WO2004096881A1 - Resin material for formed article having profile cross section - Google Patents

Resin material for formed article having profile cross section Download PDF

Info

Publication number
WO2004096881A1
WO2004096881A1 PCT/JP2004/006327 JP2004006327W WO2004096881A1 WO 2004096881 A1 WO2004096881 A1 WO 2004096881A1 JP 2004006327 W JP2004006327 W JP 2004006327W WO 2004096881 A1 WO2004096881 A1 WO 2004096881A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin material
material according
section
mol
polyoxymethylene copolymer
Prior art date
Application number
PCT/JP2004/006327
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetoshi Okawa
Daisaku Ikeda
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Priority to JP2005505955A priority Critical patent/JPWO2004096881A1/en
Publication of WO2004096881A1 publication Critical patent/WO2004096881A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2/00Addition polymers of aldehydes or cyclic oligomers thereof or of ketones; Addition copolymers thereof with less than 50 molar percent of other substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L59/00Compositions of polyacetals; Compositions of derivatives of polyacetals
    • C08L59/04Copolyoxymethylenes

Definitions

  • the present invention relates to a resin material which is made of a specific polyoxymethylene copolymer and has excellent mechanical properties and is suitable for producing a molded article having a good irregular cross-sectional shape, and a molded article thereof.
  • a profile extrusion molding method is known as a technique for molding a resin material into a long body having a complicated cross-sectional shape.
  • Such a profile extrusion molding method is performed, for example, as follows. That is, the resin material is heated, melted and kneaded by an extruder and extruded through a die for profile extrusion provided at the extruder outlet. It is cooled and solidified while shaping into a shape to obtain the desired extruded molded product. At this time, by appropriately changing the shape or sizing means of the profile extrusion die or sizing die, it is possible to obtain profile extrusion products having various cross-sectional shapes.
  • a polyoxymethylene resin having a polymer skeleton composed mainly of repeating oxymethylene units is known to have high crystallinity and to be excellent in rigidity, strength, chemical resistance, solvent resistance, and the like. Because of its high crystallization speed and fast molding cycle, it is widely used as an injection molding material in the field of mechanical parts for automobiles and electrical equipment.
  • polyoxymethylene resin has excellent properties, but polyoxymethylene resin has high crystallinity, high crystallization speed, and large molding shrinkage.
  • drawdown occurs or distortion occurs due to shrinkage during cooling and solidification, and the product is deformed, and it is extremely difficult to form a desired cross-sectional shape.
  • profile extrusion molding using a polyoxymethylene resin has hardly been performed in the past, and such behavior in the profile extrusion molding of a polyoxymethylene resin is based on the polyoxymethylene resin described above. Due to such essential properties as described above, it was considered difficult to improve it to one suitable for profile extrusion, and it has hardly been studied.
  • a hollow extruded product for a pen tip having an ink flow path is known (for example, Japanese Patent Application Laid-Open No. 59-22749). No. 8 and Japanese Patent Application Laid-Open No. H08-142465).
  • the techniques disclosed in these documents are characterized by the selection of materials in consideration of the performance of the pen tip, and are particularly useful for profile extrusion, especially for profiles with complex cross-sections and for profiles with large cross-sections.
  • No disclosure is made of a polyoxymethylene resin material that can be particularly effectively applied to the above. Disclosure of the invention
  • An object of the present invention is to solve the above problems and provide a resin material comprising a polyoxymethylene copolymer capable of efficiently producing a deformed cross-section molded article having small distortion and excellent dimensional accuracy. It is in.
  • the present inventors have conducted intensive studies in order to achieve the above object, and as a result, using a resin material made of a specific polyoxymethylene copolymer having a controlled crystallization rate, improved the profile extrusion processability, The present inventors have found that an excellent molded product with little distortion can be obtained, and have reached the present invention.
  • the present invention comprises, in a polymer chain mainly composed of repeating oxymethylene units, 1.5 to 10 mol of oxyalkylene units represented by the following general formula (1) per 100 mol of oxymethylene units, and a melt index (190 ° C.) It is a resin material composed of a polyoxymethylene copolymer having a load of 2160 g) of 0.3 to 20 g / 10 minutes and suitable for producing molded articles having an irregular cross section.
  • R 2 is hydrogen, an alkyl group having 1 to 8 carbon atoms, selected from an organic group having an organic group, phenyl group, phenylene Le radicals having alkyl Le group having 1 to 8 carbon atoms, R 2 May be the same or different, and m represents an integer of 2 to 6.
  • the present invention also provides an application for producing a molded article having an irregular cross section of the above resin material and a method for producing a molded article having an irregular cross section including molding the above resin material. Detailed description of the invention
  • the resin material of the present invention comprises a polyoxymethylene unit containing 1.5 to 10 mol of oxyalkylene units represented by the above general formula (1) per 100 mol of oxymethylene units in one chain of a polymer mainly composed of repeating oxymethylene units. It consists of a polymer.
  • the ratio of the oxyalkylene unit represented by the general formula (1) must be 1.5 to 10 mol per 100 mol of the oxymethylene unit, and is preferably oxymethylene. It is preferably 2 to 8 mol per 100 mol of unit, particularly preferably 2 to 5 mol per 100 mol of oxymethylene unit.
  • the proportion of the oxyalkylene unit represented by the general formula (1) is reduced, the crystallization rate of the polyoxymethylene copolymer is increased, and when extruding a molded article having an irregular cross section, a die of an extruder is used.
  • the molten resin extruded through is shaped into a desired cross-sectional shape by a sizing die and solidified before being cooled, so that a desired shape cannot be obtained. Also, due to the high solidification rate, the strain in the molded product generated during the solidification process becomes large, so that a deformed shape may be formed. Conversely, when the proportion of the oxyalkylene unit represented by the general formula (1) is increased, the crystallinity of the polyoxymethylene copolymer decreases, and the molded article made of such a copolymer has a high strength and elastic modulus. Etc. are low.
  • the polyoxymethylene copolymer used in the present invention has a melt index (Ml) of 0.3 to 20 g // 10 measured at 190 ° C under a load of 2160 g according to ASTM D-1238. Min., Preferably 0.5 to 10 g / 10 min, particularly preferably 0.5 to 5 g / 10 min. If the melt index (M l) is too small, the load during the melt extrusion process will increase, making extrusion difficult. Conversely, if the melt index (M l) becomes too large, the resin will be cut down due to the resin opening. It becomes unstable.
  • the method for producing the above-mentioned polyoxymethylene copolymer used in the present invention is not particularly limited.
  • the polymerization apparatus any of known apparatuses such as a batch type and a continuous type can be used.
  • the introduction ratio of the oxyalkylene unit represented by the general formula (1) is adjusted by the amount of the comonomer to be copolymerized.
  • the melt index (Ml) can be adjusted by the amount of a chain transfer agent used during polymerization, for example, methylal or the like.
  • the melt index of the obtained copolymer decreases as the amount of the chain transfer agent added decreases, and increases as the amount increases.
  • the melt index is affected by impurities such as water and methanol contained in the raw material monomer and comonomer, and the type, shape, size, and polymerization conditions of the polymerization machine. It is difficult to unambiguously determine the absolute amount of chain transfer agent required to obtain the copolymer, and the chain transfer is performed so that the desired melt index is obtained while trying to produce the copolymer. Increase or decrease the amount of agent added.
  • Examples of the cyclic ether compound or cyclic formal compound used as a comonomer include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, oxetane, tetrahydrofuran, trioxepane, 1,3-dioxolan, propylene glycol formal, diethylene glycol formal, Examples include triethylene glycol formal, 1,4-butanediol formal, 1,5-pentanediol formal, 1,6-hexanediol formal, among which ethylene oxide, 1,3-dioxolan, diethylene glycol formal, 1,4-butanediol formal is preferred.
  • the polyoxymethylene copolymer used in the present invention may have a branched or crosslinked structure.
  • a small amount of a monofunctional or bifunctional or higher glycidyl compound other than those described above is added and copolymerized. It may be polymerized.
  • the polyoxymethylene copolymer obtained by polymerization is subjected to catalyst deactivation treatment, removal of unreacted monomers, washing and drying of the polymer, stabilization of unstable terminal portions, etc., followed by various stabilizers And then put to practical use by performing stabilization treatment and the like by blending the same.
  • Representative stabilizers include hindered phenol compounds, nitrogen-containing compounds, hydroxides of alkali or alkaline earth metals, inorganic acid salts, carboxylate salts, and the like.
  • the polyoxymethylene copolymer thus obtained and used in the present invention preferably has an amount of hemiformal terminal groups detected by ⁇ -NMR of 0 to 4 mmol / kg, particularly preferably 0 to 2 imol. / kg. If the amount of the hemiformal terminal group exceeds 4 ol / kg, problems such as foaming due to decomposition of the polymer may occur during melt processing.
  • impurities, particularly water, in the total amount of monomers and comonomer to be subjected to the polymerization be 20 ppm or less, particularly preferably 10 ppm or less.
  • such a polyoxymethylene copolymer may contain, as necessary, general additives for thermoplastic resins, for example, coloring agents such as dyes and pigments, lubricants, nucleating agents, One or more types of release agents, antistatic agents, surfactants, or organic polymer materials, inorganic or organic fibrous, platy, or granular fillers are used for the purpose of the present invention. It can be added within a range that does not inhibit. '
  • an irregular extrusion method is usually used.
  • the manufacture of a molded article having an irregular cross section is basically performed as follows. That is, after the resin is heated and melted in an extruder having a single-screw or twin-screw, the molten resin is extruded from an extrusion die (die) having a predetermined shape and shaped into a target shape in a sizing process. Both are solidified by a cooling process, taken up, and cut to a desired length as necessary to obtain a long molded body.
  • the shape of the extrusion die can be any shape design other than the round shape, and can be similar to the cross-sectional shape of the final product. Different cross-sectional shapes can be used.
  • a sizing process is performed in a sizing step to shape the molten resin extruded from the extrusion die into a desired shape.
  • External sizing and internal sizing are known as sizing methods, but the external sizing method is the mainstream, and the vacuum sizing method is often used.
  • the resin whose shape has been adjusted by sizing is cooled and solidified by a water tank, a water shower, air cooling, etc., to obtain a desired product. Cooling can be performed simultaneously with sizing, and prior to sizing, pre-cooling can be performed to the extent that the molten resin does not solidify.
  • the cross-sectional shape of the resulting molded article having an irregular cross-section includes open shapes such as L-shape, U-shape, E-shape, and T-shape, hollow shapes such as cylinders and square tubes, and ribs in hollow shapes. Either the provided shape with hollow ribs or a composite shape obtained by mixing these shapes is possible.
  • open shapes such as L-shape, U-shape, E-shape, and T-shape
  • hollow shapes such as cylinders and square tubes
  • ribs in hollow shapes Either the provided shape with hollow ribs or a composite shape obtained by mixing these shapes is possible.
  • the molded article having an irregular cross section obtained by using the resin material comprising the polyoxymethylene copolymer of the present invention has high strength, high elastic modulus, solvent resistance, heat resistance, flex fatigue resistance and the like. There are various applications utilizing the excellent characteristics. Since the processed product is in a continuous form, it can be used by appropriately cutting it according to the purpose. For example, it can be used for rails, pipes, various building materials, and various other uses. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a sectional view showing the shape of a die used in the example.
  • FIG. 2 is a diagram showing the shape of the vacuum sizing used in the example, (a) is a sectional view, and (b) is a side view.
  • Example 1 is a sectional view showing the shape of a die used in the example.
  • FIG. 2 is a diagram showing the shape of the vacuum sizing used in the example, (a) is a sectional view, and (b) is a side view.
  • Example 1 is a sectional view showing the shape of a die used in the example.
  • FIG. 2 is a diagram showing the shape of the vacuum sizing used in the example, (a) is a sectional view, and (b) is a side view.
  • Example 2 is a diagram showing the shape of the vacuum sizing used in the example, (a) is a sectional view, and (b) is a side view.
  • a paddle was attached using a continuous mixing reactor consisting of a barrel that has a jacket through which a heat (cool) medium passes and a cross section of two circles partially overlapping, and a rotary shaft with paddles. While rotating the rotating shafts at 150 rpm, add liquid trioxane, cyclic ether or cyclic formal as a comonomer, further add methylal as a molecular weight regulator, and 50 ppm of boron trifluoride as a catalyst (based on all monomers). was continuously supplied to a polymerization machine to perform bulk polymerization. Table showing the water content of trioxane used, the type of comonomer, and the amount of methylal (ratio to total monomer weight)
  • the water content of each comonomer was less than 10 ppm.
  • the target value of the melt index of the obtained copolymer was 2.0 in Examples 1 to 3 and 5 to 7, 1.5 in Example 4, and 9.0 in Example 8, and the amount of methylal was added. Fine adjustment was made within the range shown in Table 1.
  • the reaction product discharged from the polymerization machine was immediately passed through a crusher, and was added to a 60 ° C aqueous solution containing 0.05% by weight of triethylamine to deactivate the catalyst. Further, after separation, washing and drying, a crude polyoxymethylene copolymer was obtained. Table 2 shows the properties of the obtained copolymer.
  • triethyl was added to 100 parts by weight of the crude polyoxymethylene copolymer.
  • 4 parts by weight of a 5% by weight aqueous solution of amine, and 0.3 parts by weight of pentaerythristyl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] are added, and a twin screw extruder is added.
  • a twin screw extruder is added.
  • 210 ° C. to remove unstable parts.
  • the resin is melt-plasticized by an extruder at a cylinder-set temperature of 200 ° C.
  • a die with the cross-sectional shape shown in Fig. 1 (The unit of the number in the figure is mm
  • the resin is passed through the vacuum sizing dies (the unit of the number in the figure is mm) as shown in Fig. 2 while cooling and cooling to form a "U-shaped" rail shape. I got something.
  • Table 2 shows the results evaluated by the evaluation method described below.
  • Polyoxymethylene (co) polymers not specified in the present invention as shown in Table 2 were prepared in the same manner as in Examples except that the amount of comonomer used or the amount of methylal as shown in Table 1 was changed.
  • the target value of the melt index was 2.0 in Comparative Examples 1-3 and 27.0 in Comparative Example 4, and the amount of methylal added was finely adjusted within the range shown in Table 1.
  • addition of methylal was not performed in order to obtain a copolymer having a small melt index.
  • the obtained (co) polymer was subjected to a stabilization treatment and the like in the same manner as in the examples, and was further subjected to profile extrusion to obtain a molded product.
  • Table 2 shows the results of evaluation using the evaluation method described below.
  • Example 3 Polymerization was carried out in the same manner as in Example 1 except that n-butyldaricidyl ether was added as a copolymerization component together with 1,3-dioxolane, and the branched structure was as shown in Table 3. To obtain a crude polyoxymethylene copolymer. Further, after performing the same processing as in Example 1, a molded product having an irregular cross section was manufactured to obtain a "U-shaped" rail-shaped molded product. Table 3 shows the results evaluated by the evaluation method described later.
  • the polymer used for evaluation of physical properties was dissolved in hexafluoroisopropanol d2, and ' ⁇ -NMR measurement was performed. It was quantified from the peak area corresponding to each unit.
  • the damage ij of the copolymer unit is shown in terms of mol ratio per lOOmol of oxymethylene unit.
  • the polymer used for the evaluation of physical properties was dissolved in hexafluoroisopropanol d2, and-NMR measurement was performed. It was quantified from the peak area corresponding to each end.
  • Copolymerization component Methylal amount Monomer (water content (ppm)) Comonomer (ppm)
  • Example 1 TOX (13) DO 300-500
  • Example 2 TOX (15) DO 300-500
  • Example 3 TOX (15) DO 300-500
  • Example 5 TOX (110) DO 300-500
  • Example 6 TOX (14) BDF 300-500
  • Example 7 TOX (13) EGF
  • Example 8 TOX (16) DO 500 to 800 Comparative Example 1 TOX (13) DO 300 to 500 Comparative Example 2 TOX (13) DO 300--500 Comparative Example 3 TOX (14) ⁇ + 300 to 500 Comparative Example 4 TOX ( 14) DO 1000-Lake 0 Comparative Example 5 TOX (13) DO 0
  • EGF ethylene glycol formal
  • Example 5 (CH 2 CH 2 0) 2.2 2.0 52 Gas generation, slight foaming
  • Example 6 (CH 2 CH 2 CH 2 CH 2 0) 2.2 2.1 0.2 3 Good
  • Comparative Example 4 (CH 2 CH 2 0) 2.2 27 0.2 1 • Difficult to process due to low resin viscosity Comparative Example 5 (CH 2 CH 20 ) 2.2 0.2 0.2 1 Extruder negative due to resin viscosity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

A resin material which comprises a polyoxymethylene copolymer having a polymer chain consisting mainly of an oxymethylene recurring unit and containing a specific oxyalkylene unit in an amount of 1.5 to 10 mol per 100 mol of the oxymethylene unit, and having a melt index (190°C, a load of 2160g) of 0.3 to 20g/10 min, and is suitable for the production of a formed article having a profile cross section. The resin material allows the production of a formed article which comprises a polyoxymethylene resin and has a profile cross section, and further is reduced in strain and excellent in dimensional accuracy.

Description

明細書 異形断面を有する成形品用の樹脂材料 発明の属する技術分野  Description Resin material for molded articles having irregular cross-section
本発明は、 特定のポリオキシメチレン共重合体からなり、 優れた機械的性質を 有すると共に良好な異形断面形状を有する成形品を製造するのに適した樹脂材料 及びその成形品に関するものである。 従来の技術とその課題  The present invention relates to a resin material which is made of a specific polyoxymethylene copolymer and has excellent mechanical properties and is suitable for producing a molded article having a good irregular cross-sectional shape, and a molded article thereof. Conventional technologies and their issues
樹脂材料を複雑な断面形状を有する長尺体に成形する技術として異形押出成形 法が知られている。 かかる異形押出成形法は、 例えば以下のようにして行なわれ る。 即ち、 樹脂材料を押出成形機で加熱、 溶融、 混練して、 押出機出口に設けら れた異形押出用のダイを通して押出し、 サイジングプレート、 サイジングダィ、 水槽などを備えたサイジング及び冷却ゾーンで最終断面形状に整形しながら冷却 固化させ、 目的とする異形押出成形品を得るものである。 このとき、 異形押出用 ダイやサイジングダィの形状或いはサイジング手段を適宜変更することにより、 種々の断面形状の異形押出成形品を得ることができる。  A profile extrusion molding method is known as a technique for molding a resin material into a long body having a complicated cross-sectional shape. Such a profile extrusion molding method is performed, for example, as follows. That is, the resin material is heated, melted and kneaded by an extruder and extruded through a die for profile extrusion provided at the extruder outlet. It is cooled and solidified while shaping into a shape to obtain the desired extruded molded product. At this time, by appropriately changing the shape or sizing means of the profile extrusion die or sizing die, it is possible to obtain profile extrusion products having various cross-sectional shapes.
従来、かかる異形押出成形品はポリ塩化ビニルからなるも.のが大半であつたが、 ポリ塩化ビニルは塩素を構成成分として含有するため焼却時に有害ガスが発生す る等の問題があり、 最近は塩素を含有しない樹脂材料であるポリプロピレン、 ポ リエチレン等のポリオレフィン系樹脂からなる異形押出成形品が主流になってき ている。 そして、 これらの樹脂は安価であるため、 その異形押出成形品は建材を はじめ多くの用途に広く利用されている。  In the past, most of such shaped extrusions were made of polyvinyl chloride.However, since polyvinyl chloride contains chlorine as a component, it has problems such as the generation of harmful gases during incineration. The mainstream is extruded molded products made of polyolefin resins such as polypropylene and polyethylene, which are resin materials that do not contain chlorine. And since these resins are inexpensive, their extruded products are widely used in many applications including building materials.
しかしながら、 ポリオレフイン系樹脂は結晶性が低いため、 その成形品の強度 には限界があり、 近年のより高強度の異形押出成形品の要求に対し十分に応える ことができない場合があった。 However, because polyolefin resin has low crystallinity, the strength of the molded product is low. Has limitations, and in some cases it has not been possible to adequately respond to the recent demand for higher-strength profiled extrusions.
これに対し、 主としてォキシメチレン単位の繰り返しからなるポリマ一骨格を 有するポリオキシメチレン樹脂は、 結晶化度が高く、 剛性、 強度、 耐薬品性、 耐 溶剤性等の点で優れていることが知られており、 結晶化速度が速く、 成形サイク ルが速いことから、 主に射出成形材料として自動車、 電気機器の機構部品の分野 で幅広く使われている。  In contrast, a polyoxymethylene resin having a polymer skeleton composed mainly of repeating oxymethylene units is known to have high crystallinity and to be excellent in rigidity, strength, chemical resistance, solvent resistance, and the like. Because of its high crystallization speed and fast molding cycle, it is widely used as an injection molding material in the field of mechanical parts for automobiles and electrical equipment.
このようにポリオキシメチレン樹脂は優れた諸特性を有する樹脂ではあるが、 ポリオキシメチレン樹脂は結晶化度が高く、 結晶化速度が速く、 成形収縮が大き い等のため、 これを異形押出成形に用いた場合、 ドローダウンが生じたり、 冷却 固化時の収縮により歪が発生して製品が変形し、 目的とする断面形状を形成する ことは極めて困難であった。  As described above, polyoxymethylene resin has excellent properties, but polyoxymethylene resin has high crystallinity, high crystallization speed, and large molding shrinkage. When used in such a method, drawdown occurs or distortion occurs due to shrinkage during cooling and solidification, and the product is deformed, and it is extremely difficult to form a desired cross-sectional shape.
このため、 ポリオキシメチレン樹脂を用いて異形押出成形することは、 従来殆 ど行なわれておらず、 また、 ポリオキシメチレン樹脂の異形押出成形におけるか かる挙動は、 ポリォキシメチレン樹脂が有する上記の如き本質的な性質に起因す ることから、これを異形押出成形に適したものに改善することは困難と考えられ、 殆ど研究の対象とはされてこなかつた。  For this reason, profile extrusion molding using a polyoxymethylene resin has hardly been performed in the past, and such behavior in the profile extrusion molding of a polyoxymethylene resin is based on the polyoxymethylene resin described above. Due to such essential properties as described above, it was considered difficult to improve it to one suitable for profile extrusion, and it has hardly been studied.
このようなポリオキシメチレン樹脂の異形押出成形に関する数少ない従来技術 として、インクの流路を有するペン先用の中空押出成形物が知られている(例えば、 特開昭 5 9— 2 2 7 4 9 8号公報および特開平 8— 1 4 2 5 6 5号公報参照)。 これらの文献に開示された技術は、 ペン先の性能を考慮した材料選定に特徴を 有するものであり、 異形押出成形、 特に断面形状が複雑な異形材ゃ断面積の大き な異形材の押出成形に特に効果的に適用し得るポリォキシメチレン樹脂材料につ いては、 何も開示していない。 発明の開示 As one of the few prior arts relating to such profile extrusion molding of a polyoxymethylene resin, a hollow extruded product for a pen tip having an ink flow path is known (for example, Japanese Patent Application Laid-Open No. 59-22749). No. 8 and Japanese Patent Application Laid-Open No. H08-142465). The techniques disclosed in these documents are characterized by the selection of materials in consideration of the performance of the pen tip, and are particularly useful for profile extrusion, especially for profiles with complex cross-sections and for profiles with large cross-sections. No disclosure is made of a polyoxymethylene resin material that can be particularly effectively applied to the above. Disclosure of the invention
本発明の目的は、 上記のような課題を解決し、 歪が小さく、 寸法精度の優れた 異形断面成形品を効率の良く製造することができるポリオキシメチレン共重合体 からなる樹脂材料を提供することにある。  An object of the present invention is to solve the above problems and provide a resin material comprising a polyoxymethylene copolymer capable of efficiently producing a deformed cross-section molded article having small distortion and excellent dimensional accuracy. It is in.
本発明者らは、 上記目的を達成するために鋭意研究した結果、 結晶化速度を制 御した特定のポリオキシメチレン共重合体からなる樹脂材料を用いることにより 異形押出加工性が良好となり、 成形ひずみの少ない優れた成形品が得られること を見出し、 本発明に到達した。  The present inventors have conducted intensive studies in order to achieve the above object, and as a result, using a resin material made of a specific polyoxymethylene copolymer having a controlled crystallization rate, improved the profile extrusion processability, The present inventors have found that an excellent molded product with little distortion can be obtained, and have reached the present invention.
即ち本発明は、 主としてォキシメチレン単位の繰り返しからなるポリマー鎖中 に、ォキシメチレン単位 lOOmol当たり 1. 5〜10molの下記一般式(1)で表されるォ キシアルキレン単位を含み、 メルトインデックス (190°C、 荷重 2160g) が 0. 3〜 20 g/10分であるポリオキシメチレン共重合体からなり、異形断面を有する成形 品の製造に適した樹脂材料である。 2  That is, the present invention comprises, in a polymer chain mainly composed of repeating oxymethylene units, 1.5 to 10 mol of oxyalkylene units represented by the following general formula (1) per 100 mol of oxymethylene units, and a melt index (190 ° C.) It is a resin material composed of a polyoxymethylene copolymer having a load of 2160 g) of 0.3 to 20 g / 10 minutes and suitable for producing molded articles having an irregular cross section. Two
4(c)m-oト 4 (c) m -o
Rl (1) Rl (1)
(式中、 R2は、 水素、 炭素数 1〜8のアルキル基、 炭素数 1〜8のアルキ ル基を有する有機基、 フエニル基、 フエ二ル基を有する有機基から選ばれ、 R2は同一でも異なっていてもよい。 mは 2〜 6の整数を示す。 ) (Wherein, R 2 is hydrogen, an alkyl group having 1 to 8 carbon atoms, selected from an organic group having an organic group, phenyl group, phenylene Le radicals having alkyl Le group having 1 to 8 carbon atoms, R 2 May be the same or different, and m represents an integer of 2 to 6.)
並びに、 かかる樹脂材料から得られる異形断面を有する成形品である。 Further, it is a molded article having an irregular cross section obtained from such a resin material.
本発明は、 上記樹脂材料の異形断面を有する成形品を製造するための用途と上 記樹脂材料を成形することを含む異形断面を有する成形品の製造方法も提供する。 発明の詳細な説明 The present invention also provides an application for producing a molded article having an irregular cross section of the above resin material and a method for producing a molded article having an irregular cross section including molding the above resin material. Detailed description of the invention
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の樹脂材料は、 主としてォキシメチレン単位の繰り返しからなるボリマ 一鎖中に、ォキシメチレン単位 lOOmol当たり 1. 5〜10molの前記一般式(1)で表さ れるォキシアルキレン単位を含むポリオキシメチレン共重合体からなるものであ る。  The resin material of the present invention comprises a polyoxymethylene unit containing 1.5 to 10 mol of oxyalkylene units represented by the above general formula (1) per 100 mol of oxymethylene units in one chain of a polymer mainly composed of repeating oxymethylene units. It consists of a polymer.
本発明に使用するポリオキシメチレン共重合体において、一般式(1)で表される ォキシアルキレン単位の割合は、 ォキシメチレン単位 lOOmol当たり 1. 5〜10mol であることが必要であり、 好ましくはォキシメチレン単位 lOOmol当たり 2〜8 mol、特に好ましくはォキシメチレン単位 lOOmol当たり 2〜5 molである。一般式 (1)で表されるォキシアルキレン単位の割合が少なくなるとポリオキシメチレン 共重合体の結晶化速度が早くなり、 異形断面を有する成形品を押出し成形により 製造するに当たり、 押出機のダイを通して押出された溶融樹脂が、 サイジングダ ィで所望の断面形状に整形されて冷却される前に固化するために所望の形状が得 られない。 また固化速度が早いことに起因して、 固化工程中に生じる成形物中の ひずみが大きくなることから、変形した形状となることがある。逆に、一般式(1) で表されるォキシアルキレン単位の割合を増大させるとポリオキシメチレン共重 合体の結晶化度が低くなり、 かかる共重合体からなる成形品は、 強度、 弾性率等 が低いものとなる。  In the polyoxymethylene copolymer used in the present invention, the ratio of the oxyalkylene unit represented by the general formula (1) must be 1.5 to 10 mol per 100 mol of the oxymethylene unit, and is preferably oxymethylene. It is preferably 2 to 8 mol per 100 mol of unit, particularly preferably 2 to 5 mol per 100 mol of oxymethylene unit. When the proportion of the oxyalkylene unit represented by the general formula (1) is reduced, the crystallization rate of the polyoxymethylene copolymer is increased, and when extruding a molded article having an irregular cross section, a die of an extruder is used. The molten resin extruded through is shaped into a desired cross-sectional shape by a sizing die and solidified before being cooled, so that a desired shape cannot be obtained. Also, due to the high solidification rate, the strain in the molded product generated during the solidification process becomes large, so that a deformed shape may be formed. Conversely, when the proportion of the oxyalkylene unit represented by the general formula (1) is increased, the crystallinity of the polyoxymethylene copolymer decreases, and the molded article made of such a copolymer has a high strength and elastic modulus. Etc. are low.
また、 本発明で使用するポリオキシメチレン共重合体は、 ASTM D-1238に従い、 190°C、 2160 gの荷重下で測定されるメルトインデックス (M l ) が 0. 3〜20 g // 10分であることが必要であり、好ましくは 0. 5〜10 g /10分、特に好ましくは 0. 5 〜5 g/10分である。 メルトインデックス (M l ) が過小では、 溶融押出加工時 の負荷が増大して押出しが困難になり、 逆にメルトインデックス (M l ) が過大 になると、 樹脂のド口一ダウン等のため製造が不安定なものとなる。 本発明で使用する上記の如きポリオキシメチレン共重合体の製造方法は特に限 定されるものではなく、 一般的にはトリオキサンとコモノマーである環状エーテ ル化合物或いは環状ホルマール化合物とを、 主としてカチオン重合触媒を用いて 塊状重合させる方法で得ることができる。 重合装置としては、 バッチ式、 連続式 等の公知の装置が何れも使用できる。 ここで、前述した一般式(1)で表されるォキ シアルキレン単位の導入割合は、共重合させるコモノマーの量により調整される。 また、 メル卜インデックス (M l ) は、 重合時に使用する連鎖移動剤、 例えばメ チラ一ル等の添加量により調整することができる。 The polyoxymethylene copolymer used in the present invention has a melt index (Ml) of 0.3 to 20 g // 10 measured at 190 ° C under a load of 2160 g according to ASTM D-1238. Min., Preferably 0.5 to 10 g / 10 min, particularly preferably 0.5 to 5 g / 10 min. If the melt index (M l) is too small, the load during the melt extrusion process will increase, making extrusion difficult. Conversely, if the melt index (M l) becomes too large, the resin will be cut down due to the resin opening. It becomes unstable. The method for producing the above-mentioned polyoxymethylene copolymer used in the present invention is not particularly limited. It can be obtained by a method of performing bulk polymerization using a catalyst. As the polymerization apparatus, any of known apparatuses such as a batch type and a continuous type can be used. Here, the introduction ratio of the oxyalkylene unit represented by the general formula (1) is adjusted by the amount of the comonomer to be copolymerized. In addition, the melt index (Ml) can be adjusted by the amount of a chain transfer agent used during polymerization, for example, methylal or the like.
得られる共重合体のメルトインデックスは、 連鎖移動剤の添加量を減少させる と小さく、 増加させると大きくなる。 なお、 メルトインデックスに対しては、 原 料モノマーゃコモノマー中に含まれる水、 メタノール等の不純物や、 重合機の種 類、 形状、 サイズ、 重合条件等も影響を与えるため、 特定のメルトインデックス の共重合体を得るのに必要な連鎖移動剤の絶対量を一義的に決定することは困難 であり、 共重合体の製造を試行しながら、 所望のメルトインデックスのものが得 られるように連鎖移動剤の添加量を増減する。  The melt index of the obtained copolymer decreases as the amount of the chain transfer agent added decreases, and increases as the amount increases. The melt index is affected by impurities such as water and methanol contained in the raw material monomer and comonomer, and the type, shape, size, and polymerization conditions of the polymerization machine. It is difficult to unambiguously determine the absolute amount of chain transfer agent required to obtain the copolymer, and the chain transfer is performed so that the desired melt index is obtained while trying to produce the copolymer. Increase or decrease the amount of agent added.
コモノマーとして用いられる環状エーテル化合物或いは環状ホルマール化合物 としては、 エチレンォキシド、 プロピレンォキシド、 ブチレンォキシド、 スチレ ンォキシド、 ォキセタン、 テ卜ラヒドロフラン、 卜リオキセパン、 1, 3—ジォキソ ラン、 プロピレングリコールホルマール、 ジエチレングリコールホルマール、 ト リエチレングリコールホルマール、 1, 4—ブタンジォ一ルホルマール、 1, 5—ペン タンジオールホルマール、 1, 6 -へキサンジオールホルマール等が挙げられ、その 中でもエチレンォキシド、 1, 3—ジォキソラン、ジエチレングリコールホルマール、 1, 4一ブタンジオールホルマールが好ましい。また、本発明に使用するポリオキシ メチレン共重合体は、 分岐又は架橋構造を有するものであってもよく、 このため に上記以外の単官能あるいは 2官能以上のグリシジル化合物等を少量添加して共 重合させたものでもよい。 Examples of the cyclic ether compound or cyclic formal compound used as a comonomer include ethylene oxide, propylene oxide, butylene oxide, styrene oxide, oxetane, tetrahydrofuran, trioxepane, 1,3-dioxolan, propylene glycol formal, diethylene glycol formal, Examples include triethylene glycol formal, 1,4-butanediol formal, 1,5-pentanediol formal, 1,6-hexanediol formal, among which ethylene oxide, 1,3-dioxolan, diethylene glycol formal, 1,4-butanediol formal is preferred. The polyoxymethylene copolymer used in the present invention may have a branched or crosslinked structure. For this purpose, a small amount of a monofunctional or bifunctional or higher glycidyl compound other than those described above is added and copolymerized. It may be polymerized.
重合によって得たポリオキシメチレン共重合体は、 触媒の失活化処理、 未反応 モノマーの除去、重合体の洗浄、乾燥、不安定末端部の安定化処理等を行った後、 更に各種安定剤の配合による安定化処理等を行って実用に供される。 代表的な安 定剤としては、 ヒンダードフエノール系化合物、 窒素含有化合物、 アルカリ或い はアル力リ土類金属の水酸化物、 無機酸塩、 カルボン酸塩等を挙げることができ る。  The polyoxymethylene copolymer obtained by polymerization is subjected to catalyst deactivation treatment, removal of unreacted monomers, washing and drying of the polymer, stabilization of unstable terminal portions, etc., followed by various stabilizers And then put to practical use by performing stabilization treatment and the like by blending the same. Representative stabilizers include hindered phenol compounds, nitrogen-containing compounds, hydroxides of alkali or alkaline earth metals, inorganic acid salts, carboxylate salts, and the like.
このようにして得られ本発明で使用するポリオキシメチレン共重合体は、 Ή - NMRにより検出されるへミホルマール末端基量が 0〜 4mmol/kgであることが 好ましく、 特に好ましくは 0〜 2 imol/kgである。 へミホルマール末端基量が 4 腿 ol/kgを超える場合には、 溶融加工時にポリマーの分解に伴う発泡等の問題が 生じる場合がある。 へミホルマール末端基を上記範囲に制御するためには、 重合 に供するモノマー、 コモノマー総量中の不純物、 特に水分を 20ppm以下にするの が好ましく、 特に好ましくは lOppm以下である。  The polyoxymethylene copolymer thus obtained and used in the present invention preferably has an amount of hemiformal terminal groups detected by Ή-NMR of 0 to 4 mmol / kg, particularly preferably 0 to 2 imol. / kg. If the amount of the hemiformal terminal group exceeds 4 ol / kg, problems such as foaming due to decomposition of the polymer may occur during melt processing. In order to control the hemiformal terminal group within the above range, it is preferable that impurities, particularly water, in the total amount of monomers and comonomer to be subjected to the polymerization be 20 ppm or less, particularly preferably 10 ppm or less.
本発明で使用する樹脂材料には、 かかるポリオキシメチレン共重合体には、 必 要に応じて、 熱可塑性樹脂に対する一般的な添加剤、 例えば染料、 顔料等の着色 剤、 滑剤、 核剤、 離型剤、 帯電防止剤、 界面活性剤、 或いは有機高分子材料、 無 機または有機の繊維状、 板状、 粉粒状の充填剤等の 1種または 2種以上を、 本発 明の目的を阻害しない範囲で添加することができる。 '  In the resin material used in the present invention, such a polyoxymethylene copolymer may contain, as necessary, general additives for thermoplastic resins, for example, coloring agents such as dyes and pigments, lubricants, nucleating agents, One or more types of release agents, antistatic agents, surfactants, or organic polymer materials, inorganic or organic fibrous, platy, or granular fillers are used for the purpose of the present invention. It can be added within a range that does not inhibit. '
次に、 上記のようなポリオキシメチレン共重合体からなる樹脂材料を用いた異 形断面を有する成形品の製造方法について説明する。 異形断面を有する成形品の 製造には通常異形押出し成形法が用いられる。 異形断面を有する成形品の製造 は、 基本的には次のようにして行なわれる。 すなわち、 一軸または二軸のスクリ ユーを有する押出機内で樹脂を加熱溶融した後、 所定の形状を有する押出成形口 金 (ダイ)から溶融樹脂を押出し、 サイジング工程で目的とする形状に整形すると 共に冷却工程により固化させて引き取り、 必要に応じて所望の長さに切断して、 長尺の成形体を得る方法である。 ここで、 押出成形用ダイとしてはストレートダ ィ、 クロスヘッドダイ、 フラットダイ、 特殊ダイ等が知られており、 目的に応じ て選択される。 押出成形用ダイの形状 (押出される溶融樹脂の断面形状)は、 丸型 の他に任意の形状設計が可能であり、 最終製品の断面形状と類似する形状とする ことも、 これとは全く異なる断面形状とすることもできる。 Next, a method for producing a molded article having an irregular cross section using the resin material made of the polyoxymethylene copolymer as described above will be described. In order to produce a molded article having an irregular cross section, an irregular extrusion method is usually used. The manufacture of a molded article having an irregular cross section is basically performed as follows. That is, after the resin is heated and melted in an extruder having a single-screw or twin-screw, the molten resin is extruded from an extrusion die (die) having a predetermined shape and shaped into a target shape in a sizing process. Both are solidified by a cooling process, taken up, and cut to a desired length as necessary to obtain a long molded body. Here, straight dies, crosshead dies, flat dies, special dies, and the like are known as dies for extrusion molding, and are selected according to the purpose. The shape of the extrusion die (cross-sectional shape of the molten resin to be extruded) can be any shape design other than the round shape, and can be similar to the cross-sectional shape of the final product. Different cross-sectional shapes can be used.
また、 押出成形用ダイから押出されたかかる溶融樹脂を目的の形状に整形する ため、 サイジング工程でサイジング処理が行なわれる。 サイジング方法としては 外部サイジング法、 内部サイジング法等が知られているが、 外部サイジング法が 主流であり、 その中でも真空サイジング法がよく利用される。 サイジングにより 形状の整えられた樹脂は、 水槽、 水シャワー、 空冷等により冷却 ·固化され、 目 的とする製品が得られる。 冷却はサイジングと同時に行なうことも可能であり、 サイジングに先だって、 溶融樹脂が固化しない程度に予備冷却することも可能で ある。  In addition, a sizing process is performed in a sizing step to shape the molten resin extruded from the extrusion die into a desired shape. External sizing and internal sizing are known as sizing methods, but the external sizing method is the mainstream, and the vacuum sizing method is often used. The resin whose shape has been adjusted by sizing is cooled and solidified by a water tank, a water shower, air cooling, etc., to obtain a desired product. Cooling can be performed simultaneously with sizing, and prior to sizing, pre-cooling can be performed to the extent that the molten resin does not solidify.
得られる異形断面を有する成形品の断面形状としては、 L字型、 コ字型、 ェ字 型、 T字型等の開放形状、 円筒、 角筒等の中空形状、 中空形状の中にリブを設け た中空リブ付き形状、 これらの形状が混合した複合形状の何れもが可能である。 尚、 ここでは異形断面を有する成形品の成形法についての一般的な手法を示し たが、 本発明の樹脂材料を用いた異形断面を有する成形品の製造方法は、 ここに 記載した方法に限定されるものではない。  The cross-sectional shape of the resulting molded article having an irregular cross-section includes open shapes such as L-shape, U-shape, E-shape, and T-shape, hollow shapes such as cylinders and square tubes, and ribs in hollow shapes. Either the provided shape with hollow ribs or a composite shape obtained by mixing these shapes is possible. Although a general method for molding a molded article having an irregular cross section has been described here, the method for producing a molded article having an irregular cross section using the resin material of the present invention is limited to the method described here. It is not done.
本発明のポリオキシメチレン共重合体からなる樹脂材料を使用して得られる異 形断面を有する成形品は、 その高強度、 高弾性率、 耐溶剤性、 耐熱性、 耐屈曲疲 労性等の優れた特性を活かし種々の用途がある。 加工物は連続形態であるため、 目的に応じて適宜切断して使用することが可能であり、 例えばレール、 パイプ、 各種建材、 その他種々の用途への使用が可能である。 図面の簡単な説明 The molded article having an irregular cross section obtained by using the resin material comprising the polyoxymethylene copolymer of the present invention has high strength, high elastic modulus, solvent resistance, heat resistance, flex fatigue resistance and the like. There are various applications utilizing the excellent characteristics. Since the processed product is in a continuous form, it can be used by appropriately cutting it according to the purpose. For example, it can be used for rails, pipes, various building materials, and various other uses. BRIEF DESCRIPTION OF THE FIGURES
図 1は実施例で使用したダイの形状を示す断面図である。 図 2は実施例で使 用した真空サイジングの形状を示す図で、 (a) は断面図、 (b) は側面図である。 実施例  FIG. 1 is a sectional view showing the shape of a die used in the example. FIG. 2 is a diagram showing the shape of the vacuum sizing used in the example, (a) is a sectional view, and (b) is a side view. Example
以下、 実施例により本発明を具体的に説明するが、 本発明はこれに限定される ものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.
実施例 1〜 8 Examples 1 to 8
外側に熱 (冷) 媒を通すジャケットが付き、 断面が 2つの円が一部重なる形状 を有するバレルと、 パドル付き回転軸で構成される連続式混合反応機を用い、 パ ドルを付した 2本の回転軸をそれぞれ 150rpmで回転させながら、液状のトリオキ サン、 コモノマ一として環状エーテル又は環状ホルマールを加え、 更に分子量調 節剤としてメチラール、 同時に触媒の三フッ化ホウ素 50ppm (全モノマーに対し) を重合機に連続的に供給しながら塊状重合を行った。 用いたトリオキサンの水分 含有量、 コモノマーの種類、 メチラール量 (全モノマー重量に対する割合) を表 A paddle was attached using a continuous mixing reactor consisting of a barrel that has a jacket through which a heat (cool) medium passes and a cross section of two circles partially overlapping, and a rotary shaft with paddles. While rotating the rotating shafts at 150 rpm, add liquid trioxane, cyclic ether or cyclic formal as a comonomer, further add methylal as a molecular weight regulator, and 50 ppm of boron trifluoride as a catalyst (based on all monomers). Was continuously supplied to a polymerization machine to perform bulk polymerization. Table showing the water content of trioxane used, the type of comonomer, and the amount of methylal (ratio to total monomer weight)
1に示す。 コモノマーの水分量は何れも lOppm以下であった。 なお、 得られる共 重合体のメルトインデックスの目標値を実施例 1〜 3及び 5〜 7では 2. 0、 実施 例 4では 1. 5、 実施例 8では 9. 0とし、 メチラールの添加量を表 1に示す範囲内 で微調整した。 Shown in 1. The water content of each comonomer was less than 10 ppm. The target value of the melt index of the obtained copolymer was 2.0 in Examples 1 to 3 and 5 to 7, 1.5 in Example 4, and 9.0 in Example 8, and the amount of methylal was added. Fine adjustment was made within the range shown in Table 1.
重合機から排出された反応生成物は速やかに破砕機に通しながら、 トリェチル アミンを 0. 05重量%含有する 60°Cの水溶液に加え触媒を失活した。 さらに、 分 離、 洗浄、 乾燥後、 粗ポリオキシメチレン共重合体を得た。 得られた共重合体の 性状を表 2に示す。  The reaction product discharged from the polymerization machine was immediately passed through a crusher, and was added to a 60 ° C aqueous solution containing 0.05% by weight of triethylamine to deactivate the catalyst. Further, after separation, washing and drying, a crude polyoxymethylene copolymer was obtained. Table 2 shows the properties of the obtained copolymer.
次いで、 この粗ポリオキシメチレン共重合体 100重量部に対して、 トリェチル ァミン 5重量%水溶液を 4重量部、 ペン夕エリスリチルーテトラキス 〔3— (3, 5 ージ一 tert—プチルー 4—ヒドロキシフエニル) プロピオネート〕 を 0. 3重量部 添加し、 2軸押出機にて 210°Cで溶融混練し不安定部分を除去した。 Then, triethyl was added to 100 parts by weight of the crude polyoxymethylene copolymer. 4 parts by weight of a 5% by weight aqueous solution of amine, and 0.3 parts by weight of pentaerythristyl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] are added, and a twin screw extruder is added. At 210 ° C. to remove unstable parts.
上記の方法で得たポリォキシメチレン樹脂 100重量部に、 安定剤としてペン夕 エリスリチルーテトラキス〔3— (3, 5—ジ一 tert—プチルー 4—ヒドロキシフエ ニル) プロピオネート〕 を 0. 03重量部およびメラミン 0. 15重量部を添加し、 2 軸押出機にて 210°Cで溶融混練し、 ペレツト状の樹脂材料を得た。  To 100 parts by weight of the polyoxymethylene resin obtained by the above-mentioned method, 0.03 of pentaethylene erythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] was added as a stabilizer. Parts by weight and 0.15 parts by weight of melamine were added and melt-kneaded at 210 ° C. using a twin-screw extruder to obtain a pellet-shaped resin material.
上記で得られたぺレット状の樹脂材料を用い、 シリンダ一設定温度 200°Cの押 出成形機により樹脂を溶融可塑化し、 図 1に示す断面形状のダイ (図中の数字の 単位は mmである) から押出し、 図 2に示す真鍮製の真空サイジングダィ (図中 の数字の単位は mmである)にて減圧'冷却しながら樹脂を通過させ、 "コの字"型 のレール状の成形物を得た。 後述する評価法で評価した結果を表 2に示す。  Using the pelletized resin material obtained above, the resin is melt-plasticized by an extruder at a cylinder-set temperature of 200 ° C. A die with the cross-sectional shape shown in Fig. 1 (The unit of the number in the figure is mm The resin is passed through the vacuum sizing dies (the unit of the number in the figure is mm) as shown in Fig. 2 while cooling and cooling to form a "U-shaped" rail shape. I got something. Table 2 shows the results evaluated by the evaluation method described below.
比較例 1〜 5 Comparative Examples 1 to 5
使用するコモノマー量或いは表 1に示すようにメチラール量を変えた以外は実 施例と同様にして、表 2に示すような本発明の規定外のポリオキシメチレン(共) 重合体を調製した。 なお、 メルトインデックスの目標値を比較例 1〜3では 2. 0、 比較例 4では 27. 0とし、メチラールの添加量を表 1に示す範囲内で微調整した。 また、 比較例 5では、 メルトインデックスが小さい共重合体を得るため、 メチラ ールの添加を行わなかった。  Polyoxymethylene (co) polymers not specified in the present invention as shown in Table 2 were prepared in the same manner as in Examples except that the amount of comonomer used or the amount of methylal as shown in Table 1 was changed. The target value of the melt index was 2.0 in Comparative Examples 1-3 and 27.0 in Comparative Example 4, and the amount of methylal added was finely adjusted within the range shown in Table 1. In Comparative Example 5, addition of methylal was not performed in order to obtain a copolymer having a small melt index.
得られた (共) 重合体を実施例と同様にして安定化処理等を行い、 さらに異形 押出加工を行い、 成形物を得た。 後述する評価法で評価を行った結果を表 2に示 す。  The obtained (co) polymer was subjected to a stabilization treatment and the like in the same manner as in the examples, and was further subjected to profile extrusion to obtain a molded product. Table 2 shows the results of evaluation using the evaluation method described below.
実施例 9 Example 9
1 , 3一ジォキソランと共に n—ブチルダリシジルエーテルを共重合成分とし て加えた以外は実施例 1と同様にして重合を行ない、 表 3に示す通りの分岐構造 を持たせた粗ポリオキシメチレン共重合体を得た。 さらに実施例 1と同様の処理 を行なった後、 異形断面を有する成形品の製造を実施し、 "コの字"型のレール状 の成形物を得た。 後述する評価法で評価した結果を表 3に示す。 Polymerization was carried out in the same manner as in Example 1 except that n-butyldaricidyl ether was added as a copolymerization component together with 1,3-dioxolane, and the branched structure was as shown in Table 3. To obtain a crude polyoxymethylene copolymer. Further, after performing the same processing as in Example 1, a molded product having an irregular cross section was manufactured to obtain a "U-shaped" rail-shaped molded product. Table 3 shows the results evaluated by the evaluation method described later.
尚、 実施例 ·比較例における評価基準等は以下の通りである。  The evaluation criteria and the like in Examples and Comparative Examples are as follows.
[メルトインデックス (M l ) 測定]  [Melt index (Ml) measurement]
ASTM D- 1238に従い、 190°C、 2160 gの荷重下で測定した。  According to ASTM D-1238, it was measured at 190 ° C under a load of 2160 g.
[ポリマー組成分析]  [Polymer composition analysis]
物性評価に用いたポリマ一を、へキサフルォロイソプロパノール d 2に溶解し、 'Η— NMR測定を行った。各ユニットに対応するピーク面積より定量した。表に は、共重合ュニットの害 ij合を、ォキシメチレン単位 lOOmol当たりの mol比で示す。  The polymer used for evaluation of physical properties was dissolved in hexafluoroisopropanol d2, and 'Η-NMR measurement was performed. It was quantified from the peak area corresponding to each unit. In the table, the damage ij of the copolymer unit is shown in terms of mol ratio per lOOmol of oxymethylene unit.
[末端基分析]  [Terminal group analysis]
物性評価に用いたポリマ一を、へキサフルォロイソプロパノール d 2に溶解し、 — NMR測定を行った。 各末端に対応するピーク面積より定量した。  The polymer used for the evaluation of physical properties was dissolved in hexafluoroisopropanol d2, and-NMR measurement was performed. It was quantified from the peak area corresponding to each end.
[形状判定]  [Shape determination]
所望の形状となっているか否かを目視にて観察し、 次の基準にて判定した。 3点...所望の断面形状が得られている。  It was visually observed whether or not it had a desired shape, and judged based on the following criteria. 3 points ... A desired cross-sectional shape is obtained.
2点...所望の断面はほぼ得られているものの、 若干のひずみ ·ねじれ又は表面に 凹凸が認められる。  2 points ... Although the desired cross section is almost obtained, slight distortion / twisting or unevenness on the surface is observed.
1点...所望の断面形状は得られず加工不可。  1 point ... The desired cross-sectional shape cannot be obtained and processing is impossible.
[成形加工性]  [Moldability]
成形加工に問題がないかを判定した。 共重合成分 メチラール量 モノマー (水分含有量 (ppm)) コモノマー (ppm) 実施例 1 TOX (13) DO 300~500 実施例 2 TOX (15) DO 300~500 実施例 3 TOX (15) DO 300〜500 実施例 4 . TOX (13) DO 300—500 実施例 5 TOX (110) DO 300~500 実施例 6 TOX (14) BDF 300~500 実施例 7 TOX (13) EGF It was determined whether there was any problem in the molding process. Copolymerization component Methylal amount Monomer (water content (ppm)) Comonomer (ppm) Example 1 TOX (13) DO 300-500 Example 2 TOX (15) DO 300-500 Example 3 TOX (15) DO 300- 500 Example 4.TOX (13) DO 300-500 Example 5 TOX (110) DO 300-500 Example 6 TOX (14) BDF 300-500 Example 7 TOX (13) EGF
実施例 8 TOX (16) DO 500〜800 比較例 1 TOX (13) DO 300〜500 比較例 2 TOX (13) DO 300—500 比較例 3 TOX (14) ― + 300〜500 比較例 4 TOX (14) DO 1000〜湖 0 比較例 5 TOX (13) DO 0Example 8 TOX (16) DO 500 to 800 Comparative Example 1 TOX (13) DO 300 to 500 Comparative Example 2 TOX (13) DO 300--500 Comparative Example 3 TOX (14) ― + 300 to 500 Comparative Example 4 TOX ( 14) DO 1000-Lake 0 Comparative Example 5 TOX (13) DO 0
TOX: .卜リオキサン TOX: .Trioxane
DO : 1 , 3—ジォキソラン  DO: 1, 3—dioxolan
BDF: 1 , 4一ブタンジオールホルマ'  BDF: 1,4-butanediol forma '
EGF:エチレングリコ一ルホルマール EGF: ethylene glycol formal
表 2 ポリマ一誠分析'評価 成形物の判定及び加工性 Table 2 Evaluation of polymer integrity analysis
Ml へミホルマ一ソレ 形状  Ml Hemiformer Sole Shape
共重合ユ-ット mol 成形加工性  Copolymer unit mol Formability
(g/10min) (mmol/ka) 判定  (g / 10min) (mmol / ka) Judgment
実施例 1 (CH2CH20) 2.2 1.9 0.2 3 良好 Example 1 (CH 2 CH 2 0) 2.2 1.9 0.2 3 good
実施例 2 (CH2CH20) 4.3 2.0 0.2 3 良好 Example 2 (CH 2 CH 2 0) 4.3 2.0 0.2 3 good
実施例 3 (CH2CH20) 5.7 2.0 0.2 3 良好 Example 3 (CH 2 CH 2 0) 5.7 2.0 0.2 3 good
実施例 (CH2CH20) 2.2 1.5 0.2 3 良好 Example (CH 2 CH 2 0) 2.2 1.5 0.2 3 Good
実施例 5 (CH2CH20) 2.2 2.0 5 2 ガス発生,若干の発泡 実施例 6 (CH2CH2CH2CH20) 2.2 2.1 0.2 3 良好 Example 5 (CH 2 CH 2 0) 2.2 2.0 52 Gas generation, slight foaming Example 6 (CH 2 CH 2 CH 2 CH 2 0) 2.2 2.1 0.2 3 Good
実施例 7 (CH2CH02CH2CH20) 2.2 2.1 0.2 3 良好 Example 7 (CH 2 CH0 2 CH 2 CH 2 0) 2.2 2.1 0.2 3 Good
やや低粘度であり不安定であるが 実施例 8 (CH2CH20) 2.2 9 0.2 2 Example 8 (CH 2 CH 2 0) 2.2 9 0.2 2
加工可能  Processing possible
比較例 1 (CH2CH20) 1.2 2.2 0.2 1 加工困難 Comparative Example 1 (CH 2 CH 2 0) 1.2 2.2 0.2 1 Difficult to machine
比較例 2 (CH2CH20) 0.48 2 0.2 1 加工困難 Comparative Example 2 (CH 2 CH 2 0) 0.48 2 0.2 1 Difficult to process
比較例 3 ― ― 2 0.2 1 加工困難 Comparative Example 3 ― ― 2 0.2 1 Difficult to process
比較例 4 (CH2CH20) 2.2 27 0.2 1 •樹脂低粘度のため加工困難 比較例 5 (CH2CH20) 2.2 0.2 0.2 1 樹脂咼粘度のため押出機の負何大 Comparative Example 4 (CH 2 CH 2 0) 2.2 27 0.2 1 • Difficult to process due to low resin viscosity Comparative Example 5 (CH 2 CH 20 ) 2.2 0.2 0.2 1 Extruder negative due to resin viscosity
表 3 成形物の判 び加工 ポリマー誠分析'評価 Table 3 Judgment and processing of molded products
性 共重合ュニット -1 形状  Copolymer unit-1 Shape
mol 共重合ユーット -2 mol へミホルマ一ル  mol Copolymer Ut -2 mol Hemiformal
成形加工性 (mmol/kg) 判定  Moldability (mmol / kg) Judgment
実施例 9 (CH2CH20) 2.3 ( CH(CH2OC4H9)CH20 ) 0.25 1.9 0.2 3 良好 Example 9 (CH 2 CH 20 ) 2.3 (CH (CH 2 OC 4 H 9 ) CH 20 ) 0.25 1.9 0.2 3 Good
3— 3—

Claims

請求の範囲 The scope of the claims
1 . 主としてォキシメチレン単位の繰り返しからなるポリマー鎖中に、 ォキシ メチレン単位 lOOmol当たり 1. 5〜10molの下記一般式(1)で表されるォキシアルキ レン単位を含み、 メルトインデックス (190で、 荷重 2160g) が 0. 3〜20 gZ10分 であるポリオキシメチレン共重合体からなり、 異形断面を有する成形品の製造に 適した樹脂材料。 1. A polymer chain consisting mainly of repeating oxymethylene units contains 1.5 to 10 mol of oxyalkylene units represented by the following general formula (1) per lOOmol of oxymethylene units, and has a melt index (190, load 2160g) A resin material comprising a polyoxymethylene copolymer having a thickness of 0.3 to 20 gZ10 minutes and suitable for producing a molded article having an irregular cross section.
R2 R 2
~+(C)m-0ト ~ + (C) m -0 to
R (1) R (1)
(式中、 R,、 R2は、 水素、 炭素数 1〜8のアルキル基、 炭素数 1〜8のアルキ ル基を有する有機基、 フエニル基、 フエ二ル基を有する有機基から選ばれ、 R R2は同一でも異なっていてもよい。 mは 2〜6の整数を示す。 ) (Wherein, R, and R 2 are selected from hydrogen, an alkyl group having 1 to 8 carbon atoms, an organic group having an alkyl group having 1 to 8 carbon atoms, a phenyl group, and an organic group having a phenyl group. , RR 2 may be the same or different, and m represents an integer of 2 to 6.)
2 . ポリオキシメチレン共重合体が、ォキシメチレン単位 lOOmol当たり 2〜8mol の前記ォキシアルキレン単位を含むものである請求項 1記載の樹脂材料。  2. The resin material according to claim 1, wherein the polyoxymethylene copolymer contains 2 to 8 mol of the oxyalkylene unit per 100 mol of oxymethylene unit.
3 . ポリオキシメチレン共重合体が、ォキシメチレン単位 lOOmol当たり 2〜5mol の前記ォキシアルキレン単位を含むものである請求項 1記載の樹脂材料。  3. The resin material according to claim 1, wherein the polyoxymethylene copolymer contains 2 to 5 mol of the oxyalkylene unit per 100 mol of oxymethylene unit.
4. ポリオキシメチレン共重合体が、 0. 5〜10gZlO分のメルトインデックスを有 するものである請求項 1〜 3のいずれか 1項に記載の樹脂材料。  4. The resin material according to claim 1, wherein the polyoxymethylene copolymer has a melt index of 0.5 to 10 gZlO.
5 . ポリオキシメチレン共重合体が、 0. 5〜5 g /10分のメルトインデックスを 有するものである請求項 1〜 3のいずれか 1項に記載の樹脂材料。  5. The resin material according to any one of claims 1 to 3, wherein the polyoxymethylene copolymer has a melt index of 0.5 to 5 g / 10 minutes.
6 . ポリオキシメチレン共重合体が、 分岐又は架橋構造を有するものである請 求項 1〜 5のいずれか 1項に記載の樹脂材料。 6. The polyoxymethylene copolymer has a branched or cross-linked structure. The resin material according to any one of claims 1 to 5.
7 . ポリオキシメチレン共重合体が、 0〜4imol/kgのへミホルマール末端基 を有するものである請求項 1〜 6のいずれか 1項に記載の樹脂材料。  7. The resin material according to any one of claims 1 to 6, wherein the polyoxymethylene copolymer has a hemiformal terminal group of 0 to 4 imol / kg.
8 . 請求項 1〜 7のいずれか 1項に記載の樹脂材料から得られる異形断面を有 する成形品。  8. A molded article having an irregular cross section obtained from the resin material according to any one of claims 1 to 7.
9 . 請求項 1〜 7のいずれか 1項に記載の樹脂材料の異形断面を有する成形品 を製造するための用途。  9. Use of the resin material according to any one of claims 1 to 7 for producing a molded article having an irregular cross section.
1 0 . 請求項 1〜 7のいずれか 1項に記載の樹脂材料を成形することを含む異 形断面を有する成形品の製造方法。  10. A method for producing a molded article having an irregular cross-section, comprising molding the resin material according to any one of claims 1 to 7.
PCT/JP2004/006327 2003-05-01 2004-04-30 Resin material for formed article having profile cross section WO2004096881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505955A JPWO2004096881A1 (en) 2003-05-01 2004-04-30 Resin material for molded products with irregular cross section

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003126385 2003-05-01
JP2003-126385 2003-05-01

Publications (1)

Publication Number Publication Date
WO2004096881A1 true WO2004096881A1 (en) 2004-11-11

Family

ID=33410292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/006327 WO2004096881A1 (en) 2003-05-01 2004-04-30 Resin material for formed article having profile cross section

Country Status (3)

Country Link
JP (1) JPWO2004096881A1 (en)
CN (1) CN100371363C (en)
WO (1) WO2004096881A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126523A (en) * 2006-11-21 2008-06-05 Polyplastics Co Method of manufacturing profile extrusion molding of polyoxymethylene resin
JP2009097580A (en) * 2007-10-15 2009-05-07 Ube Nitto Kasei Co Ltd Porous tube and its manufacturing method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239856A (en) * 1996-03-14 1997-09-16 Asahi Chem Ind Co Ltd Molding component of polyacetal resin
JPH09278983A (en) * 1996-04-12 1997-10-28 Polyplastics Co Polyacetal resin composition and molded product thereof
JPH11124422A (en) * 1997-08-22 1999-05-11 Polyplastics Co Continuous production of polyacetal resin
JPH11279245A (en) * 1998-03-30 1999-10-12 Polyplastics Co Production of polyacetal resin
JP2000119357A (en) * 1998-08-12 2000-04-25 Asahi Chem Ind Co Ltd Production of polyoxymethylene copolymer and polyoxymethylene copolymer composition
JP2000129080A (en) * 1998-10-21 2000-05-09 Asahi Chem Ind Co Ltd Grafted polyoxymethylene resin
JP2000169668A (en) * 1998-12-02 2000-06-20 Polyplastics Co Polyacetal resin composition and molded product obtained therefrom
JP2001089545A (en) * 1999-09-24 2001-04-03 Asahi Kasei Corp Polyacetal resin molded article
JP2004137415A (en) * 2002-10-21 2004-05-13 Mitsubishi Engineering Plastics Corp Extrusion molded product made of polyacetal resin

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09239856A (en) * 1996-03-14 1997-09-16 Asahi Chem Ind Co Ltd Molding component of polyacetal resin
JPH09278983A (en) * 1996-04-12 1997-10-28 Polyplastics Co Polyacetal resin composition and molded product thereof
JPH11124422A (en) * 1997-08-22 1999-05-11 Polyplastics Co Continuous production of polyacetal resin
JPH11279245A (en) * 1998-03-30 1999-10-12 Polyplastics Co Production of polyacetal resin
JP2000119357A (en) * 1998-08-12 2000-04-25 Asahi Chem Ind Co Ltd Production of polyoxymethylene copolymer and polyoxymethylene copolymer composition
JP2000129080A (en) * 1998-10-21 2000-05-09 Asahi Chem Ind Co Ltd Grafted polyoxymethylene resin
JP2000169668A (en) * 1998-12-02 2000-06-20 Polyplastics Co Polyacetal resin composition and molded product obtained therefrom
JP2001089545A (en) * 1999-09-24 2001-04-03 Asahi Kasei Corp Polyacetal resin molded article
JP2004137415A (en) * 2002-10-21 2004-05-13 Mitsubishi Engineering Plastics Corp Extrusion molded product made of polyacetal resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126523A (en) * 2006-11-21 2008-06-05 Polyplastics Co Method of manufacturing profile extrusion molding of polyoxymethylene resin
JP2009097580A (en) * 2007-10-15 2009-05-07 Ube Nitto Kasei Co Ltd Porous tube and its manufacturing method

Also Published As

Publication number Publication date
CN100371363C (en) 2008-02-27
CN1784441A (en) 2006-06-07
JPWO2004096881A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
EP1431428B1 (en) Method for the production of polyoxymethylene fibers
EP1321546B1 (en) Process for producing a flat yarn made of polyoxymethylene resin
EP1312645B1 (en) Polyoxymethylene resin composition and molded article thereof
JP3771008B2 (en) Process for producing branched or cross-linked polyacetal resin
JP3169548B2 (en) Polyacetal resin composition and molded article thereof
JP4302394B2 (en) Method for producing stretched product made of polyoxymethylene resin
US5458839A (en) Method of blow or extrusion molding polyoxymethylene resin
WO2004096881A1 (en) Resin material for formed article having profile cross section
WO2001042326A1 (en) Polyacetal copolymer
JP2008126523A (en) Method of manufacturing profile extrusion molding of polyoxymethylene resin
JP2828903B2 (en) Polyacetal copolymer resin for blow molding, blow molded hollow molded article, and method for producing the same
JP4937436B2 (en) Polyacetal copolymer and process for producing the same
JP5208333B2 (en) Polyacetal resin composition
JP3083474B2 (en) Polyacetal resin composition and molded article
JP3115533B2 (en) Polyacetal resin composition and molded article
EP1158010B1 (en) Process for producing oxymethylene copolymer
JP2005264355A (en) Method for producing drawn product made of polyoxymethylene resin
JP2002003696A (en) Polyacetal resin composition
JP4170160B2 (en) Process for producing branched or cross-linked polyacetal resin
EP3460002B1 (en) Method for producing polyacetal resin composition
JP2005132896A (en) Polyoxymethylene resin vacuum molded article and method for producing the same
JP2001329032A (en) Production method for polyoxymethylene copolymer
JP4102828B2 (en) Injection molded article made of polyoxymethylene copolymer molding material
JP2024045843A (en) Polyacetal resin composition
JP2001294637A (en) Molded article made of polyacetal copolymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505955

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20048118328

Country of ref document: CN

122 Ep: pct application non-entry in european phase