WO2004097395A1 - Matrix for matrix aided laser desorption ionization mass analysis - Google Patents

Matrix for matrix aided laser desorption ionization mass analysis Download PDF

Info

Publication number
WO2004097395A1
WO2004097395A1 PCT/JP2004/005363 JP2004005363W WO2004097395A1 WO 2004097395 A1 WO2004097395 A1 WO 2004097395A1 JP 2004005363 W JP2004005363 W JP 2004005363W WO 2004097395 A1 WO2004097395 A1 WO 2004097395A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
matrix
hydrogen atom
formula
mass spectrometry
Prior art date
Application number
PCT/JP2004/005363
Other languages
French (fr)
Japanese (ja)
Inventor
Hideaki Nakajima
Hiroshi Takigawa
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Publication of WO2004097395A1 publication Critical patent/WO2004097395A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0418Sample holders or containers for laser desorption, e.g. matrix-assisted laser desorption/ionisation [MALDI] plates or surface enhanced laser desorption/ionisation [SELDI] plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6848Methods of protein analysis involving mass spectrometry
    • G01N33/6851Methods of protein analysis involving laser desorption ionisation mass spectrometry

Definitions

  • the present invention relates to a matrix in a matrix-assisted laser desorption (hereinafter, referred to as MALDI) mass spectrometry.
  • MALDI matrix-assisted laser desorption
  • Mass spectrometry is used to determine the molecular weight and structure of organic compounds.
  • a solution of the substance to be measured is mixed with a matrix solution and, if necessary, an ionization aid, applied on a sample table called a target, and the solvent is removed.
  • the sample is removed, and the target with the sample attached is placed in a vacuum device.
  • the matrix changes the energy of the laser beam into heat energy and transmits it to the target substance, thereby ionizing the target substance.
  • a matrix is used to ionize the substance to be measured.
  • compounds that can be used as a matrix include 2,5-dihydroxybenzoic acid, disulanol, 2- (4-hydroxyphenylazo) benzoic acid (HAB A) (for example, “Bunseki”, In April 1996, see The Japan Society for Analytical Chemistry, p. 253-262, and 1,4-diphenylbutadiene have been proposed (see, for example, — See 1 5 3 8 4 2 gazette.
  • HAB A 2- (4-hydroxyphenylazo) benzoic acid
  • the intensity of the signal obtained decreases with the lapse of time since the target was placed in the device, and it can be obtained when the elapsed time is longer than 30 minutes.
  • the signal intensity is not sufficient, and there has been a demand for a matrix that can maintain a strong signal intensity even after being subjected to a vacuum for a long period of time ⁇ I.
  • An object of the present invention is to provide a matrix capable of maintaining a strong signal intensity even after being placed under vacuum for a long time in MALDI mass spectrometry.
  • the present inventor has continued intensive studies on the matrix used for MA LDI mass spectrometry, and has found that at least three substituents are present at the end of a hydrocarbon chain having two or more double bonds.
  • the present inventors have found that a compound represented by a specific formula to which is bonded becomes a matrix capable of maintaining a strong signal intensity even after being placed in a vacuum for a long time, and completed the present invention.
  • R 1, R 2, R 3, and R 4 may be the same or different, and at least two of them each have a total carbon number of 6 to 18 and are a halogen atom, a hydroxyl group, a sulfo An aryl group which may be substituted with an acid group, a carboxyl group, an alkyl group, or an alkoxy group;
  • Rl, R2, R3, and R4 are the aryl groups
  • the remaining two independently have a total carbon number of 1 to 10 and include a halogen atom, a hydroxyl group, and a sulfone.
  • R 5, R 6, R a or R bi may be the same or different and are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and n is 0 Is an integer from 3 to 3, and i is an integer from 1 to n.
  • a matrix for matrix-assisted laser desorption mass spectrometry comprising a compound represented by the formula:
  • the present invention also provides a composition for matrix-assisted laser desorption mass spectrometry comprising the matrix described above.
  • the present invention also provides a matrix-assisted laser desorption mass spectrometry method using the matrix described above. Further, the present invention provides a method for quality control of a synthetic polymer, characterized by using the matrix-assisted laser desorption mass spectrometry method described above.
  • FIG. 1 is a chart showing the results of Example 1.
  • the signal of polystyrene 1 hour after the sample installation was used. The measurement results are shown.
  • the scale of the vertical axis is arbitrary.
  • Figure 2 is a chart showing the results of Comparative Example 1.
  • the signal of polystyrene 1 hour after the sample was set when trans.trans, 1,4-diphenyl-1,3-butadiene was used as the matrix. 2 shows the measurement results.
  • the scale of the vertical axis is an arbitrary unit, but the same scale as in Fig. 1.
  • Fig. 3 is a chart showing the results of Comparative Example 2. Measurement of polystyrene signals one hour after sample installation when dithranol was used as the matrix. The results are shown. The scale of the vertical axis is an arbitrary unit, but is the same scale as in Fig. 1. BEST MODE FOR CARRYING OUT THE INVENTION
  • the matrix of the present invention has the formula (1)
  • R1, R2, R3, and R4 may be the same or different from each other, and at least two of them have a total carbon number of 6 to 18 and are a halogen atom, a hydroxyl group, a sulfonic acid group, An aryl group which may be substituted with a carboxyl group, an alkyl group, or an alkoxy group;
  • Rl, R2, R3, and R4 are the above aryl groups, the remaining two are each independently substituted with a halogen atom, a hydroxyl group, and a sulfonate group having a total carbon number of 1 to 10. However, one of the remaining two is a hydrogen atom, and the other one is the alkyl group.
  • Rl, R2, R3, and R4 all represent the aryl group.
  • R1 and R2, and further R3 and R4, may be linked by a carbon chain.
  • Rl, R2, R3, and R4 may be the same or different from each other, and at least two of them have a total of 6 to 18 carbon atoms each and have a halogen atom, a hydroxyl group, a sulfonic acid group, A aryl group which may be substituted with a carboxyl group, an alkyl group, or an alkoxy group;
  • Rl, R2, R3, and R4 are the aryl groups
  • the remaining Two are each independently an alkyl group having a total carbon number of 1 to 10 and which may be substituted by a halogen atom, a hydroxyl group, or a sulfonate group; one of the remaining two is a hydrogen atom, The other one is the aforementioned alkyl group.
  • Rl, R2, R3, and R4 all represent the aryl group.
  • Rl, R2, R3, and R4 are the above aryl groups, the remaining one has 1 total carbon number and is 10 and is substituted with a halogen atom, a hydroxyl group, or a sulfonic acid group. Or an alkyl or hydrogen atom which may be substituted.
  • Examples of the aryl group which may be substituted with a halogen atom, a hydroxyl group, a sulfonic acid group, an alkyl group, or an alkoxy group include a phenyl group, a 1-chlorophenyl group, a 2-chlorophenyl group, and a 3-chlorophenyl group.
  • alkyl group which may be substituted with a halogen atom, a hydroxyl group or a sulfonic acid group
  • examples of the alkyl group which may be substituted with a halogen atom, a hydroxyl group or a sulfonic acid group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group and a t-butyl group Group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, chloromethyl group, bromomethyl group, fluoromethyl group, 1-chloroethynole group, 2-chloroethynole group, 1-bromoethynole group, 2-bromoethyl group, 1-fluoroethyl group, 2-fluoroethyl group
  • Each of R1, R2, R3, and R4 is preferably a phenyl group or an alkyl-substituted phenyl group, and more preferably a phenyl group.
  • R5, R6, Rai, and Rbi are each a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • n there is no repeating unit shown in parentheses in equation (1), so R & i and Rbi do not exist, and when n is an integer of 1 or more, (1)
  • the i-th substituent R a or Rbi in the unit shown in parentheses in the formula is independent of each other.
  • the compound represented by the formula (1) has two or more double bonds in the molecule except for a six-membered ring.
  • alkyl group having 1 carbon atom and 10 alkyl groups examples include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butylinole group, a sec-butyl group, a t-butyl group, an n-pentyl group, 2-pentyl group, 3-pentyl group, 2-methyl-1-butyl group, 3-methyl-1-butyl group, 2-methyl-1-butyl group, 3-methyl-2-butyl group 2,2-dimethylpropyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl, n-decyl group and the like.
  • R5, R6, Ra is R bi good Mashiku those are all hydrogen atom or a methyl group, those more preferably all hydrogen atoms.
  • the compound represented by the formula (1) has a structural isomer due to a double bond site, the compound represented by the formula (1) is easily absorbed by laser energy. (A bond in which all bonds in the double bond except for the 6-membered ring are in trans form).
  • the compound represented by the formula (1) preferably has a size that does not hinder the detection of sample molecules, and preferably has a molecular weight of 100,000 or less.
  • Examples of the compound represented by the formula (1) include compounds represented by the following formulas (2).
  • the matrix is preferably uniformly mixed with the substance to be measured on a metal sample table called a target.
  • a metal sample table called a target.
  • 1 og P which is the water Z-octanol distribution ratio of the matrix of the present invention, is set to 1 og P of the substance to be measured. It is desirable that the difference is close to 1 og P of the monomer unit. Specifically, it is desirable that the difference between 1 og P of the matrix and 1 og P of the monomer unit is within 10 or less.
  • the compound of formula (1) for example, 1,1,4,4-tetrafluoro-1,3-butadiene having a log P of 7.9 (molecular weight: 358) is suitable.
  • 1 og P is the distribution ratio of water Z octanol, which is known in the art.For example, OECD G. UIDEL I NE FOR THE TEST I NG OF CHEMI CALS (Ad opted by the council on 27th July 1995) It is described, but is not limited to this, and is also required by computer software C 1 og P (trade name, manufactured by Bio Byte, USA). For example, logP of 1,1,4,1-triphenyl-1,3-butadiene Is 6.5.
  • the purity of the compound used as the matrix is preferably 90% or more.
  • the component having a molecular weight of 100 or more is 5% by weight or less so that the sample can be clearly distinguished from the sample.
  • the sample can contain a substance to be measured and a matrix, and a metal salt such as silver trifluoroacetate, copper nitrate, sodium chloride, and potassium chloride, an ammonium salt, and an organic salt as an ionization initiator.
  • a metal salt such as silver trifluoroacetate, copper nitrate, sodium chloride, and potassium chloride, an ammonium salt, and an organic salt as an ionization initiator.
  • the method for preparing a mixture of the substance to be measured and the matrix on the target is not particularly limited.
  • the substance to be measured, the matrix, and the ionization initiator are each prepared in advance as a solution.
  • the mixture can be attached to a target with a micropiter or a microsyringe, and then the solvent can be distilled off.
  • the surface of the sample formed on the target is preferably uniform.
  • the substance to be measured is not particularly limited, but considering that the ionization of the matrix itself does not disturb the spectrum, when the substance to be measured has a single molecular weight, The molecular weight is preferably at least 500, more preferably at least 100. When the substance to be measured has a molecular weight distribution, the weight average molecular weight is preferably 500 or more in terms of polystyrene measured by size exclusion chromatography (GPC), and the weight average molecular weight is 100 or more. More preferably, it is a compound.
  • GPC size exclusion chromatography
  • MALDI mass spectrometry using the matrix of the present invention can be suitably used for quality control of synthetic polymers.
  • a sample is randomly sampled from the produced synthetic polymer, a solution of the substance to be measured is mixed with a matrix solution and, if necessary, an ionization aid, and applied on a target to remove the solvent, thereby obtaining a sample.
  • Data is obtained by placing the target on the MA LDI mass spectrometer and performing mass spectrometry on each sample in turn. From the signal intensity data for each mZ z, we estimate the standard deviation of the population using statistical quality control methods, estimate the average value of the population, etc. A test can be performed. In addition, a control chart can be created to manage the process so that it is kept stable.
  • the signal intensity maintenance performance under vacuum can be evaluated by the following method. After the target with a fixed amount of sample mixed with a fixed amount of matrix is inserted into the MA LDI mass spectrometer, it is left under vacuum for a certain period of time, and then the laser irradiation energy and the number of laser irradiations on the target are measured. The signal intensity of the mass spectrum of the sample obtained when the measurement was performed at a constant level was high, but the signal intensity maintenance performance under vacuum was high. At this time, the signal maintenance performance is high, and for matrixes, the signal intensity of the mass spectrum obtained when the target is measured immediately after insertion into the MALDI mass spectrometer is high, improving the measurement sensitivity. You can also.
  • a time-of-flight mass spectrometer is a device that separates and detects these ions, and is a device suitable for using a polymer compound as a substance to be measured. By combining with a time-of-flight mass spectrometer, it is possible to measure a high molecular compound having an extremely large molecular weight, and it can be suitably used for measuring a molecular weight distribution of a biopolymer or a synthetic polymer.
  • the target was inserted into the mass spectrometer, it was left under vacuum for 60 minutes, and then the measurement was performed in the positive ionization mode with an acceleration voltage of 26.5 kV and an integrated laser shot of 200 times. .
  • a sign nanore strength of mZz 2561, which indicates a styrene monomer trimer in the obtained mass spectrum, was used.
  • the signal intensity indicating the performance of maintaining the signal intensity when the matrix of Example 1 was used was 193232 counts.
  • 1,1,4,4-tetraphenyl-1,3-butadiene is trans-, trans-1,4-diphenyl-1,3-butadiene (Reagent from Lancaster)
  • the measurement was performed under the same conditions as in Example 1 except that the measurement was changed to.
  • the signal intensity showing the performance of maintaining the signal intensity when the matrix of Comparative Example 1 was used was 248 counts.
  • Example 1 For the matrix used in Example 1, the measurement was carried out under the same conditions as in Example 1 except that 1,1,4,4-tetraphenyl_13-butadiene was changed to disulanol (a reagent manufactured by Aldrich).
  • the signal intensity showing the performance of maintaining the signal intensity when the matrix of Comparative Example 1 was used was 249 counts.
  • Table 1 summarizes the results of Example 1 and Comparative Examples 1 and 2. 1, 1, 4, 4- When tetraphenyl-1,3-butadiene is used for matrix, even if the sample and matrix mixture are left under vacuum for 60 minutes, a very strong signal is obtained as compared to the conventional matrix used in Comparative Examples 1 and 2. Since the strength was obtained, it was found that the matrix of Example 1 was excellent in maintaining the signal strength under vacuum. table 1 Industrial applicability
  • the matrix of the present invention is excellent in that it maintains a high signal intensity even under a high vacuum for a long time. Therefore, the MALDI mass spectrometry method using the matrix of the present invention can be used to measure many substances to be measured at once, and the efficiency of the measurement can be increased, which is extremely industrially important.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Hematology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A matrix for MALDI mass analysis which comprises a compound represented by the formula (1): (1), wherein with respect to R1, R2, R3 and R4, two or more of them are an aryl group being optionally substituted with a halogen atom, a hydroxyl group, a sulfonic acid group, a carboxyl group, an alkyl group or an alkoxy group, and having 6 to 18 carbon atoms in total, one or less of them is a hydrogen atom, and the rest of them is an alkyl group being optionally substituted with a halogen atom, a hydroxyl group or a sulfonic acid group, and having 1 to 10 carbon atoms in total; each of R5, R6, Rai and Rbi is a hydrogen atom or an alkyl group; and n is an integer of 0 to 3 and i is an integer of 1 to n. The matrix is, in the MALDI mass analysis, capable of retaining a great signal intensity also after it is exposed under vacuum for a long time.

Description

明 マトリックス支援レーザー脱離質量分析用マトリックス 技術分野  Akira Matrix for matrix assisted laser desorption mass spectrometry
本発明は、 マトリックス支援レーザー脱離 (以下、 MA L D Iと称する。 ) 質 量分析法におけるマトリックスに関するものである。  TECHNICAL FIELD The present invention relates to a matrix in a matrix-assisted laser desorption (hereinafter, referred to as MALDI) mass spectrometry.
背景技術 Background art
質量分析法は、 有機化合物の分子量や構造を明らかにするために用いられてい 糸  Mass spectrometry is used to determine the molecular weight and structure of organic compounds.
る。 質量分析法の測定を行うには、 試料田をイオン化する必要があり、 試料をィォ ン化する方法の一つとして、 レーザービームを試料に照射して瞬間的に試料を加 熱することによって、 測定対象の物質の分子を分解することなくイオン化させる MA L D I法があり、 特に分子量が 5 0 0以上の高分子化合物を測定対象の物質 とする質量分析に、 近年多く用いられるようになってきている。 You. In order to perform mass spectrometry measurements, it is necessary to ionize the sample field. One method of ionizing the sample is to irradiate the sample with a laser beam and instantaneously heat the sample. The MALDI method, which ionizes the molecules of the substance to be measured without decomposing it, has been widely used in recent years, especially for mass spectrometry using a polymer compound having a molecular weight of 500 or more as the substance to be measured. ing.
一般的に、 MA L D I質量分析法においては、 測定対象の物質の溶液をマトリ ックス溶液およぴ必要であればィオン化助剤と混合し、 ターゲットと呼ばれる試 料台上に塗布し、 溶媒を除去して試料とし、 試料が添着されたターゲットを真空 の装置内に設置する。 そして、 レーザー光をターゲット上に照射すると、 マトリ ッタスがレーザー光のエネルギーを熱エネルギーに変えて測定対象の物質に伝え ることにより、 測定対象の物質がイオン化する。 このように MA L D I質量分析 法においては、 測定対象の物質をイオン化するために、 マトリックスが用いられ ている。  In general, in MA LDI mass spectrometry, a solution of the substance to be measured is mixed with a matrix solution and, if necessary, an ionization aid, applied on a sample table called a target, and the solvent is removed. The sample is removed, and the target with the sample attached is placed in a vacuum device. When the target is irradiated with the laser beam, the matrix changes the energy of the laser beam into heat energy and transmits it to the target substance, thereby ionizing the target substance. Thus, in MALDI mass spectrometry, a matrix is used to ionize the substance to be measured.
従来から、 マトリックスとして用いることができる化合物としては、 2 , 5 - ジヒドロキシ安息香酸、 ジスラノール、 2— (4ーヒドロキシフエニルァゾ) 安 息香酸 (HAB A) (例えば、 「ぶんせき」 、 1 9 9 6年 4月、 社団法人日本分 析化学会、 p . 2 5 3— 2 6 1参照。 ) 、 1, 4—ジフエニルブタジエンが提案 されている (例えば、 特開 2 0 0 1— 1 5 3 8 4 2号公報参照。 ) 。  Conventionally, compounds that can be used as a matrix include 2,5-dihydroxybenzoic acid, disulanol, 2- (4-hydroxyphenylazo) benzoic acid (HAB A) (for example, “Bunseki”, In April 1996, see The Japan Society for Analytical Chemistry, p. 253-262, and 1,4-diphenylbutadiene have been proposed (see, for example, — See 1 5 3 8 4 2 gazette.
ここで一般的に、 実際の測定においては、 高真空に保たれた質量分析装置内に、 大気圧である装置外からタ ゲットを出し入れすると、 その度毎に真空度が低下 し (気圧が上昇し) 、 測定が行える真空度に到達するまで時間を要するので、 例 えば、 1 0 0個の試科を 1個のターゲット上に設置し、 そのターゲットを装置内 に設置後、 各試料を順次測定するという操作が行われている。 1個のターゲット 上に設置された 1 0 0個の試料の測定を終えるまでに、 通常は 1時間以上の時間 を要するので、 測定順序が最後の方の試料は、 測定が行なわれるまで真空下に置 かれる。 しかし、 従来のマトリックスを用いると、 装置内へターゲットを設置し てからの時間の経過とともに、 得られるシグナルの強度が低下し、 経過時間が 3 0分以上の長時間にわたる場合には、 得られるシグナルの強度が十分ではなくな るという問題があり、 長時間にわたり真空下に置力^ Iた後でも強いシグナル強度 を維持できるマトリッタスが求められていた。 Here, in general, in actual measurement, when a target is taken in and out of the mass spectrometer, which is kept in a high vacuum, from outside the device at atmospheric pressure, the degree of vacuum decreases each time. However, it takes time to reach the degree of vacuum at which measurement can be performed. Therefore, for example, 100 samples are placed on one target, and the target is placed in the device. An operation of sequentially measuring each sample is performed. It usually takes one hour or more to complete the measurement of 100 samples placed on one target.Therefore, the last sample in the measurement order is kept under vacuum until the measurement is performed. It is placed in However, using a conventional matrix, the intensity of the signal obtained decreases with the lapse of time since the target was placed in the device, and it can be obtained when the elapsed time is longer than 30 minutes. There is a problem that the signal intensity is not sufficient, and there has been a demand for a matrix that can maintain a strong signal intensity even after being subjected to a vacuum for a long period of time ^ I.
発明の開示 Disclosure of the invention
本発明の目的は、 MA L D I質量分析法において、 長時間にわたり真空下に置 かれた後においても強いシグナル強度を維持できるマトリックスを提供すること にある。  An object of the present invention is to provide a matrix capable of maintaining a strong signal intensity even after being placed under vacuum for a long time in MALDI mass spectrometry.
そこで本発明者は、 上記課題を解決すべく、 MA L D I質量分析法に用いるマ トリックスについて鋭意研究を続け、 二重結合を二つ以上有した炭化水素鎖の末 端に 3つ以上の置換基が結合した特定の式で表される化合物が、 長時間にわたり 真空下におかれたあとでも強いシグナル強度を維持できるマトリックスとなるこ とを見出し、 本発明を完成するに至った。  In order to solve the above-mentioned problems, the present inventor has continued intensive studies on the matrix used for MA LDI mass spectrometry, and has found that at least three substituents are present at the end of a hydrocarbon chain having two or more double bonds. The present inventors have found that a compound represented by a specific formula to which is bonded becomes a matrix capable of maintaining a strong signal intensity even after being placed in a vacuum for a long time, and completed the present invention.
すなわち本発明は、 式 (1 )  That is, the present invention provides the following formula (1)
Figure imgf000004_0001
Figure imgf000004_0001
( 1 )  (1)
(式中、 R l、 R 2、 R 3、 R 4は互いに同一でも異なってもよく、 そのうち 2 つ以上がそれぞれ全炭素数が 6から 1 8であってハロゲン原子、 水酸基、 スルホ ン酸基、 カルボキシル基、 アルキル基、 アルコキシ基で置換されていてもよいァ リール基であり、 (Wherein, R 1, R 2, R 3, and R 4 may be the same or different, and at least two of them each have a total carbon number of 6 to 18 and are a halogen atom, a hydroxyl group, a sulfo An aryl group which may be substituted with an acid group, a carboxyl group, an alkyl group, or an alkoxy group;
( i ) R l、 R 2、 R 3、 R 4のうち 2つが前記ァリール基である場合は残りの 2つがそれぞれ独立に全炭素数が 1から 1 0であってハロゲン原子、 水酸基、 ス ルホン酸基で置換されていてもよいアルキル基である力、 残りの 2つのうち 1つ が水素原子であり、 残りの 1つが前記アルキル基である。  (i) When two of Rl, R2, R3, and R4 are the aryl groups, the remaining two independently have a total carbon number of 1 to 10 and include a halogen atom, a hydroxyl group, and a sulfone. The force which is an alkyl group optionally substituted by an acid group, one of the remaining two is a hydrogen atom, and the other one is the above-mentioned alkyl group.
( i i ) R l、 R 2、 R 3、 R 4のうち 3つが前記ァリール基である場合は残り の 1つが水素原子または前記アルキル基である。  (ii) When three of Rl, R2, R3, and R4 are the aryl groups, the other one is a hydrogen atom or the alkyl group.
( i i i ) R l、 R 2、 R 3、 R 4の全部が前記ァリール基である。  (ii) All of Rl, R2, R3, and R4 are the aryl groups.
のいずれかであり、 R 5、 R 6、 R a い R b iは互いに同一でも異なってもよ く、 それぞれ独立に水素原子または全炭素数が 1から 1 0のアルキル基であり、 nは 0以上 3以下の整数であり、 iは 1から nの整数である。 ) により示される 化合物を含む、 マトリックス支援レーザー脱離質量分析用マトリックスを提供す る。 また本発明は、 上記記載のマトリックスを含むマトリックス支援レーザー脱 離質量分析用組成物を提供する。 また本発明は、 上記記載のマトリックスを用い るマトリックス支援レーザー脱離質量分析方法を提供する。 さらに本発明は、 前 記記載のマトリックス支援レーザー脱離質量分析方法を用いることを特徴とする 合成高分子の品質管理方法を提供する。 R 5, R 6, R a or R bi may be the same or different and are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and n is 0 Is an integer from 3 to 3, and i is an integer from 1 to n. A matrix for matrix-assisted laser desorption mass spectrometry, comprising a compound represented by the formula: The present invention also provides a composition for matrix-assisted laser desorption mass spectrometry comprising the matrix described above. The present invention also provides a matrix-assisted laser desorption mass spectrometry method using the matrix described above. Further, the present invention provides a method for quality control of a synthetic polymer, characterized by using the matrix-assisted laser desorption mass spectrometry method described above.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施例 1の結果を示すチヤ一トであり、 マトリックスとして 1, 1, 4 , 4—テトラフエニル一 1 , 3—ブタジエンを用いた場合における、 試料設置 1時間後のポリスチレンのシグナルの測定結果を示す。 縦軸のスケールは任意単 位である。  FIG. 1 is a chart showing the results of Example 1. In the case where 1,1,4,4-tetraphenyl-1,3-butadiene was used as the matrix, the signal of polystyrene 1 hour after the sample installation was used. The measurement results are shown. The scale of the vertical axis is arbitrary.
図 2は、 比較例 1の結果を示すチヤ一トであり、 マトリックスとしてトランス. トランス一、 1, 4一ジフヱニル一 1, 3—ブタジエンを用いた場合における、 試料設置 1時間後のポリスチレンのシグナルの測定結果を示す。 縦軸のスケール は任意単位であるが、 図 1と同じスケールである。  Figure 2 is a chart showing the results of Comparative Example 1. The signal of polystyrene 1 hour after the sample was set when trans.trans, 1,4-diphenyl-1,3-butadiene was used as the matrix. 2 shows the measurement results. The scale of the vertical axis is an arbitrary unit, but the same scale as in Fig. 1.
図 3は、 比較例 2の結果を示すチヤ一トであり、 マトリックスとしてジスラノ ールを用いた場合における、 試料設置 1時間後のポリスチレンのシグナルの測定 結果を示す。 縦軸のスケールは任意単位であるが、 図 1と同じスケールである。 発明を実施するための最良の形態 Fig. 3 is a chart showing the results of Comparative Example 2. Measurement of polystyrene signals one hour after sample installation when dithranol was used as the matrix. The results are shown. The scale of the vertical axis is an arbitrary unit, but is the same scale as in Fig. 1. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明について詳しく説明する。  Hereinafter, the present invention will be described in detail.
本発明のマトリックスは、 式 (1)  The matrix of the present invention has the formula (1)
Figure imgf000006_0001
Figure imgf000006_0001
により示される化合物を含む。 式 (1) において、 Rl、 R2、 R3、 R4は互 いに同一でも異なってもよく、 そのうち 2つ以上がそれぞれ全炭素数が 6から 1 8であってハロゲン原子、 水酸基、 スルホン酸基、 カルボキシル基、 アルキル基、 アルコキシ基で置換されていてもよいァリール基であり、 And a compound represented by In the formula (1), R1, R2, R3, and R4 may be the same or different from each other, and at least two of them have a total carbon number of 6 to 18 and are a halogen atom, a hydroxyl group, a sulfonic acid group, An aryl group which may be substituted with a carboxyl group, an alkyl group, or an alkoxy group;
(i) Rl、 R2、 R3、 R4のうち 2つが前記ァリール基である場合は残りの 2つがそれぞれ独立に全炭素数が 1から 10であってハロゲン原子、 水酸基、 ス ルホン酸基で置換されていてもょレ、アルキル基である力、 残りの 2つのうち 1つ が水素原子であり、 残りの 1つが前記アルキル基である。  (i) When two of Rl, R2, R3, and R4 are the above aryl groups, the remaining two are each independently substituted with a halogen atom, a hydroxyl group, and a sulfonate group having a total carbon number of 1 to 10. However, one of the remaining two is a hydrogen atom, and the other one is the alkyl group.
( i i ) Rl、 R2、 R3、 R 4のうち 3つが前記ァリール基である場合は残り の 1つが水素原子または前記アルキル基である。  (ii) When three of Rl, R2, R3 and R4 are the above aryl groups, the other one is a hydrogen atom or the above alkyl group.
( i i i ) Rl、 R2、 R3、 R 4の全部が前記ァリール基である。  (iiii) Rl, R2, R3, and R4 all represent the aryl group.
のいずれかである。 このとき、 R1と R2、 さらには R 3と R4は炭素鎖で連結 していてもよい。 Is one of At this time, R1 and R2, and further R3 and R4, may be linked by a carbon chain.
式 (1) において、 Rl、 R2、 R3、 R4は互いに同一でも異なってもよく、 そのうち 2つ以上がそれぞれ全炭素数が 6力 ら 18であってハロゲン原子、 水酸 基、 スルホン酸基、 カルボキシル基、 アルキル基、 アルコキシ基で置換されてい てもよぃァリール基であり、  In the formula (1), Rl, R2, R3, and R4 may be the same or different from each other, and at least two of them have a total of 6 to 18 carbon atoms each and have a halogen atom, a hydroxyl group, a sulfonic acid group, A aryl group which may be substituted with a carboxyl group, an alkyl group, or an alkoxy group;
( i ) Rl、 R2、 R3、 R4のうち 2つが前記ァリール基である場合は残りの 2つがそれぞれ独立に全炭素数が 1から 10であってハロゲン原子、 水酸基、 ス ルホン酸基で置換されていてもよいアルキル基である力、 残りの 2つのうち 1つ が水素原子であり、 残りの 1つが前記アルキル基である。 (i) When two of Rl, R2, R3, and R4 are the aryl groups, the remaining Two are each independently an alkyl group having a total carbon number of 1 to 10 and which may be substituted by a halogen atom, a hydroxyl group, or a sulfonate group; one of the remaining two is a hydrogen atom, The other one is the aforementioned alkyl group.
( i i ) Rl、 R2、 R3、 R4のうち 3つが前記ァリール基である場合は残り の 1つが水素原子または前記アルキル基である。  (ii) When three of Rl, R2, R3, and R4 are the aryl groups, the other one is a hydrogen atom or the alkyl group.
( i i i ) Rl、 R2、 R3、 R 4の全部が前記ァリール基である。  (iiii) Rl, R2, R3, and R4 all represent the aryl group.
のいずれかである化合物が、 MALD I質量分析法において、 長時間にわたり真 空下に置かれた後においても強いシグナル強度を維持できるマトリックスとなる。 式 (1) において、 Rl、 R2、 R3、 R4が、 そのうち 2つだけが前記ァリー ル基であっても、 残りの 2つが水素原子である化合物は、 本発明のマトリックス とはならない。 式 (1) の Rl、 R2、 R3、 R4力 そのうち 3つ以上がそれ ぞれ全炭素数が 6から 18であってハロゲン原子、 水酸基、 スルホン酸基、 カル ボキシル基、 アルキル基、 アルコキシ基で置換されていてもよいァリール基であ り、 In MALD I mass spectrometry, a compound that can maintain a strong signal intensity even after being placed in vacuum for a long time. In the formula (1), even if only two of R1, R2, R3, and R4 are the aryl groups, a compound in which the remaining two are hydrogen atoms does not form a matrix of the present invention. Of the Rl, R2, R3, and R4 forces of formula (1), at least three of them have a total number of carbon atoms of 6 to 18, each of which is a halogen atom, hydroxyl group, sulfonic group, carboxyl group, alkyl group, or alkoxy group. An aryl group which may be substituted,
(i i) Rl、 R2、 R3、 R 4のうち 3つが前記ァリール基である場合は、 残 りの 1つが全炭素数が 1力、ら 10であってハロゲン原子、 水酸基、 スルホン酸基 で置換されていてもよいアルキルまたは水素原子である。  (ii) When three of Rl, R2, R3, and R4 are the above aryl groups, the remaining one has 1 total carbon number and is 10 and is substituted with a halogen atom, a hydroxyl group, or a sulfonic acid group. Or an alkyl or hydrogen atom which may be substituted.
( i i i) Rl、 R2、 R3、 R 4の全部が前記ァリール基である。  (ii) All of Rl, R2, R3, and R4 are the aryl groups.
のいずれかであるものが好ましい。 Is preferred.
ハロゲン原子、 水酸基、 スルホン酸基、 アルキル基、 アルコキシ基で置換され ていてもよいァリール基としては、 フエニル基、 1—クロ口フエ二ル基、 2—ク ロロフエ二ノレ基、 3—クロ口フエ二ノレ基、 1_ブロモフエ二ノレ基、 2—プロモフ ェニノレ基、 3—プロモフエ二ノレ基、 1—フノレオロフェニノレ基、 2—フノレオロフェ ニル基、 3—フルオロフェニル基、 1—ヒ ドロキシフエニル基、 2—ヒ ドロキシ フエニル基、 3—ヒ ドロキシフエニル基、 1—スルホニルフエニル基、 2—スル ホニノレフエ二ノレ基、 3—スノレホニノレフエ二ノレ基、 1ーメチノレフエ二ノレ基、 2—メ チルフエニル基、 3—メチルフエニル基、 1_ェチルフエニル基、 2—ェチルフ ェニル基、 3—ェチルフエニル基、 1— n—プロピノレフェニノレ基、 2— n—プロ ピルフエニル基、 3— n—プロピルフエニル基、 1一 i一プロピルフエニル基、 2— i—プロピルフエニル基、 3— i一プロピルフエニル基、 1一 n—ブチルフ ェニノレ基、 2— n—プチノレフエ二ノレ基、 3— n—プチノレフエ二ノレ基、 1一 s e c —ブチルフエ二ル基、 2— s e c—ブチルフエ二ノレ基、 3— s e c一プチノレフエ ニル基、 1一 t一ブチルフエニル基、 2— t一ブチルフエニル基、 3 _ t—ブチ ルフエ二ル基、 1—メ トキシフエ二ル基、 2—メ トキシフエニル基、 3—メ トキ シフエ二ル基、 1一エトキシフエニル基、 2—エトキシフエニル基、 3—ェトキ シフエ二ル基、 1—n—プロポキシフエニル基、 2— n—プロポキシフエニル基、Examples of the aryl group which may be substituted with a halogen atom, a hydroxyl group, a sulfonic acid group, an alkyl group, or an alkoxy group include a phenyl group, a 1-chlorophenyl group, a 2-chlorophenyl group, and a 3-chlorophenyl group. Phenyl group, 1-bromophenyl group, 2-bromophenyl group, 3-bromophenyl group, 1-phenololenophenyl group, 2-phenylolephenyl group, 3-fluorophenyl group, 1-hydroxyphenyl group Group, 2-hydroxyphenyl group, 3-hydroxyphenyl group, 1-sulfonylphenyl group, 2-sulfoninolepheninole group, 3-snolehoninolepheninole group, 1-methinolepheninole group, 2-methylphenyl Group, 3-methylphenyl group, 1-ethylphenyl group, 2-ethylphenyl group, 3-ethylphenyl group, 1-n-propynolepheninole group, 2-n Pro Pirufueniru group, 3- n-propyl-phenylalanine group, 1 one i one propyl phenylpropyl group, 2-i-propylphenyl group, 3-i-propylphenyl group, 1-n-butylphenylinole group, 2-n-butynolephenyl group, 3-n-butynolephenyl group, 11 sec-butylphenyl 2-, 2-sec-butylphenyl, 3-sec-butinophenyl, 1-t-butylphenyl, 2-t-butylphenyl, 3-t-butylphenyl, 1-methoxyphenyl Group, 2-methoxyphenyl group, 3-methoxyphenyl group, 1-ethoxyphenyl group, 2-ethoxyphenyl group, 3-ethoxyphenyl group, 1-n-propoxyphenyl group, 2- n-propoxyphenyl group,
3— n—プロポキシフエニル基、 1 _ i—プロポキシフエニル基、 2— i—プロ ポキシフエ二ノレ基、 3— i一プロポキシフエ二ノレ基、 1—n—ブトキシフエ二ノレ 基、 2 _ n—ブトキシフエニル基、 3— n—ブトキシフエニル基、 1— s e c— ブトキシフエニル基、 2— s e c—ブトキシフエニル基、 3— s e c一ブトキシ フエニル基、 1一 t—ブトキシフエニル基、 2— t—ブトキシフエニル基、 3— t—ブトキシフエ二ノレ基、 1, 2—ジクロロフエ二ノレ基、 1 , 3—ジクロロフエ 二ノレ基、 2 , 3—ジクロロフェニル基、 1, 2—ジブロモフエニル基、 1 , 3— ジブロモフエ二ノレ基、 2 , 3—ジブロモフエ二ノレ基、 1, 2—ジフノレオロフェニ ル基、 1, 3—ジフルオロフェニル基、 2, 3—ジフルオロフェニル基、 1 , 2 一ジスルホニルフェ二ノレ基、 1, 3一ジスノレホニルフエ二ル基、 2 , 3—ジスノレ ホニルフエニル基、 1, 2—ジヒドロキシフエニル基、 1, 3—ジヒドロキシフ ェニル基、 2, 3—ジヒドロキシフエニル基、 1, 2—ジメチルフエニル基、 1, 3—ジメチルフエニル基、 2, 3—ジメチルフエニル基、 1 , 2—ジェチルフエ ニル基、 1 , 3—ジェチルフエニル基、 2, 3—ジェチルフエニル基、 1, 2 - ジメ トキシフエ二ル基、 1, 3—ジメ トキシフエ二ル基、 2 , 3—ジメ トキシフ ェニル基、 1, 2—ジエトキシフエ二ル基、 1, 3—ジエトキシフエ二ル基、 2, 3—ジエトキシフエニル基、 1一ナフチル基、 2—ナフチル基、 1—アントラニ ル基、 2—アントラニル基、 3—アントラニル基等を挙げることができる。 3-n-propoxyphenyl group, 1_i-propoxyphenyl group, 2-i-propoxyphenyl group, 3-i-propoxyphenyl group, 1-n-butoxyphenyl group, 2_n -Butoxyphenyl, 3-n-butoxyphenyl, 1-sec-butoxyphenyl, 2-sec-butoxyphenyl, 3-sec-butoxyphenyl, 1-t-butoxyphenyl, 2-t-butoxyphenyl, 3-t —Butoxyphenyl group, 1,2-dichlorophenyl group, 1,3-dichlorophenyl group, 2,3-dichlorophenyl group, 1,2-dibromophenyl group, 1,3-dibromophenyl group, 2 1,3-dibromopheninole group, 1,2-diphneolelophenyl group, 1,3-difluorophenyl group, 2,3-difluorophenyl group, 1,2 disulfonylpheninole group, 1,31 Snorephonylphenyl group, 2,3-dishonolephonylphenyl group, 1,2-dihydroxyphenyl group, 1,3-dihydroxyphenyl group, 2,3-dihydroxyphenyl group, 1,2-dimethylphenyl group, 1 , 3-Dimethylphenyl group, 2,3-Dimethylphenyl group, 1,2-Getylphenyl group, 1,3-Getylphenyl group, 2,3-Jethylphenyl group, 1,2-Dimethoxyphenyl group, 1 , 3-Dimethoxyphenyl group, 2,3-Dimethoxyphenyl group, 1,2-Diethoxyphenyl group, 1,3-Diethoxyphenyl group, 2,3-Diethoxyphenyl group, 1-Naphthyl group And 2-naphthyl group, 1-anthraniyl group, 2-anthranyl group, 3-anthranyl group and the like.
ハロゲン原子、 水酸基、 スルホン酸基で置換されていてもよいアルキル基とし ては、 メチル基、 ェチル基、 n—プロピル基、 i一プロピル基、 n—プチル基、 s e c—ブチル基、 t一プチル基、 n—ペンチル基、 n—へキシル基、 n—ヘプ チル基、 n—ォクチル基、 クロロメチル基、 ブロモメチル基、 フルォロメチル基、 1—クロロェチノレ基、 2—クロロェチノレ基、 1—プロモェチノレ基、 2—ブロモェ チル基、 1—フルォロェチル基、 2—フルォロェチル基、 1一クロ口一 n—プロ ピル基、 2—クロロー n—プロピル基、 3—クロ口 _n—プロピル基、 1—プロ モー n—プロピル基、 2 _プロモー n—プロピル基、 3—ブロモー n—プロピル 基、 1一フルオロー i—プロピル基、 2—フルオロー i—プロピル基、 ヒドロキ シメチル基、 ヒドロキシェチル基、 1—ヒドロキシ一 η—プロピル基、 2—ヒド 口キシ一 η—プロピル基、 3—ヒ ドロキシ _η—プロピル基、 1ーヒドロキシ一 i—プロピル基、 2—ヒドロキシ一 i—プロピル基、 スルホメチル基、 1—スル ホェチノレ基、 2—スノレホェチノレ基、 1—スノレホー n—プロピノレ基、 2—スノレホ一 n—プロピル基、 3—スルホ一 n—プロピル基、 1一スルホ一 i—プロピル基、 2ースルホー i一プロピル基等を挙げることができる。 Examples of the alkyl group which may be substituted with a halogen atom, a hydroxyl group or a sulfonic acid group include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, a sec-butyl group and a t-butyl group Group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, chloromethyl group, bromomethyl group, fluoromethyl group, 1-chloroethynole group, 2-chloroethynole group, 1-bromoethynole group, 2-bromoethyl group, 1-fluoroethyl group, 2-fluoroethyl group, 1-chloro-1-n-propyl group, 2-chloro-n-propyl group, 3-chloro n-propyl group, 1-promo n-propyl group, 2-promo n-propyl group, 3-bromo-n-propyl group, 1-fluoro-i-propyl group, 2-fluoro-i-propyl group, Hydroxymethyl group, hydroxyethyl group, 1-hydroxy-1-η-propyl group, 2-hydroxy η-propyl group, 3-hydroxy_η-propyl group, 1-hydroxy-1-i-propyl group, 2-hydroxy-1 i-Propyl group, sulfomethyl group, 1-sulphoechinole group, 2-snolejochinole group, 1-snolejo n-propynole group, 2-snolejo-n-propyl group, 3— Sulfo one n- propyl group, 1 one sulfo one i- propyl group, and an 2 Suruho i one propyl group.
Rl、 R2、 R 3, R4としては、 それぞれフエニル基、 またはアルキル置換 フェニル基であることが好ましく、 フエニル基がより好ましい。  Each of R1, R2, R3, and R4 is preferably a phenyl group or an alkyl-substituted phenyl group, and more preferably a phenyl group.
また、 R5、 R6、 および Ra i、 R b iはそれぞれ水素原子、 または炭素数 1から 10までのアルキル基である。 ここで、 nが 0のときは (1) 式の括弧内 で示される繰り返しユニットは存在しないので、 R& i、 Rb iは存在せず、 n が 1以上の整数であるときは、 (1) 式の括弧内で示されるュニットにおける i 番目の置換基である R a い Rb iはそれぞれ独立である。 また、 式 (1) で示 される化合物は、 分子内に 6員環を除いて 2つ以上の二重結合を有する。  R5, R6, Rai, and Rbi are each a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Here, when n is 0, there is no repeating unit shown in parentheses in equation (1), so R & i and Rbi do not exist, and when n is an integer of 1 or more, (1) The i-th substituent R a or Rbi in the unit shown in parentheses in the formula is independent of each other. The compound represented by the formula (1) has two or more double bonds in the molecule except for a six-membered ring.
炭素数 1力、ら 10のアルキル基としては、 メチル基、 ェチル基、 n—プロピル 基、 i一プロピル基、 n—プチノレ基、 s e c—プチル基、 t一ブチル基、 n—ぺ ンチル基、 2—ペンチル基、 3—ペンチル基、 2—メチルー 1一プチル基、 3 - メチルー 1一プチル基、 2—メチル一 2 -ブチル基、 3—メチルー 2—プチル基 2, 2—ジメチルプロピル基、 n—へキシル基、 n—へプチル基、 n—ォクチル 基、 n—ノニル、 n—デシル基等が挙げられる。  Examples of the alkyl group having 1 carbon atom and 10 alkyl groups include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butylinole group, a sec-butyl group, a t-butyl group, an n-pentyl group, 2-pentyl group, 3-pentyl group, 2-methyl-1-butyl group, 3-methyl-1-butyl group, 2-methyl-1-butyl group, 3-methyl-2-butyl group 2,2-dimethylpropyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl, n-decyl group and the like.
R5、 R6、 Ra i s R b iはすべて水素原子またはメチル基であるものが好 ましく、 すべて水素原子であるものがさらに好ましい。 また、 式 (1) で示され る化合物における二重結合部位による構造異性体を有する場合は、 レーザーエネ ルギーを吸収しやすいことから、 式 (1) で示される化合物のうち、 いずれも E 体 (6員環を除く二重結合部分の結合がすべてトランス形であるもの。 ) である ことが好ましい。 また、 式 (1 ) で示される化合物は試料分子の検出に障害とな らないような大きさであることが好ましく、 分子量 1 0 0 0以下であることが好 ましい。 R5, R6, Ra is R bi good Mashiku those are all hydrogen atom or a methyl group, those more preferably all hydrogen atoms. In the case where the compound represented by the formula (1) has a structural isomer due to a double bond site, the compound represented by the formula (1) is easily absorbed by laser energy. (A bond in which all bonds in the double bond except for the 6-membered ring are in trans form). The compound represented by the formula (1) preferably has a size that does not hinder the detection of sample molecules, and preferably has a molecular weight of 100,000 or less.
式 (1 ) で示される化合物としては、 次の (2 ) の各式で示される化合物を挙 げることができる。 Examples of the compound represented by the formula (1) include compounds represented by the following formulas (2).
Figure imgf000011_0001
(2)
Figure imgf000011_0001
(2)
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
Figure imgf000012_0004
Figure imgf000012_0005
Figure imgf000012_0001
Figure imgf000012_0002
Figure imgf000012_0003
Figure imgf000012_0004
Figure imgf000012_0005
01 01
C9CS00/l700Zdf/X3d 式 (1) で示される化合物のうち 1, 1, 4, 4—テトラフエ二ルー 1, 3 一ブタジエン (式 (3) ) および 1 1, 4一トリフエ二ルー 1, 3—ブタジェ ン (式 (4) ) が最も好ましい。 C9CS00 / l700Zdf / X3d Among the compounds represented by the formula (1), 1,1,4,4-tetraphenyl-1,3-butadiene (formula (3)) and 1,4-triphenyl-1,3-butadiene (formula (3) 4)) is most preferred.
Figure imgf000013_0001
Figure imgf000013_0001
(3)  (3)
Figure imgf000013_0002
マトリックスはターゲットと呼ばれる金属製の試料台上で測定対象の物質と均 一に混在することが好ましい。 特に測定対象の物質が高分子化合物である場合、 マトリッタスと測定対象の物質とを均一に混合させるには、 本発明のマトリック スの水 Zォクタノール分配比である 1 o g Pが測定対象の物質のモノマーュニッ トの 1 o g Pに近いことが望ましく、 具体的には、 マトリッタスの 1 o g Pは、 モノマーユニットの 1 o g Pとの差が 10以内であることが望ましい。 例えば、 スチレンモノマーの 1 o g Pが 3. 2であるポリスチレンや、 モノマーであるメ タクリル酸メチルの 1 o g Pが 1. 2であるポリメタクリル酸メチルを分析する 上では式 (1) の化合物の一例である、 l o gPが 7. 9の 1, 1, 4, 4ーテ トラフエ二ルー 1, 3—ブタジエン (分子量 358) が好適である。
Figure imgf000013_0002
The matrix is preferably uniformly mixed with the substance to be measured on a metal sample table called a target. In particular, when the substance to be measured is a high-molecular compound, to uniformly mix the matrix and the substance to be measured, 1 og P, which is the water Z-octanol distribution ratio of the matrix of the present invention, is set to 1 og P of the substance to be measured. It is desirable that the difference is close to 1 og P of the monomer unit. Specifically, it is desirable that the difference between 1 og P of the matrix and 1 og P of the monomer unit is within 10 or less. For example, to analyze polystyrene with 1 og P of styrene monomer being 3.2 or polymethyl methacrylate with 1 og P of methyl methacrylate being 1.2, the compound of formula (1) For example, 1,1,4,4-tetrafluoro-1,3-butadiene having a log P of 7.9 (molecular weight: 358) is suitable.
1 o g Pは、 水 Zォクタノール分配比であり、 測定する方法は公知であり、 例 えば OECD G.UIDEL I NE FOR THE TEST I NG OF CHEMI CALS (Ad o p t e d b y t h e c oun c i l on 27 t h J u l y 1995) に記載されているが、 これに限定されなく、 コ ンピューターソフト C 1 o g P (商品名、 米国 B i o By t e社製) でも求め られる。 例えば、 1, 1, 4, 一トリフエニル一 1, 3—ブタジエンの l o gP は、 6 . 5である。 1 og P is the distribution ratio of water Z octanol, which is known in the art.For example, OECD G. UIDEL I NE FOR THE TEST I NG OF CHEMI CALS (Ad opted by the council on 27th July 1995) It is described, but is not limited to this, and is also required by computer software C 1 og P (trade name, manufactured by Bio Byte, USA). For example, logP of 1,1,4,1-triphenyl-1,3-butadiene Is 6.5.
マトリックスとして用いる化合物の純度については、 9 0 %以上であることが 好ましい。 特に高分子量の試料を測定する場合は、 試料との区別が明瞭となるよ うに、 分子量 1 0 0 0以上の成分が 5重量%以下であることが好ましい。  The purity of the compound used as the matrix is preferably 90% or more. In particular, when a high molecular weight sample is measured, it is preferable that the component having a molecular weight of 100 or more is 5% by weight or less so that the sample can be clearly distinguished from the sample.
試料には、 測定対象の物質とマトリックスと、 さらに、 トリフルォロ酢酸銀や 硝酸銅、 塩化ナトリウム、 塩化カリウム等の金属塩や、 アンモニゥム塩、 有機塩 などをィオン化開始剤として含有させることができる。  The sample can contain a substance to be measured and a matrix, and a metal salt such as silver trifluoroacetate, copper nitrate, sodium chloride, and potassium chloride, an ammonium salt, and an organic salt as an ionization initiator.
ターゲット上に測定対象の物質とマトリッタスとの混合物を作成する方法につ いては、 特に制限されるものではないが、 例えば、 測定対象の物質、 マトリック ス、 イオン化開始剤をそれぞれ溶液としてあらかじめ作成しておき、 これらを混 合してからマイクロピぺッターやマイクロシリンジでターゲットに添着してから 溶媒を留去することにより行うことができる。 このときターゲット上に作成され る試料の表面は、 均一であることが好ましい。  The method for preparing a mixture of the substance to be measured and the matrix on the target is not particularly limited.For example, the substance to be measured, the matrix, and the ionization initiator are each prepared in advance as a solution. In advance, after mixing these, the mixture can be attached to a target with a micropiter or a microsyringe, and then the solvent can be distilled off. At this time, the surface of the sample formed on the target is preferably uniform.
測定対象の物質、 マトリックスの量比については、 特に制限されるものではな いが、 試料:マトリックス = 1 : 1モル比から 1 : 1 0 0 0 0 0 0モル比が好ま しい。 さらに好ましくは、 1 : 2モル比から 1 : 5 0 0 0 0モル比である。 測定対象の物質については、 特に制限されるものではないが、 マトリックス自 身のイオン化によるスぺク トルの妨害を避けることを考えると、 測定対象となる 物質が単一の分子量を持つ場合は、 分子量が 5 0 0以上であることが好ましく、 分子量が 1 0 0 0以上であることがより好ましい。 測定対象の物質が分子量分布 を有する場合は、 サイズ排除クロマトグラフィー (G P C) で測定されるポリス チレン換算による重量平均分子量で 5 0 0以上であるものが好ましく、 重量平均 分子量 1 0 0 0以上の化合物であることがさらに好ましい。  The quantitative ratio of the substance to be measured and the matrix is not particularly limited, but the sample: matrix = 1: 1 molar ratio to 1: 1000 molar ratio is preferable. More preferably, the molar ratio is from 1: 2 to 1: 500. The substance to be measured is not particularly limited, but considering that the ionization of the matrix itself does not disturb the spectrum, when the substance to be measured has a single molecular weight, The molecular weight is preferably at least 500, more preferably at least 100. When the substance to be measured has a molecular weight distribution, the weight average molecular weight is preferably 500 or more in terms of polystyrene measured by size exclusion chromatography (GPC), and the weight average molecular weight is 100 or more. More preferably, it is a compound.
このような本発明の MA L D I質量分析法用マトリックスは、 長時間にわたり 真空下に置かれた後においても強いシグナル強度を維持できるので、 本発明のマ トリックスを用いることにより、 1つのターゲット上に多数の試料を設置して効 率的に質量分析を行うことができる。 従って、 本発明のマトリックスを用いた M A L D I質量分析法は合成高分子の品質管理に好適に用いることができる。 本発 明のマトリックスを用いた MA L D I質量分析法を用いて品質管理を行うには、 生産された合成高分子から無作為にサンプリングし、 測定対象の物質の溶液をマ トリックス溶液および必要であればィオン化助剤と混合し、 ターゲット上に塗布 して溶媒を除去して試料とし、 ターゲットを MA L D I質量分析装置に設置して 各試料を順次質量分析を行うことによりデータを得る。 mZ z毎のシグナル強度 データから、 統計的品質管理の手法を用いた母集団の標準偏差の推定、 母集団の 平均値の推定等を行い、 また、 以前に製造した合成高分子との差の検定を行うこ とができる。 また、 管理図を作成して工程を安定な状態に保つよう管理すること ができる。 Since such a matrix for MA LDI mass spectrometry of the present invention can maintain a strong signal intensity even after being placed in a vacuum for a long period of time, by using the matrix of the present invention, Mass spectrometry can be performed efficiently by installing a large number of samples. Therefore, MALDI mass spectrometry using the matrix of the present invention can be suitably used for quality control of synthetic polymers. To perform quality control using MA LDI mass spectrometry using the matrix of the present invention, A sample is randomly sampled from the produced synthetic polymer, a solution of the substance to be measured is mixed with a matrix solution and, if necessary, an ionization aid, and applied on a target to remove the solvent, thereby obtaining a sample. Data is obtained by placing the target on the MA LDI mass spectrometer and performing mass spectrometry on each sample in turn. From the signal intensity data for each mZ z, we estimate the standard deviation of the population using statistical quality control methods, estimate the average value of the population, etc. A test can be performed. In addition, a control chart can be created to manage the process so that it is kept stable.
なお、 真空下におけるシグナル強度の維持性能は、 以下の方法にて評価するこ とができる。 一定量のマトリックスを混合した一定量の試料を添着したターゲッ トを MA L D I質量分析装置内に揷入後、 真空下にて一定時間放置し、 その後に ターゲットへのレーザー照射エネルギーおよびレーザー照射回数を一定にして測 定した際に得られる試科のマススペクトルのシグナル強度が強レヽものが真空下に おけるシグナル強度の維持性能が高レ、。 このとき、 シグナルの維持性能が高レ、マ トリッタスについてはターゲットを MA L D I質量分析装置内に挿入直後に測定 した際に得られるマススぺク トルのシグナル強度も高く、 測定の感度を向上させ ることもできる。  The signal intensity maintenance performance under vacuum can be evaluated by the following method. After the target with a fixed amount of sample mixed with a fixed amount of matrix is inserted into the MA LDI mass spectrometer, it is left under vacuum for a certain period of time, and then the laser irradiation energy and the number of laser irradiations on the target are measured. The signal intensity of the mass spectrum of the sample obtained when the measurement was performed at a constant level was high, but the signal intensity maintenance performance under vacuum was high. At this time, the signal maintenance performance is high, and for matrixes, the signal intensity of the mass spectrum obtained when the target is measured immediately after insertion into the MALDI mass spectrometer is high, improving the measurement sensitivity. You can also.
MA L D I質量分析法において、 レーザー照射により試料から生成したイオン を分けて検出する。 このイオンを分けて検出する装置であって、 高分子化合物を 測定対象の物質とする場合に適した装置として飛行時間型質量分析装置があり、 本発明のマトリックスを用レ、た M A L D I法は、 飛行時間型質量分析装置と組み 合わせることにより、 極めて大きな分子量を有する高分子化合物を測定すること が可能となり、 生体高分子や合成高分の分子量分布の測定に好適に用いることが できる。  In MALDI mass spectrometry, ions generated from a sample by laser irradiation are detected separately. A time-of-flight mass spectrometer is a device that separates and detects these ions, and is a device suitable for using a polymer compound as a substance to be measured. By combining with a time-of-flight mass spectrometer, it is possible to measure a high molecular compound having an extremely large molecular weight, and it can be suitably used for measuring a molecular weight distribution of a biopolymer or a synthetic polymer.
以下、 実施例によって本発明をさらに詳細に説明するが、 本発明はこれらに限 定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto.
実施例 1 Example 1
1, 1, 4, 4ーテトラフエ二ルー 1 , 3—ブタジエン (P F A L T Z & B AU E R社製試薬) をマトリックスとし、 東ソー株式会社製ポリスチレン標準 品 A— 2 5 0 0 (分子量 2 5 0 0) を測定対象の物質とし、 これにトリフルォロ 酢酸銀をイオン化助剤として用いた。 マトリックス、 試料、 イオン化助剤混合比 は、 J . Am. S o c . Ma s s S p e c t r om. 1 9 9 6, 7, 1 1一 24に従い、 マトリックスを 2x 1 0一1 M、 測定対象の物質を 3. 3x1 0— 4 M、 トリフルォロ酢酸銀を 4. 5 x 1 0— °Mの濃度で作成した THF溶液を 5 : 1 : 1容量比で混合し、 ターゲットプレート上にマイクロピぺッターで 1 μ 1添着し、 溶媒を留去後、 ターゲットをブノレカー ·ダノレトニタス製 R e f 1 e χΙΠ型 MALD Iイオン源つき飛行時間型質量分析装置内に挿入した。 ターグ ットは質量分析計内へ挿入後、 6 0分間そのまま真空下に放置し、 その後に加速 電圧 2 6. 5 k V、 レーザーシヨット 2 00回積算の正ィオン化モードにて測定 を行った。 シグナル強度の維持性能の評価は、 得られたマススぺクトルにおける スチレンモノマーの 2 3量体を示す mZ z = 2 5 6 1のシグナノレ強度を用いるこ ととした。 Using 1,1,4,4-tetraphenyl-1,3-butadiene (PFALTZ & BAUER Co., Ltd.) as matrix, Tosoh Corporation polystyrene standard Article A—250.000 (molecular weight 250.000) was used as a substance to be measured, and silver trifluoroacetate was used as an ionization aid. Matrix, samples, ionization aid mixing ratio, J. Am. S oc. Ma ss S pectr om. 1 9 9 6, 7, in accordance with 1 1 one 24, matrix 2x 1 0 one 1 M, of the analyte A THF solution prepared at a concentration of 3.3 × 10 4 M and silver trifluoroacetate at a concentration of 4.5 × 10— ° M was mixed at a volume ratio of 5: 1: 1. After μ 1 was impregnated and the solvent was distilled off, the target was inserted into a time-of-flight mass spectrometer equipped with a Ref 1 e χΙΠ type MALD I ion source manufactured by Bunoreka Danoretonitas. After the target was inserted into the mass spectrometer, it was left under vacuum for 60 minutes, and then the measurement was performed in the positive ionization mode with an acceleration voltage of 26.5 kV and an integrated laser shot of 200 times. . In the evaluation of the signal strength maintaining performance, a sign nanore strength of mZz = 2561, which indicates a styrene monomer trimer in the obtained mass spectrum, was used.
実施例 1のマトリックスを用いた場合のシグナル強度の維持性能を示す該シグ ナル強度は 1 9 2 3 2カウントであった。  The signal intensity indicating the performance of maintaining the signal intensity when the matrix of Example 1 was used was 193232 counts.
比較例 1 Comparative Example 1
実施例 1で用いたマトリックスについて 1, 1 , 4, 4—テトラフエ二ルー 1 : 3一ブタジエンをトランス、 トランス一、 1, 4ージフエ二ノレ一 1, 3—ブタジ ェン (ランカスター社製試薬) に変えた以外は実施例 1と同一の条件で測定を行 つた。  About the matrix used in Example 1 1,1,4,4-tetraphenyl-1,3-butadiene is trans-, trans-1,4-diphenyl-1,3-butadiene (Reagent from Lancaster) The measurement was performed under the same conditions as in Example 1 except that the measurement was changed to.
比較例 1のマトリックスを用いた場合のシグナル強度の維持性能を示す該シグ ナル強度は 248カウントであった。  The signal intensity showing the performance of maintaining the signal intensity when the matrix of Comparative Example 1 was used was 248 counts.
比較例 2 Comparative Example 2
実施例 1で用いたマトリックスについて 1 , 1 , 4, 4ーテトラフェニル _ 1 3—ブタジェンをジスラノール (アルドリッチ社製試薬) に変えた以外は実施例 1と同一の条件で測定を行った。  For the matrix used in Example 1, the measurement was carried out under the same conditions as in Example 1 except that 1,1,4,4-tetraphenyl_13-butadiene was changed to disulanol (a reagent manufactured by Aldrich).
比較例 1のマトリックスを用いた場合のシグナル強度の維持性能を示す該シグ ナル強度は 24 9カウントであった。  The signal intensity showing the performance of maintaining the signal intensity when the matrix of Comparative Example 1 was used was 249 counts.
実施例 1および比較例 1、 2の結果を表 1にまとめて示す。 1, 1, 4, 4- テトラフエ二ルー 1, 3一ブタジエンをマトリッタスに用いると、 試料、 マトリ ックス混合物を 6 0分真空下に放置しても、 比較例 1 , 2で用いた従来のマトリ ックスと比べて非常に強いシグナル強度が得られたことから、 実施例 1のマトリ ッタスが真空下においてシグナル強度を維持する性能に優れることがわかった。 表 1
Figure imgf000017_0001
産業上の利用可能性
Table 1 summarizes the results of Example 1 and Comparative Examples 1 and 2. 1, 1, 4, 4- When tetraphenyl-1,3-butadiene is used for matrix, even if the sample and matrix mixture are left under vacuum for 60 minutes, a very strong signal is obtained as compared to the conventional matrix used in Comparative Examples 1 and 2. Since the strength was obtained, it was found that the matrix of Example 1 was excellent in maintaining the signal strength under vacuum. table 1
Figure imgf000017_0001
Industrial applicability
本発明のマトリックスは、 長時間高真空下におかれても高いシグナル強度を維 持する点で優れたものである。 したがって、 本発明のマトリックスおょぴ本マト リックスを用いた MA L D I質量分析法は、 多くの測定対象の物質を一度に測定 でき、 測定を効率化できるので、 工業的に極めて重要である。  The matrix of the present invention is excellent in that it maintains a high signal intensity even under a high vacuum for a long time. Therefore, the MALDI mass spectrometry method using the matrix of the present invention can be used to measure many substances to be measured at once, and the efficiency of the measurement can be increased, which is extremely industrially important.

Claims

請求の範囲 The scope of the claims
Figure imgf000018_0001
(式中、 Rl、 R2、 R3、 R 4は互いに同一でも異なってもよく、 そのうち 2 つ以上がそれぞれ全炭素数が 6から 18であってハロゲン原子、 水酸基、 スルホ ン酸基、 カルボキシル基、 アルキル基、 アルコキシ基で置換されていてもよいァ リール基であり、
Figure imgf000018_0001
(In the formula, Rl, R2, R3, and R4 may be the same or different, and at least two of them each have a total carbon number of 6 to 18 and are a halogen atom, a hydroxyl group, a sulfonate group, a carboxyl group, An aryl group which may be substituted with an alkyl group or an alkoxy group,
( i ) Rl、 R2、 R3、 R4のうち 2つが前記ァリール基である場合は残りの 2つがそれぞれ独立に全炭素数が 1から 10であってハロゲン原子、 水酸基、 ス ルホン酸基で置換されていてもよいアルキル基であるか、 残りの 2つのうち 1つ が水素原子であ i、_残りの Λ が前記アルキル基である。  (i) When two of Rl, R2, R3, and R4 are the above aryl groups, the remaining two are each independently substituted with a halogen atom, a hydroxyl group, and a sulfonate group having 1 to 10 total carbon atoms. Or one of the remaining two is a hydrogen atom, and the remaining Λ are the above-mentioned alkyl groups.
( i i ) Rl、 R2、 R3、 R 4のうち 3つが前記ァリール基である場合は残り の 1つが水素原子または前記アルキル基である。  (ii) When three of Rl, R2, R3 and R4 are the above aryl groups, the other one is a hydrogen atom or the above alkyl group.
( i i i) Rl、 R2、 R3、 R 4の全部が前記ァリール基である。  (ii) All of Rl, R2, R3, and R4 are the aryl groups.
のいずれかであり、 R5、 R6、 R a i , R b iは互いに同一でも異なってもよ く、 それぞれ独立に水素原子または全炭素数が 1力、ら 10のアルキル基であり、 nは 0以上 3以下の整数であり、 iは 1から nの整数である。 ) により示される 化合物を含む、 マトリックス支援レーザー脱離質量分析用マトリックス。 R5, R6, R ai, and R bi may be the same or different from each other, and are each independently a hydrogen atom or an alkyl group having 1 carbon atom and a total of 10 carbon atoms, and n is 0 or more. Is an integer less than or equal to 3, and i is an integer from 1 to n. A matrix for matrix-assisted laser desorption mass spectrometry, comprising a compound represented by:
2. 式 (1) の Rl、 R2、 R3、 R4が、 そのうち 3つ以上がそれぞれ全炭 素数が 6から 18であってハロゲン原子、 水酸基、 スルホン酸基、 カルボキシル 基、 アルキル基、 アルコキシ基で置換されていてもよいァリール基である請求項 1記載のマトリックス。 2. In formula (1), Rl, R2, R3, and R4 are each a halogen atom, a hydroxyl group, a sulfonic acid group, a carboxyl group, an alkyl group, or an alkoxy group in which at least three have a total carbon number of 6 to 18, and 2. The matrix according to claim 1, which is an aryl group which may be substituted.
3. 式 (1) の R5、 R6、 Raい R b iが、 それぞれ、 水素原子またはメ チル基である請求項 1または 2に記載のマトリックス。 3. The matrix according to claim 1, wherein R5, R6 and Ra or Rbi in the formula (1) are each a hydrogen atom or a methyl group.
4. 式 (1) の Rl、 R2、 R3、 R4が、 そのうち 3つ以上がそれぞれ全炭 素数が 6から 18であってハロゲン原子、 水酸基、 スルホン酸基、 アルキル基、 アルコキシ基で置換されていてもよいァリール基であり、 R5、 R 6がそれぞれ 水素原子であり、 かつ nが 0である請求項 2または 3のいずれかに記載のマトリ ックス。  4. Rl, R2, R3, and R4 in Formula (1) have at least three of which have a total carbon number of 6 to 18 and are substituted with a halogen atom, a hydroxyl group, a sulfonic acid group, an alkyl group, or an alkoxy group. 4. The matrix according to claim 2, wherein the aryl group is an aryl group, R5 and R6 are each a hydrogen atom, and n is 0.
5. 請求項 1〜4のいずれかに記載のマトリックスを含む、 マトリックス支援 レーザー脱離質量分析用組成物。  5. A composition for matrix-assisted laser desorption mass spectrometry, comprising the matrix according to any one of claims 1 to 4.
6. 請求項 1〜4のいずれかに記載のマトリックスを用いる、 マトリックス支 援レーザー脱離質量分析方法。  6. A matrix-assisted laser desorption mass spectrometry method using the matrix according to any one of claims 1 to 4.
7. 請求項 6に記載のマトリックス支援レーザー脱離質量分析方法を用いる、 合成高分子の品質管理方法。  7. A method for quality control of a synthetic polymer, using the matrix-assisted laser desorption mass spectrometry method according to claim 6.
PCT/JP2004/005363 2003-04-30 2004-04-15 Matrix for matrix aided laser desorption ionization mass analysis WO2004097395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003124810 2003-04-30
JP2003-124810 2003-04-30

Publications (1)

Publication Number Publication Date
WO2004097395A1 true WO2004097395A1 (en) 2004-11-11

Family

ID=33410200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005363 WO2004097395A1 (en) 2003-04-30 2004-04-15 Matrix for matrix aided laser desorption ionization mass analysis

Country Status (1)

Country Link
WO (1) WO2004097395A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001153842A (en) * 1999-11-25 2001-06-08 Mitsubishi Chemicals Corp Surface analytic method
JP2002513917A (en) * 1998-05-07 2002-05-14 シークエノム・インコーポレーテツド Infrared matrix assisted laser desorption / ionization mass spectrometry of polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002513917A (en) * 1998-05-07 2002-05-14 シークエノム・インコーポレーテツド Infrared matrix assisted laser desorption / ionization mass spectrometry of polymers
JP2001153842A (en) * 1999-11-25 2001-06-08 Mitsubishi Chemicals Corp Surface analytic method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKIGAWA, H. ET AL.: "MALDI-TOFMS Yo Shinki Matrix to Gosei Kobunshi eno Oyo", DAI 51 KAI SHITSURYO BUNSEKI SOGO TORONKAI KOEN YOSHISHU, 14 May 2003 (2003-05-14), pages 128 - 129, XP002983534 *
TANAKA, K.: "Matrix Shien Laser Datsuri Ion-ka Shitsuryo Bunseki Ho", BUNSEKI, 1996 NEN, no. 4, 5 April 1996 (1996-04-05), pages 253 - 261, XP002983535 *

Similar Documents

Publication Publication Date Title
Knochenmuss et al. MALDI ionization: the role of in-plume processes
JP3884087B2 (en) Mass label binding hybridization probe
US20110172115A1 (en) Characterising planar samples by mass spectrometry
Steen et al. Analysis of protein–nucleic acid interactions by photochemical cross‐linking and mass spectrometry
Yalcin et al. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for polymer analysis: solvent effect in sample preparation
Walker Why is SIMS underused in chemical and biological analysis? Challenges and opportunities
WO2006124003A1 (en) Composite maldi matrix material and methods of using it and kits thereof in maldi
Sampson et al. Direct characterization of intact polypeptides by matrix‐assisted laser desorption electrospray ionization quadrupole Fourier transform ion cyclotron resonance mass spectrometry
CN105973974B (en) A kind of detection method of the MALDI-TOF-MS of polythiocarbonates class compound
Dudley et al. Study of the mass spectrometric fragmentation of pseudouridine: comparison of fragmentation data obtained by matrix‐assisted laser desorption/ionisation post‐source decay, electrospray ion trap multistage mass spectrometry, and by a method utilising electrospray quadrupole time‐of‐flight tandem mass spectrometry and in‐source fragmentation
Delcorte Matrix-enhanced secondary ion mass spectrometry: The Alchemist's solution?
Chagunda et al. The signal-to-noise issue in mass spectrometric analysis of polymers
Halper et al. Narrowband Modulation Two-Dimensional Mass Spectrometry and Label-Free Relative Quantification of Histone Peptides
JP3548769B2 (en) Carbon support plate for forming fine and uniform crystals and its application
WO2004097395A1 (en) Matrix for matrix aided laser desorption ionization mass analysis
Przybilla et al. Block length determination of a poly (ethylene oxide)-b-poly (p-phenylene ethynylene) diblock copolymer by means of MALDI-TOF mass spectrometry combined with fragment-ion analysis
JP5036042B2 (en) Mass spectrometry sample preparation method, ribonucleic acid ionization method, ribonucleic acid mass spectrometry method, and cell-derived low molecular ribonucleic acid mass spectrometry method
JP5092513B2 (en) Structure analysis method of glycoprotein or glycopeptide by MALDI mass spectrometry using liquid matrix
JP2004347595A (en) Matrix for matrix-assisted laser desorption mass spectrometry
Asakawa et al. The analysis of industrial synthetic polymers by electrospray droplet impact/secondary ion mass spectrometry
Yu et al. Simultaneous acquisition of elemental, fragmental, and molecular information on organometallic compounds
Laskin et al. Surface-induced dissociation of ions produced by matrix-assisted laser desorption/ionization in a Fourier transform ion cyclotron resonance mass spectrometer
JP2013130570A (en) METHOD FOR SPECIFIC CLEAVAGE OF N-Cα BOND OR Cα-C BOND IN PEPTIDE MAIN CHAIN OF PROTEIN AND PHOSPHORYLATED PEPTIDE
JP2003098151A (en) Matrix for maldi-tof mass spectrometry
Groenewold et al. Secondary ion mass spectrometry of zeolite materials: Observation of abundant aluminosilicate oligomers using an ion trap

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase