A 1 Nより なることが好ましい。 酸化アルミニゥムより熱伝導率が高く、 効率的に熱を伝え ることができる。 The upper magnetic pole layer 41 formed opposite to the 39 B and the upper magnetic pole layer 41 which is magnetically connected to the upper magnetic pole layer 41 on the air bearing surface 33 side and has a width corresponding to the track width to be recorded. The tip sub-pole 4 2, the lower pole layer 3 8 and the upper pole layer 4 1 It is composed of a coil 43 and the like formed in the magnetic insulating films 39A and 39B. The lower insulating film 37 is made of an inorganic material, for example, aluminum oxide, and has a thickness of 5 μm. From the viewpoint of heat conduction, the thickness is preferably 1 μΐη to 5 zm. If it is less than 1 μm, pinholes are likely to occur, and if it exceeds 5 μm, conduction becomes difficult, and the heat radiation effect is reduced. Further, the lower insulating film 37 is preferably made of A 1 N. It has higher thermal conductivity than aluminum oxide and can transmit heat efficiently.
下部磁極層 3 8と上部磁極層 4 1、 及び磁性層 4 0は、 高磁束密度の軟磁性材 料、例えば N i F e (N i : 8 0質量%、 F e : 2 0質量0/。)、 N i F e (N i : 5 0質量0 /。、 F e : 5 0質量0/。)、 F e C o A 1 0、 C o Z r N b、 F e S i Nな どを用いることができる。 下部磁極層 3 8及ぴ上部磁極層 4 1の厚さは 1 . 0 μ π!〜 5 . 0 の範囲に設定され、 メツキ法、 スパッタ法、 真空蒸着法'、 ' CVD 法などにより形成することができる。 Lower magnetic layer 3 8 and the upper magnetic pole layer 4 1, and the magnetic layer 4 0, the soft magnetic materials of high magnetic flux density, for example, N i F e (N i: 8 0 wt%, F e: 2 0 Weight 0 / .), NiFe (Ni: 50 mass 0 /., Fe: 50 mass 0 /.), FeCoA10, CoZrNb, FeSiN Which can be used. The thickness of the lower magnetic pole layer 38 and the upper magnetic pole layer 4 is 1.0 μπ! It is set in the range of ~ 5.0, and can be formed by plating method, sputtering method, vacuum evaporation method, CVD method and the like.
コイル 4 3は下部磁極層 3 8上に記録ギャップ部となる非磁性絶縁膜 3 9 Aを 介して単一の層に形成される。 コイル 4 3を単層に形成することで、 インダクタ ンスを低減し立ち上がり時間の遅れを抑制することができ、 高速書込が可能とな る。  The coil 43 is formed as a single layer on the lower magnetic pole layer 38 via a non-magnetic insulating film 39 A serving as a recording gap. By forming the coil 43 in a single layer, inductance can be reduced, delay in rise time can be suppressed, and high-speed writing can be performed.
また、 従来の積層されたコイルの構成ではコイル間が最も蓄熱され易い。 本実 施例ではコイル 4 3を単層に形成することで、 カゝかる蓄熱を回避することができ る。  Further, in the configuration of the conventional laminated coil, heat is easily stored between the coils. In this embodiment, by forming the coil 43 in a single layer, a large heat storage can be avoided.
さらにまた、 コイル 4 3を単層に形成することで、 コイル 4 3の上部に形成さ れる上部磁極層 4 1を平坦性よく形成することができる。 その結果、 上部磁極層 4 1上に形成される再生へッド 3 6、 特に MR素子 4 8の平坦性を良好に形成す ることができ、 MR素子 4 8の積層された薄膜の膜厚を均一に形成することがで きる。  Furthermore, by forming the coil 43 in a single layer, the upper magnetic pole layer 41 formed on the coil 43 can be formed with good flatness. As a result, the flatness of the reproducing head 36 formed on the upper magnetic pole layer 41, particularly the flatness of the MR element 48 can be improved, and the film thickness of the laminated thin film of the MR element 48 can be improved. Can be formed uniformly.
図 5は記録へッド 3 5の平面図である。 図 5を参照するに、 コイル 4 3は下部 磁極層 3 8及上部磁極層 4 1にほぼ完全に挟まれ、 下部磁極層 3 8及上部磁極層 4 1はエアベアリング面 3 3に露出している。 したがって、 コイル 4 3の発熱が 下部磁極層 3 8及上部磁極層 4 1を通じてエアベアリング面 3 3に効率的に放熱 され、 コイル 4 3付近に蓄熱されることがないので、 温度上昇によるコイル 4 3 の断線を回避することができる。 また、 下部磁極層 3 8と上部磁極層 4 1は、 ェ アベァリング面 3 3に露出して形成されているので、 コイル 4 3で発生した熱を 下部磁極層 3 8と上部磁極層 4 1を通じてエアベアリング面 3 3から外部に放熱 することができ、 放熱能力が向上している。 FIG. 5 is a plan view of the recording head 35. Referring to FIG. 5, the coil 43 is almost completely sandwiched between the lower magnetic pole layer 38 and the upper magnetic pole layer 41, and the lower magnetic pole layer 38 and the upper magnetic pole layer 41 are exposed on the air bearing surface 33. I have. Therefore, the heat of the coil 43 is efficiently radiated to the air bearing surface 33 through the lower magnetic pole layer 38 and the upper magnetic pole layer 41. As a result, heat is not stored near the coil 43, so that disconnection of the coil 43 due to temperature rise can be avoided. Further, since the lower magnetic pole layer 38 and the upper magnetic pole layer 41 are formed so as to be exposed on the bearing surface 33, heat generated by the coil 43 is transferred through the lower magnetic pole layer 38 and the upper magnetic pole layer 41. The heat can be dissipated to the outside from the air bearing surface 33, and the heat dissipation ability is improved.
' 図 4 A及ぴ 4 Bに戻り、 上部先端副磁極 4 2は、 上述した上部磁極層 4 1と同 様の材料により形成することができ、 特に飽和磁束密度の高い材料、 例えば F e C o A l Oを用いることが好ましレヽ。 上部磁極層 4 1との接続部での磁気飽和を 防止し、上部磁極層 4 1のエアベアリング面 3 3側から対向する磁気記録媒体 (図 示せず) 方向に磁界が漏れることを防止することができる。  ′ Returning to FIGS. 4A and 4B, the upper tip sub-pole 42 can be formed of the same material as the above-described upper pole layer 41, and in particular, a material having a high saturation magnetic flux density, for example, F e C o It is preferable to use AlO. Prevent magnetic saturation at the connection with the upper magnetic pole layer 41 and prevent leakage of a magnetic field from the air bearing surface 33 side of the upper magnetic pole layer 41 toward the facing magnetic recording medium (not shown). Can be.
再生へッド 3 6は、'上部磁極層 4 1上に形成された非磁性絶縁膜 4 4と、 非磁 性絶縁膜 4 4上に形成された下部シールド層 4 5と、 下部シールド層 4 5上に非 磁性絶縁膜 4 6 Aを介して形成された MR素子 4 8と、 MR素子 4 8の両側に電 気的に接続され、 MR素子 4 8にセンス電流を供給する導電材料よりなる端子 4 9と、 MR素子 4 8及び端子 4 9上に非磁性絶縁膜 4 6 Bを介して形成された上 部シールド層 5 1と、 上部シールド層 5 1覆う上部非磁性絶縁膜 5 2より構成さ れている。  The reproducing head 36 includes a nonmagnetic insulating film 44 formed on the upper magnetic pole layer 41, a lower shield layer 45 formed on the nonmagnetic insulating film 44, and a lower shield layer 4. MR element 48 formed on non-magnetic insulating film 46 A on top of 5 and conductive material electrically connected to both sides of MR element 48 to supply sense current to MR element 48 From the terminal 49, the upper shield layer 51 formed on the MR element 48 and the terminal 49 via the nonmagnetic insulating film 46B, and the upper nonmagnetic insulating film 52 covering the upper shield layer 51. It is configured.
下部シールド層 4 5及び上部シールド層 5 1は、 高磁束密度の軟磁性材料、 例 えば N i F e (N i : 7 5質量0 /0、 F e : 2 5質量0 /0) など、 上述した下部及ぴ 上部磁極層と同様の軟磁性材料を用いることができ、 メツキ法、 スパッタ法、 真 空蒸着法、 CVD法などにより形成することができる。 Lower shielding layer 4 5 and the upper shield layer 5 1, a soft magnetic material having a high magnetic flux density, if example embodiment N i F e (N i: 7 5 mass 0/0, F e: 2 5 weight 0/0), etc., The same soft magnetic material as the lower and upper magnetic pole layers described above can be used, and can be formed by a plating method, a sputtering method, a vacuum evaporation method, a CVD method, or the like.
MR素子 4 8は、 公知の積層構成の MR素子を用いることができる。 また、 G MR素子、 TMR素子であってもよい。 GMR素子のうち、 センス電流を積層さ れた薄膜に垂直に流通させる C P P (Current Perpendicular to Plane)型のスピ ンバルブ素子であつてもよい。  As the MR element 48, a known laminated MR element can be used. Further, a GMR element or a TMR element may be used. Among the GMR elements, a current-perpendicular-to-plane (CPP) type spin valve element that allows a sense current to flow vertically through the stacked thin films may be used.
上部非磁性絶縁膜 5 2は、 無機材料の絶縁膜、 例えば酸化アルミ-ゥム、 水素 化カーボン膜等を用いて、 厚さが 1 μ π!〜 5 ,u mの範囲に設定される。 上部シー ルド層 5 1の表面が平坦なので、 上部非磁性絶縁膜 5 2を従来より薄膜化するこ とができる。したがつて、熱伝導率の比較的低 、酸化アルミニゥム膜を用いても、 上部非磁性絶縁膜 52を介して外部に放熱することができる。 The upper non-magnetic insulating film 52 is made of an insulating material made of an inorganic material, such as an aluminum oxide film or a hydrogenated carbon film, and has a thickness of 1 μπ! It is set in the range of ~ 5 um. Since the surface of the upper shield layer 51 is flat, the upper nonmagnetic insulating film 52 can be made thinner than before. Therefore, even if an aluminum oxide film having a relatively low thermal conductivity is used, Heat can be radiated to the outside via the upper non-magnetic insulating film 52.
本実施例の薄 気へッド 30は、 上述したように、 基板 32、 エアベアリン グ面、 及び上部絶縁膜 52の 3方向に効率良く記録電流により発生する熱を伝え ることができ、 効率良く放熱することができる。 記録ヘッド 35に蓄熱されず温 度上昇が回避され、 コイル 43の断線や、 下部及び上部磁極層 38、 41、 MR 素子 48のエアベアリング面 33の外側への突出などの熱による障害を防止する ことができる。 その結果、 磁気記録媒体との接触、 ヘッドクラッシュを防止して 高信頼性の薄 »気へッドを実現することができる。  As described above, the thin air head 30 of the present embodiment can efficiently transfer heat generated by the recording current to the three directions of the substrate 32, the air bearing surface, and the upper insulating film 52, and efficiently Heat can be dissipated. Heat is not stored in the recording head 35, and the temperature rise is avoided, thereby preventing heat failure such as disconnection of the coil 43 and protrusion of the lower and upper pole layers 38, 41 and the MR element 48 outside the air bearing surface 33. be able to. As a result, contact with the magnetic recording medium and head crash can be prevented to realize a highly reliable thin head.
またさらに、 MR素子 48に流れるセンス電流による発熱も同様に放熱するこ とができ、 MR素子の温度上昇による磁気抵抗の変化量が不安定に現象を回避す ることができ、 再生特性の点からも高信頼性の薄 β気へッドを実現することが できる。  In addition, heat generated by the sense current flowing in the MR element 48 can be radiated in the same manner, and the phenomenon in which the change in magnetic resistance due to the temperature rise of the MR element becomes unstable can be avoided. Thus, a highly reliable thin β-head can be realized.
図 6 Αは、 本実施例の第 1変形例に係る薄膜磁気へッドの記録へッド及ぴ再生 ヘッドを拡大して示す断面図、 図 6Bは、 エアベアリング面の構成図である。 図 中、 先に説明した部分に対応する部分には同一の参照符号を付し、 説明を省略す る。  FIG. 6 is an enlarged sectional view showing a recording head and a reproducing head of a thin-film magnetic head according to a first modification of the present embodiment, and FIG. 6B is a configuration diagram of an air bearing surface. In the figure, parts corresponding to the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
図 6 A及ぴ図 6 Bを参照するに、 本変形例に係る薄膜磁気へッド 55は、 記録 ヘッド 56が第 1実施例の記録へッド 35の基板 32と下部絶縁膜 37との間に 熱伝導層 58を設けた以外は第 1実施例の記録へッド 35と同様に構成されてい る。  Referring to FIGS. 6A and 6B, the thin-film magnetic head 55 according to the present modification is configured such that the recording head 56 is formed between the substrate 32 and the lower insulating film 37 of the recording head 35 of the first embodiment. The configuration is the same as that of the recording head 35 of the first embodiment except that a heat conductive layer 58 is provided therebetween.
熱伝導層 58は、 基板 32と下部絶縁膜 37との間に、 エアベアリング面 33 に露出する非磁性の金属材料、または金属間化合物より形成され、例えば、 A u、 Ag、 Cu、 A1、 W、 P t、 Pd、 Rh、 I r、 N i、 Mo、 Fe、 Z n及ぴ これらの合金、 金属間化合物などの熱伝導率が高い材料が挙げられる。 さらに高 比抵抗の材料を用いることが好ましレヽ。 比抵抗の小さな材料を熱伝導層 58とし て用いると、 パルス状の記録電流により渦電流が誘起され、 渦電流の影響で記録 電流の立ち上がりが遅れてしまう。 記録へッドの磁路を形成する材料と同等かそ れより高い比抵抗を有する材料を用いることで、 NLTS (No n L i n e a r Tr a n s i t i on Sh i f t) の増加を抑制しつつ基板 32及びエア ベアリング面 3 3方向への熱伝導率を向上することができる。 なお、 熱伝導層 5 8は、 さらに図 3に示す Y方向 (スライダ 3 2の幅方向) に延在させてもよい。 本変形例によれば、 コイル 4 3力ら発生した熱を熱伝導層 5 8により基板 3 2 及びエアベアリング面 3 3方向への熱伝導性を高めて、 より一層放熱し易くする ことができる。 The heat conductive layer 58 is formed between the substrate 32 and the lower insulating film 37 by a non-magnetic metal material or an intermetallic compound exposed on the air bearing surface 33, for example, Au, Ag, Cu, A1, Materials having high thermal conductivity such as W, Pt, Pd, Rh, Ir, Ni, Mo, Fe, Zn, and alloys and intermetallic compounds thereof are exemplified. Further, it is preferable to use a material having a high specific resistance. When a material having a small specific resistance is used as the heat conductive layer 58, an eddy current is induced by the pulsed recording current, and the rise of the recording current is delayed due to the influence of the eddy current. By using a material having a specific resistance equal to or higher than the material forming the magnetic path of the recording head, the substrate 32 and air can be suppressed while suppressing an increase in NLTS (non-in-line transistor on shift). Bearing surface 33 Thermal conductivity in three directions can be improved. The heat conduction layer 58 may further extend in the Y direction (the width direction of the slider 32) shown in FIG. According to the present modification, the heat generated from the coil 43 can be enhanced by the heat conductive layer 58 in the direction of the substrate 32 and the air bearing surface 33 to further facilitate heat radiation. .
図 7 Aは、 本実施例の第 2変形例に係る薄膜磁気へッドの記録へッド及ぴ再生 ヘッドを 大して示す断面図、 図 7 Bは、 エアベアリング面の構成を示す図であ る。 図中、 先に説明した部分に対応する部分には同一の参照符号を付し、 説明を 省略する。  FIG. 7A is a cross-sectional view schematically illustrating a recording head and a reproducing head of a thin-film magnetic head according to a second modification of the present embodiment, and FIG. 7B is a diagram illustrating a configuration of an air bearing surface. You. In the figure, parts corresponding to the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
図 7 A及ぴ図 7 Bを参照するに、 本変形例の薄»気へッド 6 0は、 記録へッ ド 6 1の上部磁極層 6 3と再生へッド 6 2の下部シーノレド層が共通となっている ( すなわち、 図 4 A及び 4 Bに示した第 1実施例の再生へッド 3 6の下部シーノレド 層 4 5を記録へッド 3 5の上部磁極層 4 1を共通として、 下部シールド層 4 5及 ぴ非磁性絶縁膜 4 4を省略した以外は、 本変形例の薄難気べッド 6 0は第 1実 施例と同様に構成されている。 Referring to FIG. 7A and FIG. 7B, the thin magnetic head 60 of the present modified example has an upper magnetic pole layer 63 of the recording head 61 and a lower sinored layer of the reproducing head 62. ( I.e., the lower sinored layer 45 of the reproducing head 36 of the first embodiment shown in FIGS. 4A and 4B is shared with the upper magnetic pole layer 41 of the recording head 35. However, except that the lower shield layer 45 and the non-magnetic insulating film 44 are omitted, the thin flame-retardant bed 60 of the present modification is configured in the same manner as the first embodiment.
上記第 1実施例の上部磁極層 4 1はエアベアリング面 3 3に露出されている。 したがって、 上部磁極層 6 3の形成工程を全く変更せずに下部シールド層の機能 を有する上部磁極層 6 3を形成することができ、 さらに下部シールド層及ぴ非磁 性絶縁膜の形成工程を省略することができるので製造工程を簡略化することがで さる。  The upper magnetic pole layer 41 of the first embodiment is exposed on the air bearing surface 33. Therefore, the upper magnetic pole layer 63 having the function of the lower shield layer can be formed without changing the process of forming the upper magnetic pole layer 63 at all, and the process of forming the lower shield layer and the non-magnetic insulating film can be performed. Since it can be omitted, the manufacturing process can be simplified.
また、 本変形例の薄»気ヘッド 6 0は、 コイル 4 3から発生した熱が上部磁 極層 6 3を通じて再生へッド 6 2の上部シールド層 5 1に流れる。'非磁性絶縁膜 が省略されているので、 熱が再生ヘッド 6 2側に伝わり易くなり、 上部シールド 層 5 1を通じてエアベアリング面 3 3あるいは上部絶縁膜 5 2を通じて外部に放 出される。 したがって、 放熱が効率的に行われる。  Further, in the thin air head 60 of this modification, heat generated from the coil 43 flows through the upper pole layer 63 to the upper shield layer 51 of the reproducing head 62. 'Since the non-magnetic insulating film is omitted, heat is easily transmitted to the reproducing head 62 side, and is discharged outside through the air bearing surface 33 or the upper insulating film 52 through the upper shield layer 51. Therefore, heat is efficiently dissipated.
[第 2実施例]  [Second embodiment]
図 8 Aは、 本発明の第 2実施例に係る垂直磁気記録へ Vドの記録へッド及び再 生ヘッドを拡大して示す断面図、 図 8 Bは、 エアベアリング面の構成図である。 図中、 先に説明した部分に対応する部分には同一の参照符号を付し、 説明を省略 する。 FIG. 8A is an enlarged cross-sectional view showing a recording head for a perpendicular magnetic recording head and a reproducing head according to a second embodiment of the present invention, and FIG. 8B is a configuration diagram of an air bearing surface. . In the figure, parts corresponding to the parts described above are denoted by the same reference numerals, and description thereof will be omitted. I do.
図 8 A及び図 8 Bを参照するに、 本実施例の垂直磁気記録へッド 7 0は、 基板 3 2上に形成された単磁極の記録へッド 7 1と、 記録へッド 7 1上に形成された 再生へッド 3 6から構成されている。 記録へッド 7 1は、 基板 3 2上に形成され た、 無機材料よりなる下部絶縁膜 3 7と、 下部絶縁膜 3 7上に形成された補助磁 極層 7 2と、 補助磁極層 7 2と磁性層 4 0を介して磁気的に接続され、 補助磁極 層 7 2と非磁性絶縁膜 7 5 A、 7 5 Bを挟んで形成された主磁極層 7 3と、 主磁 極層 7 3のエアベアリング面 3 3側に設けられたトラック幅に対応する幅を有す る主磁極先端副磁極 7 4と、 捕助磁極層 7 2と主磁極層 7 3との間の非磁性絶縁 膜 7 5 A、 7 5 B中に形成されたコイル 4 3などから構成されている。  Referring to FIGS. 8A and 8B, the perpendicular magnetic recording head 70 of the present embodiment has a single-pole recording head 71 formed on the substrate 32 and a recording head 7. It consists of a reproduction head 36 formed on 1. The recording head 71 includes a lower insulating film 37 made of an inorganic material formed on a substrate 32, an auxiliary pole layer 72 formed on the lower insulating film 37, and an auxiliary pole layer 7 formed on the lower insulating film 37. And the main magnetic pole layer 7 3, which is magnetically connected to the main magnetic pole layer 7 through the magnetic layer 40 and the auxiliary magnetic pole layer 72 and the nonmagnetic insulating films 75 A and 75 B. Non-magnetic insulation between the main magnetic pole tip sub-magnetic pole 7 4 having a width corresponding to the track width provided on the 3 air bearing surface 3 3 side, and the trapping magnetic pole layer 7 2 and the main magnetic pole layer 7 3 It is composed of coils 43 and the like formed in the membranes 75A and 75B.
再生へッド 3 6は、 上述した第 1実施例と同様の構成となっている。 再生へッ ド 3 6は、 主磁極層 7 3上に形成された非磁性絶縁膜 4 4と、 非磁性絶縁膜 4 4 上に形成された下部シールド層 4 5と、 下部シールド層 4 5上に非磁性絶縁膜 4 6 Aを介して形成された MR素子 4 8と、 MR素子 4 8にセンス電流を供給する 端子 4 9と、 MR素子 4 8及び端子 4 9上に非磁性絶縁膜 4 6 Bを介して形成さ れた上部シールド層 5 1と、 上部シールド層 5 1覆う上部非磁性絶縁膜 5 2より 構成されている。  The reproducing head 36 has the same configuration as in the first embodiment described above. The reproducing head 36 includes a nonmagnetic insulating film 44 formed on the main magnetic pole layer 73, a lower shield layer 45 formed on the nonmagnetic insulating film 44, and a lower shield layer 45. An MR element 48 formed via a nonmagnetic insulating film 46 A, a terminal 49 for supplying a sense current to the MR element 48, and a nonmagnetic insulating film 4 on the MR element 48 and the terminal 49. The upper shield layer 51 includes an upper non-magnetic insulating film 52 covering the upper shield layer 51.
記録へッド 7 1の主磁極層 7 3及び捕助磁極層 7 2は、 第 1実施例の上部磁極 層 4 1及び下部磁極層 3 8と同様の材料により形成され、膜厚もほぼ同様である。 また、 主磁極先端副磁極 7 4は、 第 1実施例の上部先端副磁極 4 2と同様の材料 により形成される。  The main magnetic pole layer 73 and the auxiliary magnetic pole layer 72 of the recording head 71 are formed of the same material as the upper magnetic pole layer 41 and the lower magnetic pole layer 38 of the first embodiment, and have substantially the same thickness. It is. The main magnetic pole tip sub-magnetic pole 74 is formed of the same material as the upper tip sub-magnetic pole 42 of the first embodiment.
ここで、 コイル 4 3が単層であり、 主磁極層 7 3の表面が平坦に形成されるの で、 本実施例の垂直磁気記録ヘッド 7 0は、 本実施例の第 1実施例と同様に、 良 好な熱伝導性、 高効率の放熱、 高速書込性等の効果を奏する。  Here, since the coil 43 is a single layer and the surface of the main magnetic pole layer 73 is formed flat, the perpendicular magnetic recording head 70 of the present embodiment is similar to the first embodiment of the present embodiment. In addition, it has effects such as good thermal conductivity, high-efficiency heat dissipation, and high-speed writing.
次に本発明に係る薄薩気へッドの製造方法を、 上述した第 1実施例の第 1変 形例に係る薄膜磁気ヘッドを例として説明する。 以下、 図 9〜図 1 4の各々の図 において、 図 Aは薄膜磁気ヘッドの要部を拡大して示す断面図、 図 Bはエアベア リング面の構成図である。  Next, a method for manufacturing a thin-film magnetic head according to the present invention will be described by taking the thin-film magnetic head according to the first modification of the first embodiment described above as an example. Hereinafter, in each of FIGS. 9 to 14, FIG. A is a cross-sectional view showing an enlarged main part of the thin-film magnetic head, and FIG. B is a configuration diagram of the air bearing surface.
先ず、 図 9 A及び Bの工程では、 例えばアルチックの基板 3 2上に、 例えば窒 化アルミニゥムよりなる熱伝導層 5 8をスパッタ法により 3〃 mの厚さで形成す る。 次レヽで熱伝導層 5 8上に酸化アルミニゥムよりなる下部絶縁膜 3 7を約 2 /Z mの厚さで形成する。 First, in the steps of FIGS. 9A and 9B, for example, A heat conductive layer 58 made of aluminum fluoride is formed with a thickness of 3 μm by a sputtering method. In the next layer, a lower insulating film 37 made of aluminum oxide is formed on the heat conductive layer 58 with a thickness of about 2 / Zm.
次に、 図 1 O A及び Bの工程では、 下部絶縁膜 3 7上に N i F e (N i : 8 0 質量0 /0、 F e : 2 0質量0 /0) よりなる、 記録へッド 5 6の下部磁極層 3 8を、 メ ツキ法により 1〜4 μ mの厚さで選択的に形成する。 図示されないがメツキ法に よる成膜に先立ち、 N i F eよりなるメツキシード層をスパッタ法により数十 n mの厚さで形成してもよい。 なお、 下部磁極層 3 8をイオンビーム等でトリミン グし、 後述する上部先端副磁極 4 2に対向し、 書込みトラックとほぼ同様の幅を 有する下部先端磁極を形成してもよレヽ。 あるいは、 下部磁極層 3 8上に、 高飽和 磁束密度の軟磁性材料、例えば N i F e (N i : 5 0質量0 /0、 F e : 5 0質量0 /0) よりなる、 厚さ 0 . 2〜1 . ' 0 mの下部先端副磁極を設けてもよい。 下部磁極 層 3 8力ら漏洩する記録磁界を集中させて書込み性を向上することができる。 図 1 0 A及び Bの工程ではさらに、 下部磁極層 3 8上に酸化アルミニゥムより なる、 エアベアリング面 3 3側において記録ギヤップ部を形成する非磁性絶縁膜 3 9 Aをスパッタ法により全面に 5 0 n m〜3 0 0 n mの厚さで形成する。 次い で、 エアベアリング面 3 3側から遠い方に、 下部磁極層 3 8と上部磁極層 4 1を 接続する磁路形成用の磁性層 4 0を設けるために、 非磁性絶縁膜 3 9 Aにコンタ クトホーノレ 3 9 A - 1を形成する。 例えばホトレジスト法及ぴエッチング法によ り非磁性絶縁膜 3 9 Aを選択的に除去して形成する。 Next, in FIG. 1 OA and B step, N i on the lower insulating film 3 7 F e made of (N i:: 8 0 Weight 0/0, F e 2 0 mass 0/0), the recording Tsu The lower magnetic pole layer 38 of the metal layer 56 is selectively formed to a thickness of 1 to 4 μm by a plating method. Although not shown, a plating seed layer made of NiFe may be formed to a thickness of several tens nm by sputtering prior to film formation by plating. Note that the lower magnetic pole layer 38 may be trimmed with an ion beam or the like to form a lower magnetic pole having a width substantially the same as that of the write track, facing an upper magnetic sub-pole 42 described later. Alternatively, on the lower magnetic pole layer 3 8, the soft magnetic material of high saturation magnetic flux density, for example, N i F e (N i: 5 0 mass 0/0, F e: 5 0 mass 0/0) consisting of a thickness A lower tip sub-magnetic pole of 0.2-1.'0 m may be provided. The writability can be improved by concentrating the recording magnetic field leaking from the lower magnetic pole layer 38. In the steps shown in FIGS. 10A and 10B, a nonmagnetic insulating film 39 A made of aluminum oxide and formed on the lower magnetic pole layer 38 on the air bearing surface 33 side to form a recording gap on the lower magnetic pole layer 38 is further formed by sputtering. It is formed with a thickness of 0 nm to 300 nm. Next, in order to provide a magnetic layer 40 for forming a magnetic path connecting the lower magnetic pole layer 38 and the upper magnetic pole layer 41 to a side far from the air bearing surface 33 side, a nonmagnetic insulating film 39 A is provided. Form contact honoré 39 A-1 For example, the nonmagnetic insulating film 39A is selectively removed by a photoresist method and an etching method.
次に、 図 1 1 A及び図 1 1 Bの工程では、 コンタクトホール 3 9 A— 1におい て N i F e (N i : 8 0質量0 /0、 F e : 2 0質量0 /0) よりなる、 磁路形成用の磁 性層 4 0をメッキ法により約 0 . 3 5 μ ΐη〜5 /ζ mの厚さで選択的に形成する。 これにより磁性層 4 0は下部磁極層 3 8と接続される。 Next, in FIG. 1 1 A and FIG. 1 1 B process, the contact hole 3 9 A- 1 Odor Te N i F e (N i: 8 0 Weight 0/0, F e: 2 0 Mass 0/0) The magnetic layer 40 for forming a magnetic path is selectively formed to a thickness of about 0.35 μΐη〜5 / ζm by plating. Thereby, the magnetic layer 40 is connected to the lower magnetic pole layer 38.
図 1 1 A及ぴ図 1 1 Bの工程ではさらに、 非磁性絶縁膜 3 9 A上に、 ホトリソ グラフィ一法によりレジスト膜 (図示せず) を形成しパターエングして、 高飽和 磁束密度の軟磁性材料、 例えば F e C o A l Oよりなる上部先端副磁極 4 2をス パッタ法により 0 . 3 μ m〜 1 . 0 μ mの厚さで選択的に形成する。 上部先端副 磁極 4 2は、 下部先端副磁極が形成されている^は下部先端副磁極に対向する ように設けられる。 また、 上部先端副磁極 4 2は複数の異なる軟磁性材料よりな る積層膜であってもよレ、。 また、 上部先端磁極 4 2の形状を下部磁極層 3 8に向 う方向に対して、 次第に断面積が狭くなるように形成してもよい。 またさらに、 上部先端副磁極 4 2の基部から先端部になるにしたがって飽和磁束密度が高くな るように軟磁性材料を用いてもよい。 磁束密度の飽和を回避して、 より大なる記 録磁界を発生することができる。 なお、 上部先端副磁極は上述した磁性層 4 0と 同一材料を用いて同時に形成してもよい。 製造工程を節略化することができる。 図 1 1 Α及ぴ図 1 1 Bの工程ではさらに、 非磁性絶縁膜 3 9 A上に、 例えば C uよりなる、 記録用のコイル 4 3をメツキ法により約 1〜2 z mの厚さで選択的 に形成する。 コイル 4 3のパターンは、 例えばホトレジスト法により形成する。 また、 メツキ法によるコイル 4 3の形成前にスパッタ法により C uよりなるメッ キシード層を形成してもよい。 これにより単層のコイル 4 3が磁性層 4 0を卷回 して形成される。 なお、 コイル 4 3の引出し部 4 7は、 磁性層 4 0のエアべァリ ング面 3 3側より遠い方に設けられる。 In the steps shown in FIGS. 11A and 11B, a resist film (not shown) is further formed on the nonmagnetic insulating film 39A by photolithography and patterned to form a soft film having a high saturation magnetic flux density. An upper tip auxiliary magnetic pole 42 made of a magnetic material, for example, FeCoAlO is selectively formed to a thickness of 0.3 μm to 1.0 μm by a sputtering method. The upper tip sub-pole 4 2 has a lower tip sub-pole, and the ^ faces the lower tip sub-pole It is provided as follows. Also, the upper tip auxiliary magnetic pole 42 may be a laminated film made of a plurality of different soft magnetic materials. Further, the shape of the upper tip magnetic pole 42 may be formed so that the cross-sectional area becomes gradually smaller in the direction toward the lower magnetic pole layer 38. Further, a soft magnetic material may be used so that the saturation magnetic flux density increases from the base to the tip of the upper tip auxiliary magnetic pole 42. By avoiding saturation of the magnetic flux density, a larger recording magnetic field can be generated. The upper tip sub-pole may be formed simultaneously with the above-described magnetic layer 40 using the same material. The manufacturing process can be simplified. In the steps shown in FIGS. 11 and 11B, a recording coil 43 made of, for example, Cu is formed on the nonmagnetic insulating film 39A to a thickness of about 1 to 2 zm by a plating method. Form selectively. The pattern of the coil 43 is formed by, for example, a photoresist method. Before the coil 43 is formed by the plating method, a Cu seed layer may be formed by a sputtering method. Thus, a single-layer coil 43 is formed by winding the magnetic layer 40. The lead portion 47 of the coil 43 is provided farther from the air bearing surface 33 of the magnetic layer 40.
次に図 1 2 A及び図 1 2 Bの工程では、図 1 1 A及び Bの構造体を覆うように、 酸化アルミニゥムよりなる非磁性絶縁膜 3 9 Bをスパッタ法により約 4 μ mの厚 さで形成する。 次いで非磁性絶縁膜 3 9 Bを CMP法または機械的方法により、 上部先端副磁極 4 2及び磁性層 4 0の上面を露出させ、 力 非磁性絶縁膜 3 9 B の表面粗さが平均表面粗さ R aで 0. 0 5〜0. 5 n mの範囲内になるまで研磨 する。 後述する、 厚さ数 n mの薄膜が積層されてなる MR素子 4 8を均一に積層 することができる。 研磨方法は CMP法が好適である。 基板全体に亘つて表面粗 さを均一に研磨することができる。 また、 絶縁膜を形成する酸化アルミニウムに 対して研磨速度の大なる研磨剤を用いる方がよい。 また、 スラリーの粒径が異な る研磨剤を用い、 多段に亘つて研磨してもよい。 効率的に上部先端副磁極 4 2及 ぴ磁性層 4 0を露出させることができ、 力つ表面粗さを上述の範囲にすることが できる。 なお、 後述する上部磁極層 4 1の表面をさらに平坦化してもよい。  Next, in the process of FIGS. 12A and 12B, a nonmagnetic insulating film 39B made of aluminum oxide is formed to a thickness of about 4 μm by sputtering so as to cover the structure of FIGS. 11A and B. Form with. Next, the nonmagnetic insulating film 39B is exposed by a CMP method or a mechanical method to expose the upper tip sub-pole 42 and the upper surface of the magnetic layer 40, and the surface roughness of the force nonmagnetic insulating film 39B is reduced to the average surface roughness. Polishing is performed until Ra is within the range of 0.05 to 0.5 nm. MR elements 48, which will be described later and are formed by laminating thin films having a thickness of several nm, can be uniformly laminated. The polishing method is preferably a CMP method. The surface roughness can be uniformly polished over the entire substrate. Further, it is preferable to use a polishing agent having a high polishing rate for aluminum oxide forming an insulating film. Also, polishing may be performed in multiple stages using abrasives having different particle diameters of the slurry. The upper tip auxiliary magnetic pole 42 and the magnetic layer 40 can be efficiently exposed, and the surface roughness can be controlled within the above range. The surface of the upper magnetic pole layer 41 described later may be further flattened.
次に図 1 3 A及ぴ図 1 3 Bの工程では、 図 1 2 A及ぴ Bの構造体上に、 例えば N i F e (N i : 8 0質量0 /0、 F e : 2 0質量0 /0) よりなる上部磁極層 4 1をス パッタ法により 0. 5 /X m〜 3 μ mの厚さで選択的に形成する。 上部磁極層 4 1 は、 例えばホトレジスト法により上部磁極層 4 1のパターンを作製し、 N i F e を堆積後、 レジスト膜をリフトオフして形成する。 なお、 上部磁極層 4 1は 0 . 2 ^ m〜 1 . 0 μ mの厚さで形成してもよい。 上部磁極層 4 1は平坦なので、 ィ オンミリング等の加工が必要がないため薄膜化することができる。 この場合、 ス パッタ法により形成することが好ましく、 軟磁性材料は高飽和磁束密度の F e N Z r、 F e A 1 O Nを用いることが好ましい。 In Figure 1 3 A及Pi Figure 1 3 B steps Next, on the structure of FIG. 1 2 A及Pi B, for example, N i F e (N i: 8 0 Weight 0/0, F e: 2 0 selectively formed to a thickness of 0. 5 / X m~ 3 μ m by mass 0/0) the upper magnetic pole layer 4 1 spatter method consisting. Upper pole layer 4 1 For example, a pattern of the upper magnetic pole layer 41 is formed by, for example, a photoresist method, and after depositing NiFe, the resist film is formed by lift-off. The upper magnetic pole layer 41 may be formed to have a thickness of 0.2 ^ m to 1.0 m. Since the upper magnetic pole layer 41 is flat, there is no need for processing such as ion milling, so that it can be made thinner. In this case, it is preferable to form by a sputtering method, and it is preferable to use FeNZr and FeA1ON having a high saturation magnetic flux density as the soft magnetic material.
ここで、上部磁極層 4 1はエアベアリング面 3 3に露出するように形成される。 外部への放熱が容易となり、 記録ヘッドの温度上昇を抑制することができる。 以 上により、 上部磁極層 4 1を上部先端副磁極 4 2及び磁性層 4 0と接続すること により、 下部磁極層 3 8を含めた磁路が形成され、 フラット形状の記録へッドが 形成される。 コイル 4 3に記録電流を通電することにより、 下部磁極層 3 8と上 部先端副磁極 4 2との間の記録ギャップ部のエアベアリング面 3 3側に記録磁界 が形成される。  Here, the upper magnetic pole layer 41 is formed so as to be exposed on the air bearing surface 33. Heat radiation to the outside is facilitated, and a rise in the temperature of the recording head can be suppressed. As described above, by connecting the upper magnetic pole layer 41 to the upper tip auxiliary magnetic pole 42 and the magnetic layer 40, a magnetic path including the lower magnetic pole layer 38 is formed, and a flat recording head is formed. Is done. By applying a recording current to the coil 43, a recording magnetic field is formed on the air bearing surface 33 side of the recording gap between the lower magnetic pole layer 38 and the upper tip auxiliary magnetic pole 42.
図 1 3 A及ぴ Bの工程ではさらに、 上部磁極層 4 1上に酸化アルミニゥムより なる非磁性絶縁膜 4 4をスパッタ法により約 2 !〜 4 μ πιの厚さで形成する。 次いで、非磁性絶縁膜 4 4上に N i F e (N i : 7 5質量0 /。、 F e : 2 5質量0 /0) よりなる下部シールド層 4 5をスパッタ法により約 2 mの厚さで形成する。 次に図 1 4 A及び図 1 4 Bの工程(記録へッド 5 6を省略して示す。)では、下 部シールド層 4 5上に、 例えば酸化アルミニゥムよりなる厚さ 5 0 n mから 1 5 0 n mの非磁性絶縁膜 4 6 Aを形成する。 次レ、で、 非磁性絶縁膜 4 6 A上に公知 の方法で MR素子 4 8を形成する薄膜を積層し、 R I E法などによりパターニン グして MR素子 4 8を形成する。 なお、 MR素子に限定されず、 GMR素子、 T MR素子でもよい。 次いで導電材料により、 MR素子 4 8に接続される端子 (リ ード) 4 9を両側に形成する。 次いで、 MR素子 4 8及び端子 4 9を覆うように 酸化アルミニウムよりなる非磁性絶縁膜 4 6 Bを 5 0 n m〜l 5 O n mの厚さで 形成する。 In the steps shown in FIGS. 13A and 13B, a nonmagnetic insulating film 44 made of aluminum oxide is further formed on the upper magnetic pole layer 41 by sputtering for about 2! Formed with a thickness of ~ 4 μπι. Then, the non-magnetic insulating film 4 4 on the N i F e (N i: 7 5 mass 0 /, F e:. 2 5 mass 0/0) of the lower shield layer 4 5 consisting of about 2 m by sputtering It is formed with a thickness. Next, in the steps shown in FIGS. 14A and 14B (the recording head 56 is omitted), the lower shield layer 45 is overlaid with, for example, aluminum oxide having a thickness of 50 nm. A 50 nm non-magnetic insulating film 46 A is formed. Next, a thin film for forming the MR element 48 is laminated on the nonmagnetic insulating film 46A by a known method, and the MR element 48 is formed by patterning by RIE or the like. In addition, it is not limited to the MR element, and may be a GMR element or a TMR element. Next, terminals (leads) 49 connected to the MR element 48 are formed on both sides using a conductive material. Next, a nonmagnetic insulating film 46B made of aluminum oxide is formed to a thickness of 50 nm to 150 nm so as to cover the MR element 48 and the terminal 49.
図 1 4 A及び図 1 4 Bの工程ではさらに、非磁性絶縁膜 4 6 B上に N i F e (N i : 7 5質量%、 F e : 2 5質量%) よりなる上部シールド層 5 1をスパッタ法 により形成する。 次いで、 上部シールド層 5 1を覆うように酸ィ匕アルミユウムょ りなる上部絶縁膜 5 2を 0. 5 / m〜5 // m (好ましくは 0. !〜 2 /i m) の厚さで形成する。 上部シールド層表面が平坦に形成されているので、 上部絶縁 膜 5 2の薄膜化を図ることができるとともに、 上部絶縁膜 5 2を通じて放熱し易 くすることができる。 また、 上部絶縁膜 5 2を薄膜化することにより、 スパッタ 時間を大幅に短縮できる。 In the steps of FIGS. 14A and 14B, the upper shield layer 5 made of NiFe (Ni: 75% by mass, Fe: 25% by mass) is further formed on the nonmagnetic insulating film 46B. 1 is formed by a sputtering method. Next, so as to cover the upper shield layer 51. The upper insulating film 52 is formed to a thickness of 0.5 / m to 5 // m (preferably, 0,0 to 2 / im). Since the upper shield layer surface is formed flat, the thickness of the upper insulating film 52 can be reduced, and heat can be easily radiated through the upper insulating film 52. Also, by making the upper insulating film 52 thinner, the sputtering time can be greatly reduced.
以上により図 6 A及び図 6 Bに示す第 1実施例の第 1変形例に係る薄膜磁気へ ッドが完成する。  Thus, the thin-film magnetic head according to the first modification of the first embodiment shown in FIGS. 6A and 6B is completed.
本発明に係る薄難気へッドの製造方法によれば、 記録へッド 5 6を形成した 後で再生へッド 3 6を形成するので、 MR素子 4 8の静電破壌や磁気的な配向性 の乱れ等の性能低下を回避することができる。  According to the method for manufacturing a thin hard head according to the present invention, since the reproducing head 36 is formed after the recording head 56 is formed, the electrostatic rupture of the MR element 48 or the magnetic field It is possible to avoid performance degradation such as random disturbance of orientation.
また、 従来の記録ヘッド、 例えば図 1に示す記録ヘッド 1 3では、 上部磁極層 1 6が積層されたコイル 1 8により、 エアベアリング面 2 1側で上部磁極層先端 部 1 6 _ 1に接続するために段差を生じていた。 この場合、 傾斜部 1 6— 2にお いては、 厚膜 (厚さ 2 . 0 t m〜6 . 0 M m) の上部磁極層をー且形成し、 その 後イオンミリング等により整形する必要がある。 しかし、 本発明に係る薄 I»気 へッドの製造方法によれば、 上部先端副磁極 4 2と上部磁極層 4 1を接続する際 には非磁性絶縁膜 3 9 B表面を平坦化して上部先端副磁極 4 2と磁性層 4 0を露 出させればよく、 イオンミリング工程を省略でき、 製造工程を簡略化できる。 さらに、 従来の記録へッド 1 3では、 上部磁極層先端部 1 6 - 1においては、 上述した段差の故、 アスペクト比 (=溝深さ Z溝幅) の大きな溝のパターンをレ ジスト膜により形成する必要がある。この方法では、ァスぺクト比が大なる故に、 溝幅の制御が困難であった。 しかし、 本発明に係る薄 «気へッドの製造方法に よれば、 レジスト膜を平坦な非磁性絶縁膜 3 9 A上に形成し、 溝深さは上部先端 副磁極の厚さ分でよいのでアスペクト比が小さい。 したがって、 露光によるパタ ーン形成を精度良く行うことができ、 書込トラック幅に相当する上部先端副磁極 4 2の幅を高精度に制御することができる。 その結果、 トラック幅を狭小化して 高トラック密度化を図ることができる。  Also, in the conventional recording head, for example, the recording head 13 shown in FIG. 1, the coil 18 on which the upper magnetic pole layer 16 is laminated is connected to the upper magnetic pole layer tip 16 1 on the air bearing surface 21 side. In order to do so, there was a step. In this case, it is necessary to form an upper magnetic pole layer of a thick film (thickness: 2.0 tm to 6.0 Mm) on the inclined portion 16-2 and then to shape the upper magnetic pole layer by ion milling or the like. is there. However, according to the method for manufacturing a thin I-head according to the present invention, when the upper tip sub-magnetic pole 42 and the upper magnetic pole layer 41 are connected, the surface of the nonmagnetic insulating film 39 B is flattened. It is only necessary to expose the upper tip auxiliary magnetic pole 42 and the magnetic layer 40, so that the ion milling step can be omitted and the manufacturing process can be simplified. Further, in the conventional recording head 13, the pattern of the groove having a large aspect ratio (= groove depth Z groove width) is formed in the resist film at the top end portion 16-1 of the upper magnetic pole layer due to the above-mentioned step. It must be formed by In this method, it was difficult to control the groove width because the aspect ratio was large. However, according to the method for manufacturing a thin head according to the present invention, the resist film is formed on the flat non-magnetic insulating film 39 A, and the groove depth may be the thickness of the upper tip sub-pole. Therefore, the aspect ratio is small. Therefore, pattern formation by exposure can be performed with high precision, and the width of the upper tip auxiliary magnetic pole 42 corresponding to the write track width can be controlled with high precision. As a result, the track width can be reduced to achieve a higher track density.
次に本発明に係る磁気記憶装置について説明する。  Next, a magnetic storage device according to the present invention will be described.
図 1 5は、 本発明に係る磁気記憶装置の要部を示す図である。 図 1 5を参照す るに、磁気記憶装置 8 0は大略ハウジング 8 1からなる。ハウジング 8 1内には、 スピンドル (図示されず) により駆動されるハブ 8 2、 ノヽブ 8 2に固定され回転 される磁気記録媒体 8 3、 ァクチユエータュニット 8 4、 ァクチユエータュニッ ト 8 4に取り付けられ磁気記録媒体 8 3の半径方向に移動されるアーム 8 5及び サスペンシヨン 8 6、 サスペンシヨン 8 6に支持された薄膜磁気へッド 8 8が設 けられている。 FIG. 15 is a diagram showing a main part of the magnetic storage device according to the present invention. See Figure 15 Further, the magnetic storage device 80 generally comprises a housing 81. The housing 81 includes a hub 82 driven by a spindle (not shown), a magnetic recording medium 83 fixed to and rotated by the knob 82, an actuator unit 84, and an actuator unit. An arm 85, a suspension 86, and a thin-film magnetic head 88 supported by the suspension 86 are provided.
本実施の形態の磁気記憶装置 8 0は、 薄膜磁気ヘッド 8 8に特徴がある。 薄膜 磁気ヘッド 8 8は、 例えば第 1実施例、 第 1実施例の第 1及び第 2変形例、 並ぴ に第 2実施例に係る磁気ヘッドである。  The magnetic storage device 80 of the present embodiment is characterized by a thin-film magnetic head 88. The thin-film magnetic head 88 is, for example, the magnetic head according to the first embodiment, the first and second modifications of the first embodiment, and also the second embodiment.
磁気記憶装置 8 0の基本構成は、図 1 5に示すものに限定されるものではない。 本発明で用いる磁気記録媒体 8 3は、 磁気ディスクに限定されない。  The basic configuration of the magnetic storage device 80 is not limited to that shown in FIG. The magnetic recording medium 83 used in the present invention is not limited to a magnetic disk.
本実施の形態によれば、 薄膜磁気へッド 8 8が優れた熱伝導性及び放熱性能を 有し、 高い動作信頼性を有している。 したがって、 磁気記憶装置 8 0は、 下部及 び上部磁極層や MR素子の温度上昇によるエアベアリング面への突出に起因する 磁気記憶媒体 8 3へダメージやへッドクラッシュを防止することができ、 長期間 にわたる動作信頼性を有している。 また、 薄 «気ヘッド 8 8と磁気記録媒体 8 3とのスペーシングが安定するので、 スペーシングをさらに低減することができ 高密度記録が可能となる。 産業上の利用可能性  According to the present embodiment, the thin-film magnetic head 88 has excellent heat conductivity and heat dissipation performance, and has high operation reliability. Therefore, the magnetic storage device 80 can prevent the magnetic storage medium 83 from being damaged or head crash due to the protrusion of the lower and upper pole layers and the MR element from the air bearing surface due to the temperature rise, and can be used for a long time. Operating reliability over a wide range. Further, since the spacing between the thin magnetic head 88 and the magnetic recording medium 83 is stabilized, the spacing can be further reduced, and high-density recording can be performed. Industrial applicability
本発明によれば、 薄麵気へッドにおいて、 コイル及び MR素子から生じる熱 による障害を防止し、 動作信頼性が高く、 高密度記録可能な薄膜磁気ヘッド及び 磁気記憶装置を提供することができる。 また、 MR素子の熱的ダメージ等に起因 する性能劣化及び歩留まり低下を防止し、 製造工程の簡略ィ匕を図る薄難気へッ ドの製造方法を提供することができる。  According to the present invention, it is possible to provide a thin-film magnetic head and a magnetic storage device that can prevent a failure due to heat generated from a coil and an MR element in a thin air head, have high operation reliability, and can perform high-density recording. it can. Further, it is possible to provide a method for manufacturing a thin hard head which prevents performance deterioration and yield reduction due to thermal damage of the MR element and simplifies the manufacturing process.

Claims

請求の範囲 The scope of the claims
1 . 基板と、 記録へッドと、 再生へッドょりなる複合型の薄 «気へッドで あって、 1. A thin composite head consisting of a substrate, a recording head, and a reproduction head.
前記記録へッドは、 基板と再生へッドとの間に形成され、  The recording head is formed between the substrate and the reproducing head;
前記基板上に形成された下部磁極層と、  A lower magnetic pole layer formed on the substrate,
磁気的に接続され、 前記下部磁極層と対向する上部磁極層と、  An upper magnetic pole layer magnetically connected to the lower magnetic pole layer and facing the lower magnetic pole layer;
前記下部磁極層と上部磁極層との間に形成されたコイルとを有し、  Having a coil formed between the lower pole layer and the upper pole layer,
前記コィルが単層に形成され、 下部磁極層と上部磁極層とが略 ffiであること を特徴とする薄 β気ヘッド。  The coil is formed in a single layer, and the lower magnetic pole layer and the upper magnetic pole layer are substantially ffi.
2 · 上記上部磁極層の上面の全体が略平坦であることを特徴とする請求項 12 · The entire upper surface of the upper magnetic pole layer is substantially flat.
' 記載の薄 β気へッド。 . '' Thin β-Head described. .
3 . 磁気記録媒体に対向するエアベアリング面側において、 前記下部磁極層 または上部磁極層と磁気的に接続され、 上部磁極層または下部磁極層と非磁性材 料よりなる記録ギヤップ層を挾んで記録磁界を発生する磁極部を有し、 3. On the air bearing surface side facing the magnetic recording medium, recording is magnetically connected to the lower magnetic pole layer or the upper magnetic pole layer, with the upper magnetic pole layer or the lower magnetic pole layer and a recording gap layer made of a non-magnetic material interposed therebetween. It has a magnetic pole part that generates a magnetic field,
前記下部磁極層及ぴ上部磁極層はエアベアリング面に露出していることを特徴 とする請求項 1記載の薄 気へッド。  2. The thin head according to claim 1, wherein the lower magnetic pole layer and the upper magnetic pole layer are exposed on an air bearing surface.
4 · 前記磁極部は前記下部磁極層及び上部磁極層より飽和磁束密度が高レ、軟 磁性材料よりなることを特徴とする請求項 3記載の薄 «気へッド。 4. The magnetic head according to claim 3, wherein the magnetic pole portion is made of a soft magnetic material having a higher saturation magnetic flux density than the lower magnetic pole layer and the upper magnetic pole layer.
5 · 前記基板と下部磁極層との間に非磁性絶縁材料よりなる下部絶縁膜を有 し、 5) having a lower insulating film made of a non-magnetic insulating material between the substrate and the lower magnetic pole layer,
前記下部絶縁膜は膜厚が 1 · Ο μ π!〜 5 . O ^ mの範囲に設定されることを特 徴とする請求項 1記載の薄画気へッド。  The lower insulating film has a thickness of 1 · Ομπ! 2. The thin head according to claim 1, wherein the thickness is set in a range of about 5.O ^ m.
6 . 前記基板と下部磁極層との間に熱伝導層を有し、 前記熱伝導層は、 非磁性の金属、 合金、 または金属間化合物からなることを特 徴とする請求項 1記載の薄薩気へッド。 6. A heat conductive layer between the substrate and the lower magnetic pole layer, 2. The thin head of claim 1, wherein the heat conductive layer is made of a non-magnetic metal, alloy, or intermetallic compound.
7 . 前記コイルは当該コイルの全面が下部磁極層及び上部磁極層に略覆われ ていることを特徴とする請求項 1記載の薄薩気へッド。 7. The thin head of claim 1, wherein the entire surface of the coil is substantially covered by a lower magnetic pole layer and an upper magnetic pole layer.
8 . 前記再生ヘッドは、 8. The read head is
前記上部磁極層上に中間絶縁膜を介して形成された下部シールド層と、 下部シールド層上に他の絶縁膜を挟んで形成された上部シールド層と、 前記他の絶縁膜中に形成された感磁素子と、  A lower shield layer formed on the upper pole layer with an intermediate insulating film interposed therebetween; an upper shield layer formed on the lower shield layer with another insulating film interposed therebetween; and an upper shield layer formed in the other insulating film. A magneto-sensitive element,
前記上部シールド層を覆う非磁性材料よりなる上部絶縁膜よりなり、  An upper insulating film made of a nonmagnetic material covering the upper shield layer,
前記上部絶縁膜の厚さが 0 5 m〜 5 mの範囲に設定されることを特徴と ' する請求項 1記載の薄膜磁気へッド。  2. The thin-film magnetic head according to claim 1, wherein the thickness of the upper insulating film is set in a range from 0.5 m to 5 m.
9 . 前記再生ヘッドは、 前記上部磁極層上に他の絶縁膜を挟んで形成された 上部シールド層と、 9. The read head comprises: an upper shield layer formed on the upper pole layer with another insulating film interposed therebetween;
前記他の絶縁膜中に形成された感磁素子と、  A magneto-sensitive element formed in the other insulating film,
前記上部シールド層を覆う非磁性材料よりなる上部絶縁膜よりなり、  An upper insulating film made of a nonmagnetic material covering the upper shield layer,
.前記上部絶縁膜の厚さが 0. 5 μ m〜 5 mの範囲に設定されることを特徴と する請求項 1記載の薄 β気へッド。  2. The thin β-air head according to claim 1, wherein the thickness of the upper insulating film is set in a range of 0.5 μm to 5 m.
1 0 . 基板と、 記録へッドと、 再生へッドよりなる複合型の薄薩気へッド であって、 10. A composite thin head comprising a substrate, a recording head, and a reproducing head,
前記記録へッドは、 基板と再生へッドとの間に形成され、  The recording head is formed between the substrate and the reproducing head;
磁気記録媒体に対して垂直方向に磁界を印加する主磁極層と、  A main pole layer for applying a magnetic field in a direction perpendicular to the magnetic recording medium;
磁気的に接続され、 前記主磁極層と対向する捕助磁極層と、  Magnetically connected, an auxiliary magnetic pole layer facing the main magnetic pole layer,
前記主磁極層と補助磁極層間に形成されたコイルとを有し、  Having a coil formed between the main pole layer and the auxiliary pole layer,
前記コィルが単層に形成され、 前記主磁極層と捕助磁極層とが略 TOであるこ とを特徴とする薄難気へッド。 A thin hard head, wherein the coil is formed in a single layer, and the main pole layer and the auxiliary pole layer are substantially TO.
1 1 . 請求項 1〜: L 0のうち、 いずれか一項記載の薄薩気へッドを備えた磁 気記憶装置。 11. A magnetic storage device provided with the head according to any one of claims 1 to L0.
1 2 . 基板と、 該基板上に形成された記録へッドと、 該記録へッド上に形成 された再生へッドよりなり、 12. A substrate, a recording head formed on the substrate, and a reproducing head formed on the recording head,
前記記録ヘッドは、 前記基板上に形成された下部磁極層と、 該下部磁極層と磁 気的に接続され、 下部磁極層と対向する上部磁極層と、 前記下部磁極層と上部磁 極層との間の非磁性絶縁膜中に形成されたコイルと、 磁気記録媒体と対向する側 において前記上部磁極層と磁気的に接続され、 記録ギャップ部を形成した磁極部 とよりなる薄 気へッドの製造方法であって、  The recording head includes: a lower magnetic pole layer formed on the substrate; an upper magnetic pole layer magnetically connected to the lower magnetic pole layer, facing the lower magnetic pole layer; and the lower magnetic pole layer and the upper magnetic pole layer. And a magnetic pole portion magnetically connected to the upper magnetic pole layer on the side facing the magnetic recording medium and forming a recording gap portion. The method of manufacturing
前記コイル及び磁極部を前記非磁性絶縁膜により埋め込む工程と、  Embedding the coil and the magnetic pole portion with the nonmagnetic insulating film;
前記非磁性絶縁膜を平坦化して前記磁極部を露出させる平坦化工程とを含むこ とを特徴とする薄藤気へッドの製造方法。  A flattening step of flattening the non-magnetic insulating film and exposing the magnetic pole portion.
1 3 . 平坦化後の前記非磁性絶縁膜の表面の平均表面粗さが 0 . 0 5 n m〜 0 . 5 n mの範囲内に設定されることを特徴とする請求項 1 2記載の薄 I»気へ ッドの製造方法。 13. The thin film according to claim 12, wherein the average surface roughness of the surface of the non-magnetic insulating film after the planarization is set in a range of 0.05 nm to 0.5 nm. »Head manufacturing methods.
1 4 . 前記平坦化工程の後に上部磁極層を形成する工程を有し、 14. A step of forming an upper magnetic pole layer after the flattening step,
前記上部磁極層の膜厚が 0 . 2 /x m〜l . Ο μ πιの範囲に設定されることを特 徴とする請求項 1 1記載の薄 «気へッドの製造方法。  21. The method for producing a thin magnetic head according to claim 11, wherein the thickness of the upper magnetic pole layer is set in a range of 0.2 / xm to l.Ομπι.
PCT/JP2003/005524 2003-04-30 2003-04-30 Thin-film magnetic head, production method therefor, and magnetic storage unit WO2004097805A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005524 WO2004097805A1 (en) 2003-04-30 2003-04-30 Thin-film magnetic head, production method therefor, and magnetic storage unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005524 WO2004097805A1 (en) 2003-04-30 2003-04-30 Thin-film magnetic head, production method therefor, and magnetic storage unit

Publications (1)

Publication Number Publication Date
WO2004097805A1 true WO2004097805A1 (en) 2004-11-11

Family

ID=33398136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005524 WO2004097805A1 (en) 2003-04-30 2003-04-30 Thin-film magnetic head, production method therefor, and magnetic storage unit

Country Status (1)

Country Link
WO (1) WO2004097805A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712409A (en) * 1980-06-25 1982-01-22 Hitachi Ltd Thin-film magnetic head
JPS60177420A (en) * 1984-02-23 1985-09-11 Nec Corp Composite type thin film magnetic head and its production
JPH0479007A (en) * 1990-07-20 1992-03-12 Mitsubishi Electric Corp Thin film magnetic head
JPH1074307A (en) * 1996-08-30 1998-03-17 Nec Kansai Ltd Production of composite magnetic head
JPH11232614A (en) * 1998-02-17 1999-08-27 Victor Co Of Japan Ltd Magnetoresistive effect type combined head and manufacture thereof
JPH11283221A (en) * 1998-03-31 1999-10-15 Kyocera Corp Substrate for thin film magnetic head and thin film magnetic head using that
JP2000149218A (en) * 1998-11-10 2000-05-30 Read Rite Smi Kk Thin film magnetic head and its manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5712409A (en) * 1980-06-25 1982-01-22 Hitachi Ltd Thin-film magnetic head
JPS60177420A (en) * 1984-02-23 1985-09-11 Nec Corp Composite type thin film magnetic head and its production
JPH0479007A (en) * 1990-07-20 1992-03-12 Mitsubishi Electric Corp Thin film magnetic head
JPH1074307A (en) * 1996-08-30 1998-03-17 Nec Kansai Ltd Production of composite magnetic head
JPH11232614A (en) * 1998-02-17 1999-08-27 Victor Co Of Japan Ltd Magnetoresistive effect type combined head and manufacture thereof
JPH11283221A (en) * 1998-03-31 1999-10-15 Kyocera Corp Substrate for thin film magnetic head and thin film magnetic head using that
JP2000149218A (en) * 1998-11-10 2000-05-30 Read Rite Smi Kk Thin film magnetic head and its manufacture

Similar Documents

Publication Publication Date Title
US8995088B1 (en) Heat sink for a spin torque oscillator (STO) in microwave assisted magnetic recording (MAMR)
US7679862B2 (en) Perpendicular recording head with reduced thermal protrusion
JP3992052B2 (en) Thin-film magnetic head with a heat-dissipating part
JP2008041115A (en) Vertical magnetic recording head
US8243558B2 (en) Thermally assisted magnetic head, head gimbal assembly, and hard disk apparatus
US8801945B2 (en) Write element, thermally assisted magnetic head slider, head gimbal assembly, hard disk drive with the same, and manufacturing method thereof
JP2005078706A (en) Thin film magnetic head and magnetic recording device
JP4020114B2 (en) Thin-film magnetic head with heating element, head gimbal assembly with thin-film magnetic head, and magnetic disk drive with head gimbal assembly
JP4377799B2 (en) Thin film magnetic head, magnetic recording apparatus using the same, and method of manufacturing the same
JP2003030803A (en) Magnetic head assembly and its manufacturing method
US10950259B2 (en) Magnetic head and magnetic recording and reproducing device
US9330702B2 (en) Thermally-assisted magnetic recording head having a heat sink
JP2011141942A (en) Thermally assisted magnetic head, method of manufacturing the same, head gimbal assembly, and hard disk drive
US7848056B2 (en) Thin film magnetic head having thermal expansion layer for suppressing thermal protrusion
JP2004005763A (en) Thin-film magnetic head, its manufacturing method, and magnetic disk drive
US8896966B2 (en) Magnetic write head having a coil adjacent to the main pole
JP2000311316A (en) Thin-film magnetic head and its production as well as magneto-resistive device
JP2008077719A (en) Thin-film magnetic head
JP2010061715A (en) Method of manufacturing magnetic head and information storage device
US8826515B2 (en) Self-aligned coil process in magnetic recording heads
JP2024026974A (en) Magnetic head and magnetic recording/reproducing device
JP2010140589A (en) Magnetic head that suppresses protrusion of medium facing surface caused by heat of coil
WO2004097805A1 (en) Thin-film magnetic head, production method therefor, and magnetic storage unit
WO2001003129A1 (en) Method of manufacturing thin-film magnetic head
US20090011280A1 (en) Magnetic head manufacturing method, magnetic head, and magnetic storage device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP