WO2004097238A1 - Constant velocty joint and rotation drive force transmission mechanism - Google Patents

Constant velocty joint and rotation drive force transmission mechanism Download PDF

Info

Publication number
WO2004097238A1
WO2004097238A1 PCT/JP2004/003653 JP2004003653W WO2004097238A1 WO 2004097238 A1 WO2004097238 A1 WO 2004097238A1 JP 2004003653 W JP2004003653 W JP 2004003653W WO 2004097238 A1 WO2004097238 A1 WO 2004097238A1
Authority
WO
WIPO (PCT)
Prior art keywords
constant velocity
velocity joint
ring
retainer
inner ring
Prior art date
Application number
PCT/JP2004/003653
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Mabuchi
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004043116A external-priority patent/JP4574999B2/en
Priority claimed from JP2004066137A external-priority patent/JP2005256873A/en
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Publication of WO2004097238A1 publication Critical patent/WO2004097238A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D3/226Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part
    • F16D3/227Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts the groove centre-lines in each coupling part lying on a cylinder co-axial with the respective coupling part the joints being telescopic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/22Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts
    • F16D3/223Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members the rolling members being balls, rollers, or the like, guided in grooves or sockets in both coupling parts the rolling members being guided in grooves in both coupling parts
    • F16D2003/22303Details of ball cages

Definitions

  • the present invention provides, for example, arbitrarily selecting a constant velocity joint for connecting one transmission shaft and the other transmission shaft and a structure of an inner joint corresponding to various vibration characteristics in a driving force transmission portion of an automobile.
  • the present invention relates to a rotational driving force transmission mechanism capable of performing a turning operation.
  • Japanese Utility Model Publication No. 63-26665 discloses a constant velocity joint according to this type of prior art, which has a center of curvature that is offset on both sides of a pole center plane on a joint shaft.
  • a double offset type constant velocity joint having a cage having spherical inner and outer surfaces is disclosed.
  • an axial gap is provided between the cage and the inner joint member (both sides of the cylindrical surface at the center of the cage). According to the document, the inner joint member and the cage can move relative to each other by a very small distance along the axial direction even when the axial vibration is applied, so that slide resistance can be reduced.
  • Japanese Utility Model Publication No. 63-26665 the slide resistance in a use state where an angular displacement or an axial displacement is generated while transmitting the torque of the drive shaft as in idling at the time of running or stopping is described.
  • Japanese Patent Application Laid-Open No. 11-182570 discloses a double offset type constant velocity joint.
  • the radius of curvature of the partial spherical surface on the inner peripheral surface of the cage is calculated as follows.
  • the radius of curvature of the spherical surface that is the outer peripheral surface of the inner joint member is set to be larger than the radius of curvature of the spherical surface that is the outer peripheral surface of the inner joint member.
  • the double offset type constant velocity joint disclosed in Japanese Utility Model Publication No. 63-26565 and Japanese Patent Application Laid-Open No. 11-187570 has a structure in which a cage and an inner joint member are provided between the cage and the inner joint member. It is a technical idea to reduce the slide resistance by increasing the relative axial movement amount between the cage and the inner joint member by increasing the provided axial gap.
  • the moving distance of the relatively moving cage and the inner joint member is limited to a small distance, and the moving distance due to the axial gap is limited. Disclosure of the invention
  • a general object of the present invention is to provide a constant velocity joint capable of reducing the slide resistance over a wider range by further increasing the amount of inner ring movement in a double offset type.
  • a main object of the present invention is to provide a constant velocity joint capable of securing an appropriate amount of movement of the inner ring while maintaining a reduction in slide resistance over a wide range of the amount of movement of the inner ring. is there.
  • Another object of the present invention is to provide a constant velocity joint capable of suppressing a tapping sound generated when the amount of inner ring movement is restricted.
  • Another object of the present invention is to appropriately select the structure of an inner joint connected to a rotary drive source (differential gear) side in accordance with vibration characteristics such as tertiary vibration and Z or idling vibration. Times that can obtain good vibration characteristics
  • An object of the present invention is to provide a rolling drive force transmission mechanism.
  • the protrusion formed on the outer peripheral surface of the inner ring when the two axes intersect and a relative displacement occurs in the axial direction, and the inner ring and the outer member relatively move in the axial direction, the protrusion formed on the outer peripheral surface of the inner ring.
  • the pole held by the holding window of the retainer can be rolled. Therefore, the pawl held by the holding window of the retainer is smoothly guided by the first guide groove and the second guide groove.
  • the intermediate member moves inside the retainer.
  • the convex cylindrical surface formed on the outer peripheral surface of the inner ring is replaced with the cylindrical surface formed on the inner peripheral surface of the intermediate member.
  • FIG. 1 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the constant velocity joint shown in FIG.
  • FIG. 3 is an exploded perspective view of the constant velocity joint shown in FIG.
  • FIG. 4 is a longitudinal sectional view of the constant velocity joint shown in FIG. 1 in a state where the second axis is tilted by a predetermined angle.
  • FIG. 5 is a partially enlarged longitudinal sectional view for explaining the operation of the constant velocity joint shown in FIG.
  • FIG. 6 is an explanatory diagram that simplifies the relationship between the movement amount of the pole and the inner ring shown in FIG.
  • FIG. 7 is an explanatory diagram of constant velocity of the constant velocity joint shown in FIG.
  • FIG. 8 is a partial enlarged longitudinal view of a constant velocity joint according to a modification of the first embodiment.
  • FIG. 9 is a longitudinal sectional view of a constant velocity joint according to a comparative example.
  • FIG. 10 is a longitudinal sectional view along the axial direction of a constant velocity joint according to the second embodiment of the present invention.
  • FIG. 11 is a perspective view of the constant velocity joint shown in FIG. 10 cut away in the axial direction.
  • FIG. 12 is an exploded perspective view of the constant velocity joint shown in FIG.
  • FIG. 13 is a longitudinal sectional view of the constant velocity joint shown in FIG. 10 in a state where the second axis is tilted by a predetermined angle.
  • FIG. 14 is a partially enlarged longitudinal sectional view for explaining the operation of the constant velocity joint shown in FIG.
  • FIG. 15 is a partially enlarged longitudinal sectional view of a constant velocity joint according to a modification of the second embodiment.
  • FIG. 16 is a longitudinal sectional view along the axial direction of a constant velocity joint according to the third embodiment of the present invention.
  • FIG. 17 is a perspective view of the constant velocity joint shown in FIG. 16 cut away in the axial direction.
  • FIG. 18 is an exploded perspective view of the constant velocity joint shown in FIG.
  • FIG. 19 is a longitudinal sectional view of the constant velocity joint shown in FIG. 16 in a state where the second axis is tilted by a predetermined angle.
  • FIG. 20 is a partially enlarged longitudinal sectional view for explaining the operation of the constant velocity joint shown in FIG. _
  • FIG. 21 is a partially enlarged sectional view showing the shape of another notch.
  • FIG. 22 is a longitudinal sectional view showing a state in which the displacement of the pole is restricted by the stop portion formed on the inner ring when the inner ring moves integrally with the second shaft.
  • FIG. 23 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a fourth embodiment of the present invention.
  • FIG. 24 is a longitudinal sectional view of the constant velocity joint shown in FIG. 23 in a state where the second axis is tilted by a predetermined angle.
  • FIG. 25 is a partially enlarged longitudinal sectional view for explaining the operation of the constant velocity joint shown in FIG.
  • FIG. 26 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a fifth embodiment of the present invention.
  • FIG. 27 is a longitudinal sectional view showing a state in which the ring member provided on the constant velocity joint shown in FIG. 26 abuts on the annular flange portion of the slide ring to restrict the displacement of the inner ring.
  • FIG. 28 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a sixth embodiment of the present invention.
  • FIG. 29 is a partially enlarged longitudinal sectional view along the axial direction of a constant velocity joint according to a seventh embodiment of the present invention.
  • FIG. 30 is a partially enlarged longitudinal sectional view showing a single cushioning member integrally formed so as to cover the end face of the inner ring and the stopper portion, respectively.
  • FIG. 31 is a longitudinal sectional view along the axial direction of a constant velocity joint according to an eighth embodiment of the present invention.
  • FIG. 32 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a ninth embodiment of the present invention.
  • FIG. 33 is a longitudinal sectional view showing a modification of the constant velocity joint shown in FIG.
  • FIG. 34 is a longitudinal sectional view showing a modification of the constant velocity joint shown in FIG.
  • FIG. 35 is a vertical cross-sectional view showing a state in which a buffer member is provided on the side peripheral surface of the inner ring.
  • FIG. 36 is a longitudinal sectional view showing a state in which a buffer member is provided only on the inner wall of the annular flange portion of the slide ring.
  • FIG. 37 is a longitudinal sectional view showing a state where a cushioning member is provided on a side peripheral surface of the inner ring in a constant velocity joint having an axial gap.
  • FIG. 38 is a longitudinal sectional view showing a state in which a cushioning member is provided only on the inner wall of the annular flange portion of the slide ring in a constant velocity joint having an axial gap.
  • FIG. 39 is a view showing an axial direction of a constant velocity joint according to the tenth embodiment of the present invention.
  • FIG. 40 is a longitudinal sectional view showing a state where an annular protrusion of a cylindrical body provided on the constant velocity joint shown in FIG. 39 is in contact with an annular flange.
  • FIG. 41 is a partially omitted perspective view of a front-wheel drive vehicle to which the rotational driving force transmission mechanism according to the embodiment of the present invention is applied.
  • FIG. 42 is a partial cross-sectional configuration diagram showing a first type of rotational driving force transmission mechanism in which a first constant velocity joint is connected to both sides as an inner joint.
  • FIG. 43 is a partial cross-sectional configuration diagram showing a second type of rotational driving force transmission mechanism in which a first constant velocity joint and a second constant velocity joint are combined as an inner joint.
  • FIG. 44 is a partial cross-sectional configuration diagram showing a third type of rotational driving force transmission mechanism in which a first constant velocity joint and a third constant velocity joint are combined as an inner joint.
  • FIG. 45 is a longitudinal sectional view along the axial direction of the second constant velocity joint shown in FIG.
  • FIG. 46 is a longitudinal sectional view along the axial direction of the third constant velocity joint shown in FIG. 44.
  • FIG. 47 is an explanatory diagram showing characteristics of the first to third constant velocity joints with respect to tertiary vibration and idling vibration.
  • reference numeral 10 denotes a constant velocity joint according to the first embodiment of the present invention.
  • the constant velocity joint 10 is integrally connected to one end of a first shaft 12.
  • the inner wall surface of the iron cup 16 is formed of a cylindrical surface 24.
  • the cylindrical surface 24 extends in the axial direction and extends around the axis.
  • Each The six first guide grooves 26 a to 26 f are formed at intervals of 60 degrees.
  • Each of the first guide grooves 26a to 26f is formed in an arc-shaped cross section or a compound curved cross-section in which a pair of arcs intersect in a V-shape.
  • the inner member 22 includes an inner ring 30 having a plurality of second guide grooves 28 a to 28 f having an arc-shaped cross section corresponding to the first guide grooves 26 a to 26 f on the outer peripheral surface. Between the first guide grooves 26 a to 26 f formed on the inner wall surface of the outer cup 16 and the second guide grooves 28 a to 28 f formed on the outer peripheral surface of the inner ring 30. And a plurality of poles 32 that are arranged to be able to roll with and perform a rotational torque transmitting function.
  • poles 32 In the first embodiment, as shown in FIG. 3, an explanation is given using six poles 32. However, the present invention is not limited to this. For example, three to ten poles are used. It is also possible to use poles such as.
  • the inner member 22 has a plurality of holding windows 34 for holding the pawls 32 formed in a circumferential direction, and a retainer 3 interposed between the outer cup 16 and the inner ring 30. 6 and a slide ring 38 interposed between the retainer 36 and the inner ring 30.
  • the inner ring 30 is spline-fitted to the end of the second shaft 18, or is connected to the end of the second shaft 18 via a ring-shaped locking member attached to the annular groove of the second shaft 18. It is integrally fixed to the part.
  • a convex cylindrical surface portion (convex cylindrical surface) 40 extending substantially parallel to the axis of the second shaft 18 is formed between the adjacent second guide grooves 28 a to 28 f.
  • a chamfered portion 42 subjected to chamfering processing is provided at a ridge portion forming a boundary between the convex cylindrical surface portion 40 and one end surface or the other end surface along the axial direction of the inner ring 30. (See Figure 1).
  • the pole 32 is formed, for example, by a steel ball, and is formed between the first guide grooves 26 a to 26 f of the auta cup 16 and the second guide grooves 28 a to 28 f of the inner ring 30. One is provided so that it can roll along the circumferential direction.
  • This pole 3 2 The rotation torque of the first shaft 12 is transmitted to the second shaft 18 via the inner ring 30, and the first guide grooves 26a to 26f and the second guide grooves 28a to 28 By rolling along ⁇ , the axial relative displacement between the second shaft 18 (the inner ring 30) and the first shaft 12 (the outer cup 16) and the relative It enables displacement.
  • the retainer 36 is formed in a substantially cylindrical shape, and a first spherical surface 44 having a point ⁇ as a center of curvature is provided on an outer peripheral surface that slides on an inner wall surface (cylindrical surface 24) of the outer cup 16.
  • a second spherical surface 46 having a center of curvature at point B is provided on the inner peripheral surface (see FIG. 5).
  • the points A and B are disposed on the joint shaft 48, respectively, and a virtual plane (pole center plane) connecting the center point O of the pole 32 and the joint shaft 48 are orthogonal to each other. Are placed at equal offsets from the intersection C (line segment AC-line segment BC).
  • the retainer 36 has a plurality of holding windows 34 each having a substantially rectangular cross section and corresponding to the number of the poles 32 and spaced apart by an equal angle along the circumferential direction.
  • the pole 32 provided between the first guide grooves 26a to 26f and the second guide grooves 28a to 28f is held.
  • the inner diameter (inner diameter width) of the holding window 34 is set slightly smaller than the diameter of the pole 32 (see FIG. 1).
  • the slide ring 38 is provided so as to surround the outer peripheral surface of the second shaft 18, and has an annular flange portion 50 formed along the radial direction of the second shaft 18, and the annular flange portion. Fold from 50 and go to the first axis 12 side:? And a plurality of claw portions 52 formed at an equal angle along the circumferential direction of the annular flange portion 50 while projecting in a substantially horizontal direction by a predetermined length.
  • the claws 52 are integrally formed (see FIG. 3).
  • the outer peripheral surface of the claw portion 52 of the slide ring 38 is slidably provided in contact with the second spherical surface 46 of the inner peripheral surface of the retainer 36, and corresponds to the second spherical surface 46.
  • a third spherical surface 54 having a radius of curvature is formed.
  • the third spherical surface 54 of the claw portion 52 is formed including the thickness of the annular flange portion 50 (see FIG. 1). Further, the inner peripheral surface of the claw portion 52 comes into contact with the convex cylindrical surface portion 40 of the outer peripheral surface of the inner ring 30 so as to contact the inner surface.
  • a cylindrical surface portion (cylindrical surface) 56 that enables relative axial displacement with the nulling 30 is formed.
  • the claw portion 52 of the slide ring 38 is externally fitted to the inner ring 30 along the convex cylindrical surface portion 40, and through a space formed between the adjacent claw portions 52. Pole 32 is installed.
  • the constant velocity joint 10 according to the first embodiment is basically configured as described above. Next, its operation and effect will be described.
  • the rotation torque is transmitted from the outer cup 16 to the inner ring 30 via each pole 32, and the second shaft 18 maintains the same speed as the first shaft 12 While rotating in a predetermined direction.
  • the constant velocity joint 10 absorbs displacement in the axial direction. This case will be described with reference to FIG.
  • FIG. 6 shows the relationship between the inner ring 30 and the pole 32 when the first guide grooves 26 a to 26 f of the auta cup 16 are fixed and the inner ring 30 is movable. This is a simplified explanation of the relationship between the movement amounts.
  • the second spherical surface 46 on the inner peripheral surface of the retainer 36 and the third spherical surface 54 on the outer peripheral surface of the slide ring 38 come into spherical contact, so that displacement in the direction of the slide ring 38 is restricted.
  • the convex cylindrical surface portion 40 of the outer peripheral surface of the inner ring 30 swings along the cylindrical surface portion 56 of the inner peripheral surface of the slide ring 38, thereby causing the inner ring 30 to move in the axial direction. Displacement is allowed.
  • the contact point F between the pole 32 and the inner groove 28 a to 28 f of the second plan of the inner ring 30 becomes movable along the axial direction. 0% rolling contact.
  • the cylindrical surface 56 of the inner peripheral surface of the slide ring 38 and the inner Under the sliding action of the outer peripheral surface of the ring 30 with the convex cylindrical surface portion 40, the amount of displacement of the inner ring 30 in the axial direction can be further increased, and the slide resistance can be reduced over a wide range. be able to.
  • the constant velocity joint 101 includes an outer joint member 103 in which a first guide groove 101 is formed, and a second guide groove 104.
  • the constant velocity joint 101 includes a sliding ring 109 interposed between the inner joint member 105 and the cage 108, It has a pair of elastically deformable elastic members 110a and 110b disposed between 9 and the axial end of the cage 108.
  • the sliding ring 109 has a straight cylindrical outer peripheral surface 1111 in contact with the inner peripheral surface of the cage 108, and a concave spherical inner surface in contact with the outer peripheral surface of the inner joint member 105.
  • the pole 106 is always kept in a state capable of rolling motion, and a large axial dimension is provided between the drive shaft 114 and the driven shaft 115. It is stated that the slide resistance can be kept small even if a relative displacement occurs.
  • the constant velocity joint 101 has: The right cylindrical outer peripheral surface 1 1 1 of the sliding ring 1 09 contacts the inner peripheral surface of the cage 1 08, and the concave spherical inner peripheral surface 1 1 2 of the sliding ring 1 09 is inward.
  • the configuration is different in that it is formed so as to be in contact with the outer peripheral surface of the joint member 105.
  • the slide ring 38 of the constant velocity joint 10 according to the first embodiment and the slide ring 109 of the constant velocity joint 101 according to the comparative example have an outer peripheral surface and an inner peripheral surface. Are different in that the relationship between the spherical surface and the cylindrical surface is reversed.
  • the inner ring 30 is provided so as to be independently displaced in the axial direction along the slide ring 38.
  • the constant velocity joint 101 according to the comparative example is different in that the inner joint member 105 is displaced in the axial direction integrally with the sliding ring 109.
  • the cylindrical surface portion 56 on the inner peripheral surface of the slide ring 38 and the convex cylindrical surface portion 40 on the outer peripheral surface of the inner ring 30 While the displacement of the inner ring 30 in the axial direction can be set to be large under the sliding action of, the constant velocity joint 101 according to the comparative example has a sliding ring 10. Because a pair of elastic members 110a and 110b that absorb the displacement of 9 are disposed between the sliding ring 109 and the axial end of the cage 108, The joint member 105 can move by a very small distance.
  • the structure of the double offset type constant velocity joint 10 that secures constant velocity between the first shaft 12 and the second shaft 18 is provided.
  • the pawl 32 is disposed so as to roll freely between the first guide grooves 26 a to 26 f of the auta cup 16 and the second guide grooves 28 a to 28 f of the inner ring 30.
  • the first guide grooves 26 a to 26 f are provided so as to be parallel to the axis G of the first shaft 12 which is the input shaft, and the second guide grooves 28 a to 28 f and the second shaft which is the output shaft.
  • the shaft 18 is provided so that the axis H is parallel to the axis H.
  • the axis I indicates the axis of the retainer 36.
  • the input shaft angular velocity is ⁇ ⁇
  • the output shaft angular velocity is ⁇ 2
  • the contact point when the perpendicular is lowered from the center point ⁇ of the pole 32 to the first guide grooves 26 a to 26 f of the auta cup 16 is a.
  • the point of contact when the perpendicular is lowered from the center point ⁇ of the pole 32 to the second guide grooves 28 a to 28 f of the inner ring 30 is denoted by b.
  • V 2 vector b o ⁇ ⁇ 2... (2)
  • V1 V2
  • the axial direction of the inner ring 30 is controlled by the sliding action of the cylindrical surface portion 56 on the inner peripheral surface of the slide ring 38 and the convex cylindrical surface portion 40 on the outer peripheral surface of the inner ring 30. Even if the displacement amount is set large, the intersection angle between the first axis 12 and the second axis 18 can be bisected by the pole 32 (the pole center plane connecting the centers of multiple poles) that performs the torque transmission function. Since it is configured to be held on a bisecting surface, constant velocity is ensured.
  • a constant velocity joint 10a according to a modification of the first embodiment is shown in FIG. In the constant velocity joint 10a according to the modification shown in FIG.
  • the inner diameter (inner diameter width) of the retaining window 34 of the retainer 36 is set to be larger than the diameter of the pole 32, By forming the axial gap 62 between the inner wall surface of the pole 4 and the pole 32, the axial displacement of the inner ring 30 can be further increased.
  • FIGS. 10 to 15 show constant velocity joints 120 according to the second embodiment.
  • the constant velocity joint 120 according to the second embodiment includes a pair of second spherical surfaces 1 46 a and 1 46 b of a retainer 1 36 and a third spherical surface 1 5 4 of a slide ring 1 3 8. This is different from the constant velocity joint 10 according to the first embodiment in that an axial gap 155 is formed between them.
  • the constant velocity joint 120 has a plurality of holding windows 34 for holding the pole 32 along the circumferential direction, and includes an outer cup 16 and an inner ring 3. 0, and a slide ring 138 interposed between the retainer 136 and the inner ring 30.
  • the retainer 1336 has a substantially cylindrical shape. As shown in FIG. 14, the outer surface of the retainer 13 that slides on the inner wall surface (cylindrical surface 24) of the auta cup 16 has a point A as a center of curvature. A first spherical surface 44 is provided.
  • the retainer 1336 has an inner surface having an axial center formed by a point B, and the inner surface has a cylindrical surface (a first cylindrical surface) extending a predetermined length in the axial center. Surface) and a pair of first and second pairs which are formed continuously on both sides of the cylindrical surface and which are spaced apart from the joint shaft by a distance K in the radial direction by a point M and a point N, respectively.
  • Two spherical surfaces 1 4 6 a and 1 4 6 b are provided.
  • the point A and the point B are disposed on the joint shaft 48, respectively, and the imaginary plane (pole center plane) connecting the center point O of the pole 32 and the joint shaft 48 are orthogonal to each other. They are located at equal offsets from intersection C (line segment AC-line segment BC).
  • the slide ring 13 is provided so as to surround the outer peripheral surface of the second shaft 18, and has an annular flange portion 50 formed along the radial direction of the second shaft 18; Bending from the portion 50 and protruding toward the first shaft 12 side in a substantially horizontal direction by a predetermined length, and formed at equal angles along the circumferential direction of the annular flange portion 50.
  • the annular flange portion 50 and the claw portion 52 are integrally formed (see FIG. 12). .
  • the outer peripheral surface of the claw portion 52 of the slide ring 13 is provided so as to be able to contact the second spherical surfaces 1 46 a and 1 46 b of the inner surface of the retainer 1 36, and the center of curvature is a point B.
  • a third spherical surface 154 is formed.
  • the radius of curvature of the third spherical surface 154 is set to be smaller than the pair of second spherical surfaces 144a and 146b formed on the inner surface of the retainer 135.
  • An axial gap 1555 is formed between a set of second spherical surfaces 1346a, 146b and a third spherical surface 154 of the sliding ring 1338.
  • the third spherical surface 154 of the claw portion 52 is formed including the thickness of the annular flange portion 50 (see FIG. 10).
  • the inner peripheral surface of the claw portion 52 comes into contact with the convex cylindrical surface portion 40 of the outer peripheral surface of the inner ring 30 to enable relative displacement in the axial direction with the inner ring 30.
  • a cylindrical surface portion (second cylindrical surface) 56 is formed.
  • the rotation torque is transmitted from the outer cup 16 to the inner ring 30 via each pole 32, and the second shaft 18 maintains the same speed as the first shaft 12 While rotating in a predetermined direction.
  • the slide ring 38 is displaced in the axial direction along the axial gap 15 5 formed between the second spherical surface 1 46 a, 1 46 b and the third spherical surface 1 54, Further, the convex cylindrical surface portion 40 formed on the outer peripheral surface of the inner ring 30 slides along the cylindrical surface portion 56 formed on the inner peripheral surface of the slide ring 138, thereby reducing
  • the pole 32 held by the holding window 34 of the tena 13 36 is in a state where it can roll. Accordingly, the pawl 32 held by the holding window 34 of the retainer 36 is guided by the first guide grooves 26a to 26f and the second guide grooves 28a to 28f to smoothly roll. I do.
  • the retainer 1 36 tilts by a predetermined angle to allow the angular displacement, and the second spherical surface 1 46 a formed on the inner surface of the retainer 1 36 1 4 6 b and the third spherical surface 1 5 4 formed on the outer surface of the slide ring 1 3 8 contact through the axial gap 1 5 5, and slide ring 1 3 against retainer 1 3 6 By tilting 8 by a predetermined angle, the angular displacement is allowed (see FIG. 13).
  • the axial gap 1 formed between the second spherical surface 1 46 a, 1 4 6 b on the inner surface of the retainer 1 3 6 and the third spherical surface 1 5 4 on the outer surface of the slide ring 1 3 8 The slide ring 13 8 moves in the axial direction along 5 5, and the convex cylindrical surface on the outer peripheral surface of the inner ring 30 along the inner peripheral surface 5 6 of the slide ring 13 8.
  • the sliding of 40 allows the inner ring 30 to be displaced in the axial direction. .
  • the contact point F between the pole 32 and the second guide groove 28 a to 28 ⁇ of the inner ring 30 becomes movable along the axial direction. 0 0% rolling contact.
  • the second spheres 144 a and b b and the second spherical 3 The slide ring 1 3 8 is displaced in the axial direction along the axial gap 1 5 5 formed between the spherical surface 1 5 4 and the cylindrical surface 5 6 on the inner peripheral surface of the slide ring 1 3 8.
  • the amount of displacement of the inner ring 30 in the axial direction can be further increased, and the slide resistance can be reduced over a wide range. Can be reduced.
  • the third spherical surface 154 on the outer surface of the slide ring 13 8 and the second spherical surface 1 4 6 a on the inner surface of the retainer 13 6 An axial gap 1 5 5 is formed between 1 4 6 b and the cylindrical surface 5 6 of the inner peripheral surface of the slide rings 1, 3 8 contacts the convex cylindrical surface 40 of the inner ring 30.
  • a straight cylindrical outer peripheral surface of the sliding ring 109 is formed.
  • the configuration is different in that a concave spherical inner peripheral surface 112 of the sliding ring 109 is formed so as to be in contact with an outer peripheral surface of the inner joint member 105 as well as the sliding ring 109.
  • the inner ring 30 is provided so as to be displaced in the axial direction alone along the slide ring 13.
  • the constant velocity joint 101 according to the comparative example is different in that the inner joint member 105 is displaced in the axial direction integrally with the sliding ring 109.
  • a slide ring 13 8 is provided along the gap 15 5 so that it can be displaced in the axial direction, and the cylindrical surface 56 on the inner peripheral surface of the slide ring 1 38 and the convex circle on the outer peripheral surface of the inner ring 30.
  • the constant velocity joint 10 according to the comparative example can be set.
  • a pair of elastic members 110 a, 1 Since 1 Ob is disposed between the sliding ring 109 and the axial end of the cage 108, the inner joint member 105 can move a minute distance. .
  • a double offset type constant velocity joint 120 that secures constant velocity between the first shaft 12 and the second shaft 18 is used.
  • the amount of displacement of the inner ring 30 in the axial direction is further increased.
  • the constant velocity joint of the constant velocity joint 120 according to the second embodiment is the same as the constant velocity joint 10 according to the first embodiment, and a detailed description thereof will be omitted.
  • the inner diameter (inner diameter width) of the retaining window 34 of the retainer 13 36 is set to be larger than the diameter of the ball 32, and the inner wall surface of the retaining window 34 is set.
  • FIGS. 16 to 22 show a constant velocity joint 210 according to a third embodiment.
  • the constant velocity joint 210 according to the third embodiment is different from the first and second embodiments in that a stopper mechanism that appropriately holds the displacement of the pole 32 (the inner ring 30) is provided. This is different from the constant velocity joints 10 and 120 according to the embodiment.
  • a stopper (stopper mechanism) 41 that regulates the amount of displacement of the pole 32 (the inner ring 30 ') is provided in the second guide groove 28 a to 28 f of the inner ring 30 on the slide ring 38 side.
  • the stopper portion 41 is formed to bulge toward the opening of the outer cup 16. It is formed only at one end of the second guide grooves 28a to 28f close to the mouth 14 side.
  • the stopper portion 41 is formed continuously with the bottom wall 43 having a linear cross section of the second guide grooves 28 a to 28 f, and a bulging dimension t based on the bottom wall 43. Is set to about 0.5 mm to 2 mm (see Figure 16).
  • the shape of the stopper portion 41 is, as shown in FIGS. 16 and 18, the bottom of the second guide groove 28 a to 28 f toward the opening portion 14 side of the aperture 16. It is formed so as to gradually bulge from the wall 43, or, as shown in FIG. 21, rises slightly upward from the bottom wall 43 of the second guide groove 28a to 28 ⁇ , Further, the protrusions may be formed as protrusions 41a that are continuous in an arc shape in cross section.
  • a relative displacement occurs in the axial direction between the first axis 12 and the second axis 18.
  • the inner ring 30 moves in the direction opposite to the arrow XI direction (the back side of the auta cup 16).
  • the pole 32 held by the holding window 34 of the retainer 36 rolls along the bottom wall 43 of the second guide groove 28a to 28f of the inner ring 30. Line la.
  • the pawl 32 comes into contact with a stopper portion 41 formed at a terminal portion of the second guide groove 28 a to 28 f close to the annular flange portion 50 of the slide ring 38, and the rolling occurs. Movement is blocked. Therefore, when the inner ring 30 moves to the inner side of the outer cup 16, the pole 32 comes into contact with the stopper 41 formed at the end of the second guide groove 28 a to 28 f. By regulating the displacement, an appropriate amount of displacement of the inner ring 30 is secured (see Fig. 22).
  • the stopper portion 41 is not formed so as to protrude from the other end portion of the second guide grooves 28 a to 28 f, which is the back side of the outer cup 16. This is because, when the inner ring 30 is displaced in the direction of the arrow X1, the inner ring 30 comes into contact with the annular flange portion 50 of the slide ring 38 and the displacement of the inner ring 30 in the direction of the arrow X1 is reduced. Because of the restriction, the second guide groove 28 a to 28 ⁇ It is not necessary to form the stopper portion 41 at the end portion.
  • FIGS. 23 to 25 show a constant velocity joint 300 according to a fourth embodiment.
  • the same components as those of the constant velocity joint 210 according to the third embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the axial gap 150 is formed between the inner wall of the retainer 136 and the outer wall of the slide ring 138. This is different from the constant velocity joint 210 according to the third embodiment. Since the function of the axial gap 155 is the same as that of the constant velocity joint according to the second embodiment, a detailed description thereof will be omitted.
  • FIGS. 26 and 27 show a constant velocity joint 400 according to a fifth embodiment.
  • a ring member 202 functioning as a stop ring mechanism is mounted at a predetermined position of the second shaft 18 via an annular groove 204. This is different from the constant velocity joints 210 and 300 according to the third and fourth embodiments.
  • the outer diameter of the ring member 202 is set to be larger than the inner diameter of the hole 38 a of the slide ring 38, and the second shaft 18 is integrally formed with the inner ring 30 on the inner side of the outer cup 16.
  • the ring member 202 is moved toward the second shaft 1.8, the displacement of the inner ring 30 is restricted by the ring member 202 mounted on the second shaft 1.8 abutting against the annular flange portion 50 of the slide ring 38 (see FIG. 27), the appropriate amount of displacement of the inner ring 30 is ensured.
  • a ring member 200 shown in FIG. 26 is provided with respect to the second shaft 18 of the constant velocity joint 300 according to the fourth embodiment. 2 is common to the constant velocity joint 300 according to the fifth embodiment in that it is mounted.
  • the constant velocity joint 600 in order to prevent the hitting sound from being generated, is made of, for example, a resin material or a rubber material.
  • a first cushioning member that covers the contact surface between the inner ring 30 and the end surface of the inner ring 30 and a second cushioning member 4 that covers the contact surface between the inner wall of the annular flange 50 of the slide ring 38 and the end surface of the inner ring 30 0 and 4 are provided.
  • the first cushioning member 402 is fixed to an upper surface of a stopper portion 41 which is one end portion of the inner ring 30, and the second cushioning member 400 is an annular flange portion of a slide ring 38. It is fixed to the 50 inner wall.
  • the first cushioning member 402 and the second cushioning member 404 are not formed separately from each other. Instead, as shown in FIG. 30, the end face of the inner ring 30 and the stopper portion 41 are formed. And a single cushioning member 406 may be provided which is integrally formed so as to respectively cover the above.
  • the ring member 202 mounted on the second shaft 18 comes into contact with the annular ring of the slide ring 38.
  • the cushioning member 502 is fixed to the outer peripheral surface of the flange portion 50.
  • the constant velocity joint 800 as shown in FIG. 32, not the outer surface of the annular flange portion 50 of the slide ring 38 but the ring member 20.
  • the second embodiment is different from the constant velocity joint 700 according to the eighth embodiment in that a ring-shaped cushioning member 600 is attached to the second embodiment.
  • the buffer member 62 and the ring member 202 may be formed integrally, or may be formed separately.
  • the cushioning member 62 attached to a predetermined portion of the second shaft 18 is attached to the outer surface of the slide ring 38.
  • the contact makes it possible to prevent the occurrence of a tapping sound, and also ensures that the amount of movement of the inner ring 30 is properly maintained.
  • a constant velocity joint 700 a having an axial gap 150 formed between the inner wall of the retainer 1 36 and the outer wall of the slide ring 1 38. , 800a may be provided with the same impact members 502, 602 as described above.
  • a buffer member is provided on the side peripheral surface of the inner ring 30 which is close to the inner wall of the annular flange portion 50 of the slide rings 38, 1 38.
  • the cushioning member 502 may be mounted only on the inner wall of the annular flange 50 of the slide rings 38, 138. Good.
  • the constant velocity joints shown in FIGS. 37 and 38 differ from those of FIGS. 35 and 36 in that an axial gap 150 is formed.
  • FIGS. ' a constant velocity joint 900 according to the tenth embodiment is shown in FIGS. '
  • the end of the second shaft 18 (A back side of the cup cup 16) and has a cylindrical body 702 which is press-fitted from the inner side of the second shaft 18 and is fixed to a predetermined portion of the second shaft 18;
  • An annular projection 704 that can be engaged with the annular flange 50 of the slide ring 38 is formed.
  • FIG. 41 shows a state in which the rotary driving force transmission mechanism 100 according to the present embodiment is applied to a front wheel drive vehicle.
  • This rotational driving force transmission mechanism 100 is composed of a set of drive shafts 2 16 a, 2 1 arranged coaxially with an engine (rotary driving source) 2 1 2 and a differential gear device 2 1 4 therebetween. Has 6b.
  • a first outer joint 218a on the wheel side is connected to one end of one long drive shaft 216a, and a first inner joint 220a on the engine side is connected to the other end.
  • a second outer joint 218b on the wheel side is connected to one end of the other short drive shaft 216b, and a second inner joint 220b on the engine side is connected to the other end. Is done.
  • the first and second inner joints 220a and 220b are composed of different types or the same type of constant velocity joints respectively connected to a rotary drive shaft (not shown) of the differential gear device 214.
  • the vibration of the engine 211 is transmitted via the rotary drive shaft.
  • known bar-field type constant velocity joints (not shown) having the same configuration are used.
  • the first and second inner joints 220a and 22ob connected to the differential gear device 214 side include a first constant velocity joint 10 (see FIGS. 1 to 5). It includes three types consisting of a second constant velocity joint 200 and a third constant velocity joint 301.
  • the first and second inner joints 20a and 20b have the same structure and are respectively constituted by the first constant velocity joints 10 shown in FIGS. 1 to 5.
  • One type of rotational driving force transmission mechanism 100a and as shown in FIG. 43, one of the first and second inner joints 220a and 220b is a first constant velocity joint.
  • a second type of rotational driving force transmission mechanism 100b composed of a second constant velocity joint 200 and the other, as shown in FIG.
  • 100 c
  • the first constant velocity joint 10 includes left and right first and second inner joints 20a, It may be located on either side of 20b.
  • the first to third types of rotational driving force transmission mechanisms 100a to 100c are appropriately selected according to the vibration characteristics of the tertiary vibration and Z or idling vibration, as described later. is there.
  • the first constant velocity joint 10 is the same as the constant velocity joint 10 according to the first embodiment shown in FIGS. 1 to 5, and thus a detailed description thereof is omitted.
  • the constant velocity joint 120 according to the second embodiment in which the axial gaps 150 shown in FIG. 10 to FIG. It may be used as a constant velocity joint.
  • the amount of displacement of the inner ring 30 in the axial direction is further increased to cover a wide area. As a result, idling vibration is absorbed and good vibration characteristics can be obtained.
  • the second constant velocity joint 200 is a double offset type having a retainer having a partially spherical inner and outer surface having a center of curvature and offset on both sides of the ball center plane on the joint axis.
  • the points are common to the first constant velocity joint 10 described above, but a slide ring 38 is provided between a retainer 203 disposed inside the outer cup 201 and an inner ring 205.
  • the first constant velocity joint 10 differs from the first constant velocity joint 10 in that the inner surface of the retainer 203 and the outer surface of the inner ring 205 are in direct contact with each other.
  • the second constant velocity joint 200 provides good vibration characteristics for the tertiary vibration caused by the induced tertiary thrust force of the rotation, similar to the first constant velocity joint 10, but the idling vibration The vibration characteristics are inferior to the first constant velocity joint 10.
  • the third constant velocity joint 301 is formed of a known tri-board type constant velocity joint, and extends along the axial direction on the inner wall surface of the bottomed tubular auta cup 302 so as to extend around the axis.
  • Three guide grooves 304a to 304c are formed at intervals of 120 degrees, respectively (however, the guide grooves 304b and 304c are omitted from the drawing). ing) .
  • three trunnions 30 are provided at intervals of 120 degrees around the bulging axis toward the guide grooves 304a to 304c, respectively. 6 a to 30 c are formed physically (However, trunnions 300 b and 300 c are (Not shown).
  • the trunnion 300a (306b306c) having a partial spherical surface along the outer periphery is fitted with a cylindrical roller support member 108 having an L-shaped cross section.
  • a ring-shaped roller 312 is mounted on the outer peripheral surface of the roller support 3108 via a plurality of rolling elements 310.
  • the rolling element 310 may be a rolling bearing including a needle, a roller, and the like, for example.
  • the first to third types of rotational driving force transmission mechanisms 100 a to 100 c are based on the first constant velocity joint 10, and a double offset type second constant velocity joint 200. It is composed of a combination with a tri-board type third constant velocity joint 301.
  • FIG. 47 shows the vibration characteristics of the first to third constant velocity joints 100, 200, and 301 with respect to the tertiary vibration and the idling vibration.
  • the symbol ⁇ indicates that the characteristics for various vibrations are good, and the symbol ⁇ indicates that the characteristics for various vibrations are normal.
  • the tertiary vibration refers to the rotation when two axes (first axis 12 and second axis 18) have an operating angle, starting and accelerating due to the tertiary induced thrust force. Idling vibration is caused by axial sliding resistance, and is applied to the floor, steering wheel, etc. when the vehicle stops when rotational torque is applied. Vibration.
  • the first constant velocity joint 10 has good vibration characteristics by suppressing both the tertiary vibration and the idling vibration, and has the second constant velocity joint 20.
  • 0 indicates that the tertiary vibration is suppressed and good vibration characteristics are obtained, but has normal vibration characteristics with respect to idling vibration, and the third constant velocity joint 301 is good because the idling vibration is suppressed Although it has excellent vibration characteristics, it has ordinary vibration characteristics for tertiary vibration.
  • the type of rotational driving force transmission mechanism 100a to 100c is constructed. For example, depending on the type, size, drive system, etc. of the vehicle body, if there is a condition that both the tertiary vibration and the idling vibration deteriorate, the left and right vibrations as shown in Fig. 42 Select the first type of rotational driving force transmission mechanism 100a, in which the first constant velocity joints 10 and 10 are respectively disposed in both the 1st and 2nd inner joints 220a and 220b. I do.
  • the conditions under which the vibration characteristics of both the tertiary vibration and the idling vibration are degraded include, for example, a vehicle in which the operating angle of the two axes is large, and the front nose of the vehicle body is large when the vehicle suddenly starts, and is independent. This refers to cases where the vehicle is used for vehicles with large driving torque, such as four-wheel drive vehicles.
  • the first and second inner joints 220a and 220b are provided with a first constant velocity joint 10 on one side and a second constant velocity joint 200 on the other side.
  • the conditions under which the vibration characteristics of the idling vibration are good but the vibration characteristics of the tertiary vibration deteriorate are, for example, a case where the vehicle is used in a vehicle having a large operating angle of two axes.
  • the vibration characteristics of the tertiary vibration are good but the vibration characteristics of the idling vibration are deteriorated due to differences in the type, size, drive method, etc. of the vehicle body, as shown in FIG. 44, 3rd type in which the first constant velocity joint 10 is disposed on one of the first and second inner joints 220a and 220b and the third constant velocity joint 301 is disposed on the other Of the rotation drive force transmission mechanism 100 c of the above.
  • the condition in which the vibration characteristic of the tertiary vibration is good but the vibration characteristic of the idling vibration is deteriorated means, for example, a case where the vibration characteristic is used for a vehicle having a large driving torque such as an independent four-wheel drive vehicle.
  • any one of the first to third types of rotational driving force transmission mechanisms 100 a to 100 c can be arbitrarily selected according to various vibration characteristics. Accordingly, the tertiary vibration and the idling vibration are both suppressed, and good vibration characteristics can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pivots And Pivotal Connections (AREA)

Abstract

A constant velocity joint, comprising a retainer (36) having a first spherical surface (44) formed on an outer surface side and a second spherical surface (46) formed on an inner surface side with the centers of curvatures (A, B) displaced by equal distances to both sides of the intersection (C) thereof with a ball center surface on a joint axis (48), and a slide ring (38) installed between an inner ring (30) and the retainer (36). A cylindrical surface part (56) in contact with the projected cylindrical surface part (40) of the inner ring (30) is formed on the inner peripheral surface of the slide ring (38), and a third spherical surface (54) in contact with the second spherical surface (46) of the retainer (36) is formed on the inner peripheral surface of the slide ring (38).

Description

等速ジョイント及び回転駆動力伝達機構 技術分野 Constant velocity joints and rotational driving force transmission mechanism
本発明は、 例えば、 自動車の駆動力伝達部において、 一方の伝達軸と他方の伝 達軸とを連結させる等速ジョイント、 及び、 各種の振動特性に対応してインナジ ョイントの構造を任意に選択するこ明とが可能な回転駆動力伝達機構に関する。 背景技術 書  The present invention provides, for example, arbitrarily selecting a constant velocity joint for connecting one transmission shaft and the other transmission shaft and a structure of an inner joint corresponding to various vibration characteristics in a driving force transmission portion of an automobile. The present invention relates to a rotational driving force transmission mechanism capable of performing a turning operation. Background art
従来より、 自動車の駆動力伝達部では、 一方の伝達軸と他方の伝達軸とを連結 し回転力を各車軸へと伝達する等速ジョイントが用いられている。  2. Description of the Related Art Conventionally, in a driving force transmission unit of an automobile, a constant velocity joint that connects one transmission shaft to another transmission shaft and transmits a rotational force to each axle has been used.
この種の従来技術に係る等速ジョイントとして、 例えば、 実公昭 6 3— 2 6 6 5号公報には、 継手軸上においてポール中心面の両側にオフセッ卜して配置され た曲率中心を有する部分球面状の内外表面を有するケージを備えたダブルオフセ ッ卜型等速ジョイントが開示されている。  For example, Japanese Utility Model Publication No. 63-26665 discloses a constant velocity joint according to this type of prior art, which has a center of curvature that is offset on both sides of a pole center plane on a joint shaft. A double offset type constant velocity joint having a cage having spherical inner and outer surfaces is disclosed.
この実公昭 6 3 - 2 6 6 5号公報に開示されたダブルオフセット型等速ジョイ ントでは、 ケージと内方継手部材との間 (ケージ中央部の円筒面の両側) に軸方 向隙間を設けることにより、 軸方向振動が付与されたときでも内方継手部材とケ —ジとが軸方向に沿って微小距離だけ相対移動することができるため、 スライド 抵抗を低減することができるとしている。  In the double offset type constant velocity joint disclosed in Japanese Utility Model Publication No. 63-26665, an axial gap is provided between the cage and the inner joint member (both sides of the cylindrical surface at the center of the cage). According to the document, the inner joint member and the cage can move relative to each other by a very small distance along the axial direction even when the axial vibration is applied, so that slide resistance can be reduced.
前記実公昭 6 3 - 2 6 6 5号公報では、 走行時や停止時のアイドリング中のよ うに駆動軸のトルクを伝達しながら角度変位や軸方向変位を生ずるような使用状 態でのスライド抵抗を小さくすることにより、 エンジン側からの駆動が車体へ伝 達されて乗員に不快感を与えることを回避している。 ' 同様に、 特開平 1 1 一 1 8 2 5 7 0号公報には、 ダブルオフセット型等速ジョ イントが開示されている。 この特開平 1 1— 1 8 2 5 7 0号公報に開示されたダ プルオフセット型等速ジョイントでは、 ケージ内周面の部分球面の曲率半径を、 内方継手部材の外周面である球面の曲率半径よりも大きく設定し、 しかも、 前記 ケージ内表面の部分球面の曲率中心を、 内方継手部材の外周面である球面の曲率 中心から径方向にオフセッ卜した位置に配置することにより、 より大きな軸方向 間隙を形成することができるとしている。 In Japanese Utility Model Publication No. 63-26665, the slide resistance in a use state where an angular displacement or an axial displacement is generated while transmitting the torque of the drive shaft as in idling at the time of running or stopping is described. By reducing the engine speed, it is possible to prevent the drive from the engine from being transmitted to the vehicle body to avoid discomfort to the occupants. 'Similarly, Japanese Patent Application Laid-Open No. 11-182570 discloses a double offset type constant velocity joint. In the double offset constant velocity joint disclosed in Japanese Patent Application Laid-Open No. H11-182580, the radius of curvature of the partial spherical surface on the inner peripheral surface of the cage is calculated as follows. The radius of curvature of the spherical surface that is the outer peripheral surface of the inner joint member is set to be larger than the radius of curvature of the spherical surface that is the outer peripheral surface of the inner joint member. By arranging it at an offset position, it is possible to form a larger axial gap.
前記特開平 1 1一 1 8 2 5 7 0号公報では、 軸方向隙間が形成されるため、 卜 ルクが負荷された状態でエンジン側からの振動が作用しても、 前記軸方向隙間に よって内方継手部材とケージとによる相対的な軸方向の比較的小さな移動が可能 となり、 スライド抵抗を低減することができるとしている。  In the above-mentioned Japanese Patent Application Laid-Open No. 11-182570, an axial gap is formed. Therefore, even if vibration is applied from the engine side in a state where a torque is applied, the axial gap is formed. It is described that relatively small movement in the relative axial direction by the inner joint member and the cage becomes possible, and the slide resistance can be reduced.
しかしながら、 前記実公昭 6 3 - 2 6 6 5号公報及び特開平 1 1一 1 8 2 5 7 0号公報に開示されたダブルオフセット型等速ジョイントは、 ケージと内方継手 部材との間に設けられた軸方向隙間を増大させることにより、 ケージと内方継手 部材との相対的な軸方向移動量を大きくしてスライド抵抗を低減しょうとする技 術的思想であり、 前記軸方向間隙によって相対的に移 ¾するケージと内方継手部 材の移動距離が微小距離に限定されるとともに、 軸方向間隙による移動距離に限 界が生ずる。 発明の開示  However, the double offset type constant velocity joint disclosed in Japanese Utility Model Publication No. 63-26565 and Japanese Patent Application Laid-Open No. 11-187570 has a structure in which a cage and an inner joint member are provided between the cage and the inner joint member. It is a technical idea to reduce the slide resistance by increasing the relative axial movement amount between the cage and the inner joint member by increasing the provided axial gap. The moving distance of the relatively moving cage and the inner joint member is limited to a small distance, and the moving distance due to the axial gap is limited. Disclosure of the invention
本発明の一般的な目的は、 ダブルオフセット型において、 インナリングの移動 量をより一層増大させることにより、 さらに広い範囲にわたってスライド抵抗を 低減させることが可能な等速ジョイントを提供することにある。  A general object of the present invention is to provide a constant velocity joint capable of reducing the slide resistance over a wider range by further increasing the amount of inner ring movement in a double offset type.
本発明の主たる目的は、 インナリングの移動量の広範囲にわたってスライド抵 抗が低減することを維持しながら、 前記インナリングの適正な移動量を確保する ことが可能な等速ジョイントを提供することにある。  A main object of the present invention is to provide a constant velocity joint capable of securing an appropriate amount of movement of the inner ring while maintaining a reduction in slide resistance over a wide range of the amount of movement of the inner ring. is there.
本発明の他の目的は、 インナリングの移動量を規制した際に発生する打音を抑 制することが可能な等速ジョイントを提供することにある。  Another object of the present invention is to provide a constant velocity joint capable of suppressing a tapping sound generated when the amount of inner ring movement is restricted.
本発明の他の目的は、 例えば、 3次振動及び Z又はアイドリング振動等の振動 特性に対応して回転駆動源 (デフアレンシャルギア) 側に接続されるインナジョ ィントの構造を適宜選択することにより、 良好な振動特性を得ることが可能な回 転駆動力伝達機構を提供することにある。 Another object of the present invention is to appropriately select the structure of an inner joint connected to a rotary drive source (differential gear) side in accordance with vibration characteristics such as tertiary vibration and Z or idling vibration. Times that can obtain good vibration characteristics An object of the present invention is to provide a rolling drive force transmission mechanism.
本発明によれば、 2軸が交差して軸方向への相対的変位が発生し、 インナリン グとァウタ部材とが軸方向へ相対的に移動した際、 インナリングの外周面に形成 された凸状円筒面が中間部材の内周面に形成された円筒面に沿って摺動すること により、 リテーナの保持窓に保持されたポールが転がり運動可能な状態となる。 従って、 リテーナの保持窓に保持されたポールは、 第 1案内溝および第 2案内 溝に案内されて円滑に転動する。 この結果、 2軸の等速性が確保された状態にお いて、 インナリングの移動量がより一層増大し、 さらに広い範囲にわたってスラ ィド抵抗が低減する。  According to the present invention, when the two axes intersect and a relative displacement occurs in the axial direction, and the inner ring and the outer member relatively move in the axial direction, the protrusion formed on the outer peripheral surface of the inner ring. When the cylindrical surface slides along the cylindrical surface formed on the inner peripheral surface of the intermediate member, the pole held by the holding window of the retainer can be rolled. Therefore, the pawl held by the holding window of the retainer is smoothly guided by the first guide groove and the second guide groove. As a result, in a state where the constant velocity of the two axes is secured, the amount of movement of the inner ring is further increased, and the slide resistance is reduced over a wider range.
また、 本発明によれば、 2軸が交差して軸方向への相対的変位が発生し、 イン ナリングとァウタ部材とが軸方向へ相対的に移動した際、 前記中間部材がリテー ナの内表面との間に形成された軸方向隙間に沿って軸方向に変位するとともに、 さらに、 ィンナリングの外周面に形成された凸状円筒面が中間部材の内周面に形 成された円筒面に沿つて摺動することにより、 リテ一ナの保持窓に保持されたボ ールが転がり運動可能な状態となる。 図面の簡単な説明  Further, according to the present invention, when the two axes intersect and a relative displacement occurs in the axial direction, and when the inner ring and the outer member relatively move in the axial direction, the intermediate member moves inside the retainer. In addition to being displaced in the axial direction along the axial gap formed between the inner ring and the surface, the convex cylindrical surface formed on the outer peripheral surface of the inner ring is replaced with the cylindrical surface formed on the inner peripheral surface of the intermediate member. By sliding along, the ball held by the holding window of the retainer is in a state where it can roll. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態に係る等速ジョイントの軸方向に沿った縦 断面図である。  FIG. 1 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a first embodiment of the present invention.
図 2は、 図 1に示す等速ジョイントの軸方向 切り欠いた斜視図である。  FIG. 2 is a perspective view of the constant velocity joint shown in FIG.
図 3は、 図 1に示す等速ジョイントの分解斜視図である。  FIG. 3 is an exploded perspective view of the constant velocity joint shown in FIG.
図 4は、 図 1に示す等速ジョイントの第 2軸が所定角度だけ傾動した状態の縦 断面図である。  FIG. 4 is a longitudinal sectional view of the constant velocity joint shown in FIG. 1 in a state where the second axis is tilted by a predetermined angle.
図 5は、 図 1に示す等速ジョイントの動作を説明する部分拡大縦断面図である。 図 6は、 図 5に示すポールとインナリングとの移動量の関係を簡略化した説明 図である。  FIG. 5 is a partially enlarged longitudinal sectional view for explaining the operation of the constant velocity joint shown in FIG. FIG. 6 is an explanatory diagram that simplifies the relationship between the movement amount of the pole and the inner ring shown in FIG.
図 7は、 図 1に示す等速ジョイントの等速性の説明図である。  FIG. 7 is an explanatory diagram of constant velocity of the constant velocity joint shown in FIG.
図 8は、 前記第 1の実施の形態の変形例に係る等速ジョイントの部分拡大縦断 面図である。 FIG. 8 is a partial enlarged longitudinal view of a constant velocity joint according to a modification of the first embodiment. FIG.
図 9は、 比較例に係る等速ジョイントの縦断面図である。  FIG. 9 is a longitudinal sectional view of a constant velocity joint according to a comparative example.
図 1 0は、 本発明の第 2の実施の形態に係る等速ジョイントの軸方向に沿った 縦断面図である。  FIG. 10 is a longitudinal sectional view along the axial direction of a constant velocity joint according to the second embodiment of the present invention.
図 1 1は、 図 1 0に示す等速ジョイントの軸方向に切り欠いた斜視図である。 図 1 2は、 図.1 0に示す等速ジョイントの分解斜視図である。  FIG. 11 is a perspective view of the constant velocity joint shown in FIG. 10 cut away in the axial direction. FIG. 12 is an exploded perspective view of the constant velocity joint shown in FIG.
図 1 3は、 図 1 0に示す等速ジョイントの第 2軸が所定角度だけ傾動した状態 の縦断面図である。  FIG. 13 is a longitudinal sectional view of the constant velocity joint shown in FIG. 10 in a state where the second axis is tilted by a predetermined angle.
図 1 4は、 図 1 0に示す等速ジョイントの動作を説明する部分拡大縦断面図で ある。  FIG. 14 is a partially enlarged longitudinal sectional view for explaining the operation of the constant velocity joint shown in FIG.
図 1 5は、 前記第 2の実施の形態の変形例に係る等速ジョイントの部分拡大縦 断面図である。  FIG. 15 is a partially enlarged longitudinal sectional view of a constant velocity joint according to a modification of the second embodiment.
図 1 6は、 本発明の第 3の実施の形態に係る等速ジョイントの軸方向に沿った 縦断面図である。  FIG. 16 is a longitudinal sectional view along the axial direction of a constant velocity joint according to the third embodiment of the present invention.
図 1 7は、 図 1 6に示す等速ジョイントの軸方向に切り欠いた斜視図である。 図 1 8は、 図 1 6に示す等速ジョイントの分解斜視図である。  FIG. 17 is a perspective view of the constant velocity joint shown in FIG. 16 cut away in the axial direction. FIG. 18 is an exploded perspective view of the constant velocity joint shown in FIG.
図 1 9は、 図 1 6に示す等速ジョイントの第 2軸が所定角度だけ傾動した状態 の縦断面図である。  FIG. 19 is a longitudinal sectional view of the constant velocity joint shown in FIG. 16 in a state where the second axis is tilted by a predetermined angle.
図 2 0は、 図 1 6に示す等速ジョイントの動作を説明する部分拡大縦断面図で ある。 _  FIG. 20 is a partially enlarged longitudinal sectional view for explaining the operation of the constant velocity joint shown in FIG. _
図 2 1は、 他の切り欠き部の形状を示す部分拡大断面図である。  FIG. 21 is a partially enlarged sectional view showing the shape of another notch.
図 2 2は、 第 2軸と一体的にインナリングが移動した際、 前記インナリングに 形成されたストツバ部によってポールの変位が規制された状態を示す縦断面図で ある。  FIG. 22 is a longitudinal sectional view showing a state in which the displacement of the pole is restricted by the stop portion formed on the inner ring when the inner ring moves integrally with the second shaft.
図 2 3は、 本発明の第 4の実施の形態に係る等速ジョイントの軸方向に沿った 縦断面図である。  FIG. 23 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a fourth embodiment of the present invention.
図 2 4は、 図 2 3に示す等速ジョイントの第 2軸が所定角度だけ傾動した状態 の縦断面図である。 図 2 5は、 図 2 3に示す等速ジョイントの動作を説明する部分拡大縦断面図で ある。 FIG. 24 is a longitudinal sectional view of the constant velocity joint shown in FIG. 23 in a state where the second axis is tilted by a predetermined angle. FIG. 25 is a partially enlarged longitudinal sectional view for explaining the operation of the constant velocity joint shown in FIG.
図 2 6は、 本発明の第 5の実施の形態に係る等速ジョイントの軸方向に沿った 縦断面図である。  FIG. 26 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a fifth embodiment of the present invention.
図 2 7は、 図 2 6に示す等速ジョイントに設けられたリング部材がスライドリ ングの環状フランジ部に当接してインナリングの変位が規制された状態を示す縦 断面図である。  FIG. 27 is a longitudinal sectional view showing a state in which the ring member provided on the constant velocity joint shown in FIG. 26 abuts on the annular flange portion of the slide ring to restrict the displacement of the inner ring.
図 2 8は、 本発明の第 6の実施の形態に係る等速ジョイントの軸方向に沿った 縦断面図である。  FIG. 28 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a sixth embodiment of the present invention.
図 2 9は、 本発明の第 7の実施の形態に係る等速ジョイントの軸方向に沿った 部分拡大縦断面図である。  FIG. 29 is a partially enlarged longitudinal sectional view along the axial direction of a constant velocity joint according to a seventh embodiment of the present invention.
図 3 0は、 インナリングの端面とストッパ部とをそれぞれ被覆するように一体 的に構成された単一の緩衝部材を示す部分拡大縦断面である。  FIG. 30 is a partially enlarged longitudinal sectional view showing a single cushioning member integrally formed so as to cover the end face of the inner ring and the stopper portion, respectively.
図 3 1は、 本発明の第 8の実施の形態に係る等速ジョイントの軸方向に沿った 縦断面図である。  FIG. 31 is a longitudinal sectional view along the axial direction of a constant velocity joint according to an eighth embodiment of the present invention.
図 3 2は、 本発明の第 9の実施の形態に係る等速ジョイントの軸方向に沿った 縦断面図である。  FIG. 32 is a longitudinal sectional view along the axial direction of a constant velocity joint according to a ninth embodiment of the present invention.
図 3 3は、 図 3 1に示す等速ジョイントの変形例を示す縦断面図である。 図 3 4は、 図 3 2に示す等速ジョイントの変形例を示す縦断面図である。 図 3 5は、 ィンナリングの側周面に緩衝部材 設けられた状態を示す縦断面図 である。  FIG. 33 is a longitudinal sectional view showing a modification of the constant velocity joint shown in FIG. FIG. 34 is a longitudinal sectional view showing a modification of the constant velocity joint shown in FIG. FIG. 35 is a vertical cross-sectional view showing a state in which a buffer member is provided on the side peripheral surface of the inner ring.
図 3 6は、 スライドリングの環状フランジ部の内壁にのみ緩衝部材が設けられ た状態を示す縦断面図である。  FIG. 36 is a longitudinal sectional view showing a state in which a buffer member is provided only on the inner wall of the annular flange portion of the slide ring.
図 3 7は、 軸方向隙間を有する等速ジョイントにおいて、 インナリングの側周 面に緩衝部材が設けられた状態を示す縦断面図である。  FIG. 37 is a longitudinal sectional view showing a state where a cushioning member is provided on a side peripheral surface of the inner ring in a constant velocity joint having an axial gap.
図 3 8は、 軸方向隙間を有する等速ジョイントにおいて、 スライドリングの環 状フランジ部の内壁にのみ緩衝部材が設けられた状態を示す縦断面図である。 図 3 9は、 本発明の第 1 0の実施の形態に係る等速ジョイントの軸方向に沿つ た縦断面図である。 FIG. 38 is a longitudinal sectional view showing a state in which a cushioning member is provided only on the inner wall of the annular flange portion of the slide ring in a constant velocity joint having an axial gap. FIG. 39 is a view showing an axial direction of a constant velocity joint according to the tenth embodiment of the present invention. FIG.
図 4 0は、 図 3 9に示す等速ジョイントに設けられた円筒体の環状突起部が環 状フランジ部に当接した状態を示す縦断面図である。  FIG. 40 is a longitudinal sectional view showing a state where an annular protrusion of a cylindrical body provided on the constant velocity joint shown in FIG. 39 is in contact with an annular flange.
図 4 1は、 本発明の実施の形態に係る回転駆動力伝達機構が適用された前輪駆 動車の一部省略斜視図である。  FIG. 41 is a partially omitted perspective view of a front-wheel drive vehicle to which the rotational driving force transmission mechanism according to the embodiment of the present invention is applied.
図 4 2は、 ィンナジョイントとして第 1等速ジョイントが両側に連結された第 1タイプの回転駆動力伝達機構を示す一部断面構成図である。  FIG. 42 is a partial cross-sectional configuration diagram showing a first type of rotational driving force transmission mechanism in which a first constant velocity joint is connected to both sides as an inner joint.
図 4 3は、 インナジョイントとして第 1等速ジョイントと第 2等速ジョイント とが組み合わされた第 2タイプの回転駆動力伝達機構を示す一部断面構成図であ る。  FIG. 43 is a partial cross-sectional configuration diagram showing a second type of rotational driving force transmission mechanism in which a first constant velocity joint and a second constant velocity joint are combined as an inner joint.
図 4 4は、 インナジョイントとして第 1等速ジョイントと第 3等速ジョイント とが組み合わされた第 3タイプの回転駆動力伝達機構を示す一部断面構成図であ る。  FIG. 44 is a partial cross-sectional configuration diagram showing a third type of rotational driving force transmission mechanism in which a first constant velocity joint and a third constant velocity joint are combined as an inner joint.
図 4 5は、 図 4 3に示す第 2等速ジョイントの軸方向に沿った縦断面図であ る。  FIG. 45 is a longitudinal sectional view along the axial direction of the second constant velocity joint shown in FIG.
図 4 6は、 図 4 4に示す第 3等速ジョイントの軸方向に沿った縦断面図であ る。  FIG. 46 is a longitudinal sectional view along the axial direction of the third constant velocity joint shown in FIG. 44.
図 4 7は、 前記第 1〜第 3等速ジョイントの 3次振動、 アイドリング振動に対 する特性を示す説明図である。 発明を実施するための最良の形態  FIG. 47 is an explanatory diagram showing characteristics of the first to third constant velocity joints with respect to tertiary vibration and idling vibration. BEST MODE FOR CARRYING OUT THE INVENTION
図 1において参照符号 1 0は、 本発明の第 1の実施の形態に係る等速ジョイン トを示し、 この等速ジョイント 1 0は、 第 1軸 1 2の一端部に一体的に連結され て開口部 1 4を有する有底円筒状のァゥ夕カップ (ァウタ部材) 1 6と、 第 2軸 1 8の一端部に固着されてァゥ夕カップ 1 6の孔部 2 0内に収納されるインナ部 材 2 2とから基本的に構成される。  In FIG. 1, reference numeral 10 denotes a constant velocity joint according to the first embodiment of the present invention. The constant velocity joint 10 is integrally connected to one end of a first shaft 12. A cylindrical cup with a bottom (opening member) 16 having an opening 14, and fixed to one end of a second shaft 18 and housed in a hole 20 of the cup 16. It is basically composed of the inner member 22.
図 2および図 3に示されるように、 前記ァゥ夕カップ 1 6の内壁面は円筒面 2 4からなり、 前記円筒面 2 4には、 軸方向に沿って延在し、 軸心の回りにそれぞ れ 6 0度の間隔をおいて 6本の第 1案内溝 2 6 a〜2 6 fが形成される。 前記第 1案内溝 2 6 a〜2 6 f は、 それぞれ、 断面円弧状、 あるいは一対の円弧が V字 状に交差する断面複合曲線状に形成される。 As shown in FIGS. 2 and 3, the inner wall surface of the iron cup 16 is formed of a cylindrical surface 24. The cylindrical surface 24 extends in the axial direction and extends around the axis. Each The six first guide grooves 26 a to 26 f are formed at intervals of 60 degrees. Each of the first guide grooves 26a to 26f is formed in an arc-shaped cross section or a compound curved cross-section in which a pair of arcs intersect in a V-shape.
インナ部材 2 2は、 外周面に前記第 1案内溝 2 6 a〜2 6 f に対応する断面円 弧状の複数の第 2案内溝 2 8 a〜2 8 fが形成されたインナリング 3 0と、 前記 ァウタカップ 1 6の内壁面に形成された第 1案内溝 2 6 a〜2 6 f と前記インナ リング 3 0の外周面に形成された第 2案内溝 2 8 a〜2 8 f との間で転動可能に 配設され、 回転トルク伝達機能を営む複数のポール 3 2とを含む。  The inner member 22 includes an inner ring 30 having a plurality of second guide grooves 28 a to 28 f having an arc-shaped cross section corresponding to the first guide grooves 26 a to 26 f on the outer peripheral surface. Between the first guide grooves 26 a to 26 f formed on the inner wall surface of the outer cup 16 and the second guide grooves 28 a to 28 f formed on the outer peripheral surface of the inner ring 30. And a plurality of poles 32 that are arranged to be able to roll with and perform a rotational torque transmitting function.
なお、 第 1の実施の形態では、 図 3に示されるように、 6個のポール 3 2を用 いて説明しているが、 これに限定されるものではなく、 例えば、 3個〜 1 0個等 のポールを使用することも可能である。  In the first embodiment, as shown in FIG. 3, an explanation is given using six poles 32. However, the present invention is not limited to this. For example, three to ten poles are used. It is also possible to use poles such as.
また、 前記インナ部材 2 2は、 前記ポール 3 2を保持する複数の保持窓 3 4が 周方向に沿って形成され、 ァウタカップ 1 6と前記インナリング 3 0との間に介 装されたリテーナ 3 6と、 前記リテーナ 3 6とインナリング 3 0との間に介装さ れたスライドリング 3 8とを有する。  The inner member 22 has a plurality of holding windows 34 for holding the pawls 32 formed in a circumferential direction, and a retainer 3 interposed between the outer cup 16 and the inner ring 30. 6 and a slide ring 38 interposed between the retainer 36 and the inner ring 30.
前記インナリング 3 0は、 第 2軸 1 8の端部にスプライン嵌合され、 あるいは 第 2軸 1 8の環状溝に装着されるリング状の係止部材を介して第 2軸 1 8の端部 に一体的に固定される。 該インナリング 3 0の外周面には、 ァウタカップ 1 6の 第 1案内溝 2 6 a〜2 6 f に対応して配置され、 周方向に沿って等角度だけ離間 する複数の第 2案内溝 2 8 a〜2 8 fが形成される。 隣接する第 2案内溝 2 8 a 〜2 8 f の間には、 第 2軸 1 8の軸線と略平行に延在する凸状円筒面部 (凸状円 筒面) 4 0が形成される。  The inner ring 30 is spline-fitted to the end of the second shaft 18, or is connected to the end of the second shaft 18 via a ring-shaped locking member attached to the annular groove of the second shaft 18. It is integrally fixed to the part. On the outer peripheral surface of the inner ring 30, a plurality of second guide grooves 2 which are arranged corresponding to the first guide grooves 26 a to 26 f of the outer cup 16 and are separated by an equal angle along the circumferential direction. 8a to 28f are formed. A convex cylindrical surface portion (convex cylindrical surface) 40 extending substantially parallel to the axis of the second shaft 18 is formed between the adjacent second guide grooves 28 a to 28 f.
なお、 前記凸状円筒面部 4 0と、 該インナリング 3 0の軸方向に沿った一端面 または他端面との境界を形成する稜線部位には、 それぞれ面取り加工が施された 面取り部 4 2が設けられる (図 1参照) 。  In addition, a chamfered portion 42 subjected to chamfering processing is provided at a ridge portion forming a boundary between the convex cylindrical surface portion 40 and one end surface or the other end surface along the axial direction of the inner ring 30. (See Figure 1).
前記ポール 3 2は、 铜えば、 鋼球によって形成され、 ァウタカップ 1 6の第 1 案内溝 2 6 a〜2 6 f とインナリング 3 0の第 2案内溝 2 8 a〜2 8 f との間に 周方向に沿ってそれぞれ 1個ずつ転動可能に配設される。 このポール 3 2は、 第 1軸 1 2の回転トルクを、 インナリング 3 0を介して第 2軸 1 8に伝達するとと もに、 第 1案内溝 2 6 a〜2 6 fおよび第 2案内溝 2 8 a〜2 8 ίに沿って転動 することにより、 第 2軸 1 8 (インナリング 3 0 ) と第 1軸 1 2 (ァウタカップ 1 6 ) との間の軸方向の相対的変位および交差する角度方向の相対的変位を可能 とするものである。 The pole 32 is formed, for example, by a steel ball, and is formed between the first guide grooves 26 a to 26 f of the auta cup 16 and the second guide grooves 28 a to 28 f of the inner ring 30. One is provided so that it can roll along the circumferential direction. This pole 3 2 The rotation torque of the first shaft 12 is transmitted to the second shaft 18 via the inner ring 30, and the first guide grooves 26a to 26f and the second guide grooves 28a to 28 By rolling along ί, the axial relative displacement between the second shaft 18 (the inner ring 30) and the first shaft 12 (the outer cup 16) and the relative It enables displacement.
前記リテーナ 3 6は、 略円筒状からなり、 ァウタカップ 1 6の内壁面 (円筒面 2 4 ) に摺接する外周面には点 Αを曲率中心とする第 1球面 4 4が設けられ、 一 方、 内周面には点 Bを曲率中心とする第 2球面 4 6が設けられる (図 5参照) 。 なお、 前記点 Aおよび点 Bは、 それぞれ継手軸 4 8上に配設されるとともに、 ポ —ル 3 2の中心点 Oを結ぶ仮想面 (ポール中心面) と前記継手軸 4 8とが直交す る交点 Cからそれぞれ等しくオフセットした位置に配設される (線分 A C -線分 B C) 。  The retainer 36 is formed in a substantially cylindrical shape, and a first spherical surface 44 having a point 点 as a center of curvature is provided on an outer peripheral surface that slides on an inner wall surface (cylindrical surface 24) of the outer cup 16. A second spherical surface 46 having a center of curvature at point B is provided on the inner peripheral surface (see FIG. 5). The points A and B are disposed on the joint shaft 48, respectively, and a virtual plane (pole center plane) connecting the center point O of the pole 32 and the joint shaft 48 are orthogonal to each other. Are placed at equal offsets from the intersection C (line segment AC-line segment BC).
また、 該リテ一ナ 3 6には、 ポール 3 2の個数に対応し周方向に沿って等角度 だけ離間する複数の断面略矩形状の保持窓 3 4が形成され、 前記保持窓 3 4には 第 1案内溝 2 6 a〜2 6 f と第 2案内溝 2 8 a〜2 8 f との間に配設されるポー ル 3 2が保持される。 この場合、 前記保持窓 3 4の内径寸法 (内径幅) は、 ポー ル 3 2の直径よりも僅かに小さく設定されている (図 1参照) 。  The retainer 36 has a plurality of holding windows 34 each having a substantially rectangular cross section and corresponding to the number of the poles 32 and spaced apart by an equal angle along the circumferential direction. The pole 32 provided between the first guide grooves 26a to 26f and the second guide grooves 28a to 28f is held. In this case, the inner diameter (inner diameter width) of the holding window 34 is set slightly smaller than the diameter of the pole 32 (see FIG. 1).
スライドリング 3 8は、 第 2軸 1 8の外周面を囲繞するように設けられ、 且つ 前記第 2軸 1 8の径方向に沿って形成された環状フランジ部 5 0と、 前記環状フ ランジ部 5 0から折曲して第 1軸 1 2側に向か:?て略水平方向に所定長だけ突出 するとともに、 該環状フランジ部 5 0の周方向に沿って等角度だけ離間して形成 された複数の爪部 5 2とからなり、 前記環状フランジ部 5 0と前記爪部 5 2とが 一体的に構成される (図 3参照) 。  The slide ring 38 is provided so as to surround the outer peripheral surface of the second shaft 18, and has an annular flange portion 50 formed along the radial direction of the second shaft 18, and the annular flange portion. Fold from 50 and go to the first axis 12 side:? And a plurality of claw portions 52 formed at an equal angle along the circumferential direction of the annular flange portion 50 while projecting in a substantially horizontal direction by a predetermined length. The claws 52 are integrally formed (see FIG. 3).
前記スライドリング 3 8の爪部 5 2の外周面には、 リテーナ 3 6の内周面の第 2球面 4 6に接触して摺動可能に設けられ、 且つ前記第 2球面 4 6に対応する曲 率半径からなる第 3球面 5 4が形成される。 前記爪部 5 2の第 3球面 5 4は、 環 状フランジ部 5 0の厚さをも含んで形成される (図 1参照) 。 また、 該爪部 5 2 の内周面には、 インナリング 3 0の外周面の凸状円筒面部 4 0に接触して該イン ナリング 3 0との間で軸方向の相対的変位を可能とする円筒面部 (円筒面) 5 6 が形成される。 The outer peripheral surface of the claw portion 52 of the slide ring 38 is slidably provided in contact with the second spherical surface 46 of the inner peripheral surface of the retainer 36, and corresponds to the second spherical surface 46. A third spherical surface 54 having a radius of curvature is formed. The third spherical surface 54 of the claw portion 52 is formed including the thickness of the annular flange portion 50 (see FIG. 1). Further, the inner peripheral surface of the claw portion 52 comes into contact with the convex cylindrical surface portion 40 of the outer peripheral surface of the inner ring 30 so as to contact the inner surface. A cylindrical surface portion (cylindrical surface) 56 that enables relative axial displacement with the nulling 30 is formed.
この場合、 前記スライドリング 3 8の爪部 5 2は、 凸状円筒面部 4 0に沿って インナリング 3 0に外嵌され、 隣接する爪部 5 2の間に形成される空間部を介し てポール 3 2が配設される。  In this case, the claw portion 52 of the slide ring 38 is externally fitted to the inner ring 30 along the convex cylindrical surface portion 40, and through a space formed between the adjacent claw portions 52. Pole 32 is installed.
第 1の実施の形態に係る等速ジョイント 1 0は、 基本的には以上のように構成 されるものであり、 次に、 その動作並びに作用効果について説明する。  The constant velocity joint 10 according to the first embodiment is basically configured as described above. Next, its operation and effect will be described.
第 1軸 1 2が回転すると、 その回転トルクはァウタカップ 1 6から各ポール 3 2を介してインナリング 3 0に伝達され、 第 2軸 1 8が前記第 1軸 1 2と等速性 を保持しながら所定方向に回転する。  When the first shaft 12 rotates, the rotation torque is transmitted from the outer cup 16 to the inner ring 30 via each pole 32, and the second shaft 18 maintains the same speed as the first shaft 12 While rotating in a predetermined direction.
この場合、 例えば、 車が急発進したときのように車のフロント側がアップして リア側が沈み込んだときには、 第 1軸 1 2と第 2軸 1 8との間に軸方向への相対 的変位が発生し、 ィンナリング 3 0とァウタカップ 1 6とが軸方向へ相対的に移 動する。 その際、 インナリング 3 0の外周面に形成された凸状円筒面部 4 0がス ライドリング 3 8の内周面に形成された円筒面部 5 6に沿って摺動することによ り、 リテーナ 3 6の保持窓 3 4に保持されたポール 3 2が転がり運動可能な状態 となる。 従って、 リテーナ 3 6の保持窓 3 4に保持されたポール 3 2は、 第 1案 内溝 2 6 a〜 2 6 fおよび第 2案内溝 2 8 a〜2 8 ίに案内されて円滑に転動す る。 '  In this case, for example, when the front side of the car rises and the rear side sinks, such as when the car suddenly starts, the relative displacement in the axial direction between the first axis 12 and the second axis 18 Occurs, and the inner ring 30 and the outer cup 16 move relatively in the axial direction. At this time, the convex cylindrical surface portion 40 formed on the outer peripheral surface of the inner ring 30 slides along the cylindrical surface portion 56 formed on the inner peripheral surface of the slide ring 38, thereby retaining the retainer. The pole 32 held by the holding window 34 of 36 is in a state capable of rolling movement. Therefore, the pole 32 held by the holding window 34 of the retainer 36 is guided by the first plan inner grooves 26a to 26f and the second guide grooves 28a to 28mm to smoothly roll. Move. '
一方、 第 1軸 1 2と第 2軸 1 8との交差角度 変化する場合には、 第 1案内溝 2 6 a〜2 6 f と第 2案内溝 2 8 a〜2 8 :f との間で転動するポール 3 2の作用 下にリテーナ 3 6が所定角度だけ傾動して前記角度変位が許容されるとともに、 リテーナ 3 6の内周面に形成された第 2球面 4 6とスライドリング 3 8の外周面 に形成された第 3球面 5 4とが摺動し、 リテ一ナ 3 6に対してスライドリング 3 8が所定角度だけ傾動することにより、 前記角度変位が許容される (図 4参照) 。 このように、 第 1軸 1 2と第 2軸 1 8との等速性を保持しつつ、 それらの角度 変位や軸方向の相対的変位が好適に許容される。  On the other hand, when the intersection angle between the first axis 12 and the second axis 18 changes, the distance between the first guide grooves 26 a to 26 f and the second guide grooves 28 a to 28: f The retainer 36 is tilted by a predetermined angle under the action of the pawl 32 that rolls at the predetermined angle to allow the angular displacement, and the second spherical surface 46 formed on the inner peripheral surface of the retainer 36 and the slide ring 3 When the third spherical surface 54 formed on the outer peripheral surface of the slide 8 slides, and the slide ring 38 is tilted by a predetermined angle with respect to the retainer 36, the angular displacement is allowed (FIG. See). Thus, while maintaining the constant velocity of the first shaft 12 and the second shaft 18, their angular displacement and relative displacement in the axial direction are suitably allowed.
ここで、 第 1の実施の形態に係る等速ジョイント 1 0が軸方向の変位を吸収す る場合について、 図 5に基づいて説明する。 Here, the constant velocity joint 10 according to the first embodiment absorbs displacement in the axial direction. This case will be described with reference to FIG.
第 1軸 1 2と第 2軸 1 8との間に軸方向への相対的変位が発生して、 例えば、 インナリング 3 0が矢印 X I方向に移動しょうとするとき、 ァゥ夕カップ 1 6の 第 1案内溝 2 6 a〜2 6 f とポール 3 2との接触点 Dが 1 0 0 %転がり接触であ ると仮定すると、 ポール 3 2は、 中心点 0を回転中心として矢印 E方向の回転を 伴いながら前記接触点 Dを矢印 X 1で移動した距離の 1 Z 2だけ矢印 X 2の方向 に沿って移動する。 なお、 図 6は、 前記ァウタカップ 1 6の第 1案内溝 2 6 a〜 2 6 f を固定側とし、 インナリング 3 0を可動側としたときの、 該インナリング 3 0とポール 3 2との移動量の関係を簡略化して説明したものである。  When a relative displacement in the axial direction occurs between the first axis 12 and the second axis 18, for example, when the inner ring 30 attempts to move in the direction of the arrow XI, the radial cup 16 Assuming that the contact point D between the first guide grooves 26a to 26f and the pole 32 is 100% rolling contact, the pole 32 moves in the direction of arrow E with the center point 0 as the center of rotation. The contact point D is moved along the direction of the arrow X2 by 1Z2, which is the distance moved by the arrow X1, with the rotation of. FIG. 6 shows the relationship between the inner ring 30 and the pole 32 when the first guide grooves 26 a to 26 f of the auta cup 16 are fixed and the inner ring 30 is movable. This is a simplified explanation of the relationship between the movement amounts.
この場合、 リテーナ 3 6の内周面の第 2球面 4 6とスライドリング 3 8の外周 面の第 3球面 5 4とが球面接触して前記スライドリング 3 8の 方向への変位が 規制されているが、 スライドリング 3 8の内周面の円筒面部 5 6に沿ってインナ リング 3 0の外周面の凸状円筒面部 4 0が揺動することにより、 前記ィンナリン グ 3 0の軸方向への変位が許容される。  In this case, the second spherical surface 46 on the inner peripheral surface of the retainer 36 and the third spherical surface 54 on the outer peripheral surface of the slide ring 38 come into spherical contact, so that displacement in the direction of the slide ring 38 is restricted. However, the convex cylindrical surface portion 40 of the outer peripheral surface of the inner ring 30 swings along the cylindrical surface portion 56 of the inner peripheral surface of the slide ring 38, thereby causing the inner ring 30 to move in the axial direction. Displacement is allowed.
従って、 図 5に示されるように、 前記ポール 3 2とインナリング 3 0の第 2案 内溝 2 8 a〜2 8 f との接触点 Fは、 軸方向に沿って移動可能となり、 1 0 0 % 転がり接触となる。 'この結果、 第 1軸 1 2と第 2軸 1 8との間に軸方向の大きな 相対的変位が発生した場合であっても、 スライドリング 3 8の内周面の円筒面部 5 6とインナリング 3 0の外周面の凸状円筒面部 4 0との摺動作用下に、 前記ィ ンナリング 3 0の軸方向に対する変位量をより了層増大させることができ、 広い 範囲にわたってスライド抵抗を低減させることができる。  Therefore, as shown in FIG. 5, the contact point F between the pole 32 and the inner groove 28 a to 28 f of the second plan of the inner ring 30 becomes movable along the axial direction. 0% rolling contact. As a result, even when a large relative axial displacement occurs between the first shaft 12 and the second shaft 18, the cylindrical surface 56 of the inner peripheral surface of the slide ring 38 and the inner Under the sliding action of the outer peripheral surface of the ring 30 with the convex cylindrical surface portion 40, the amount of displacement of the inner ring 30 in the axial direction can be further increased, and the slide resistance can be reduced over a wide range. be able to.
次に、 第 1実施の形態に係る等速ジョイント 1 0と、 比較例に係る等速ジョイ ント (特開平 3— 2 7 7 8 2 2号公報参照) 1 0 1とを以下、 詳細に比較して説 明する。  Next, the constant velocity joint 10 according to the first embodiment and the constant velocity joint 10 according to the comparative example (see Japanese Patent Application Laid-Open No. 3-277822) are compared in detail below. And explain.
この比較例に係る等速ジョイント 1 0 1は、 図 9に示されるように、 第 1案内' 溝 1 0 2が形成された外方継手部材 1 0 3と、 第 2案内溝 1 0 4が形成された内 方継手部材 1 0 5と、 前記第 1案内溝 1 0 2と第 2案内溝 1 0 4との間で転動可 能に配設されたポール 1 0 6と、 前記外方継手部材 1 0 3と内方継手部材 1 0 5 との間に介装され、 前記ボール 1 0 6を保持するポール保持窓 1 0 7が形成され たケージ 1 0 8と含む。 As shown in FIG. 9, the constant velocity joint 101 according to this comparative example includes an outer joint member 103 in which a first guide groove 101 is formed, and a second guide groove 104. An inner joint member 105 formed, a pole 106 rotatably disposed between the first guide groove 102 and the second guide groove 104, and an outer Joint member 103 and inner joint member 105 And a cage 108 in which a pole holding window 107 for holding the ball 106 is formed.
また、 前記比較例に係る等速ジョイント 1 0 1は、 内方継手部材 1 0 5とケー ジ 1 0 8との間に介装された摺動リング 1 0 9と、 前記摺動リング 1 0 9と前記 ケージ 1 0 8の軸方向端部との間に配設された一対の弾性変形可能な弾性部材 1 1 0 a、 1 1 0 bとを有する。  The constant velocity joint 101 according to the comparative example includes a sliding ring 109 interposed between the inner joint member 105 and the cage 108, It has a pair of elastically deformable elastic members 110a and 110b disposed between 9 and the axial end of the cage 108.
前記摺動リング 1 0 9には、 ケージ 1 0 8の内周面と当接する直円筒状の外周 面 1 1 1と、 内方継手部材 1 0 5の外周面と当接する凹球面状の内周面 1 1 2と、 ポール保持窓 1 0 Ίに対応する位置に設けられ該ポール保持窓 1 0 7よりも少し 大きい収容窓とが形成されている。 '  The sliding ring 109 has a straight cylindrical outer peripheral surface 1111 in contact with the inner peripheral surface of the cage 108, and a concave spherical inner surface in contact with the outer peripheral surface of the inner joint member 105. A peripheral surface 112 and a receiving window provided at a position corresponding to the pole holding window 107 are slightly larger than the pole holding window 107 are formed. '
前記比較例に係る等速ジョイント 1 0 1では、 駆動軸 1 1 4と被駆動軸 1 1 5 との間に軸方向への相対的変位が発生し、 内方継手部材 1 0 5と外方継手部材 1 0 3とが軸方向に沿って相対的に移動した際、 前記摺動リング 1 0 9は、 内方継 手部材 1 0 5とともに移動し、 前記ケージ 1 0 8に対して軸方向に摺動する。 前 記摺動リング 1 0 9の変位は、 その両端に配設された一対の弾性部材 1 1 0 a、 1 1 0 bによって吸収される。  In the constant velocity joint 101 according to the comparative example, relative displacement occurs in the axial direction between the drive shaft 114 and the driven shaft 115, and the inner joint member 105 and the outer joint When the joint member 103 moves relatively along the axial direction, the sliding ring 109 moves together with the inner joint member 105, and moves in the axial direction with respect to the cage 108. To slide. The displacement of the sliding ring 109 is absorbed by a pair of elastic members 110a and 110b disposed at both ends thereof.
前記内方継手部材 1 0 5と外方継手部材 1 0 3 の大きな軸方向の相対的移動 がなくなると、 前記一対の弾性部材 1 1 0 a、 1 1 0 bが弾性復帰し、 摺動リン グ 1 0 9を介してケ一ジ 1 0 8は内方継手部材 1 0 5に対して初期設定位置に戻 されセンタリングされる。 一  When the large axial relative movement between the inner joint member 105 and the outer joint member 103 is stopped, the pair of elastic members 110a and 110b elastically return to a sliding state. The cage 108 is returned to the initial setting position with respect to the inner joint member 105 via the bush 109 and is centered. One
このため、 比較例に係る等速ジョイント 1 0 1では、 ポール 1 0 6が、 常に転 がり運動可能な状態に保持され、 駆動軸 1 1 4と被駆動軸 1 1 5間に軸方向の大 きな相対的変位が発生してもスライド抵抗を小さく維持することができるとして いる。  For this reason, in the constant velocity joint 101 according to the comparative example, the pole 106 is always kept in a state capable of rolling motion, and a large axial dimension is provided between the drive shaft 114 and the driven shaft 115. It is stated that the slide resistance can be kept small even if a relative displacement occurs.
次に、 第 1実施の形態に係る等速ジョイント 1 0と前記比較例に係る等速ジョ イント 1 0 1との構成、 作用効果について比較検討する。  Next, the configuration, operation and effect of the constant velocity joint 10 according to the first embodiment and the constant velocity joint 101 according to the comparative example will be compared and studied.
第 1の実施の形態に係る等速ジョイント 1 0では、 スライドリング 3 8の外周 面の第 3球面 5 4がリテ一ナ 3 6の内周面の第 2球面 4 6に接触するとともに、 スライドリング 3 8の内周面の円筒面部 5 6がインナリング 3 0の凸状円筒面部 4 0と接触するように形成されているのに対し、 比較例に係る等速ジョイント 1 0 1では、 摺動リング 1 0 9の直円筒状の外周面 1 1 1がケージ 1 0 8の内周面 と接触するとともに、 摺動リング 1 0 9の凹球面状の内周面 1 1 2が内方継手部 材 1 0 5の外周面と接触するように形成されている点で構成が相違する。 In the constant velocity joint 10 according to the first embodiment, the third spherical surface 54 on the outer peripheral surface of the slide ring 38 contacts the second spherical surface 46 on the inner peripheral surface of the retainer 36, While the cylindrical surface portion 56 of the inner peripheral surface of the slide ring 38 is formed so as to contact the convex cylindrical surface portion 40 of the inner ring 30, the constant velocity joint 101 according to the comparative example has: The right cylindrical outer peripheral surface 1 1 1 of the sliding ring 1 09 contacts the inner peripheral surface of the cage 1 08, and the concave spherical inner peripheral surface 1 1 2 of the sliding ring 1 09 is inward. The configuration is different in that it is formed so as to be in contact with the outer peripheral surface of the joint member 105.
換言すると、 第 1の実施の形態に係る等速ジョイント 1 0のスライドリング 3 8と、 比較例に係る等速ジョイント 1 0 1の摺動リング 1 0 9とでは、 外周面と 内周面とにおいて球面と円筒面との関係がそれぞれ逆転している点で相違してい る。  In other words, the slide ring 38 of the constant velocity joint 10 according to the first embodiment and the slide ring 109 of the constant velocity joint 101 according to the comparative example have an outer peripheral surface and an inner peripheral surface. Are different in that the relationship between the spherical surface and the cylindrical surface is reversed.
作用の点に関しては、 第 1の実施の形態に係る等速ジョイント 1 0では、 イン ナリング 3 0が単独でスライドリング 3 8に沿って軸方向に変位するように設け られているのに対し、 比較例に係る等速ジョイント 1 0 1では、 内方継手部材 1 0 5が摺動リング 1 0 9と一体的に軸方向に変位する点で相違している。  Regarding the operation, in the constant velocity joint 10 according to the first embodiment, the inner ring 30 is provided so as to be independently displaced in the axial direction along the slide ring 38. The constant velocity joint 101 according to the comparative example is different in that the inner joint member 105 is displaced in the axial direction integrally with the sliding ring 109.
効果の点に関しては、 第 1の実施の形態に係る等速ジョイント 1 0では、 スラ イドリング 3 8の内周面の円筒面部 5 6とインナリング 3 0の外周面の凸状円筒 面部 4 0との摺動作用下に、 前記インナリング 3 0の軸方向に対する変位量を大 きく設定することが可能であるのに対し、 比較例に係る等速ジョイント 1 0 1で は、 摺動リング 1 0 9の変位を吸収する一対の弾性部材 1 1 0 a、 1 1 0 bが該 摺動リング 1 0 9とケージ 1 0 8の軸方向端部との間に配設されているため、 内 方継手部材 1 0 5が微小距離だけ移動することが可能である。  Regarding the effect, in the constant velocity joint 10 according to the first embodiment, the cylindrical surface portion 56 on the inner peripheral surface of the slide ring 38 and the convex cylindrical surface portion 40 on the outer peripheral surface of the inner ring 30 While the displacement of the inner ring 30 in the axial direction can be set to be large under the sliding action of, the constant velocity joint 101 according to the comparative example has a sliding ring 10. Because a pair of elastic members 110a and 110b that absorb the displacement of 9 are disposed between the sliding ring 109 and the axial end of the cage 108, The joint member 105 can move by a very small distance.
この場合、 比較例に係る等速ジョイント 1 0 1では、 前記内方継手部材 1 0 5 の移動量を増大させようとすると、 ケージ 1 0 8およびポール 1 0 6が二等分面 からはずれることになり、 駆動軸 1 1 4と被駆動軸 1 1 5との等速性を確保する ことが困難となるおそれがある。  In this case, in the constant velocity joint 101 according to the comparative example, when the movement amount of the inner joint member 105 is increased, the cage 108 and the pole 106 deviate from the bisector. Therefore, it may be difficult to ensure uniform speed between the drive shaft 114 and the driven shaft 115.
これに対して第 1の実施の形態に係る等速ジョイント 1 0では、 第 1軸 1 2と- 第 2軸 1 8との等速性を確保するダブルオフセット型の等速ジョイント 1 0の構 成を保持した状態において、 インナリング 3 0の軸方向に対する変位量をより一 層増大させている点で比較例に係る等速ジョイント 1 0 1とは異なる顕著な効果 を有する。 On the other hand, in the constant velocity joint 10 according to the first embodiment, the structure of the double offset type constant velocity joint 10 that secures constant velocity between the first shaft 12 and the second shaft 18 is provided. A significant effect different from the constant velocity joint 101 according to the comparative example in that the amount of displacement of the inner ring 30 in the axial direction is further increased while maintaining the Having.
ここで、 第 1の実施の形態に係るダブルオフセット型の等速ジョイント 10の 等速性について、 図 7に基づいて説明する。  Here, the constant velocity of the double offset type constant velocity joint 10 according to the first embodiment will be described with reference to FIG.
図 7において、 ポール 32は、 ァウタカップ 16の第 1案内溝 26 a〜26 f とインナリング 30の第 2案内溝 28 a〜28 f との間で転動自在に配設されて いる。 前記第 1案内溝 26 a〜26 f と入力軸である第 1軸 12の軸線 Gとが平 行となるように設けられ、 前記第 2案内溝 28 a〜28 f と出力軸である第 2軸 18の軸線 Hとが平行となるように設けられている。 なお、 軸線 Iはリテーナ 3 6の軸線を示している。  In FIG. 7, the pawl 32 is disposed so as to roll freely between the first guide grooves 26 a to 26 f of the auta cup 16 and the second guide grooves 28 a to 28 f of the inner ring 30. The first guide grooves 26 a to 26 f are provided so as to be parallel to the axis G of the first shaft 12 which is the input shaft, and the second guide grooves 28 a to 28 f and the second shaft which is the output shaft. The shaft 18 is provided so that the axis H is parallel to the axis H. The axis I indicates the axis of the retainer 36.
また、 入力軸角速度を ω ΐとし、 出力軸角速度を ω2とし、 ポール 32の中心 点 Οからァウタカップ 16の第 1案内溝 26 a〜26 f に対して垂線をおろした ときの接触点を aとし、 ポール 32の中心点〇からインナリング 30の第 2案内 溝 28 a〜28 f に対して垂線をおろしたときの接蝕点を bとする。  Also, the input shaft angular velocity is ω 、, the output shaft angular velocity is ω2, and the contact point when the perpendicular is lowered from the center point の of the pole 32 to the first guide grooves 26 a to 26 f of the auta cup 16 is a. The point of contact when the perpendicular is lowered from the center point の of the pole 32 to the second guide grooves 28 a to 28 f of the inner ring 30 is denoted by b.
この場合、 入力軸である第 1軸 12から見たポール 32の接線速度 V 1は、 V 1 = ベクトル a o ' c l ··· (!■) となり、 一方、 出力軸である第 2軸 18から見たポール 32の接線速度 V 2は、 In this case, the tangential velocity V 1 of the pole 32 viewed from the first axis 12 which is the input axis becomes V 1 = vector ao 'cl (! ■), while the output axis 2 The tangential speed V 2 of the pole 32 seen is
V 2= べクトル b o · ω 2 … (2) となる。 ここで、 V1=V2より V 2 = vector b o · ω 2… (2) Where V1 = V2
ベクトル a o · ω 1 =ベクトル b o · ω 2 - (3) が成り立つ。 _  The vector a o · ω 1 = vector b o · ω 2-(3) holds. _
この場合、 ベクトル a ο=ベクトル b οであるから、 ω 1=ω 2となり、 入力 軸である第 1軸 12と出力軸である第 2軸 1.8との等速性が確保される。  In this case, since vector aο = vector bο, ω1 = ω2, and the constant velocity between the first shaft 12 as the input shaft and the second shaft 1.8 as the output shaft is secured.
このように、 第 1の実施の形態では、 スライドリング 38の内周面の円筒面部 56とィンナリング 30の外周面の凸状円筒面部 40との摺動作用下に、 前記ィ ンナリング 30の軸方向に対する変位量を大きく設定した場合であっても、 トル ク伝達機能を営むポール 32 (複数のポール中心を結んだポール中心面) を第 1 軸 12と第 2軸 18の交差角を二等分する二等分面上に保持するように構成され ているため、 等速性が確保される。 次に、 第 1の実施の形態の変形例に係る等速ジョイント 1 0 aを図 8に示す。 図 8に示される変形例に係る等速ジョイント 1 0 aでは、 リテ一ナ 3 6の保持 窓 3 4の内径寸法 (内径幅) を、 ポール 3 2の直径よりも大きく設定し、 保持窓 3 4の内壁面とポール 3 2との間に軸方向間隙 6 2を形成することにより、 イン ナリング 3 0の軸方向の変位量をより一層増大させることができる。 As described above, in the first embodiment, the axial direction of the inner ring 30 is controlled by the sliding action of the cylindrical surface portion 56 on the inner peripheral surface of the slide ring 38 and the convex cylindrical surface portion 40 on the outer peripheral surface of the inner ring 30. Even if the displacement amount is set large, the intersection angle between the first axis 12 and the second axis 18 can be bisected by the pole 32 (the pole center plane connecting the centers of multiple poles) that performs the torque transmission function. Since it is configured to be held on a bisecting surface, constant velocity is ensured. Next, a constant velocity joint 10a according to a modification of the first embodiment is shown in FIG. In the constant velocity joint 10a according to the modification shown in FIG. 8, the inner diameter (inner diameter width) of the retaining window 34 of the retainer 36 is set to be larger than the diameter of the pole 32, By forming the axial gap 62 between the inner wall surface of the pole 4 and the pole 32, the axial displacement of the inner ring 30 can be further increased.
次に、 窠 2の実施の形態に係る等速ジョイント 1 2 0を図 1 0〜図 1 5に示す。 なお、 以下の実施の形態において、 前記第 1の実施の形態に係る等速ジョイント 1 0と同一の構成要素には同一の参照符号を付し、 その詳細な説明を省略する。 この第 2の実施の形態に係る等速ジョイント 1 2 0は、 リテーナ 1 3 6の一組 の第 2球面 1 4 6 a、 1 4 6 bとスライドリング 1 3 8の第 3球面 1 5 4との間 で軸方向隙間 1 5 5が形成されている点で、 第 1の実施の形態に係る等速ジョイ ント 1 0と相違している。  Next, FIGS. 10 to 15 show constant velocity joints 120 according to the second embodiment. In the following embodiments, the same components as those of the constant velocity joint 10 according to the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The constant velocity joint 120 according to the second embodiment includes a pair of second spherical surfaces 1 46 a and 1 46 b of a retainer 1 36 and a third spherical surface 1 5 4 of a slide ring 1 3 8. This is different from the constant velocity joint 10 according to the first embodiment in that an axial gap 155 is formed between them.
この等速ジョイント 1 2 0は、 図 1 0〜図 1 3に示されるように、 ポール 3 2 を保持する複数の保持窓 3 4が周方向に沿って形成され、 ァウタカップ 1 6とィ ンナリング 3 0との間に介装されたリテーナ 1 3 6と、 前記リテ一ナ 1 3 6とィ ンナリング 3 0との間に介装されたスライドリング 1 3 8とを備える。  As shown in FIGS. 10 to 13, the constant velocity joint 120 has a plurality of holding windows 34 for holding the pole 32 along the circumferential direction, and includes an outer cup 16 and an inner ring 3. 0, and a slide ring 138 interposed between the retainer 136 and the inner ring 30.
前記リテーナ 1 3 6は、 略円筒状からなり、 図 1 4に示されるように、 ァウタ カップ 1 6の内壁面 (円筒面 2 4 ) に摺接する外表面には、 点 Aを曲率中心とす る第 1球面 4 4が設けられる。  The retainer 1336 has a substantially cylindrical shape. As shown in FIG. 14, the outer surface of the retainer 13 that slides on the inner wall surface (cylindrical surface 24) of the auta cup 16 has a point A as a center of curvature. A first spherical surface 44 is provided.
さらに、 前記リテ一ナ 1 3 6には、 軸方向の 心が点 Bからなる内表面が形成 され、 前記内表面には、 軸方向中央部に所定長だけ延在する円筒面 (第 1円筒 面) 1 4 5と、 前記円筒面 1 4 5の両側に連続して形成され、 継手軸 4 8から径 方向に距離 Kだけ離間する点 Mおよび点 Nを夫々曲率中心とする一組の第 2球面 1 4 6 a , 1 4 6 bが設けられる。  Further, the retainer 1336 has an inner surface having an axial center formed by a point B, and the inner surface has a cylindrical surface (a first cylindrical surface) extending a predetermined length in the axial center. Surface) and a pair of first and second pairs which are formed continuously on both sides of the cylindrical surface and which are spaced apart from the joint shaft by a distance K in the radial direction by a point M and a point N, respectively. Two spherical surfaces 1 4 6 a and 1 4 6 b are provided.
なお、 前記点 Aおよび点 Bは、 それぞれ継手軸 4 8上に配設されるとともに、 ' ポール 3 2の中心点 Oを結ぶ仮想面 (ポール中心面) と前記継手軸 4 8とが直交 する交点 Cからそれぞれ等しくオフセットした位置に配設される (線分 A C -線 分 B C) 。 スライドリング 1 3 8は、 第 2軸 1 8の外周面を囲繞するように設けられ、 且 つ前記第 2軸 1 8の径方向に沿って形成された環状フランジ部 5 0と、 前記環状 フランジ部 5 0から折曲して第 1軸 1 2側に向かって略水平方向に所定長だけ突 出するとともに、 該環状フランジ部 5 0の周方向に沿って等角度だけ離間して形 成された複数の爪部 5 2とからなり、 前記環状フランジ部 5 0と前記爪部 5 2と がー体的に構成される (図 1 2参照) 。 . The point A and the point B are disposed on the joint shaft 48, respectively, and the imaginary plane (pole center plane) connecting the center point O of the pole 32 and the joint shaft 48 are orthogonal to each other. They are located at equal offsets from intersection C (line segment AC-line segment BC). The slide ring 13 is provided so as to surround the outer peripheral surface of the second shaft 18, and has an annular flange portion 50 formed along the radial direction of the second shaft 18; Bending from the portion 50 and protruding toward the first shaft 12 side in a substantially horizontal direction by a predetermined length, and formed at equal angles along the circumferential direction of the annular flange portion 50. The annular flange portion 50 and the claw portion 52 are integrally formed (see FIG. 12). .
前記スライドリング 1 3 8の爪部 5 2の外周面には、 リテーナ 1 3 6の内表面 の第 2球面 1 4 6 a、 1 4 6 bに接触可能に設けられ、 且つ曲率中心が点 Bから なる第 3球面 1 5 4が形成される。 この場合、 前記第 3球面 1 5 4の曲率半径は、 リテーナ 1 3 6の内表面に形成された一組の第 2球面 1 4 6 a、 1 4 6 bよりも 小さく設定され、.前記リテーナ 1 3 6の一組の第 2球面 1 4 6 a、 1 4 6 bとス ラ ドリング 1 3 8の第 3球面 1 5 4との間で軸方向隙間 1 5 5が形成される。 前記爪部 5 2の第 3球面 1 5 4は、 環状フランジ部 5 0の厚さをも含んで形成 される (図 1 0参照) 。 また、 該爪部 5 2の内周面には、 インナリング 3 0の外 周面の凸状円筒面部 4 0に接触して該インナリング 3 0との間で軸方向の相対的 変位を可能とする円筒面部 (第 2円筒面) 5 6が形成される。  The outer peripheral surface of the claw portion 52 of the slide ring 13 is provided so as to be able to contact the second spherical surfaces 1 46 a and 1 46 b of the inner surface of the retainer 1 36, and the center of curvature is a point B. A third spherical surface 154 is formed. In this case, the radius of curvature of the third spherical surface 154 is set to be smaller than the pair of second spherical surfaces 144a and 146b formed on the inner surface of the retainer 135. An axial gap 1555 is formed between a set of second spherical surfaces 1346a, 146b and a third spherical surface 154 of the sliding ring 1338. The third spherical surface 154 of the claw portion 52 is formed including the thickness of the annular flange portion 50 (see FIG. 10). In addition, the inner peripheral surface of the claw portion 52 comes into contact with the convex cylindrical surface portion 40 of the outer peripheral surface of the inner ring 30 to enable relative displacement in the axial direction with the inner ring 30. A cylindrical surface portion (second cylindrical surface) 56 is formed.
以下に、 第 2の実施の形態に係る等速ジョイント 1 2 0の動作並びに作用効果 について説明する。  Hereinafter, an operation and an effect of the constant velocity joint 120 according to the second embodiment will be described.
第 1軸 1 2が回転すると、 その回転トルクはァウタカップ 1 6から各ポール 3 2を介してインナリング 3 0に伝達され、 第 2軸 1 8が前記第 1軸 1 2と等速性 を保持しながら所定方向に回転する。  When the first shaft 12 rotates, the rotation torque is transmitted from the outer cup 16 to the inner ring 30 via each pole 32, and the second shaft 18 maintains the same speed as the first shaft 12 While rotating in a predetermined direction.
この場合、 例えば、 車が急発進したときのように車のフロント側がアップして リア側が沈み込んだときには、 第 1軸 1 2と第 2軸 1 8との間に軸方向への相対 的変位が発生し、 インナリング 3 0とァウタカップ 1 6とが軸方向へ相対的に移 動する。 その際、 スライドリング 3 8が第 2球面 1 4 6 a、 1 4 6 bと第 3球面 1 5 4との間に形成された軸方向隙間 1 5 5に沿って軸方向に変位するとともに、 さらに、 インナリング 3 0の外周面に形成された凸状円筒面部 4 0がスライドリ ング 1 3 8の内周面に形成された円筒面部 5 6に沿って摺動することにより、 リ テーナ 1 3 6の保持窓 3 4に保持されたポール 3 2が転がり運動可能な状態とな る。 従って、 リテーナ 3 6の保持窓 3 4に保持されたポール 3 2は、 第 1案内溝 2 6 a〜2 6 fおよび第 2案内溝 2 8 a〜2 8 f に案内されて円滑に転動する。 一方、 第 1軸 1 2と第 2軸 1 8との交差角度が変化する場合には、 第 1案内溝 2 6 a〜2 6 f と第 2案内溝 2 8 a〜2 8 f との間で転動するポール 3 2の作用 下にリテーナ 1 3 6が所定角度だけ傾動して前記角度変位が許容されるとともに、 リテーナ 1 3 6の内表面に形成された第 2球面 1 4 6 a、 . 1 4 6 bとスライドリ ング 1 3 8の外表面に形成された第 3球面 1 5 4とが軸方向隙間 1 5 5を介して 接触し、 リテーナ 1 3 6に対してスライドリング 1 3 8が所定角度だけ傾動する ことにより、 前記角度変位が許容される (図 1 3参照) 。 In this case, for example, when the front side of the car rises and the rear side sinks, such as when the car suddenly starts, the relative displacement in the axial direction between the first axis 12 and the second axis 18 Occurs, and the inner ring 30 and the outer cup 16 relatively move in the axial direction. At that time, the slide ring 38 is displaced in the axial direction along the axial gap 15 5 formed between the second spherical surface 1 46 a, 1 46 b and the third spherical surface 1 54, Further, the convex cylindrical surface portion 40 formed on the outer peripheral surface of the inner ring 30 slides along the cylindrical surface portion 56 formed on the inner peripheral surface of the slide ring 138, thereby reducing The pole 32 held by the holding window 34 of the tena 13 36 is in a state where it can roll. Accordingly, the pawl 32 held by the holding window 34 of the retainer 36 is guided by the first guide grooves 26a to 26f and the second guide grooves 28a to 28f to smoothly roll. I do. On the other hand, when the intersection angle between the first axis 12 and the second axis 18 changes, the distance between the first guide groove 26 a to 26 f and the second guide groove 28 a to 28 f Under the action of the pole 3 2 that rolls, the retainer 1 36 tilts by a predetermined angle to allow the angular displacement, and the second spherical surface 1 46 a formed on the inner surface of the retainer 1 36 1 4 6 b and the third spherical surface 1 5 4 formed on the outer surface of the slide ring 1 3 8 contact through the axial gap 1 5 5, and slide ring 1 3 against retainer 1 3 6 By tilting 8 by a predetermined angle, the angular displacement is allowed (see FIG. 13).
このように、 第 1軸 1 2および第 2軸 1 8の等速性を保持しつつ、 それらの角 度変位や軸方向の相対的変位が好適に許容される。  Thus, while maintaining the constant velocity of the first shaft 12 and the second shaft 18, their angular displacement and relative displacement in the axial direction are suitably allowed.
ここで、 第 2の実施の形態に係る等速ジョイント 1 2 0が軸方向の変位を吸収 する場合について、 図 1 4に基づいて説明する。  Here, a case where the constant velocity joint 120 according to the second embodiment absorbs axial displacement will be described with reference to FIG.
第 1軸 1 2と第 2軸 1 8との間に軸方向への相対的変位が発生して、 例えば、 インナリング 3 0が矢印 X 1方向に移動しょうとするとき、 ァウタカップ 1 6の 第 1案内溝 2 6 a〜2 6 f とポール 3 2との接触点 Dが 1' 0 0 %転がり接触であ ると仮定すると、 ポール 3 2は、 中心点〇を回転中心として矢印 E方向の回転を 伴いながら前記接触点 Dを矢印 X 1で移動した距離の 1 / 2だけ矢印 X 2の方向 に沿って移動する。  When a relative displacement in the axial direction occurs between the first axis 12 and the second axis 18, for example, when the inner ring 30 attempts to move in the direction of the arrow X 1, the (1) Assuming that the contact point D between the guide grooves 26a to 26f and the pole 32 is 1'00% rolling contact, the pole 32 will rotate in the direction of the arrow E with the center point 〇 as the center of rotation. While rotating, the contact point D is moved along the direction of the arrow X2 by 移動 of the distance moved by the arrow X1.
この場合、 リテーナ 1 3 6の内表面の第 2球面 1 4 6 a、 1 4 6 bとスライド リング 1 3 8の外表面の第 3球面 1 5 4との間に形成された軸方向隙間 1 5 5に 沿って、 前記スライドリング 1 3 8が軸方向に移動するとともに、 スライドリン グ 1 3 8の内周面の円筒面部 5 6に沿ってインナリング 3 0の外周面の凸状円筒 面部 4 0が摺動することにより、 前記インナリング 3 0の軸方向への変位が許容 される。 .  In this case, the axial gap 1 formed between the second spherical surface 1 46 a, 1 4 6 b on the inner surface of the retainer 1 3 6 and the third spherical surface 1 5 4 on the outer surface of the slide ring 1 3 8 The slide ring 13 8 moves in the axial direction along 5 5, and the convex cylindrical surface on the outer peripheral surface of the inner ring 30 along the inner peripheral surface 5 6 of the slide ring 13 8. The sliding of 40 allows the inner ring 30 to be displaced in the axial direction. .
従うて、 図 1 4に示されるように、 前記ポール 3 2とインナリング 3 0の第 2 案内溝 2 8 a〜2 8 ίとの接触点 Fは、 軸方向に沿って移動可能となり、 1 0 0 %転がり接触となる。 この結果、 第 1軸 1 2と第 2軸 1 8との間に軸方向の大 きな相対的変位が発生した場合であっても、 第 2球面 1 4 6 a、 1 4 6 bと第 3 球面 1 5 4との間に形成された軸方向隙間 1 5 5に沿ってスライドリング 1 3 8 が軸方向に変位し、 しかも、 スライドリング 1 3 8の内周面の円筒面部 5 6とィ ンナリング 3 0の外周面の凸状円筒面部 4 0との摺動作用下に、 前記インナリン グ 3 0の軸方向に対する変位量をより一層増大させることができ、 広い範囲にわ たってスライド抵抗を低減させることができる。 Accordingly, as shown in FIG. 14, the contact point F between the pole 32 and the second guide groove 28 a to 28 の of the inner ring 30 becomes movable along the axial direction. 0 0% rolling contact. As a result, even if a large relative axial displacement occurs between the first axis 12 and the second axis 18, the second spheres 144 a and b b and the second spherical 3 The slide ring 1 3 8 is displaced in the axial direction along the axial gap 1 5 5 formed between the spherical surface 1 5 4 and the cylindrical surface 5 6 on the inner peripheral surface of the slide ring 1 3 8. Under the sliding action of the outer peripheral surface of the inner ring 30 with the convex cylindrical surface portion 40, the amount of displacement of the inner ring 30 in the axial direction can be further increased, and the slide resistance can be reduced over a wide range. Can be reduced.
次に、 第 2の実施の形態に係る等速ジョイント 1 2 0と比較例に係る等速ジョ イント 1 0 1 (図 9参照) との構成、 作用効果について比較検討する。  Next, the configuration, operation and effect of the constant velocity joint 120 according to the second embodiment and the constant velocity joint 101 according to the comparative example (see FIG. 9) will be compared and studied.
第 2の実施の形態に係る等速ジョイント 1 2 0では、 スライドリング 1 3 8の 外表面の第 3球面 1 5 4とリテ一ナ 1 3 6の内表面の第 2球面 1 4 6 a、 1 4 6 bとの間に軸方向隙間 1 5 5が形成されているとともに、 スライドリング 1, 3 8 の内周面の円筒面部 5 6がインナリング 3 0の凸状円筒面部 4 0と接触するよう に形成されているのに対し、 比較例に係る等速ジョイント 1 0 1では、 摺動リン グ 1 0 9の直円筒状の外周面.1 1 1がケージ 1 0 8の内周面と接触するとともに、 摺動リング 1 0 9の凹球面状の内周面 1 1 2が内方継手部材 1 0 5の外周面と接 触するように形成されている点で構成が相違する。 ' 作用の点に関しては、 第 2の実施の形態に係る等速ジョイント 1 2 0では、 ィ ンナリング 3 0が単独でスライドリング 1 3 8に沿って軸方向に変位するように 設けられているのに対し、 比較例に係る等速ジ―ョイント 1 0 1では、 内方継手部 材 1 0 5が摺動リング 1 0 9と一体的に軸方向に変位する点で相違している。 効果の点に関しては、 第 2の実施の形態に係る等速ジョイント 1 2 0では、 第 2球面 1 4 6 a、 1 4 6 bと第 3球面 1 5 4との間に形成された軸方向隙間 1 5 5に沿ってスライドリング 1 3 8が軸方向に変位可能に設けられ、 しかも、 スラ ィドリング 1 3 8の内周面の円筒面部 5 6とインナリング 3 0の外周面の凸状円 筒面部 4 0との'摺動作用下に、 前記インナリング 3 0の軸方向に対する変位量を より二層大きく設定することが可能であるのに対し、 比較例に係る等速ジョイン ト 1 0 1では、 摺動リング 1 0 9の変位を吸収する一対の弾性部材 1 1 0 a、 1 1 O bが該摺動リング 1 0 9とケージ 1 0 8の軸方向端部との間に配設されてい るため、 内方継手部材 1 0 5が微小距離だけ移動することが可能である。 In the constant velocity joint 120 according to the second embodiment, the third spherical surface 154 on the outer surface of the slide ring 13 8 and the second spherical surface 1 4 6 a on the inner surface of the retainer 13 6 An axial gap 1 5 5 is formed between 1 4 6 b and the cylindrical surface 5 6 of the inner peripheral surface of the slide rings 1, 3 8 contacts the convex cylindrical surface 40 of the inner ring 30. On the other hand, in the constant velocity joint 101 according to the comparative example, a straight cylindrical outer peripheral surface of the sliding ring 109 is formed. The configuration is different in that a concave spherical inner peripheral surface 112 of the sliding ring 109 is formed so as to be in contact with an outer peripheral surface of the inner joint member 105 as well as the sliding ring 109. ′ Regarding the operation, in the constant velocity joint 120 according to the second embodiment, the inner ring 30 is provided so as to be displaced in the axial direction alone along the slide ring 13. On the other hand, the constant velocity joint 101 according to the comparative example is different in that the inner joint member 105 is displaced in the axial direction integrally with the sliding ring 109. Regarding the effect, in the constant velocity joint 120 according to the second embodiment, the axial direction formed between the second spherical surface 1 46 a, 1 4 6 b and the third spherical surface 1 5 4 A slide ring 13 8 is provided along the gap 15 5 so that it can be displaced in the axial direction, and the cylindrical surface 56 on the inner peripheral surface of the slide ring 1 38 and the convex circle on the outer peripheral surface of the inner ring 30. While the amount of displacement of the inner ring 30 in the axial direction can be set to be larger by two layers under the sliding action with the cylinder surface portion 40, the constant velocity joint 10 according to the comparative example can be set. In Fig. 1, a pair of elastic members 110 a, 1 Since 1 Ob is disposed between the sliding ring 109 and the axial end of the cage 108, the inner joint member 105 can move a minute distance. .
この場合、 比較例に係る等速ジョイント 1 0 1では、 前記内方継手部材 1 0 5 の移動量を増大させようとすると、 ケージ 1 0 8およびボール 1 0 6が二等分面 からはずれることになり、 駆動軸 1 1 4と被駆動軸 1 1 5との等速性を確保する ことが困難となるおそれがある。  In this case, in the constant velocity joint 101 according to the comparative example, when the moving amount of the inner joint member 105 is increased, the cage 108 and the ball 106 deviate from the bisector. Therefore, it may be difficult to ensure uniform speed between the drive shaft 114 and the driven shaft 115.
これに対して第 2の実施の形態に係る等速ジョイント 1 2 0では、 第 1軸 1 2 と第 2軸 1 8との等速性を確保するダブルオフセット型の等速ジョイント 1 2 0 の構成を保持した状態において、 ィンナリング 3 0の軸方向に対する変位量をよ り一層増大させている点で比較例に係る等速ジョイント 1 0 1とは異なる顕著な 効果を有する。  On the other hand, in the constant velocity joint 120 according to the second embodiment, a double offset type constant velocity joint 120 that secures constant velocity between the first shaft 12 and the second shaft 18 is used. In the state where the configuration is maintained, there is a remarkable effect different from the constant velocity joint 101 according to the comparative example in that the amount of displacement of the inner ring 30 in the axial direction is further increased.
なお、 第 2の実施の形態に係る等速ジョイント 1 2 0の等速性については、 第 1の実施の形態に係る等速ジョイント 1 0と同一であるため、 その詳細な説明を 省略する。  The constant velocity joint of the constant velocity joint 120 according to the second embodiment is the same as the constant velocity joint 10 according to the first embodiment, and a detailed description thereof will be omitted.
次に、 第 2の実施の形態の変形例に係る等速ジョイント 1 2 0 aを図 1 5に示 す。  Next, a constant velocity joint 120a according to a modified example of the second embodiment is shown in FIG.
変形例に係る等速ジョイント 1 2 0 aでは、 リテーナ 1 3 6の保持窓 3 4の内 径寸法 (内径幅) を、 ボール 3 2の直径よりも大きく設定し、 保持窓 3 4の内壁 面とポール 3 2との間にクリアランス 1 6 2を形成することにより、 インナリン グ 3 0の軸方向の変位量をより一層増大させる;;とができる。  In the constant velocity joint 120 a according to the modified example, the inner diameter (inner diameter width) of the retaining window 34 of the retainer 13 36 is set to be larger than the diameter of the ball 32, and the inner wall surface of the retaining window 34 is set. By forming a clearance 162 between the inner pole 30 and the pole 32, the axial displacement of the inner ring 30 can be further increased;
次に、 第 3の実施の形態に係る等速ジョイント 2 1 0を図 1 6〜図 2 2に示 す。  Next, FIGS. 16 to 22 show a constant velocity joint 210 according to a third embodiment.
この第 3の実施の形態に係る等速ジョイント 2 1 0は、 ポール 3 2 (インナリ ング 3 0 ) の変位量を適正に保持するストッパ機構が設けられている点で、 前記 第 1及び第 2の実施の形態に係る等速ジョイント 1 0、 1 2 0と異なる。  The constant velocity joint 210 according to the third embodiment is different from the first and second embodiments in that a stopper mechanism that appropriately holds the displacement of the pole 32 (the inner ring 30) is provided. This is different from the constant velocity joints 10 and 120 according to the embodiment.
' インナリング 3 0の第 2案内溝 2 8 a〜2 8 f には、 ポール 3 2 (インナリン グ 3 0') の変位量を規制するストッパ部 (ストッパ機構) 4 1がスライドリング 3 8側に向かって膨出形成され、 前記ストッパ部 4 1は、 ァウタカップ 1 6の開 口部 1 4側に近接する第 2案内溝 2 8 a〜2 8 f の一方の終端部位にのみ形成さ れる。 '' A stopper (stopper mechanism) 41 that regulates the amount of displacement of the pole 32 (the inner ring 30 ') is provided in the second guide groove 28 a to 28 f of the inner ring 30 on the slide ring 38 side. The stopper portion 41 is formed to bulge toward the opening of the outer cup 16. It is formed only at one end of the second guide grooves 28a to 28f close to the mouth 14 side.
この場合、 前記ストッパ部 4 1は、 第 2案内溝 2 8 a〜2 8 f の断面直線状の 底壁 4 3と連続して形成され、 前記底壁 4 3を基準とした膨出寸法 tは、 約 0 . 5 mm〜2 mmに設定される (図 1 6参照) 。  In this case, the stopper portion 41 is formed continuously with the bottom wall 43 having a linear cross section of the second guide grooves 28 a to 28 f, and a bulging dimension t based on the bottom wall 43. Is set to about 0.5 mm to 2 mm (see Figure 16).
前記ストッパ部 4 1の形状は、 図 1 6及び図 1 8に示されるように、 ァウタ力 ップ 1 6の開口部 1 4側に向かって第 2案内溝 2 8 a〜2 8 f の底壁 4 3から 徐々に膨出するように形成され、 あるいは、 図 2 1に示されるように、 第 2案内 溝 2 8 a〜2 8 ίの底壁 4 3から上方に向かって僅かに立ち上がり、 さらに断面 円弧状に連続する突起部 4 1 aとして形成されてもよい。  The shape of the stopper portion 41 is, as shown in FIGS. 16 and 18, the bottom of the second guide groove 28 a to 28 f toward the opening portion 14 side of the aperture 16. It is formed so as to gradually bulge from the wall 43, or, as shown in FIG. 21, rises slightly upward from the bottom wall 43 of the second guide groove 28a to 28〜, Further, the protrusions may be formed as protrusions 41a that are continuous in an arc shape in cross section.
以下に、 第 3の実施の形態に係る等速ジョイント 2 1 0の動作並びに作用効果 について説明する。  Hereinafter, an operation and an effect of the constant velocity joint 210 according to the third embodiment will be described.
第 1軸 1 2と第 2軸 1 8との間に軸方向への相対的変位が発生して、 例えば、 インナリング 3 0が矢印 X I方向と反対方向 (ァウタカップ 1 6の奥部側) に移 動しょうとする時、 リテーナ 3 6の保持窓 3 4に保持されたポール 3 2は、 イン ナリング 3 0の第 2案内溝 2 8 a〜2 8 f の底壁 4 3に沿って転がり運動を行 ラ。  A relative displacement occurs in the axial direction between the first axis 12 and the second axis 18. For example, the inner ring 30 moves in the direction opposite to the arrow XI direction (the back side of the auta cup 16). When moving, the pole 32 held by the holding window 34 of the retainer 36 rolls along the bottom wall 43 of the second guide groove 28a to 28f of the inner ring 30. Line la.
その際、 前記ポール 3 2がスライドリング 3 8の環状フランジ部 5 0に近接す る第 2案内溝 2 8 a ~ 2 8 f の終端部位に形成されたストッパ部 4 1に当接して 前記転がり運動が阻止される。 従って、 インナリング 3 0がァウタカップ 1 6の 奥部側に移動する際、 ポール 3 2が第 2案内溝 2 8 a〜2 8 f の終端部位に形成 されたストッパ部 4 1に当接してその変位が規制されることにより適正なィンナ ύング 3 0の変位量が確保される (図 2 2参照) 。  At this time, the pawl 32 comes into contact with a stopper portion 41 formed at a terminal portion of the second guide groove 28 a to 28 f close to the annular flange portion 50 of the slide ring 38, and the rolling occurs. Movement is blocked. Therefore, when the inner ring 30 moves to the inner side of the outer cup 16, the pole 32 comes into contact with the stopper 41 formed at the end of the second guide groove 28 a to 28 f. By regulating the displacement, an appropriate amount of displacement of the inner ring 30 is secured (see Fig. 22).
なお、 第 2案内溝 2 8 a〜2 8 f の他方の終端部位であるァウタカップ 1 6の 奥部側には前記ストッパ部 4 1が膨出形成されていない。 これは、 ィンナリング 3 0が矢印 X 1方向に変位した場合、 該インナリング 3 0がスライドリング 3 8 の環状フランジ部 5 0に当接して該インナリング 3 0の矢印 X 1方向に対する変 位が規制されるため、 ァウタカップ 1 6の奥部側の第 2案内溝 2 8 a〜2 8 ίの 終端部位にはストッパ部 4 1を形成する必要がない。 The stopper portion 41 is not formed so as to protrude from the other end portion of the second guide grooves 28 a to 28 f, which is the back side of the outer cup 16. This is because, when the inner ring 30 is displaced in the direction of the arrow X1, the inner ring 30 comes into contact with the annular flange portion 50 of the slide ring 38 and the displacement of the inner ring 30 in the direction of the arrow X1 is reduced. Because of the restriction, the second guide groove 28 a to 28 の It is not necessary to form the stopper portion 41 at the end portion.
次に、 第 4の実施の形態に係る等速ジョイント 3 0 0を図 2 3〜図 2 5に示 す。 なお、 以下の実施の形態において、 第 3の実施の形態に係る等速ジョイント 2 1 0と同一の構成要素には同一の参照符号を付し、 その詳細な説明を省略す る。  Next, FIGS. 23 to 25 show a constant velocity joint 300 according to a fourth embodiment. Note that, in the following embodiments, the same components as those of the constant velocity joint 210 according to the third embodiment will be denoted by the same reference numerals, and detailed description thereof will be omitted.
この第 4の実施の形態に係る等速ジョイント 3 0 0では、 リテーナ 1 3 6の内 壁とスライドリング 1 3 8の外壁との間に軸方向隙間 1 5 5が形成されている点 で第 3の実施の形態に係る等速ジョイント 2 1 0と異なっている。 なお、 前記軸 方向隙間 1 5 5の機能については、 第 2の実施の形態に係る等速ジョイントと同 一であるため、 その詳細な説明を省略する。  In the constant velocity joint 300 according to the fourth embodiment, the axial gap 150 is formed between the inner wall of the retainer 136 and the outer wall of the slide ring 138. This is different from the constant velocity joint 210 according to the third embodiment. Since the function of the axial gap 155 is the same as that of the constant velocity joint according to the second embodiment, a detailed description thereof will be omitted.
次に、 第 5の実施の形態に係る等速ジョイント 4 0 0を図 2 6及び図 2 7に示 す。  Next, FIGS. 26 and 27 show a constant velocity joint 400 according to a fifth embodiment.
この第 5の実施の形態に係る等速ジョイント 4 0 0では、 第 2軸 1 8の所定部 位にストツバ機構として機能するリング部材 2 0 2が環状溝 2 0 4を介して装着 されている点で第 3及び第 4実施の形態に係る等速ジョイント 2 1 0、 3 0 0と 相違している。  In the constant velocity joint 400 according to the fifth embodiment, a ring member 202 functioning as a stop ring mechanism is mounted at a predetermined position of the second shaft 18 via an annular groove 204. This is different from the constant velocity joints 210 and 300 according to the third and fourth embodiments.
このリング部材 2 0 2の外径は、 スライドリング 3 8の孔部 3 8 aの内径より も大きく設定され、 インナリング 3 0と一体的に第 2軸 1 8がァウタカップ 1 6 の奥部側に向かって移動した際、 前記第 2軸 1. 8に装着されたリング部材 2 0 2 がスライドリング 3 8の環状フランジ部 5 0に当接することによりインナリング 3 0の変位が規制され (図 2 7参照) 、 該インナリング 3 0の適正な変位量が確 保される。  The outer diameter of the ring member 202 is set to be larger than the inner diameter of the hole 38 a of the slide ring 38, and the second shaft 18 is integrally formed with the inner ring 30 on the inner side of the outer cup 16. When the ring member 202 is moved toward the second shaft 1.8, the displacement of the inner ring 30 is restricted by the ring member 202 mounted on the second shaft 1.8 abutting against the annular flange portion 50 of the slide ring 38 (see FIG. 27), the appropriate amount of displacement of the inner ring 30 is ensured.
次に、 第 6の実施の形態に係る等速ジョイント 5 0 0を図 2 8に示す。  Next, a constant velocity joint 500 according to a sixth embodiment is shown in FIG.
この第 6の実施の形態に係る等速ジョイント 5 0 0では、 第 4の実施の形態に 係る等速ジョイント 3 0 0の第 2軸 1 8に対して図 2 6に示されるリング部材 2 0 2が装着されている点で第 5の実施の形態に係る等速ジョイント 3 0 0と共通 している。  In the constant velocity joint 500 according to the sixth embodiment, a ring member 200 shown in FIG. 26 is provided with respect to the second shaft 18 of the constant velocity joint 300 according to the fourth embodiment. 2 is common to the constant velocity joint 300 according to the fifth embodiment in that it is mounted.
なお、 前記リング部材 2 0 2の構成乃至作用効果は、 第 5の実施の形態と同一 であるため、 その詳細な説明を省略する。 Note that the configuration, operation, and effects of the ring member 202 are the same as those of the fifth embodiment. Therefore, the detailed description is omitted.
次に、 第 7の実施の形態に係る等速ジョイント 6 0 0を図 2 9に示す。  Next, a constant velocity joint 600 according to a seventh embodiment is shown in FIG.
ポール 3 2がインナリング 3 0の第 2案内溝 2 8 a〜2 8 f に沿って転がり運 動をする際、 前記ポール 3 2が前記第 2案内溝 2 8 a〜2 8 f の終端部位に設け られたストッパ部 4 1に当接することにより打音 (干渉音) が発生するおそれが ある。 また、 インナリング 3 0とスライドリング 3 8とが軸方向に沿って相対的 に変位する際、 前記スライドリング 3 8の環状フランジ部 5 0の内壁と前記イン ナリング 3 0の端面とが当接することにより打音 (干渉音) が発生するおそれが ある。  When the pole 32 rolls along the second guide groove 28 a to 28 f of the inner ring 30, the pole 32 is terminated at the end of the second guide groove 28 a to 28 f. There is a possibility that hitting sound (interference sound) may be generated by contacting the stopper portion 41 provided on the horn. When the inner ring 30 and the slide ring 38 are relatively displaced along the axial direction, the inner wall of the annular flange portion 50 of the slide ring 38 comes into contact with the end face of the inner ring 30. As a result, a tapping sound (interference sound) may be generated.
そこで、 第 7の実施の形態に係る等速ジョイント 6 0 0では、 前記打音の発生 を阻止するために、 例えば、 樹脂製材料又はゴム製材料等からなり、 ストッパ部 4 1とポール 3 2との当接面を被覆する第 1緩衝部材 4 0 2と、 スライドリング 3 8の環状フランジ部 5 0の内壁とインナリング 3 0の端面との当接面を被覆す る第 2緩衝部材 4 0 4とがそれぞれ設けられる。  Therefore, in the constant velocity joint 600 according to the seventh embodiment, in order to prevent the hitting sound from being generated, the constant velocity joint 600 is made of, for example, a resin material or a rubber material. A first cushioning member that covers the contact surface between the inner ring 30 and the end surface of the inner ring 30 and a second cushioning member 4 that covers the contact surface between the inner wall of the annular flange 50 of the slide ring 38 and the end surface of the inner ring 30 0 and 4 are provided.
前記第 1緩衝部材 4 0 2は、 インナリング 3 0の一方の終端部位であるストッ パ部 4 1の上面に固着され、 前記第 2緩衝部材 4 0 4は、 スライドリング 3 8の 環状フランジ部 5 0の内壁に固着される。 第 1及び第 2緩衝部材 4 0 2、 4 0 4 を設けることにより、 ストッパ部 4 1とポール 3 2、 あるいは、 インナリング 3 0とスライドリング 3 8が当接した際の衝撃が吸収されて打育の発生が阻止され る。  The first cushioning member 402 is fixed to an upper surface of a stopper portion 41 which is one end portion of the inner ring 30, and the second cushioning member 400 is an annular flange portion of a slide ring 38. It is fixed to the 50 inner wall. By providing the first and second cushioning members 402, 404, the impact when the stopper portion 41 and the pole 32 or the inner ring 30 and the slide ring 38 abut is absorbed. The occurrence of rearing is prevented.
なお、 前記第 1緩衝部材 4 0 2と第 2緩衝部材 4 0 4とをそれぞれ別体で構成 するのではなく、 図 3 0に示されるように、 インナリング 3 0の端面とストッパ 部 4 1とをそれぞれ被覆するように一体的に構成された単一の緩衝部材 4 0 6を 配設するようにしてもよい。  The first cushioning member 402 and the second cushioning member 404 are not formed separately from each other. Instead, as shown in FIG. 30, the end face of the inner ring 30 and the stopper portion 41 are formed. And a single cushioning member 406 may be provided which is integrally formed so as to respectively cover the above.
このように緩衝部材 4 0 2、 4 0 4、 4 0 6を設けることにより、 打音の発生 が阻止されてスライドリング 3 8とインナリング 3 0との軸方向に沿った円滑な 相対的変位がなされる。  By providing the cushioning members 402, 404, and 406 in this manner, generation of a tapping sound is prevented, and a smooth relative displacement of the slide ring 38 and the inner ring 30 along the axial direction is achieved. Is made.
次に、 第 8及び第 9の実施の形態に係る等速ジョイント 7 0 0、 8 0 0を図 3 1及び図 3 2に示す。 Next, the constant velocity joints 700 and 800 according to the eighth and ninth embodiments are shown in FIG. 1 and Fig. 32.
この第 8の実施の形態に係る等速ジョイント 7 0 0では、 図 3 1に示されるよ うに、 第 2軸 1 8に装着されたリング部材 2 0 2が当接する、 スライドリング 3 8の環状フランジ部 5 0の外周面に緩衝部材 5 0 2を固着している点で前記第 7 の実施の形態に係る等速ジョイント 6 0 0と異なる。  In the constant velocity joint 700 according to the eighth embodiment, as shown in FIG. 31, the ring member 202 mounted on the second shaft 18 comes into contact with the annular ring of the slide ring 38. This is different from the constant velocity joint 600 according to the seventh embodiment in that the cushioning member 502 is fixed to the outer peripheral surface of the flange portion 50.
また、 第 9の実施の形態の形態に係る等速ジョイント 8 0 0では、 図 3 2に示 されるように、 スライドリング 3 8の環状フランジ部 5 0の外面ではなく、 リン グ部材 2 0 2にリング状の緩衝部材 6 0 2が装着されている点で第 8の実施の形 態に係る等速ジョイント 7 0 0と相違している。 この場合、 前記緩衝部材 6 0 2 とリング部材 2 0 2とを一体的に形成してもよいし、 あるいは別体で形成しても よい。  Further, in the constant velocity joint 800 according to the ninth embodiment, as shown in FIG. 32, not the outer surface of the annular flange portion 50 of the slide ring 38 but the ring member 20. The second embodiment is different from the constant velocity joint 700 according to the eighth embodiment in that a ring-shaped cushioning member 600 is attached to the second embodiment. In this case, the buffer member 62 and the ring member 202 may be formed integrally, or may be formed separately.
すなわち、 インナリング 3 0と一体的に第 2軸 1 8が軸方向に沿って移動した 際、 第 2軸 1 8の所定部位に装着された緩衝部材 6 0 2がスライドリング 3 8の 外面に当接して打音の発生が阻止されると共に、 インナリング 3 0の移動量が適 正に確保される。  That is, when the second shaft 18 moves in the axial direction integrally with the inner ring 30, the cushioning member 62 attached to a predetermined portion of the second shaft 18 is attached to the outer surface of the slide ring 38. The contact makes it possible to prevent the occurrence of a tapping sound, and also ensures that the amount of movement of the inner ring 30 is properly maintained.
なお、 図 3 3及び図 3 4に示されるように、 リテーナ 1 3 6の内壁とスライド リング 1 3 8の外壁との間に軸方向隙間 1 5 5が形成された等速ジョイント 7 0 0 a、 8 0 0 aに前記と同様の 衝部材 5 0 2、 6 0 2をそれぞれ設けてもよ い。  As shown in FIGS. 33 and 34, a constant velocity joint 700 a having an axial gap 150 formed between the inner wall of the retainer 1 36 and the outer wall of the slide ring 1 38. , 800a may be provided with the same impact members 502, 602 as described above.
あるいは、 図 3 5及び図 3 7に示されるように、 スライドリング 3 8、 1 3 8 の環状フランジ部 5 0の内壁に近接するインナリング 3 0の側周面に緩衝部材.5 0 2を装着してもよいし、 さらに、 図 3 6及び図 3 8に示されるように、 スライ ドリング 3 8、 1 3 8の環状フランジ部 5 0の内壁にのみ緩衝部材 5 0 2を装着 してもよい。 なお、 図 3 7及び図 3 8に示される等速ジョイントは、 軸方向隙間 1 5 5が形成されている点で図 3 5、 図 3 6とその構成が相違している。  Alternatively, as shown in FIG. 35 and FIG. 37, a buffer member is provided on the side peripheral surface of the inner ring 30 which is close to the inner wall of the annular flange portion 50 of the slide rings 38, 1 38. Alternatively, as shown in FIGS. 36 and 38, the cushioning member 502 may be mounted only on the inner wall of the annular flange 50 of the slide rings 38, 138. Good. The constant velocity joints shown in FIGS. 37 and 38 differ from those of FIGS. 35 and 36 in that an axial gap 150 is formed.
次に、 第 1 0の実施の形態に係る等速ジョイント 9 0 0を図 3 9及び図 4 0に 示す。'  Next, a constant velocity joint 900 according to the tenth embodiment is shown in FIGS. '
この第 1 0の実施の形態に係る等速ジョイント 9 0 0では、 第 2軸 1 8の端部 (ァゥ夕カップ 1 6の奥部側) から圧入されて該第 2軸 1 8の所定部位に係止さ れた円筒体 7 0 2を有し、.前記円筒体 7 0 2の端面には、 スライドリング 3 8の 環状フランジ部 5 0に係合可能な環状突起部 7 0 4が形成される。 In the constant velocity joint 900 according to the tenth embodiment, the end of the second shaft 18 (A back side of the cup cup 16) and has a cylindrical body 702 which is press-fitted from the inner side of the second shaft 18 and is fixed to a predetermined portion of the second shaft 18; An annular projection 704 that can be engaged with the annular flange 50 of the slide ring 38 is formed.
前記円筒体 7 0 2の環状突起部 7 0 4はストッパ機構として機能するものであ り、 インナリング 3 0がァウタカップ 1 6の奥部側に向かって軸方向 変位した 際、 第 2軸 1 8に係止された円筒体 7 0 2の環状突起部 7 0 4がインナリング 3 0と一体的に変位し、 図 4 0に示されるように前記環状突起部 7 0 4が環状フラ ンジ部 5 0に当接することによりインナリング 3 0の変位量が規制される。 次に、 本実施の形態に係る回転駆動力伝達機構 1 0 0を前輪駆動車に適用した 状態を図 4 1に示す。 この回転駆動力伝達機構 1 0 0は、 エンジン (回転駆動 源) 2 1 2及びデフアレンシャルギア装置 2 1 4を間として同軸状に配置された 一組のドライブシャフト 2 1 6 a、 2 1 6 bを有する。  The annular protrusion 704 of the cylindrical body 702 functions as a stopper mechanism, and when the inner ring 30 is displaced in the axial direction toward the back side of the auta cup 16, the second shaft 18 The annular protrusion 704 of the cylindrical body 702 locked to the inner ring is displaced integrally with the inner ring 30, and as shown in FIG. 40, the annular protrusion 704 becomes the annular flange 5. The displacement of the inner ring 30 is regulated by abutting on 0. Next, FIG. 41 shows a state in which the rotary driving force transmission mechanism 100 according to the present embodiment is applied to a front wheel drive vehicle. This rotational driving force transmission mechanism 100 is composed of a set of drive shafts 2 16 a, 2 1 arranged coaxially with an engine (rotary driving source) 2 1 2 and a differential gear device 2 1 4 therebetween. Has 6b.
長尺な一方のドライブシャフト 2 1 6 aの一端部にはホイール側の第 1ァウタ ジョイント 2 1 8 aが連結され、 他端部にはエンジン 2 1 2側の第 1インナジョ イント 2 2 0 aが連結される。 短尺な他方のドライブシャフト 2 1 6 bの一端部 にはホイール側の第 2ァウタジョイント 2 1 8 bが連結され、 他端部にはェンジ ン側の第 2インナジョイント 2 2 0 bが連結される。  A first outer joint 218a on the wheel side is connected to one end of one long drive shaft 216a, and a first inner joint 220a on the engine side is connected to the other end. Are linked. A second outer joint 218b on the wheel side is connected to one end of the other short drive shaft 216b, and a second inner joint 220b on the engine side is connected to the other end. Is done.
前記第 1及び第 2インナジョイント 2 2 0 a、 2 2 O bは、 デフアレンシャル ギア装置 2 1 4の図示しない回転駆動軸にそれぞれ連結される異種又は同一種類 の等速ジョイントからなり、 前記回転駆動軸を媒介として前記エンジン 2 1 2の 振動が伝達される。 また、 前記第 1及び第 2ァウタジョイント 2 1 8 a、 2 1 8 bは、 同一構成からなる図示しない公知のバーフィールドタイプの等速ジョイン 卜が用いられる。 ,  The first and second inner joints 220a and 220b are composed of different types or the same type of constant velocity joints respectively connected to a rotary drive shaft (not shown) of the differential gear device 214. The vibration of the engine 211 is transmitted via the rotary drive shaft. Further, as the first and second outer joints 218a and 218b, known bar-field type constant velocity joints (not shown) having the same configuration are used. ,
前記デフアレンシャルギア装置 2 1 4側に連結される第 1及び第 2インナジョ イント 2 2 0 a、 2 2 O bとしては、 第 1等速ジョイント 1 0 (図 1〜図 5参 照) 、 第 2等速ジョイン卜 2 0 0及び第 3等速ジョイント 3 0 1からなる 3種類 が含まれる。  The first and second inner joints 220a and 22ob connected to the differential gear device 214 side include a first constant velocity joint 10 (see FIGS. 1 to 5). It includes three types consisting of a second constant velocity joint 200 and a third constant velocity joint 301.
前記第 1〜第 3等速ジョイント 1 0、 2 0 0、 3 0 1の組み合わせとしては、 図 4 2に示されるように、 第 1及び第 2インナジョイント 2 0 a、 2 0 bが同一 構造からなり図 1〜図 5に示される第 1等速ジョイント 1 0によってそれぞれ構 成される第 1タイプの回転駆動力伝達機構 1 0 0 aと、 図 4 3に示されるよう に、 第 1及び第 2ィンナジョイント 2 2 0 a、 2 2 0 bのいずれか一方が第 1等 速ジョイント 1 0によって構成され他方が第 2等速ジョイント 2 0 0によって構 成される第 2タイプの回転駆動力伝達機構 1 0 0 bと、 図 4 4に示されるよう に、 第 1及び第 2ィンナジョイント 2 2 0 a、 2 2 0 bのいずれか一方が第 1等 速ジョイント 1 0によって構成され他方が第 3等速ジョイント 3 0 1によって構 成される第 3タイプの回転駆動力伝達機構 1 0 0 cとを有する。 As a combination of the first to third constant velocity joints 10, 200, 301, As shown in FIG. 42, the first and second inner joints 20a and 20b have the same structure and are respectively constituted by the first constant velocity joints 10 shown in FIGS. 1 to 5. One type of rotational driving force transmission mechanism 100a, and as shown in FIG. 43, one of the first and second inner joints 220a and 220b is a first constant velocity joint. A second type of rotational driving force transmission mechanism 100b composed of a second constant velocity joint 200 and the other, as shown in FIG. A third type of rotational driving force transmission mechanism in which one of the joints 220 a and 220 b is constituted by a first constant velocity joint 10 and the other is constituted by a third constant velocity joint 301. 100 c.
なお、 第 2タイプ及び第 3タイプの回転駆動力伝達機構 1 0 0 b、 1 0 0 cに おいて、 第 1等速ジョイント 1 0は、 左右の第 1及び第 2インナジョイント 2 0 a、 2 0 bのいずれの側に配設されてもよい。  In the second and third types of rotational driving force transmission mechanisms 100b and 100c, the first constant velocity joint 10 includes left and right first and second inner joints 20a, It may be located on either side of 20b.
前記第 1〜第 3タイプの回転駆動力伝達機構 1 0 0 a〜 1 0 0 cは、 後述する ように、 3次振動及び Z又はアイドリング振動の振動特性に対応して適宜選択さ れるものである。  The first to third types of rotational driving force transmission mechanisms 100a to 100c are appropriately selected according to the vibration characteristics of the tertiary vibration and Z or idling vibration, as described later. is there.
次に、 前記第 1〜第 3タイプの回転駆動力伝達機構 1 0 0 a〜 1 0 0 cを構成 する第 1〜第 3等速ジョイント 1 0、 2 0 0、 3 0 1について、 順次、 説明す る。  Next, the first to third constant velocity joints 100, 200, and 310 constituting the first to third types of rotational driving force transmission mechanisms 100a to 100c are sequentially described. explain.
先ず、 第 1等速ジョイント 1 0は、 図 1〜図 5に示される第 1の実施の形態に 係る等速ジョイント 1 0と同一であるので、 その詳細な説明を省略する。 なお、 前記等速ジョイント 1 0に代替して、 図 1 0〜図 1 5に示される軸方向隙間 1 5 5が形成された第 2の実施の形態に係る等速ジョイント 1 2 0を前記第 1等速ジ ョイン卜として用いてもよい。  First, the first constant velocity joint 10 is the same as the constant velocity joint 10 according to the first embodiment shown in FIGS. 1 to 5, and thus a detailed description thereof is omitted. Note that, instead of the constant velocity joint 10, the constant velocity joint 120 according to the second embodiment in which the axial gaps 150 shown in FIG. 10 to FIG. It may be used as a constant velocity joint.
第 1等速ジョイント 1 0では、 リテーナ 3 6とインナリング 3 0との間にスラ イドリング 3 8を設けることにより、 前記インナリング 3 0の軸方向に対する変 位量をより一層増大させ広範囲に渡ってスライド抵抗を低減させることができる ことから、 アイドリング振動が吸収されて良好な振動特性が得られる。  In the first constant velocity joint 10, by providing a slide ring 38 between the retainer 36 and the inner ring 30, the amount of displacement of the inner ring 30 in the axial direction is further increased to cover a wide area. As a result, idling vibration is absorbed and good vibration characteristics can be obtained.
さらに、 第 1等速ジョイント 1 0では、 リテ一ナ 3 6によって 6個のポール 3 2が保持される構成が採用されているため、 回転 3次の誘起スラスト力に起因す る 3次振動が低減されて良好な振動特性が得られる。 In addition, in the first constant velocity joint 10, six poles 3 Since the configuration in which 2 is held is adopted, the tertiary vibration caused by the induced tertiary thrust force of rotation is reduced, and good vibration characteristics are obtained.
次に、 第 2等速ジョイント 2 0 0を図 4 5に示す。  Next, the second constant velocity joint 200 is shown in FIG.
この第 2等速ジョイント 2 0 0は、 継手軸上においてボール中心面の両側にォ フセットして配置された曲率中心を有する部分球面状の内外表面を有するリテー ナを備えたダブルオフセット型である点は前記第 1等速ジョイント 1 0と共通し ているが、 ァウタカップ 2 0 1内に配設されたリテ一ナ 2 0 3とインナリング 2 0 5との間にスライドリング 3 8が設けられおらず、 前記リテ一ナ 2 0 3の内表 面とインナリング 2 0 5の外表面とが直接接触している点で第 1等速ジョイント 1 0と相違している。  The second constant velocity joint 200 is a double offset type having a retainer having a partially spherical inner and outer surface having a center of curvature and offset on both sides of the ball center plane on the joint axis. The points are common to the first constant velocity joint 10 described above, but a slide ring 38 is provided between a retainer 203 disposed inside the outer cup 201 and an inner ring 205. The first constant velocity joint 10 differs from the first constant velocity joint 10 in that the inner surface of the retainer 203 and the outer surface of the inner ring 205 are in direct contact with each other.
なお、 図 4 5に示される第 2等速ジョイント 2 0 0において、 第 1等速ジョイ ント 1 0と同一の構成要素には同一の参照符号を付し、 その詳細な説明を省略す, :る。  In the second constant velocity joint 200 shown in FIG. 45, the same components as those of the first constant velocity joint 10 are denoted by the same reference numerals, and detailed description thereof will be omitted. You.
第 2等速ジョイント 2 0 0では、 第 1等速ジョイント 1 0と比較してスライド リング 3 8が設けられていない点で部品点数が少なくコストを削減することがで きるが、 ポール 3 2のころがり範囲が限定される点においてスライド抵抗が大き くなる。 従って、 第 2等速ジョイント 2 0 0は、 回転 3次の誘起スラスト力に起 因する 3次振動については第 1等速ジョイント 1 0と同様に良好な振動特性が得 られるが、 アイドリング振動については、 第 1等速ジョイント 1 0と比較してそ の振動特性が劣る。 _  In the second constant velocity joint 200, the number of parts is small and the cost can be reduced because the slide ring 38 is not provided as compared with the first constant velocity joint 10; The slide resistance is increased in that the rolling range is limited. Therefore, the second constant velocity joint 200 provides good vibration characteristics for the tertiary vibration caused by the induced tertiary thrust force of the rotation, similar to the first constant velocity joint 10, but the idling vibration The vibration characteristics are inferior to the first constant velocity joint 10. _
続いて、 第 3等速ジョイント 3 0 1を図 4 6に示す。  Subsequently, the third constant velocity joint 301 is shown in FIG.
この第 3等速ジョイント 3 0 1は、 公知のトリボード型等速ジョイントからな り、 有底筒状のァウタカップ 3 0 2の内壁面には、 軸線方向に沿って延在し軸心 の回りにそれぞれ 1 2 0度の間隔をおいて 3本の案内溝 3 0 4 a〜 3 0 4 cが形 成される (但し、 案内溝 3 0 4 b、 3 0 4 cは図示するのを省略している) 。 前記ァウタカップ 3 0 2の空間部には、 それぞれ案内溝 3 0 4 a〜 3 0 4 cに 向かつ'て膨出し軸心の回りに 1 2 0度の間隔をおいて 3本のトラニオン 3 0 6 a 〜3 0 6 cがー体的に形成される (但し、 トラニオン 3 0 6 b、 3 0 6 cは、 図 示するのを省略している) 。 The third constant velocity joint 301 is formed of a known tri-board type constant velocity joint, and extends along the axial direction on the inner wall surface of the bottomed tubular auta cup 302 so as to extend around the axis. Three guide grooves 304a to 304c are formed at intervals of 120 degrees, respectively (however, the guide grooves 304b and 304c are omitted from the drawing). ing) . In the space of the auta cup 302, three trunnions 30 are provided at intervals of 120 degrees around the bulging axis toward the guide grooves 304a to 304c, respectively. 6 a to 30 c are formed physically (However, trunnions 300 b and 300 c are (Not shown).
外周に沿って部分球面を有する前記トラニオン 3 0 6 a ( 3 0 6 b 3 0 6 c ) には、 断面 L字状に形成された筒状のローラ支持体 3 0 8が外嵌され、 前記 ローラ支持体 3 0 8の外周面には、 複数本の転動体 3 1 0を介してリング状の口 ーラ 3 1 2が装着される。 なお、 転動体 3 1 0は、 例えば、 ニードル、 ころ等を 含む転がり軸受けであればよい。  The trunnion 300a (306b306c) having a partial spherical surface along the outer periphery is fitted with a cylindrical roller support member 108 having an L-shaped cross section. A ring-shaped roller 312 is mounted on the outer peripheral surface of the roller support 3108 via a plurality of rolling elements 310. The rolling element 310 may be a rolling bearing including a needle, a roller, and the like, for example.
第 1〜第 3タイプからなる回転駆動力伝達機構 1 0 0 a〜l 0 0 cは、 前記第 1等速ジョイント 1 0を基本とし、 ダブルオフセット型の第 2等速ジョイント 2 0 0と、 トリボード型の第 3等速ジョイント 3 0 1との組み合わせによって構成 される。  The first to third types of rotational driving force transmission mechanisms 100 a to 100 c are based on the first constant velocity joint 10, and a double offset type second constant velocity joint 200. It is composed of a combination with a tri-board type third constant velocity joint 301.
次に、 第 1〜第 3等速ジョイント 1 0、 2 0 0、 3 0 1の 3次振動、 アイドリ ング振動に対する振動特性を図 4 7に示す。 図 4 7において、 〇印は、 各種の振 動に対する特性が良好であることを示し、 △印は、 各種の振動に対する特性が普 通であることを示している。  Next, FIG. 47 shows the vibration characteristics of the first to third constant velocity joints 100, 200, and 301 with respect to the tertiary vibration and the idling vibration. In FIG. 47, the symbol 〇 indicates that the characteristics for various vibrations are good, and the symbol △ indicates that the characteristics for various vibrations are normal.
なお、 3次振動 (加速時振動) とは、 2軸 (第 1軸 1 2及び第 2軸 1 8 ) が作 動角を有するときの回転 3次の誘起スラスト力に起因する、 発進、 加速時におけ る車体の横揺れをいい、 アイドリング振動とは、 軸方向のスライド抵抗に起因す る のであり、 回転トルクが付与されている状態において、 車体が停止したとき のフロア、 ハンドル等に付与される振動をいう。  The tertiary vibration (vibration during acceleration) refers to the rotation when two axes (first axis 12 and second axis 18) have an operating angle, starting and accelerating due to the tertiary induced thrust force. Idling vibration is caused by axial sliding resistance, and is applied to the floor, steering wheel, etc. when the vehicle stops when rotational torque is applied. Vibration.
図 4 7から諒解されるように、 第 1等速ジョイント 1 0は、 3次振動及びアイ ドリング振動のいずれの振動も抑制されて良好な振動特性を有し、 第 2等速ジョ イント 2 0 0は、 3次振動が抑制されて良好な振動特性が得られるがアイドリン グ振動に対して普通の振動特性を有し、 第 3等速ジョイント 3 0 1は、 アイドリ ング振動が抑制されて良好な振動特性が得られるが 3次振動に対して普通の振動 特性を有する。  As can be understood from FIG. 47, the first constant velocity joint 10 has good vibration characteristics by suppressing both the tertiary vibration and the idling vibration, and has the second constant velocity joint 20. 0 indicates that the tertiary vibration is suppressed and good vibration characteristics are obtained, but has normal vibration characteristics with respect to idling vibration, and the third constant velocity joint 301 is good because the idling vibration is suppressed Although it has excellent vibration characteristics, it has ordinary vibration characteristics for tertiary vibration.
このような各種の振動に対して振動特性が異なる第 1〜第 3等速ジョイント 1 0、 2 0 0、 3 0 1を組み合わせて、 図 4 2〜図 4 4に示される第 1〜第 3タイ プの回転駆動力伝達機構 1 0 0 a〜 1 0 0 cを構築する。 例えば、 車体の種類、 大きさや駆動方式の相違等によって、 - 3次振動及びアイ ドリング振動のいずれの振動特性も劣化する条件を有する場合には、 図 4 2に示 されるような左右の第 1及び第 2インナジョイント 2 2 0 a , 2 2 0 bの両方に 第 1等速ジョイント 1 0、 1 0がそれぞれ配設ざれた第 1タイプの回転駆動力伝 達機構 1 0 0 aを選択する。 なお、 3次振動及びアイドリング振動のいずれの振 動特性も劣化する条件とは、 例えば、 2軸の作動角が大きく、 急発進時における 車体のフロントノーズのアップ量が大きい車両で、 且つ、 独立四輪駆動車等の駆 動トルクの大きい車両に使用された場合をいう。 Combining the first to third constant velocity joints 10, 200, and 301 having different vibration characteristics with respect to such various vibrations, the first to third constant velocity joints shown in FIGS. 42 to 44 are combined. The type of rotational driving force transmission mechanism 100a to 100c is constructed. For example, depending on the type, size, drive system, etc. of the vehicle body, if there is a condition that both the tertiary vibration and the idling vibration deteriorate, the left and right vibrations as shown in Fig. 42 Select the first type of rotational driving force transmission mechanism 100a, in which the first constant velocity joints 10 and 10 are respectively disposed in both the 1st and 2nd inner joints 220a and 220b. I do. The conditions under which the vibration characteristics of both the tertiary vibration and the idling vibration are degraded include, for example, a vehicle in which the operating angle of the two axes is large, and the front nose of the vehicle body is large when the vehicle suddenly starts, and is independent. This refers to cases where the vehicle is used for vehicles with large driving torque, such as four-wheel drive vehicles.
また、 例えば、 車体の種類、 大きさや駆動方式の相違等によって、 アイドリン グ振動の振動特性は良好であるが 3次振動の振動特性が劣化する条件を有する場 合には、 図 4 3に示されるような第 1及び第 2インナジョイント 2 2 0 a、 2 2 0 bの一方に第 1等速ジョイント 1 0が配設され、 他方に第 2等速ジョイント 2 0 0が配設された第 2タイプの回転駆動力伝達機構 1 0 0 bを選択する。 なお、 アイドリング振動の振動特性は良好であるが 3次振動の振動特性が劣化する条件 とは、 例えば、 2軸の作動角が大きい車両に使用された場合をいう。  For example, if the vibration characteristics of idling vibration are good but the vibration characteristics of tertiary vibration are deteriorated due to differences in the type, size, and drive system of the vehicle body, etc. The first and second inner joints 220a and 220b are provided with a first constant velocity joint 10 on one side and a second constant velocity joint 200 on the other side. Select the two types of rotational driving force transmission mechanism 100b. The conditions under which the vibration characteristics of the idling vibration are good but the vibration characteristics of the tertiary vibration deteriorate are, for example, a case where the vehicle is used in a vehicle having a large operating angle of two axes.
さらに、 例えば、 車体の種類、 大きさや駆動方式の相違等によって、 3次振動 の振動特性は良好であるがアイドリング振動の振動特性が劣化する条件を有する 場合には、 図 4 4に示されるような第 1及び第 2インナジョイント 2 2 0 a、 2 2 0 bの一方に第 1等速ジョイント 1 0が配設され、 他方に第 3等速ジョイント 3 0 1が配設された第 3タイプの回転駆動力伝-達機構 1 0 0 cを選択する。 な お、 3次振動の振動特性は良好であるがアイドリング振動の振動特性が劣化する 条件とは、 例えば、 独立四輪駆動車等の駆動トルクが大きい車両に使用された場 合をいう。  Furthermore, for example, if the vibration characteristics of the tertiary vibration are good but the vibration characteristics of the idling vibration are deteriorated due to differences in the type, size, drive method, etc. of the vehicle body, as shown in FIG. 44, 3rd type in which the first constant velocity joint 10 is disposed on one of the first and second inner joints 220a and 220b and the third constant velocity joint 301 is disposed on the other Of the rotation drive force transmission mechanism 100 c of the above. The condition in which the vibration characteristic of the tertiary vibration is good but the vibration characteristic of the idling vibration is deteriorated means, for example, a case where the vibration characteristic is used for a vehicle having a large driving torque such as an independent four-wheel drive vehicle.
このように本実施の形態では、 各種の振動特性に対応して第 1〜第 3タイプの 回転駆動力伝達機構 1 0 0 a〜 l 0 0 cのいずれか 1つを任意に選択することに より、 3次振動及びアイドリング振動がいずれも抑制されて良好な振動特性を得 ることができる。  As described above, in the present embodiment, any one of the first to third types of rotational driving force transmission mechanisms 100 a to 100 c can be arbitrarily selected according to various vibration characteristics. Accordingly, the tertiary vibration and the idling vibration are both suppressed, and good vibration characteristics can be obtained.

Claims

請求の範囲 The scope of the claims
1. 相交わる 2軸 (12、 18) の一方に連結され、 内周面を有するとともに 軸方向に延在する複数の第 1案内溝 (26 a〜26 f ) が形成され、 一端部が開 口するァウタ部材 (16) と、 1. A plurality of first guide grooves (26a to 26f), which are connected to one of the two intersecting axes (12, 18) and have an inner peripheral surface and extend in the axial direction, are formed. A mouth member to be spoken (16),
前記 2軸の他方に連結され、 外周に凸状円筒面 (40) を有するとともに軸方 向に延在し前記第 1案内溝と同数の第 2案内溝 (28 a〜28 f ) が形成された インナリング (30) と、  Second guide grooves (28a to 28f), which are connected to the other of the two shafts, have a convex cylindrical surface (40) on the outer periphery, extend in the axial direction, and have the same number as the first guide grooves. With inner ring (30)
前記第 1案内溝と前記第 2案内溝との間で転動可能に配設され、 トルクを伝達 するポール (32) と、  A pole (32) that is arranged to be rollable between the first guide groove and the second guide groove and that transmits torque;
前記ポールを収納する保持窓 (34) が形成され、 継手軸上においてポール中 心面との交点の両側に等距離だけオフセットした曲率中心 (A、 B) を有する外 表面側の第 1球面 (44) と内表面側の第 2球面 (46) とが形成されたリテー ナ (3' 6) と、  A holding window (34) for accommodating the pole is formed, and a first spherical surface on the outer surface side having a center of curvature (A, B) equidistantly offset on both sides of an intersection with the pole center plane on the joint axis ( 44) and a retainer (3 '6) formed with a second spherical surface (46) on the inner surface side,
を備える等速ジョイントにおいて、  In constant velocity joints with
前記ィンナリングと前記リテーナとの間には中間部材が介装され、 前記中間部 材には、 前記インナリングの凸状円筒面に接触する円筒面 (56) と、 前記リテ —ナの第 2球面に接触する第 3球面 (54) とが形成されることを特徴とする等 速ジョイント (10) 。  An intermediate member is interposed between the inner ring and the retainer. The intermediate member has a cylindrical surface (56) that contacts a convex cylindrical surface of the inner ring, and a second spherical surface of the retainer. A constant velocity joint (10) characterized in that a third spherical surface (54) is formed in contact with the joint.
2. 請求項 1記載の等速ジョイン卜において、 2. In the constant velocity join described in claim 1,
前記リテーナに形成された保持窓の軸方向の幅は、 前記ポールの直径よりも大 きく設定されることを特徴とする等速ジョイント。  The constant velocity joint according to claim 1, wherein an axial width of the holding window formed in the retainer is set to be larger than a diameter of the pole.
3. 請求項 1記載の等速ジョイントにおいて、 3. In the constant velocity joint according to claim 1,
前記中間部材は、 スライドリング (38) からなり、 前記スライドリングは、 環状クランジ部 (50) と、 前記環状フランジ部から折曲して所定長だけ突出す ると共に、 該環状フランジ部の周方向に沿って等角度だけ離間して形成された複 数の爪部 (52) とを有することを特徴とする等速: The intermediate member comprises a slide ring (38), the slide ring being bent from the annular flange portion (50) and projecting a predetermined length from the annular flange portion, and extending in a circumferential direction of the annular flange portion. Formed at equal angles along the Constant velocity characterized by having a number of claws (52):
4. 請求項 3記載の等速ジョイントにおいて、 4. In the constant velocity joint according to claim 3,
前記爪部の外周面には、 リテーナの第 2球面に接触して摺動可能に設けられた 第 3球面が形成されることを特徴とする等速ジョイント。  A constant velocity joint, wherein a third spherical surface slidably provided in contact with the second spherical surface of the retainer is formed on an outer peripheral surface of the claw portion.
5. 請求項 3記載の等速ジョイントにおいて、 5. In the constant velocity joint according to claim 3,
前記爪部の内周面には、 ィンナリングの凸状円筒面に接触して該ィンナリング との間で軸方向の相対的変位を可能とする円筒面が形成されることを特徴とする 等速ジョイント。  The inner peripheral surface of the claw portion is formed with a cylindrical surface which is in contact with the convex cylindrical surface of the inner ring and enables relative displacement in the axial direction with the inner ring. .
6. 相交わる 2軸の一方に連結され、 内周面を有するとともに軸方向に延在す る複数の第 1案内溝が形成され、 一端部が開口するァウタ部材と、 6. a plurality of first guide grooves connected to one of the two intersecting shafts and having an inner peripheral surface and extending in the axial direction, and an outer member having an open end;
前記 2軸の他方に連結され、 外周に凸状円筒面を有するとともに軸方向に延在 し前記第 1案内溝と同数の第 2案内溝が形成されたインナリングと、  An inner ring connected to the other of the two shafts, having a convex cylindrical surface on the outer periphery and extending in the axial direction and having the same number of second guide grooves as the first guide grooves;
前記第 1案内溝と前記第 2案内溝との間で転動可能に配設され、 トルクを伝達 するポールと、  A pole that is arranged to be rollable between the first guide groove and the second guide groove and that transmits torque;
前記ポールを収納する保持窓が形成され、 第 1球面からなる外表面と、 軸方向 中央部の第 1円筒面 (145) およびその両側に連続して形成された一組の第 2 球面 (146 a、 146 b) からなる内表面とを有し、 前記外表面の曲率中心と 前記内表面の軸方向の中心とが継手軸上におけるポール中心面との交点の両側に 等距離だけオフセットした位置に配置されたリテーナと、  A holding window for accommodating the pole is formed, an outer surface formed of a first spherical surface, a first cylindrical surface (145) at a central portion in the axial direction, and a pair of second spherical surfaces (146) formed continuously on both sides thereof. a, 146 b), wherein the center of curvature of the outer surface and the axial center of the inner surface are equidistantly offset on both sides of the intersection with the pole center plane on the joint axis. And a retainer located at
を備える等速ジョイントにおいて、  In constant velocity joints with
前記インナリング (30) と前記リテ一ナ (136) との間には中間部材が介 装され、 前記中間部材には、 前記インナリングの凸状円筒面に接触する第 2円筒' 面 (56) と、 前記リテーナの第 2球面に接触可能な第 3球面 (154) とが形 成され、  An intermediate member is interposed between the inner ring (30) and the retainer (136), and the intermediate member has a second cylindrical surface (56) in contact with the convex cylindrical surface of the inner ring. ) And a third spherical surface (154) capable of contacting the second spherical surface of the retainer,
前記リテーナの第 2球面と前記中間部材の第 3球面との間には、 軸方向隙間 ( 1 5 5 ) が設けられることを特徴とする等速ジョイント (1 2 0 ) 。 An axial gap is provided between the second spherical surface of the retainer and the third spherical surface of the intermediate member. (125) The constant velocity joint (120), which is provided with (155).
7 . 請求項 6記載の等速ジョイントにおいて、 7. The constant velocity joint according to claim 6,
前記リテーナに形成された保持窓の軸方向の幅は、 前記ポールの直径よりも大 きく設定されることを特徴とする等速ジョイント。  The constant velocity joint according to claim 1, wherein an axial width of the holding window formed in the retainer is set to be larger than a diameter of the pole.
8 . 請求項 6記載の等速ジョイントにおいて、 8. The constant velocity joint according to claim 6,
前記中間部材は、 スライドリング (1 3 8 ) からなり、 前記スライドリングは、 環状フランジ部と、 前記環状フランジ部から折曲して所定長だけ突出すると共に、 該環状フランジ部の周方向に沿って等角度だけ離間して形成された複数の爪部と を有することを特徴とする等速ジョイン卜。  The intermediate member includes a slide ring (138), and the slide ring is bent from the annular flange and protrudes by a predetermined length, and extends along a circumferential direction of the annular flange. And a plurality of claw portions formed at an equal angle apart from each other.
9 . 請求項 8記載の等速ジョイントにおいて、 9. The constant velocity joint according to claim 8,
前記爪部の外周面には、 リテーナの第 2球面に接触して搢動可能に設けられた 第 3球面が形成されることを特徴とする等速ジョイント。  A constant velocity joint, wherein a third spherical surface is provided on the outer peripheral surface of the claw portion so as to be movable in contact with the second spherical surface of the retainer.
1 0 . 請求項 8記載の等速ジョイントにおいて、 10. The constant velocity joint according to claim 8,
前記爪部の内周面には、 インナリングの凸状円筒面に接触して該インナリング との間で軸方向の相対的変位を可能とする円筒面が形成されることを特徴とする 等速ジョイント。  The inner peripheral surface of the claw portion is formed with a cylindrical surface which is in contact with the convex cylindrical surface of the inner ring and enables relative displacement in the axial direction with the inner ring. Speed joint.
1 1 . 第 1軸に連結され、 内周面を有すると共に軸方向に延在する複数の第 11 1. A plurality of first shafts connected to the first shaft and having an inner peripheral surface and extending in the axial direction.
_案内溝が形成され、 一端部が開口するァウタ部材と、 _ A guide member formed with a guide groove, one end of which is open;
前記第 1軸と交わる第 2軸に連結され、 外周に凸状円筒面を有すると共に軸方 向に延在し前記第 1案内溝と同数の第 2案内溝が形成されたインナリングと、 前記第 1案内溝と前記第 2案内溝との間で転動可能に配設され、 トルクを伝達 するポールと、  An inner ring that is connected to a second shaft that intersects the first shaft, has a convex cylindrical surface on the outer periphery, extends in the axial direction, and has the same number of second guide grooves as the first guide grooves; A pole that is arranged to be rollable between the first guide groove and the second guide groove and that transmits torque;
前記ポールを収納する保持窓が形成され、 第 1球面からなる外表面と、 軸方向 中央部の第 1円筒面及びその両側に連続して形成された一組の第 2球面からなる 内表面とを有し、 前記外表面の曲率中心と.前記内表面の軸方向の中心とが継手軸 上におけるポール中心面との交点の両側に等距離だけオフセットした位置に配置 されたリテーナと、 A holding window for accommodating the pole is formed, an outer surface formed of a first spherical surface, and an axial direction A central cylindrical first surface and an inner surface formed of a pair of second spherical surfaces formed continuously on both sides thereof, wherein a center of curvature of the outer surface and an axial center of the inner surface are aligned with each other. A retainer arranged at a position equidistantly offset on both sides of the intersection with the pole center plane on the joint axis,
前記インナリングと前記リテーナとの間に介装され、 前記インナリングの凸状 円筒面に接触する第 2円筒面と、 前記リテーナの第 2球面に接触可能な第 3球面 とを有する中間部材と、  An intermediate member interposed between the inner ring and the retainer, the intermediate member having a second cylindrical surface that contacts a convex cylindrical surface of the inner ring, and a third spherical surface that can contact a second spherical surface of the retainer; ,
前記ァウタ部材の開口から奥部側に向かう方向への前記インナリングの移動を 規制するストツバ機構と、  A stopper mechanism for restricting movement of the inner ring in a direction from the opening of the outer member toward the back side;
を備えることを特徴とする等速ジョイント (210) 。  A constant velocity joint (210), comprising:
12. 請求項 11記載の等速ジョイントにおいて、 12. In the constant velocity joint according to claim 11,
前記ストツバ機構は、 ィンナリングの第 2案内溝の端部に膨出形成されたスト ッパ部 (41) からなることを特徴とする等速ジョイント。  The constant velocity joint according to claim 1, wherein the stopper mechanism comprises a stopper portion (41) bulged at an end of the second guide groove of the inner ring.
13. 請求項 1 1記載の等速ジョイントにおいて、 13. In the constant velocity joint according to claim 11,
前記ストツバ機構は、 第 2軸 (18) の所定部位に係止されたリング部材 (2 02) からなることを特徴とする等速ジョイント。  The constant velocity joint according to claim 1, wherein the stop mechanism comprises a ring member (202) locked to a predetermined portion of the second shaft (18).
14. 請求項 1 1記載の等速ジョイントにおいて、 14. In the constant velocity joint according to claim 11,
前記ストツバ機構は、 第 2軸の所定部位に係止され、 環状突起部 (704) を 有する円筒体 (702) からなることを特徴とする等速ジョイント。  The constant velocity joint is characterized in that the stoma mechanism is constituted by a cylindrical body (702) having an annular projection (704), which is locked to a predetermined portion of the second shaft.
15 請求項 12記載の等速ジョイントにおいて、 15 In the constant velocity joint according to claim 12,
前記ストッパ部を被覆する緩衝部材 (402、 404、 406) が設けられる' ことを特徴とする等速ジョイント。  A constant velocity joint having a buffer member (402, 404, 406) covering the stopper portion.
16. 請求項 11記載の等速ジョイントにおいて、 前記中間部材は、 環状フランジ部を有するスライドリングからなり、 前記スラ イドリングの環状フランジ部とインナリングとの間には、 緩衝部材 (502) が 設けられることを特徴とする等速ジョイント。 16. In the constant velocity joint according to claim 11, The constant velocity joint, wherein the intermediate member comprises a slide ring having an annular flange portion, and a cushioning member (502) is provided between the annular flange portion of the slide ring and the inner ring.
5 17. 請求項 13記載の等速ジョイントにおいて、 5 17. In the constant velocity joint according to claim 13,
前記中間部材は、 環状フランジ部を有するスライドリングからなり、 前記スラ イドリングの環状フランジ部とリング部材との間には、 緩衝部材 (602) が設 . けられることを特徴とする等速ジョイント。  The constant velocity joint, wherein the intermediate member comprises a slide ring having an annular flange portion, and a cushioning member (602) is provided between the annular flange portion of the slide ring and the ring member.
10 . Ten .
18. 回転駆動源 (212) を間にして同軸状に配置された第 1及び第 2ドラ イブシャフト (216 a、 216 b) を有し、 前記第 1ドライブシャフトのホイ ール側に連結された第 1ァゥ夕ジョイント (218 a) 及び回転駆動源側に連結 された第 1インナジョイント (220 a) と、 前記第 2ドライブシャフトのホイ ール側に連結された第 2ァウタジョイント (218 b) 及び回転駆動源側に連結 ュ 5 された第 2インナジョイント (220 b) とを有する車両用の回転駆動力伝達機 構において、 18. It has first and second drive shafts (216a, 216b) arranged coaxially with a rotary drive source (212) therebetween, and connected to the wheel side of the first drive shaft. And the first inner joint (220a) connected to the rotary drive source side and the second outer joint (220a) connected to the wheel side of the second drive shaft. 218b) and a second inner joint (220b) connected to the rotary drive source 5 in a rotary drive transmission mechanism for a vehicle,
前記第 1及び第 2インナジョイントは、 '  The first and second inner joints are
継手軸上においてポール中心面との交点の両側に等距離だけオフセットした曲 率中心を有する内外表面を有するリテーナによって複数のポールが保持され、 前 20 記リテーナとインナリングとの間にスライドリング (38) が設けられたダブル オフセット型の第 1等速ジョイント (10) と、  A plurality of poles are held by a retainer having inner and outer surfaces having a center of curvature equidistantly offset on both sides of the intersection with the pole center plane on the joint axis, and a slide ring (20) is provided between the retainer and the inner ring. 38) a double offset first constant velocity joint (10) with
前記スライドリング (38) が介装されることがなくリテーナの内面とインナ リングの外面とが直接接触するダブルオフセット型の第 2等速ジョイント (20 0) と、  A second constant velocity joint (200) of a double offset type in which the inner surface of the retainer and the outer surface of the inner ring are in direct contact without the slide ring (38) being interposed;
25 ァウタカップの内壁に形成された案内溝に向かって膨出する 3個のトラニオン' を有するトリボード型 第 3等速ジョイント (301) との組み合わせによって 構成され、  25 It is configured by a combination with a tri-board type third constant velocity joint (301) having three trunnions' bulging toward a guide groove formed in the inner wall of the outer cup,
前記第 1及び第 2インナジョイントが前記第 1等速ジョイント (10) によつ てそれぞれ構成される第 1タイプ (100 a) と、 The first and second inner joints are connected to the first constant velocity joint (10). The first type (100a),
前記第 1及び第 2インナジョイントが前記第 1等速ジョイント (10) 及び第 2等速ジョイント (200) によってそれぞれ構成される第 2タイプ (100 b) と、  A second type (100b) in which the first and second inner joints are respectively constituted by the first constant velocity joint (10) and the second constant velocity joint (200);
前記第 1及び第 2インナジョイントが前記第 1等速ジョイント (10) 及び第 3等速ジョイント (301) によってそれぞれ構成される第 3タイプ (100 c) と、  A third type (100c) in which the first and second inner joints are respectively constituted by the first constant velocity joint (10) and the third constant velocity joint (301);
を有し、 前記第 1〜第 3タイプ (100 a〜l 00 c) は、 各種の振動特性に 対応して選択されることを特徴とする回転駆動力伝達機構。  The first to third types (100a to 100c) are selected according to various vibration characteristics.
19. 請求項 18記載の機構において、 19. The mechanism according to claim 18, wherein
前記第 1タイプ (100 a) は、 3次振動及びアイドリング振動のいずれの振 動特性も劣化する条件を有するときに選択され、  The first type (100a) is selected when both of the tertiary vibration and the idling vibration have a condition of deteriorating the vibration characteristics,
前記第 2タイプ (100 b) は、 3次振動の振動特性が劣化する条件を有する ときに選択され、  The second type (100b) is selected when there is a condition that the vibration characteristics of the third vibration deteriorate.
第 3タイプ (100 c) は、 アイドリング振動の振動特性が劣化する条件を有 するときに選択されることを特徴とする回転駆動力伝達機構。  The third type (100c) is a rotary driving force transmission mechanism that is selected when there is a condition under which the vibration characteristics of idling vibration deteriorate.
PCT/JP2004/003653 2003-04-28 2004-03-18 Constant velocty joint and rotation drive force transmission mechanism WO2004097238A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-124214 2003-04-28
JP2003-124218 2003-04-28
JP2003124218 2003-04-28
JP2003124214 2003-04-28
JP2004043116A JP4574999B2 (en) 2004-02-19 2004-02-19 Method for selecting rotational drive force transmission mechanism
JP2004-043116 2004-02-19
JP2004-066137 2004-03-09
JP2004066137A JP2005256873A (en) 2004-03-09 2004-03-09 Constant velocity joint

Publications (1)

Publication Number Publication Date
WO2004097238A1 true WO2004097238A1 (en) 2004-11-11

Family

ID=33425417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/003653 WO2004097238A1 (en) 2003-04-28 2004-03-18 Constant velocty joint and rotation drive force transmission mechanism

Country Status (1)

Country Link
WO (1) WO2004097238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530346A3 (en) * 2011-06-03 2013-09-11 Hyundai Wia Corporation Sliding ball type constant velocity joint for vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380221U (en) * 1986-11-14 1988-05-27
JPH0351519A (en) * 1989-07-17 1991-03-05 Ntn Corp Uniform-speed universal joint
JPH03277822A (en) * 1990-03-27 1991-12-09 Toyoda Mach Works Ltd Constant velocity joint
JPH04116019U (en) * 1991-03-29 1992-10-15 エヌテイエヌ株式会社 Inner ring of double offset type constant velocity joint
JPH0742752A (en) * 1993-07-30 1995-02-10 Ntn Corp Cross-groove type synchronous joint
JPH08510029A (en) * 1993-05-07 1996-10-22 ジー・ケー・エヌ・オートモーティブ・アクチエンゲゼルシャフト Universal joint
JP2000185570A (en) * 1998-12-24 2000-07-04 Ntn Corp Driving force transmission device for wheel
JP2001254754A (en) * 2000-02-16 2001-09-21 Delphi Technol Inc Constant velocity stroke joint

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380221U (en) * 1986-11-14 1988-05-27
JPH0351519A (en) * 1989-07-17 1991-03-05 Ntn Corp Uniform-speed universal joint
JPH03277822A (en) * 1990-03-27 1991-12-09 Toyoda Mach Works Ltd Constant velocity joint
JPH04116019U (en) * 1991-03-29 1992-10-15 エヌテイエヌ株式会社 Inner ring of double offset type constant velocity joint
JPH08510029A (en) * 1993-05-07 1996-10-22 ジー・ケー・エヌ・オートモーティブ・アクチエンゲゼルシャフト Universal joint
JPH0742752A (en) * 1993-07-30 1995-02-10 Ntn Corp Cross-groove type synchronous joint
JP2000185570A (en) * 1998-12-24 2000-07-04 Ntn Corp Driving force transmission device for wheel
JP2001254754A (en) * 2000-02-16 2001-09-21 Delphi Technol Inc Constant velocity stroke joint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530346A3 (en) * 2011-06-03 2013-09-11 Hyundai Wia Corporation Sliding ball type constant velocity joint for vehicle
US8814712B2 (en) 2011-06-03 2014-08-26 Hyundai Wia Corporation Sliding ball type constant velocity joint for vehicle
US8821301B2 (en) 2011-06-03 2014-09-02 Hyundai Wia Corporation Sliding ball type constant velocity joint for vehicle
US8894497B2 (en) 2011-06-03 2014-11-25 Hyundai Wia Corporation Sliding ball type constant velocity joint for vehicle

Similar Documents

Publication Publication Date Title
JP6114644B2 (en) Fixed constant velocity universal joint
JP2002013548A (en) Ball spline clutch and intermediate shaft of steering equipment
JP2008232303A (en) Sliding type constant velocity joint
JP2000266072A (en) Constant velocity universal joint
JP4986421B2 (en) Shaft coupling and in-wheel motor system using the same
WO2005033538A1 (en) Fixed type constant velocity universal joint
WO2004097238A1 (en) Constant velocty joint and rotation drive force transmission mechanism
US20100093452A1 (en) Constant Velocity Joint
JPS6114365B2 (en)
JP3767168B2 (en) Constant velocity joints and rolling bearing units for wheels with constant velocity joints
JPH03277822A (en) Constant velocity joint
JP2578286Y2 (en) Constant velocity joint
JPH056420Y2 (en)
JP4574999B2 (en) Method for selecting rotational drive force transmission mechanism
JP2574211Y2 (en) Zeppa type constant velocity joint
JP2005256873A (en) Constant velocity joint
JP2001065591A (en) Fixed constant velocity universal joint for propeller shaft
JP2000274430A (en) Axle unit for wheel driving
WO2007029514A1 (en) Constant velocity joint
JP2000266071A (en) Constant velocity universal joint
JPH08170647A (en) Elastic universal joint
JP2008215518A (en) Sliding system constant velocity universal joint
JP2004347113A (en) Constant velocity universal joint
JP2590508B2 (en) Universal joint
JP4070567B2 (en) Elastic universal joint

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase