WO2004096876A1 - Method for producing polyorganosiloxane-containing resin - Google Patents

Method for producing polyorganosiloxane-containing resin Download PDF

Info

Publication number
WO2004096876A1
WO2004096876A1 PCT/JP2004/005345 JP2004005345W WO2004096876A1 WO 2004096876 A1 WO2004096876 A1 WO 2004096876A1 JP 2004005345 W JP2004005345 W JP 2004005345W WO 2004096876 A1 WO2004096876 A1 WO 2004096876A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyorganosiloxane
containing resin
resin
volatile siloxane
slurry
Prior art date
Application number
PCT/JP2004/005345
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Saegusa
Tomoyuki Yoshimi
Hiroshi Tone
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2005505837A priority Critical patent/JP4763458B2/en
Priority to CA002522464A priority patent/CA2522464A1/en
Priority to AU2004234224A priority patent/AU2004234224A1/en
Priority to US10/553,952 priority patent/US7393915B2/en
Priority to EP04727403A priority patent/EP1619213A4/en
Publication of WO2004096876A1 publication Critical patent/WO2004096876A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/32Post-polymerisation treatment
    • C08G77/34Purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes

Definitions

  • the present invention relates to a method for producing a polyorganosiloxane-containing resin, a polyorganosiloxane-containing resin obtained by the method, and a flame retardant containing the polyorganosiloxane-containing resin. Further, the present invention relates to a method for separating volatile siloxanes distilled off in the method for producing a polyorganosiloxane. Background art
  • Polyorganosiloxane or polyorganosiloxane-containing resin improves impact resistance by utilizing physical properties based on the excellent low-temperature properties of the polyorganosiloxane component and its unique reaction, etc. ⁇ Used for various purposes such as coating.
  • this reaction is an equilibrium reaction between polycondensation forming a siloxane bond (Si-o-si) from silanol (Si-OH) and depolymerization by hydrolysis, the polymerization is terminated particularly in the presence of an aqueous medium. That is, when the equilibrium is reached, a low molecular weight volatile siloxane is generated. This volatile siloxane does not decrease remarkably even when the polymerization of the bullet-based monomer is further performed.
  • the volatile siloxane is isolated from the emulsion or the like by coagulation, dehydration, and drying of the polyorganosiloxane or a resin containing the same, or by spray drying, or applied,
  • the aqueous medium is removed by coating, etc., it is not only wasted as a raw material but also adversely affects the performance of the coating film, etc. because it is dissipated into the atmosphere together with the aqueous medium as exhaust gas. was there. Therefore, much research has been conducted to obtain emulsions with reduced volatile siloxanes.
  • the obtained emulsion had a wide particle size distribution, and there was a problem that the subsequent graft modification reaction in producing a polyorganosiloxane-containing resin could not be carried out uniformly.
  • a method for obtaining a polyorganosiloxane emulsion that does not impair the stability and does not involve the separation of the polyorganosiloxane even during long-term storage that is, a nonionic surfactant 'ionic surfactant' emulsifies cyclic organosiloxane in the presence of a polymerization catalyst
  • a nonionic surfactant 'ionic surfactant' emulsifies cyclic organosiloxane in the presence of a polymerization catalyst An example is shown in which the volatile siloxane is reduced in the method of polymerization (European Patent No. 45950). However, not all volatile siloxanes are reduced. Further, a similar example is shown in a method in which a polyfunctional silane having three or more functional groups is used in combination while controlling the gel fraction (US Pat. No. 5,661,215).
  • the invention described in Japanese Patent Application Laid-Open No. 2002-248952 provides a means for simultaneously solving the problem of molecular weight reduction, in which a polyorganosiloxane emulsion is supplied to a continuous flowing device through a stripping gas.
  • This is a technology that allows heating and stripping to be completed in a short period of time by continuously circulating it.
  • this method requires a dedicated device for continuous stripping.
  • Japanese Patent Application Laid-Open No. 2002-284847 discloses a method for solving the problem of a decrease in the molecular weight of polyorganosiloxane without using a dedicated device for continuous stripping and using a batch method for stripping.
  • low molecular weight siloxanes such as cyclic siloxanes are subjected to suspension polymerization in the presence of a polymerization catalyst to obtain an emulsion, and after neutralizing the polymerization catalyst, the amount of volatile siloxanes is reduced by batch stripping, and the polymerization is repeated. It shows a method of restarting the condensation reaction by adding a cocatalyst and further neutralizing the mixture. In this method, the operation of adding and neutralizing the polymerization catalyst is repeated, so that the operation becomes complicated, and improvement is desired from the viewpoint of productivity.
  • Patent discloses a method in which only hydrocarbons are desorbed by dry air, and then volatile siloxanes are desorbed and recovered by steam and water, and the kieselguhr in the column is further dried and recycled. No. 5,922,108. This method is superior in that it can separate hydrocarbons and volatile siloxanes. On the other hand, dedicated equipment is required, and there is a problem in that the equipment becomes larger for industrial use. Finally, a separate equipment for separating volatile siloxane and an aqueous medium is required. For emulsion systems that do not use hydrocarbons as solvents, etc., which are to be handled by the present invention, simpler methods are desired. Disclosure of the invention
  • An object of the present invention is to provide a novel method for producing a polyorganosiloxane-containing resin in which volatile low-molecular-weight siloxane is reduced, and a polyorganosiloxane-containing resin obtained by the production method and the polyorganosiloxane.
  • An object of the present invention is to provide a flame retardant containing a contained resin.
  • Still another object of the present invention is to provide a method for separating and recovering volatile siloxane distilled off in the method for producing a polyorganosiloxane-containing resin.
  • the present inventors have made intensive studies on the above problems, and as a result, have found that volatile siloxane can be reduced by heating and stripping a polyorganosiloxane-containing resin slurry, and have completed the present invention.
  • a method for producing a polyorganosiloxane-containing resin which comprises reducing volatile siloxane by heating and stripping a slurry of the polyorganosiloxane-containing resin.
  • a resin composition comprising the polyorganosiloxane-containing resin described above and one or more resins selected from a thermoplastic resin, a thermosetting resin, and an elastomer.
  • the present invention is characterized in that volatile siloxane is reduced by heating and stripping a slurry-like polyorganosiloxane-containing resin.
  • the slurry-like polyorganosiloxane-containing resin or the resin composition used in the present invention is obtained by, for example, salting out a latex-like polyorganosiloxane-containing resin or the like with a salt such as chloride, magnesium chloride, or aluminum chloride, or It is preferably obtained by coagulation by a method of treating with an acid such as hydrochloric acid.
  • latex here is a concept that includes emulsion.
  • the heating stripping may involve foaming from the slurry liquid level, and an antifoaming agent or the like can be added as needed for the purpose of preventing the foaming.
  • the slurry itself has a relatively large particle diameter with respect to the film thickness of the foam, so that the surface tension of the foam tends to be uneven, and the effect of suppressing the formation of foam is large.
  • the slurry obtained by coagulating a latex-like polyorganosiloxane-containing resin significantly reduces the activity of the surfactant present in the latex during coagulation, and foams more than when stripping from emulsion.
  • an antifoaming agent it is possible to use a small amount or even no use of an antifoaming agent even when using an antifoaming agent.
  • the type and amount of the antifoaming agent are not limited.
  • a method of defoaming by steam contact or cooling using equipment such as a foam separator device can also be adopted.
  • the weight average particle size of the slurry is not limited, but is preferably at least 1 ⁇ m, more preferably at least 10 ⁇ um, particularly preferably at least 5 ⁇ , and the upper limit is particularly limited. There is no. If it is less than 1 ⁇ , the resin is dispersed in a colloidal state, so that it may be difficult to separate the resin from the aqueous medium later, or it may be easy to foam.
  • the shape of the slurry is not limited, and may be not limited to a spherical shape but may be an irregular shape. However, when a slurry is formed by aggregation of emulsion, the slurry shape is often irregular.
  • the weight average particle diameter can be substituted by the volume average particle diameter.
  • the polyorganosiloxane-containing resin in the present invention is not limited, but when incorporated into a thermoplastic resin, a thermosetting resin, an elastomer, etc., it is well dispersed in a matrix, and has impact resistance, and in some cases, flame retardancy. From the viewpoint that the above-mentioned functionality can be imparted, the polyorganosiloxane-containing resin is preferably a graft copolymer obtained by grafting a component for dispersing satisfactorily in the resin.
  • polyorganosiloxane-containing graft copolymer examples include 1,3,5,7-octamethylcyclotetrasiloxane (D4) as disclosed in JP-A-2000-226420 and JP-A-2000-834392. ), Such as cyclic siloxanes, dimethyldimethoxysilane, tetrapropyloxysilane (TPOS), and bifunctional or more alkoxysilanes, and 3_metharyloyloxypropyldimethoxymethylsilane and 3-mercaptopropyldimethoxymethylsilane.
  • D4 1,3,5,7-octamethylcyclotetrasiloxane
  • TPOS tetrapropyloxysilane
  • 3_metharyloyloxypropyldimethoxymethylsilane and 3-mercaptopropyldimethoxymethylsilane examples include 1,3,5,7-octamethylcyclotetrasiloxane (D4) as
  • Aqueous media such as graphitic crosslinkers, surfactants such as sodium dodecylbenzenesulfonate (SDBS), organic acids such as dodecylbenzenesulfonate (DBSA), inorganic acids such as sulfuric acid and hydrochloric acid, sodium hydroxide, etc.
  • SDBS sodium dodecylbenzenesulfonate
  • DBSA dodecylbenzenesulfonate
  • inorganic acids such as sulfuric acid and hydrochloric acid, sodium hydroxide, etc.
  • a polymerization catalyst such as a base
  • siloxane particles (meth) acrylic acid esters such as methyl (meth) acrylate and butyl (meth) acrylate; aromatic vinyl aldehyde compounds such as styrene; vinyl cyanide compounds such as atarilonitrile; (Meth) acrylic acid such as (meth) acrylamide
  • the emulsion particles of the polyorganosiloxane-containing graft polymer preferably have a weight average particle diameter of at least 0.3 ⁇ , more preferably at least 0.03 izm, particularly preferably at least 0.05 // m, preferably at least 20. ⁇ m or less, more preferably 2 // m or less, particularly preferably 0.8 / xm or less. 0.Production of less than ⁇ ⁇ ⁇ ⁇ ⁇ may be difficult to produce, and those of more than 20 ⁇ may result in poor storage stability. There is fear.
  • butyl (meth) atalylate distyrene was used at the time of polymerization of a cyclic siloxane, an alkoxysilane, or the like.
  • Latex composed of seed particles having a weight average molecular weight (Mw) of preferably 0.6 m or less or preferably 100,000 or less can be used.
  • an inorganic metal salt such as sodium sulfate is added to the latex containing the polyorganosiloxane-based particles to form a latex particle. Can also be enlarged.
  • Surfactant ⁇ When a polymerization catalyst such as dodecylbenzene sulfonic acid or its sodium salt that cannot be coagulated by acid treatment is used, a method of salting out can be employed as described above.
  • the method of the present invention when stripping the polyorganosiloxane-containing resin slurry by heating, either a batch method or a continuous method may be employed.
  • the slurry is introduced into a pressure-resistant batch distillation apparatus as required before performing the stripping treatment, or a latex-like polyorganosiloxane-containing resin emulsion is introduced into the batch distillation apparatus. After salting out, it is solidified.
  • the temperature of the internal slurry is increased by heating, preferably at least 100 ° C, more preferably at least 120 ° C, further at least 140 ° C, preferably at most 180 ° C, more preferably Is maintained at a temperature of 160 ° C or less, and further, a temperature of 150 ° C or less.
  • the higher the processing temperature the more effectively the volatile siloxane can be reduced in a shorter time.
  • the temperature exceeds 180 ° C decomposition of polyorganosiloxane may occur.
  • the treatment temperature is lower than 100 ° C., the time until the volatile siloxane is sufficiently reduced may be long, or the volatile siloxane may not be sufficiently reduced.
  • Heating and raising the temperature of the internal slurry can be achieved by heating from the outer jacket of the equipment, heating with a closed steam coil installed in the equipment, introducing steam directly into the slurry, or a combination of these. It can be carried out. When steam is introduced, a higher vaporization efficiency of volatile siloxane is obtained, which is preferable. It is also preferred that the feed be provided through a number of small holes, using a well-arranged perforated vapor spray, and that the feed be provided at a considerable depth from the internal slurry level, preferably from the bottom of the batch distillation apparatus. preferable.
  • the volatile siloxane is discharged from the upper part of the batch distillation apparatus together with water vapor as a distillate.
  • the supplied liquid amount and the discharged liquid amount do not need to be completely equal, but it is preferable to adjust the water amount so as not to remove excessive water.
  • a method based on steam supply is preferably used because both functions of heating and water supply can be achieved simultaneously.
  • treatment time is not particularly limited, but is preferably 4 hours or less, more preferably 2 hours or less, depending on the treatment temperature. Is 1 hour or less, more preferably 45 minutes or less, preferably 10 minutes or more, and more preferably 20 minutes or more. If the treatment time is too short, the volatile siloxane is not sufficiently reduced, and if the treatment time is too long, the productivity is reduced and the decomposition of the polyorganosiloxane may occur, which is not preferable.
  • the resin component When the slurry is allowed to stand, the resin component may settle. In this case, not only does the stripping efficiency decrease, but also problems such as the sedimented resin fusing and coarsening, and fusing to the inner wall of the distillation apparatus may be caused.
  • slurry is introduced into the batch distillation apparatus, or the latex-like polyorganosiloxane-containing resin is introduced and solidified. It is preferable to continue stirring until discharging.
  • the slurry remaining in the batch distillation apparatus after the stripping treatment is made of a polyorganosiloxane-containing xane-containing resin having a reduced content of volatile siloxane.
  • the polyorganosiloxane-containing resin can be recovered as a powder or crumb by dehydrating and drying it if necessary.
  • the heating stripping is performed by a continuous method, the polyorganosiloxane-containing resin which has been previously slurried is passed through a continuous flow device.
  • the continuous flow device may be in the form of a tube, a tube, a tank, or the like. In the case of using a tube, various shapes such as a straight tube, a circular tube, and a spiral tube may be used.
  • a straight tube or a tube In the case of using a straight tube or a tube, it can be circulated in, for example, a vertical descending direction, a vertical rising direction, a horizontal direction, or the like. From the viewpoint of preventing blockage by the resin, a straight tube, a tube, or a tank is preferable, and a straight tube or a tube is preferably used to reduce uneven processing time between individual slurry particles. .
  • a vertical straight tube, tube, or tank is preferably used.
  • the temperature conditions and time for stripping are the same as in the batch method, and the required processing time and continuous flow equipment of an appropriate size are adopted according to the amount of slurry processed. .
  • the same conditions as in the batch method can be applied to the heating method.
  • the distillate component containing volatile siloxanes is discharged from the upper part of the continuous flow device, and the polyorganosiloxane with reduced volatile siloxane content is discharged from the discharge part of the continuous flow device.
  • a contained resin slurry can be obtained.
  • the concentration of the resin slurry containing polyonoreganosiloxane used for the treatment is preferably 1% by weight. / 0 or more, more preferably 5% by weight or more, further 10% by weight or more, preferably 50% by weight or less, more preferably 30% by weight or less, and further preferably 20% by weight or less. If the concentration is too low, productivity and energy efficiency are poor. If the concentration is too high, fusion may occur due to poor stirring in the case of the batch method, and clogging or the like may occur in the case of the continuous method.
  • the volatile siloxane which is distilled off together with water vapor by the method of the present invention is a concept containing a siloxane compound having a boiling point at atmospheric pressure.
  • a siloxane compound having a boiling point of 350 ° C. or less at atmospheric pressure can be used.
  • examples of volatile siloxanes include hexamethyldisiloxane (MM), octamethyltrisiloxane (MDM), 1,3,5-hexamethylcyclotrisiloxane (D 3), 1, 3, 5, 7— Methylcyclotetrasiloxane (D4), 1,3,5,7,9-decamethylcyclopentapentasiloxane (D5), 1,3,5,7,9,11-dodecamethylcyclohexasiloxane (D6), 1,3 , 5,7,9,11,13-Tetradecamethylcycloheptasiloxane (D7), 1,3,5,7-Octafeninolecyclotetrasiloxane, 1,3,5,7-Tetramethyl-1,1, 3,5,7-tetrafluorocyclotetrasiloxane and the like can be mentioned.
  • MM hexamethyldisiloxane
  • MDM 1,3,5-hexamethylcycl
  • a compound in which a methyl group on a silicon atom is partially substituted by a functional group derived from a graft crossing agent such as a mercaptopropyl group, a methacryloyloxypropyl group, a vinyl group, and an aryl group can also be exemplified.
  • a gaseous state is passed through a kieselguhr column shown in U.S. Pat. After that, it can be removed and collected as needed.
  • Another preferred method of recovery is to distill the distillate component by cooling it through a commonly known condenser such as heat exchange, and then separate it into a light liquid layer by liquid-liquid separation.
  • a method of recovering using a liquid adsorption filter is more preferable.
  • solid-liquid separation method such as cyclone. According to this method using solid-liquid separation, only volatile siloxane can be easily and efficiently recovered from water and water-soluble components.
  • the melting point of 1,3,5,7-octamethylcyclotetrasiloxane which is the most abundant component in volatile siloxane, is 17.5 ° C. More preferably, when the temperature is cooled to 10 ° C. or lower, and more preferably 5 ° C. or lower, the recovery by solid-liquid separation can be performed more stably.
  • a novel method for producing a polyorganosiloxane-containing resin composition with reduced volatile siloxane and a method for efficiently recovering a volatile siloxane component from a distillate component are provided. Further, the method of the present invention is described in JP-A-07-330905, JP-A-07-278473, JP-A-06-107796 and the like. Using an emulsion obtained by mechanically emulsifying an oily polyorganosiloxane obtained by the method described in JP-A-2001-288269, JP-A-11-222554, US Pat. No. 5,661,215, US Pat. No. 4,600,436, Japanese Patent Application Laid-Open No.
  • the present invention also discloses a polyorganosiloxane-containing resin in which volatile siloxane is reduced by heating and stripping the slurry-like polyorganosiloxane-containing resin as described above.
  • the heat stripping is performed in a state of emulsion or the like before the graft modification of the polyorganosiloxane particles.
  • the slurry is converted into a slurry and then heat stripping is performed.
  • the graft points derived from the graft modifying agent may have undergone thermal deterioration, etc. Used effectively.
  • an undesigned curing reaction such as cross-linking between polyorganosiloxane molecules due to a sulfide bond forming reaction of the mercapto group hardly occurs.
  • the method of heating and stripping the emulsion in order to obtain the polyorganosiloxane-containing resin in a dry state such as a powder, usually, the emulsion of the resin is once heated, cooled, solidified, and then heat-treated again. After the drying process, the method of heating and stripping the slurry of the present invention requires only one heating. This not only suppresses the possibility of unexpected thermal degradation of the resulting resin, it is also advantageous from the viewpoint of energy and productivity, and is maintained in a high-temperature slurry state for a certain period of time. The effect of reducing the water content is also obtained at the same time, and there is an advantage that drying can be completed with less energy and in a shorter time.
  • the present invention also discloses a flame retardant comprising the polyorganosiloxane-containing resin.
  • the present invention is based on a polyonoleganosiloxane-containing graft copolymer latex.
  • a light polyorganosiloxane-containing resin is obtained, which is used, for example, in polycarbonate or polycarbonate / polyethylene terephthalate resin (PCZPET), polycarbonate polybutylene terephthalate resin (PC / PBT), polycarbonate / acrylonitrile-butadiene-styrene resin (PCZABS).
  • PCZPET polycarbonate or polycarbonate / polyethylene terephthalate resin
  • PC / PBT polycarbonate polybutylene terephthalate resin
  • PCZABS polycarbonate / acrylonitrile-butadiene-styrene resin
  • the graphitic structure When molded with a polycarbonate-based resin, etc., the graphitic structure is well formed for the above-mentioned reason, so that the resin containing polyoxane-legged siloxane is well dispersed in the polycarbonate-based resin. Good flammability can be provided.
  • the present invention discloses a resin composition containing the polyorganosiloxane-containing resin and at least one resin selected from thermoplastic resins, thermosetting resins and elastomers. Things. For the same reason as described above, a polyorganosiloxane-containing resin which is favorably dispersed in a matrix resin can be obtained, and good impact resistance and heat shock properties can be imparted, and the brittle temperature can be improved.
  • elastomer is a concept including a thermoplastic elastomer.
  • thermoplastic resin examples include polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polymethyl methacrylate (PMMA), Polyarylene, acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-monoacrylate-styrene resin (AAS), butyl chloride (PVC), polystyrene (PSt), methyl methacrylate-styrene copolymer (MS), acrylonitrile Examples include styrene copolymer (AS), nylon, and the like, and mixtures thereof.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PPE polyphenylene ether
  • PPS polyphenylene sulfide
  • PMMA polymethyl methacrylate
  • ABS acrylonitrile-
  • thermosetting resin examples include an epoxy resin, a phenol resin, a urea resin, a melamine resin, and a polyimide.
  • elastomer examples include an acryl rubber such as a butyl acrylate rubber and a butadiene acrylonitrile copolymer.
  • Nitrile rubber such as polymers, chloroprene rubber, natural rubber, butadiene rubber, styrene-butadiene rubber, methyl methacrylate-butyl acrylate block Block copolymer, styrene-1-f-sobutylene block copolymer, styrene-butadiene block copolymer, hydrogenated styrene-butadiene block copolymer, polyester elastomer, etc., but are not limited thereto. Absent.
  • a pigment, an antioxidant, an anti-drip agent, a filler, and the like can be added as needed.
  • a polyorganosiloxane-containing resin having a low volatile siloxane content and a reduced environmental load can be provided. Further, a flame retardant having good impact resistance and flame retardancy, or a resin composition having excellent impact resistance, heat shock resistance, embrittlement temperature, and the like can be obtained.
  • parts means “parts by weight”.
  • Total charge (parts) X solid content ratio-(Emulsifier charge (parts) + inorganic acid and Z or organic acid charge (parts) + radical polymerization initiator charge (parts) + reducing agent (parts)
  • the volume average particle diameters of the seed polymer, polyorganosiloxane particles and graft copolymer were measured in the state of a latex.
  • the volume average particle size ( ⁇ ) was measured by a light scattering method using MicRoTRACUUPA150, manufactured by Nikkiso Co., Ltd.
  • the latex was coagulated by adding methanol to the latex and left overnight to remove a transparent liquid layer. Further, methanol was added thereto, and the mixture was allowed to stand overnight. Then, a transparent liquid layer was removed, and then dried to obtain a solid of polyorganosiloxane. This 0.3 g was immersed in 10 Om 1 of toluene at room temperature for 40 hours, and the supernatant was removed to obtain a toluene-insoluble portion in which toluene was swollen, and further dried. The toluene insoluble content was determined as (weight after drying with toluene) z (weight before immersing in toluene).
  • a polyorganosiloxane solid was obtained in the same manner as when obtaining the toluene insoluble content.
  • the weight-average molecular weight (Mw) was determined by gel permeation chromatography (GPC) analysis using the form-mouth soluble matter in this solid.
  • GPC gel permeation chromatography
  • a Waters GPC system was used. The columns were polystyrene gel columns, Shodex K-806 and K805 (manufactured by Showa Denko KK). Analyzed.
  • the amounts of octamethyltetracyclosiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were determined by analysis, and the ratio of the total weight to the solid resin content was determined by volatile siloxane. The content was determined.
  • the water content of the resin was determined by drying the resin at 130 ° C. for 2 hours and calculating (weight of resin after drying) / (weight of resin before drying).
  • a seed polymer (SD-1) latex corresponding to the solid content in the amount shown in Table 1 was placed in a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer inlet, and thermometer. I charged. The above emulsion was added all at once to the flask. While stirring the system under a nitrogen stream, 1 part by weight (solid content) of a 10% aqueous solution of dodecyl benzene sulfonic acid (DBSA) was added, and then the temperature was raised to 80 ° C.
  • DBSA dodecyl benzene sulfonic acid
  • polyorganosiloxane particles ( A latex containing S_l, 2) was obtained.
  • Polymerization conversion rate, poly Table 1 shows the results of measurement of the volume average particle diameter, the toluene insoluble content, the weight average molecular weight (Mw), and the volatile siloxane content of the latex of onoreganosiloxane particles.
  • Stripping was performed for 30 minutes while controlling the amount of distillate gas discharged so that the internal liquid temperature was maintained at 140 to 150 ° C, to obtain a latex containing polyorganosiloxane particles (S-3, 4).
  • Table 1 shows the results of measurement of the polymerization conversion, the volume average particle diameter of latex of polyorganosiloxane particles, the toluene insoluble content, the weight average molecular weight (Mw), and the volatile siloxane content. .
  • AIMA aryl methacrylate
  • a solidified slurry was obtained by adding 4 parts by weight (solid content) of a 5% calcium chloride aqueous solution. This slurry was further diluted with water to have a solid content of 10% by weight. / 0 was adjusted. This slurry (1 kg) was charged into a pressure vessel equipped with a heating jacket, a stirrer, a reflux condenser equipped with a vessel capable of collecting condensed liquid, a steam inlet at the bottom, a pressure gauge, and a thermometer, and stirred. Steam was supplied at a rate of 3 kg / hour.
  • Example 1 2 3 4 5 6 Polyorganosiloxane-containing tree SG-1 SG-2 SG-2 SG-2 SG-2 SG-2 Fat
  • Example 2 was the same as Example 2 except that the temperature and processing time of the slurry stripping treatment were as shown in Table 3. Table 3 shows the results.
  • the collected container was cooled to 25 ° C while the distilled volatile siloxane was condensed and collected in a reflux condenser with water vapor.After the stripping was completed, the liquid in the collection container was kept at the same temperature. -Same as Example 2 except that the supernatant oil was recovered after standing still. Table 3 shows the results.
  • SDB S sodium dodecylbenzenesulfonate
  • DBSA dodecylbenzenesulfonic acid
  • 04 is 135-O-methylcyclotetrasiloxane
  • DSMA methacryloyloxypropyl dimethoxymethylsilane
  • MPr DMS is mercaptopropyl. Dimethoxymethylsilane
  • MMA stands for methyl methacrylate
  • a 1 MA stands for aryl methacrylate
  • TBP I PC stands for t-butyl peroxyisopropyl carbonate
  • CHP cumene hydroxide peroxide.
  • the volatile siloxane contained in the dehydrated cake of the polyorganosiloxane-containing resin obtained by the production method of the present invention is reduced. It was also shown that the moisture content of the dehydrated cake was reduced. In other words, this means that the volatile siloxane is volatilized in the subsequent drying step and the drying load is reduced. Further, the method for separating volatile siloxanes from distillate components of the present invention It can be seen that volatile siloxane can be recovered.
  • the polycarbonate resin containing the polyorganosiloxane-containing resin obtained by the production method of the present invention has the same characteristics as those described above, compared with the resin obtained when stripping is performed in a latex state (Reference Examples 3 to 6). The flame retardancy and strength in some cases were significantly superior, and it was shown to have the same balance of flame retardancy and impact resistance as the resin without stripping (Reference Examples 1 and 2).
  • a novel method for reducing and recovering volatile siloxanes is provided in the production of polyorganosiloxane-containing resins.
  • ADVANTAGE OF THE INVENTION According to the method of this invention, the drying load called thermal energy required at the time of recovering a polyorganosiloxane-containing resin as a powder finally is small, and the environmental load by volatile siloxane in exhaust gas is suppressed. You.
  • the resulting polyorganosiloxane-containing resin is resistant to unexpected deterioration in quality due to reduced thermal degradation during manufacturing.For example, when blended with polycarbonate resin, it has good flame retardancy and impact resistance. Sex can be obtained in a well-balanced manner.

Abstract

A novel method for producing a polyorganosiloxane-containing resin accompanied by reduction of a volatile siloxane is disclosed. The method for producing a polyorganosiloxane-containing resin is characterized by heat-stripping of a polyorganosiloxane-containing resin which is in the form of slurry.

Description

明細書 ポリオルガノシロキサン含有樹脂の製造方法 技術分野  Description Method for producing polyorganosiloxane-containing resin
本発明はポリオルガノシロキサン含有樹脂の製造方法、 前記製造方法により得 られるポリオルガノシロキサン含有樹脂及ぴ前記ポリオルガノシロキサン含有樹 脂を含む難燃剤に関する。 さらには、 前記ポリオルガノシロキサンの製造方法に おいて留去される揮発性シロキサンの分離方法に関する。 背景技術  The present invention relates to a method for producing a polyorganosiloxane-containing resin, a polyorganosiloxane-containing resin obtained by the method, and a flame retardant containing the polyorganosiloxane-containing resin. Further, the present invention relates to a method for separating volatile siloxanes distilled off in the method for producing a polyorganosiloxane. Background art
ポリオルガノシロキサンもしくはポリオルガノシロキサン含有樹脂は、 ポリオ ルガノシロキサン成分の優れた低温特性にもとづく物理特性やその特異な反応等 を活かすことにより耐衝撃性改良 ·熱可塑性樹脂の難燃化をはじめ、 塗料 ·コ一 ティングなど様々な用途で利用されている。  Polyorganosiloxane or polyorganosiloxane-containing resin improves impact resistance by utilizing physical properties based on the excellent low-temperature properties of the polyorganosiloxane component and its unique reaction, etc. · Used for various purposes such as coating.
さらに環境上への配慮と安全性、 さらに粘度 ·伝熱効率に代表される取扱性の 観点から、 水性媒体中に分散させた形でポリオルガノシ口キサン含有樹脂の製 造 ·貯蔵 ·取り扱いができることへの要望は大きく、 大きな市場を形成している。 水性媒体中にポリオルガノシロキサンを微分散させたェマルジョンを製造する 方法としては、 酸性もしくは塩基性条件下で環状シロキサンやアルコキシシラン などを乳化重合する方法が一般的に知られている (米国特許第 2 8 9 1 9 2 0号 明細書など)。 この反応はシラノール (S i - OH) からシロキサン結合 (S i - o - s i ) を形成する重縮合と加水分解による解重合反応との平衡反応である ため、 特に水性媒体存在下では、 重合終了すなわち平衡到達時において低分子量 の揮発性シロキサンが生成する。 この揮発性シロキサンはさらにビュル系単量体 の重合を行ったとしても顕著には減少しない。 よってこの揮発性シロキサンは、 ポリオルガノシロキサンまたはその含有樹脂を例えば塩凝固 ·脱水 ·乾燥するこ とにより、 またはスプレー乾燥によりェマルジヨン等から単離し、 または塗布、 コーティング等を行って水性媒体を除去する際に、 排気ガスとして水性媒体とと もに大気中に散逸するために、 原料として無駄になるばかりでなく、 塗膜等の性 能に悪影響を与える場合があった。 そのため、 揮発性シロキサンを低減させたェ マルジヨンを得る多くの研究が実施されている。 Furthermore, from the viewpoints of environmental considerations and safety, and from the viewpoint of handleability represented by viscosity and heat transfer efficiency, it is necessary to be able to manufacture, store, and handle polyorganosixane-xan-containing resins dispersed in aqueous media. The demands are large and form a large market. As a method of producing an emulsion in which a polyorganosiloxane is finely dispersed in an aqueous medium, a method of emulsion-polymerizing a cyclic siloxane or an alkoxysilane under acidic or basic conditions is generally known (US Patent No. No. 289 1920 Specification). Since this reaction is an equilibrium reaction between polycondensation forming a siloxane bond (Si-o-si) from silanol (Si-OH) and depolymerization by hydrolysis, the polymerization is terminated particularly in the presence of an aqueous medium. That is, when the equilibrium is reached, a low molecular weight volatile siloxane is generated. This volatile siloxane does not decrease remarkably even when the polymerization of the bullet-based monomer is further performed. Therefore, the volatile siloxane is isolated from the emulsion or the like by coagulation, dehydration, and drying of the polyorganosiloxane or a resin containing the same, or by spray drying, or applied, When the aqueous medium is removed by coating, etc., it is not only wasted as a raw material but also adversely affects the performance of the coating film, etc. because it is dissipated into the atmosphere together with the aqueous medium as exhaust gas. was there. Therefore, much research has been conducted to obtain emulsions with reduced volatile siloxanes.
(変性) シリコーンオイルまたはシロキサンオリゴマーを出発原料として溶剤 抽出する (特開平 0 7— 3 3 0 9 0 5号) 、 または減圧加熱する (特開平 0 7— 2 7 8 4 7 3号) 、 亜臨界または超臨界二酸化炭素抽出する (特開平 0 6— 1 0 7 7 9 6号) などにより低分子量シロキサンを除去した後、 機械的方法により高 圧剪断下強制的に水性媒体中に微分散させてェマルジョンを製造することは容易 に考えられる。 また、 それをさらに縮合反応させた後中和して重合/解重合の反 応を停止する方法も公知である (特開 2 0 0 1— 2 8 8 2 6 9号、 特開平 1 1 — 2 2 2 5 5 4号) 。 これらの方法で得られるポリオルガノシロキサンのェマル ジョンは低分子量の揮発性シロキサンをわずかしか含まないが、 ェマルジヨンの 安定性が悪く長時間貯蔵するとポリオルガノシロキサンと水性媒体が分離するな どの問題が発生する場合があつた。  (Modification) Using silicone oil or a siloxane oligomer as a starting material, solvent extraction (Japanese Patent Application Laid-Open No. 07-330905) or heating under reduced pressure (Japanese Patent Application Laid-Open No. 07-278473), After removing low-molecular-weight siloxanes by extraction with supercritical or supercritical carbon dioxide (Japanese Patent Application Laid-Open No. 06-107796), they are finely dispersed in an aqueous medium by mechanical means under high-pressure shear. It is easily conceivable to manufacture emulsions. Further, a method of stopping the polymerization / depolymerization reaction by further neutralizing it after further condensation reaction is also known (Japanese Patent Application Laid-Open No. 2001-288826, Japanese Patent Application Laid-Open No. 2 2 2 5 5 4). The emulsion of polyorganosiloxane obtained by these methods contains only a small amount of low molecular weight volatile siloxane, but the stability of the emulsion is poor, and problems such as separation of the polyorganosiloxane and the aqueous medium occur when stored for a long time. You have to.
また得られたェマルジョンの粒子径分布が広く、 後に続くポリオルガノシ口キサ ン含有樹脂を製造する際のグラフト変性反応が均質に行えないなどの問題があつ た。 In addition, the obtained emulsion had a wide particle size distribution, and there was a problem that the subsequent graft modification reaction in producing a polyorganosiloxane-containing resin could not be carried out uniformly.
長期貯蔵においても安定性を損なわずポリオルガノシロキサンの分離を伴わな いポリオルガノシロキサンェマルジヨンを得る方法, すなわちノニオン界面活性 剤 'イオン性界面活性剤 ·重合触媒存在下で環状オルガノシロキサンを乳化重合 する方法において、 揮発性シロキサンが低減される例が示されている (欧州特許 第 4 5 9 5 0 0号) 。 しかしながらすべてにわたって揮発性シロキサンが減少し ているわけではない。 さらに 3官能以上の多官能性シランをゲル分率を制御し ながら併用する方法においても同様の例が示されている (米国特許第 5 6 6 1 2 1 5号) 。 これはシロキサン骨格への架橋構造導入により揮発性シロキサンの生 成確率を低減せしめたことに起因すると推測されるが、 得られるポリオルガノシ ロキサンのゲル分率を制御するとはいえ、 最終的に得られるポリオルガノシロキ サン含有樹脂もしくはその組成物から得られる成形体がもろくなり、 十分な機械 的強度を発現できなレ、場合があつた。 A method for obtaining a polyorganosiloxane emulsion that does not impair the stability and does not involve the separation of the polyorganosiloxane even during long-term storage, that is, a nonionic surfactant 'ionic surfactant' emulsifies cyclic organosiloxane in the presence of a polymerization catalyst An example is shown in which the volatile siloxane is reduced in the method of polymerization (European Patent No. 45950). However, not all volatile siloxanes are reduced. Further, a similar example is shown in a method in which a polyfunctional silane having three or more functional groups is used in combination while controlling the gel fraction (US Pat. No. 5,661,215). This is presumed to be due to the fact that the probability of generating volatile siloxanes was reduced by introducing a crosslinked structure into the siloxane skeleton.However, although the gel fraction of the resulting polyorganosiloxane was controlled, the ultimately obtained polyorganosiloxane was obtained. Organoshiroki In some cases, a molded article obtained from the sun-containing resin or its composition became brittle and could not exhibit sufficient mechanical strength.
揮発性シロキサンを低減したェマルジヨンを得る別の方法として、 加熱ストリ ッビングを行う方法が開示されている (米国特許第 4 6 0 0 4 3 6号) 。 しかし ながらバッチ法によるこの方法では、 揮発性シロキサンは低減されるが、 ェマル ジョン中のポリマーの粘度すなわち分子量が低下してしまうことが特開 2 0 0 2 As another method of obtaining an emulsion with reduced volatile siloxane, a method of performing heat stripping is disclosed (US Pat. No. 4,604,336). However, in this method by the batch method, the volatile siloxane is reduced, but the viscosity of the polymer in the emulsion, that is, the molecular weight is reduced.
- 2 4 9 5 8 2号において示されている。 -As shown in No. 249582.
特開 2 0 0 2— 2 4 9 5 8 2号に記載の発明は、 分子量低下の問題を同時に解 決する手段を提供するもので、 ポリオルガノシロキサンのェマルジヨンを連続流 通装置中にストリッビングガスとともに連続的に流通させることで短時間に加熱 ストリッビングを済ませる技術である。 しかしながら、 この方法では連続ストリ ッビングのための専用装置が必要となる。  The invention described in Japanese Patent Application Laid-Open No. 2002-248952 provides a means for simultaneously solving the problem of molecular weight reduction, in which a polyorganosiloxane emulsion is supplied to a continuous flowing device through a stripping gas. This is a technology that allows heating and stripping to be completed in a short period of time by continuously circulating it. However, this method requires a dedicated device for continuous stripping.
連続ストリツビングの専用装置を必要とせず、 バッチ法ストリッビングであり ながらポリオルガノシロキサンの分子量低下の問題を解決する方法が特開 2 0 0 2 _ 2 8 4 8 7 7号に示されている。 この技術では、 環状シロキサンなどの低分 子量シロキサンを重合触媒存在下懸濁重合してェマルジヨンを得、 重合触媒を中 和した後、 バッチ法ストリッビングにより揮発性シロキサン量を低減し、 再度重 合触媒を追加して縮合反応を再開し、 さらに中和する方法が示されている。 この 方法では重合触媒の追加と中和の操作を繰り返すため操作が煩雑になり、 生産性 の観点から改良が望まれている。  Japanese Patent Application Laid-Open No. 2002-284847 discloses a method for solving the problem of a decrease in the molecular weight of polyorganosiloxane without using a dedicated device for continuous stripping and using a batch method for stripping. In this technique, low molecular weight siloxanes such as cyclic siloxanes are subjected to suspension polymerization in the presence of a polymerization catalyst to obtain an emulsion, and after neutralizing the polymerization catalyst, the amount of volatile siloxanes is reduced by batch stripping, and the polymerization is repeated. It shows a method of restarting the condensation reaction by adding a cocatalyst and further neutralizing the mixture. In this method, the operation of adding and neutralizing the polymerization catalyst is repeated, so that the operation becomes complicated, and improvement is desired from the viewpoint of productivity.
別の方法として、 ポリオルガノシロキサンのラテックスにケィ藻土を添カ卩 ·攪 拌して低分子量シロキサンを吸着させた後濾過して除去する方法が開示されてい る (米国特許第 5 9 2 2 1 0 8号) 。 この方法では低分子量シロキサンを吸着し たケィ藻土の処理方法を確保する必要があった。  As another method, there has been disclosed a method in which kieselguhr is added to a polyorganosiloxane latex, and the mixture is stirred to adsorb low molecular weight siloxane, followed by filtration and removal (US Pat. No. 5,922,022). No. 108). In this method, it was necessary to secure a method for treating kieselguhr adsorbing low-molecular-weight siloxane.
上記した従来の技術はいずれも揮発性の低分子量シロキサンを低減する効果を 有するものであるが、 ポリオルガノシロキサンまたはその含有樹脂をェマルジョ ンの形態で扱う必要があり、 別の形態、 すなわちそれらのスラリー形態で揮発性 シロキサンを低減する方法は開示していない。 例えば、 ポリオルガノシロキサン含有樹脂製造時に発生した排気ガスなど、 揮 発性シロキサンとペンタンなどの炭化水素を含む流体をケィ藻土 (F o i 1 ) を 充填したカラムに通して揮発性シロキサンと炭化水素を吸着させ、 次いで乾燥空 気により炭化水素のみを脱着させ、 その後に水蒸気 ·水等で揮発性シロキサンを 脱着させて回収し、 カラム中のケィ藻土をさらに乾燥させてリサイクルする方法 が米国特許第 5 9 2 2 1 0 8号に記載されている。 この方法は炭化水素と揮発性 シロキサンをも分離できる点で優れている。 一方で専用設備が必要となり、 また 工業的に用いるには設備が大型化するといった課題があり、 最終的に揮発性シロ キサンと水性媒体を分離する設備が別途必要になる。 本発明が取扱おうとする、 炭化水素を溶剤などに用いないェマルジヨンの系などでは、 より簡易な方法が望 まれている。 発明の開示 All of the above-mentioned conventional technologies have an effect of reducing volatile low-molecular-weight siloxane, but it is necessary to treat the polyorganosiloxane or the resin containing the same in the form of an emulsion. No method is disclosed for reducing volatile siloxanes in slurry form. For example, a fluid containing volatile siloxanes and hydrocarbons, such as pentane, such as exhaust gas generated during the production of polyorganosiloxane-containing resins, is passed through a column filled with kieselguhr (Foi 1) to form volatile siloxanes and hydrocarbons. U.S. Patent discloses a method in which only hydrocarbons are desorbed by dry air, and then volatile siloxanes are desorbed and recovered by steam and water, and the kieselguhr in the column is further dried and recycled. No. 5,922,108. This method is superior in that it can separate hydrocarbons and volatile siloxanes. On the other hand, dedicated equipment is required, and there is a problem in that the equipment becomes larger for industrial use. Finally, a separate equipment for separating volatile siloxane and an aqueous medium is required. For emulsion systems that do not use hydrocarbons as solvents, etc., which are to be handled by the present invention, simpler methods are desired. Disclosure of the invention
本発明の目的は、 揮発性の低分子量シロキサンが低減されたポリオルガノシロ キサン含有樹脂の新規な製造方法を提供することであり、 前記製造方法により得 られるポリオルガノシロキサン含有樹脂及び前記ポリオルガノシロキサン含有樹 脂を含む難燃剤を提供することである。 さらには、 前記ポリオルガノシロキサン 含有樹脂の製造方法において留去される揮発性シロキサンの分離 ·回収方法を同 時に提供することである。  An object of the present invention is to provide a novel method for producing a polyorganosiloxane-containing resin in which volatile low-molecular-weight siloxane is reduced, and a polyorganosiloxane-containing resin obtained by the production method and the polyorganosiloxane. An object of the present invention is to provide a flame retardant containing a contained resin. Still another object of the present invention is to provide a method for separating and recovering volatile siloxane distilled off in the method for producing a polyorganosiloxane-containing resin.
本発明者らは、 上記課題について鋭意検討を重ねた結果、 ポリオルガノシロキ サン含有樹脂スラリーを加熱ストリッビングすることにより、 揮発性シロキサン を低減できることを見出し本発明を完成するに至った。  The present inventors have made intensive studies on the above problems, and as a result, have found that volatile siloxane can be reduced by heating and stripping a polyorganosiloxane-containing resin slurry, and have completed the present invention.
すなわち、 本発明は、  That is, the present invention
( 1 ) スラリー状のポリオルガノシロキサン含有樹脂を加熱ストリッビングする ことにより揮発性シロキサンを低減することを特徴とするポリオルガノシ口キサ ン含有樹脂の製造方法。 (2) スラリー状のポリオルガノシロキサン含有樹脂が、 ラテックス状態のポリ オルガノシロキサン含有樹脂を凝固して得られるものである前記に記載のポリォ ルガノシロキサン含有樹脂の製造方法。 (1) A method for producing a polyorganosiloxane-containing resin, which comprises reducing volatile siloxane by heating and stripping a slurry of the polyorganosiloxane-containing resin. (2) The method for producing a polyorganosiloxane-containing resin as described above, wherein the slurry-like polyorganosiloxane-containing resin is obtained by coagulating a latex-state polyorganosiloxane-containing resin.
(3) ポリオルガノシロキサン含有樹脂が、 ポリオルガノシロキサン系粒子の存 在下に一官能性および/または多官能性のラジカル重合性単量体を一段以上重合 して得られるポリオルガノシロキサン系グラフト共重合体である前記に記載のポ リオルガノシロキサン含有樹脂の製造方法。  (3) A polyorganosiloxane-based resin obtained by polymerizing a monofunctional and / or polyfunctional radical polymerizable monomer in one or more stages in the presence of polyorganosiloxane-based particles. The method for producing a polyorganosiloxane-containing resin according to the above, which is a coalesced resin.
(4) 100°C以上で加熱ストリツビングする前記何れかに記載のポリオルガノ シロキサン含有樹脂の製造方法。  (4) The method for producing a polyorganosiloxane-containing resin according to any one of the above, wherein the resin is heated and stripped at 100 ° C or higher.
( 5 ) スラリ一^■の水蒸気供給を伴う前記何れかに記載のポリオルガノシロキサ ン含有樹脂の製造方法。  (5) The method for producing a polyorganosiloxane-containing resin according to any one of the above, wherein the slurry is supplied with steam.
( 6 ) 揮発性シロキサンを含む留出成分を冷却することにより揮発性シロキサン を分離する前記何れかに記載のポリオルガノシロキサン含有樹脂組成物の製造方 法。  (6) The method for producing a polyorganosiloxane-containing resin composition according to any one of the above, wherein the volatile siloxane is separated by cooling a distillate component containing the volatile siloxane.
(7) 揮発性シロキサンを含む留出成分を 17°C以下に冷却することにより揮発 性シロキサンを分離する前記に記載のポリオルガノシロキサン含有樹脂の製造方 法。  (7) The method for producing a polyorganosiloxane-containing resin according to the above, wherein the volatile siloxane is separated by cooling a distillate component containing the volatile siloxane to 17 ° C. or lower.
(8) 揮発性シロキサンを分離する際、 固体として分離する前記に記載のポリオ ルガノシロキサン含有樹脂の製造方法。  (8) The method for producing a polyorganosiloxane-containing resin described above, wherein the volatile siloxane is separated as a solid when the volatile siloxane is separated.
(9) 前記に記載の方法により製造された揮発性シロキサンの低減されたポリオ ルガノシロキサン含有樹脂。  (9) A polyorganosiloxane-containing resin having reduced volatile siloxane produced by the method described above.
(10) 前記に記載のポリオルガノシロキサン含有樹脂を含む難燃剤。  (10) A flame retardant containing the polyorganosiloxane-containing resin described above.
(11) 前記に記載のポリオルガノシロキサン含有樹脂と、 熱可塑性樹脂、 熱硬 化性樹脂およびエラストマ一から選択される 1種以上の樹脂を含む樹脂組成物、 に関する。  (11) A resin composition comprising the polyorganosiloxane-containing resin described above and one or more resins selected from a thermoplastic resin, a thermosetting resin, and an elastomer.
本発明は、 スラリ一状のポリオルガノシロキサン含有樹脂を加熱ストリッピン グすることにより揮発性シロキサンを低減することを特徴とするものである。 本発明に用いるスラリ一状のポリオルガノシロキサン含有樹脂あるいは該樹脂 組成物は、 例えばラテツクス状のポリオルガノシロキサン含有樹脂などを塩化力 ルシゥム、 塩化マグネシウム、 塩化アルミニウムなどの塩で塩析したり、 または 塩酸などの酸により処理する方法で凝固することにより得られ好ましい。 その際 他の樹脂、 例えばポリメタクリル酸メチル系樹脂、 ポリ (メタ) アクリル酸プチ ル系樹脂、 ポリスチレン系樹脂などのラテックス、 あるいはスラリーなどと共に 凝固することもできる。 なお、 ここでいうラテックスとはェマルジヨンを含む概 念である。 The present invention is characterized in that volatile siloxane is reduced by heating and stripping a slurry-like polyorganosiloxane-containing resin. The slurry-like polyorganosiloxane-containing resin or the resin composition used in the present invention is obtained by, for example, salting out a latex-like polyorganosiloxane-containing resin or the like with a salt such as chloride, magnesium chloride, or aluminum chloride, or It is preferably obtained by coagulation by a method of treating with an acid such as hydrochloric acid. At that time, it can be coagulated with a latex of another resin, for example, a polymethyl methacrylate resin, a poly (meth) acrylate resin, a polystyrene resin, or a slurry. Note that latex here is a concept that includes emulsion.
加熱ストリツビングに際してはスラリー液面からの発泡を伴う場合があり、 そ れを防止する目的で、 必要に応じて消泡剤などを添加することができる。 スラリ 一粒子は泡の膜厚みに対してそれ自体粒子径が相対的に大きいので、 泡の表面張 力にむらを生じやすく、 泡の生成を抑制する効果が大きい。 特にラテックス状の ポリオルガノシロキサン含有樹脂を凝固して得たスラリ一は、 凝固に際してラテ ックス中に存在する界面活性剤の活性を著しく低下させており、 ェマルジヨンか らストリツビングする場合に比べて泡立ちが小さくて済み、 消泡剤を用いるとし ても少量、 もしくは全く用いずに済む場合があるが、 消泡剤を使用する場合、 そ の種類 ·量ともに制限するものではないが、 例えば、 高級アルコール、 シリカ ' シリコーンオイル ·界面活性剤を含んでなるェマルジヨン消泡剤組成物、 ェチレ ンォキサイドとプロピレンォキサイドのブロック共重合体などを挙げることがで きる。 また、 泡分離器装置などの設備を用い、 スチーム接触、 もしくは冷却など による消泡を行う方法も採用できる。  The heating stripping may involve foaming from the slurry liquid level, and an antifoaming agent or the like can be added as needed for the purpose of preventing the foaming. The slurry itself has a relatively large particle diameter with respect to the film thickness of the foam, so that the surface tension of the foam tends to be uneven, and the effect of suppressing the formation of foam is large. In particular, the slurry obtained by coagulating a latex-like polyorganosiloxane-containing resin significantly reduces the activity of the surfactant present in the latex during coagulation, and foams more than when stripping from emulsion. In some cases, it is possible to use a small amount or even no use of an antifoaming agent even when using an antifoaming agent.However, when using an antifoaming agent, the type and amount of the antifoaming agent are not limited. And an emulsion defoamer composition containing silica, silicone oil and a surfactant, and a block copolymer of ethylene oxide and propylene oxide. In addition, a method of defoaming by steam contact or cooling using equipment such as a foam separator device can also be adopted.
前記スラリ一の重量平均粒子径には制限はないが、 好ましくは 1 μ m以上、 さ らに好ましくは 1 0 ^u m以上、 特に好ましくは 5 Ο μ πι以上であり、 上限には特 に制限はない。 1 μ πιを下回ると樹脂がコロイド状に分散するので後に水性媒体 と分離することが困難になったり、 泡立ちやすくなる場合がある。 また前記スラ リー形状には制約はなく、 球状に限らず不定形であってかまわないが、 ェマルジ ョンの凝集によりスラリ一が形成される場合は不定形であることが多い。 なお、 本発明においては重量平均粒子径は体積平均粒子径をもって代用することができ る。 The weight average particle size of the slurry is not limited, but is preferably at least 1 μm, more preferably at least 10 ^ um, particularly preferably at least 5 μππι, and the upper limit is particularly limited. There is no. If it is less than 1 μπι, the resin is dispersed in a colloidal state, so that it may be difficult to separate the resin from the aqueous medium later, or it may be easy to foam. Further, the shape of the slurry is not limited, and may be not limited to a spherical shape but may be an irregular shape. However, when a slurry is formed by aggregation of emulsion, the slurry shape is often irregular. In addition, In the present invention, the weight average particle diameter can be substituted by the volume average particle diameter.
本発明におけるポリオルガノシロキサン含有樹脂に制限はないが、 熱可塑性樹 脂、 熱硬化性樹脂、 エラストマ一などに配合した際マトリクス中に良好に分散し、 耐衝撃性、 場合によっては難燃性などの機能性が付与できる点からはポリオルガ ノシロキサン含有樹脂はポリオノレガノシロキサンに当該樹脂中に良好に分散させ るための成分をグラフ卜させたグラフト共重合体であることが好ましい。  The polyorganosiloxane-containing resin in the present invention is not limited, but when incorporated into a thermoplastic resin, a thermosetting resin, an elastomer, etc., it is well dispersed in a matrix, and has impact resistance, and in some cases, flame retardancy. From the viewpoint that the above-mentioned functionality can be imparted, the polyorganosiloxane-containing resin is preferably a graft copolymer obtained by grafting a component for dispersing satisfactorily in the resin.
前記ポリオルガノシロキサン含有グラフト共重合体は、 例えば、 特開 2000 -226420号公報、 特開 2000— 834392号公報に開示されるごとく、 1, 3, 5, 7—ォクタメチルシクロテトラシロキサン (D4) などの環状シロ キサン、 ジメチルジメ トキシシラン、 テトラプロピルォキシシラン (TPOS) などの 2官能以上のアルコキシシランと 3 _メタタリロイルォキシプロピルジメ トキシメチルシラン、 3—メルカプトプロピルジメ トキシメチルシランなどのグ ラフト交叉剤などを水性媒体 · ドデシルベンゼンスルホン酸ナトリウム (SDB S) などの界面活性剤 · ドデシルベンゼンスルホン酸 (DBSA) などの有機酸、 硫酸、 塩酸などの無機酸、 水酸ィ匕ナトリウムなどの塩基などの重合触媒の存在下 に重合して得た、 好ましくはラテックス状のポリオルガノシロキサン系粒子存在 下に、 (メタ) アクリル酸メチル、 (メタ) アクリル酸ブチルなどの (メタ) ァ クリル酸エステル、 スチレンなどの芳香族ビニルイヒ合物、 アタリロニトリルなど のシアン化ビニル系化合物、 (メタ) アクリルアミ ドなどの (メタ) アクリル酸 Examples of the polyorganosiloxane-containing graft copolymer include 1,3,5,7-octamethylcyclotetrasiloxane (D4) as disclosed in JP-A-2000-226420 and JP-A-2000-834392. ), Such as cyclic siloxanes, dimethyldimethoxysilane, tetrapropyloxysilane (TPOS), and bifunctional or more alkoxysilanes, and 3_metharyloyloxypropyldimethoxymethylsilane and 3-mercaptopropyldimethoxymethylsilane. Aqueous media such as graphitic crosslinkers, surfactants such as sodium dodecylbenzenesulfonate (SDBS), organic acids such as dodecylbenzenesulfonate (DBSA), inorganic acids such as sulfuric acid and hydrochloric acid, sodium hydroxide, etc. Preferably a latex-like polyorganopolymer obtained by polymerization in the presence of a polymerization catalyst such as a base In the presence of siloxane particles, (meth) acrylic acid esters such as methyl (meth) acrylate and butyl (meth) acrylate; aromatic vinyl aldehyde compounds such as styrene; vinyl cyanide compounds such as atarilonitrile; (Meth) acrylic acid such as (meth) acrylamide
(アルキル) アミドなどの一官能性および zまたはァリル (メタ) アタリレート、 ジァリルフタレートなどのァリルエステル類、 ビュルベンゼンなどの多官能性の ラジカル重合性単量体を一段以上重合して得られる。 Obtained by one or more polymerizations of monofunctional (alkyl) amides and other radically polymerizable monomers such as zyl or aryl (meth) acrylates, allylic esters such as diaryl phthalate, and polyfunctional monomers such as benzene. .
前記ポリオルガノシロキサン含有グラフト重合体のェマルジヨン粒子は、 重量 平均粒子径が好ましくは 0. Ο ΐ μπι以上、 さらに好ましくは 0. 03 izm以上、 特に好ましくは 0. 05 // m以上、 好ましくは 20 μ m以下、 さらに好ましくは 2//m以下、 特に好ましくは 0. 8/xm以下である。 0. Ο ΐ μπιを下回るもの は製造が困難である場合があり、 20 μπιを超えるものは貯蔵安定性が悪くなる 恐れがある。 前記ポリオルガノシロキサン系粒子の粒子径分布を狭くする目的で、 環状シロキサンやアルコキシシランなどの重合の際にブチル (メタ) アタリレー トゃスチレンを用いて製造した、 重量平均粒子径が好ましくは 0 . 0 6 m以下、 または重量平均分子量 (Mw) が好ましくは 1 0, 0 0 0以下のシード粒子から なるラテックスを用いることができる。 The emulsion particles of the polyorganosiloxane-containing graft polymer preferably have a weight average particle diameter of at least 0.3 μπι, more preferably at least 0.03 izm, particularly preferably at least 0.05 // m, preferably at least 20. μm or less, more preferably 2 // m or less, particularly preferably 0.8 / xm or less. 0.Production of less than μ る も の μπι may be difficult to produce, and those of more than 20 μπι may result in poor storage stability. There is fear. For the purpose of narrowing the particle size distribution of the polyorganosiloxane-based particles, butyl (meth) atalylate distyrene was used at the time of polymerization of a cyclic siloxane, an alkoxysilane, or the like. Latex composed of seed particles having a weight average molecular weight (Mw) of preferably 0.6 m or less or preferably 100,000 or less can be used.
また、 前記一官能性及び または多官能性のラジカル重合性単量体を重合する前 に、 前記ポリオルガノシロキサン系粒子を含むラテックスに硫酸ナトリウムなど の無機金属塩を添カ卩し、 ラテックス粒子を肥大させることもできる。 Further, before polymerizing the monofunctional and / or polyfunctional radical polymerizable monomer, an inorganic metal salt such as sodium sulfate is added to the latex containing the polyorganosiloxane-based particles to form a latex particle. Can also be enlarged.
界面活性剤 ·重合触媒としてドデシルベンゼンスルホン酸やそのナトリウム塩 など酸処理による凝固ができないものを用いる場合には、 前述のごとく塩析する 方法を採用することが出来る。  Surfactant · When a polymerization catalyst such as dodecylbenzene sulfonic acid or its sodium salt that cannot be coagulated by acid treatment is used, a method of salting out can be employed as described above.
本発明の方法においてポリオルガノシロキサン含有樹脂スラリーを加熱ストリ ッビングする際には、 バッチ法 ·連続法のいずれの方法を採用してもかまわない。 バッチ法による場合には、 ストリッビング処理を行う前に前記スラリーを必要に 応じて耐圧式のバッチ式蒸留装置中に導入し、 またはラテックス状のポリオルガ ノシロキサン含有樹脂ェマルジヨンを前記バッチ式蒸留装置中に導入した後塩析 を行って凝固する。 その後に内部のスラリーを加熱昇温し、 好ましくは 1 0 0 °C 以上、 より好ましくは 1 2 0 °C以上、 さらには 1 4 0 °C以上、 好ましくは 1 8 0 °C以下、 より好ましくは 1 6 0 °C以下、 さらには 1 5 0 °C以下の温度条件に維 持する。 この処理温度は高いほど短時間で効果的に揮発性シロキサンを低減する ことができる。 し力 しながら、 1 8 0 °Cを超える場合にはポリオルガノシロキサ ンの分解が起こる場合がある。 処理温度が 1 0 0 °Cを下回る場合には揮発性シロ キサンが十分に低減するまでの時間が長くなり、 もしくは十分な程度まで低減す ることができなレ、場合がある。  In the method of the present invention, when stripping the polyorganosiloxane-containing resin slurry by heating, either a batch method or a continuous method may be employed. In the case of the batch method, the slurry is introduced into a pressure-resistant batch distillation apparatus as required before performing the stripping treatment, or a latex-like polyorganosiloxane-containing resin emulsion is introduced into the batch distillation apparatus. After salting out, it is solidified. Thereafter, the temperature of the internal slurry is increased by heating, preferably at least 100 ° C, more preferably at least 120 ° C, further at least 140 ° C, preferably at most 180 ° C, more preferably Is maintained at a temperature of 160 ° C or less, and further, a temperature of 150 ° C or less. The higher the processing temperature, the more effectively the volatile siloxane can be reduced in a shorter time. However, if the temperature exceeds 180 ° C, decomposition of polyorganosiloxane may occur. When the treatment temperature is lower than 100 ° C., the time until the volatile siloxane is sufficiently reduced may be long, or the volatile siloxane may not be sufficiently reduced.
内部スラリーの加熱昇温 ·温度維持は、 装置の外部ジャケットから加熱する方 法、 装置内に設置する閉じた蒸気コイルで加熱する方法、 水蒸気を直接スラリー に導入する方法、 さらにはこれらの組み合わせにより行うことができる。 水蒸気 の導入を行う場合は、 より高い揮発性シロキサンの気化効率が得られ好ましく、 更には適切に配置された多孔蒸気スプレーを用い、 多くの小さな穴を通して供給 することが好ましく、 また内部のスラリー液面からかなり深い所で、 好ましくは バッチ式蒸留装置の底部から、 供給することが好ましい。 Heating and raising the temperature of the internal slurry can be achieved by heating from the outer jacket of the equipment, heating with a closed steam coil installed in the equipment, introducing steam directly into the slurry, or a combination of these. It can be carried out. When steam is introduced, a higher vaporization efficiency of volatile siloxane is obtained, which is preferable. It is also preferred that the feed be provided through a number of small holes, using a well-arranged perforated vapor spray, and that the feed be provided at a considerable depth from the internal slurry level, preferably from the bottom of the batch distillation apparatus. preferable.
前記温度に維持している間に、 揮発性シロキサンはバッチ式蒸留装置の上部か ら水蒸気とともに留出成分として排出される。 この際、 供給された液量と排出さ れた液量とが完全に等量である必要はないが、 過剰に水分が除去されないよう水 分量を調整しつつ行うことが好ましい。 水分量の調整はバッチ式蒸留装置中に新 規な水を直接導入する方法が可能であり、 また留出成分から後述の方法で回収し た水をバッチ式蒸留装置内に戻すことも可能であるが、 加熱と水分供給の両機能 を同時に達成できることから水蒸気供給による方法が好ましく用いられる。 前記温度に維持し、 バッチ式蒸留装置の上部から留出成分の排出を行う時間 (処理時間) は特に制約はないが、 処理温度によって好ましくは 4時間以下、 よ り好ましくは 2時間以下、 さらには 1時間以下、 さらに好ましくは 4 5分以下で あり、 好ましくは 1 0分以上、 より好ましくは 2 0分以上である。 処理時間が短 すぎると揮発性シロキサンが十分に低減せず、 長すぎると生産性が低下し、 また ポリオルガノシロキサンの分解が起こる場合があり好ましくない。  While maintaining the temperature, the volatile siloxane is discharged from the upper part of the batch distillation apparatus together with water vapor as a distillate. At this time, the supplied liquid amount and the discharged liquid amount do not need to be completely equal, but it is preferable to adjust the water amount so as not to remove excessive water. To adjust the water content, it is possible to introduce new water directly into the batch distillation apparatus, and it is also possible to return the water recovered from the distillate components by the method described below into the batch distillation apparatus. However, a method based on steam supply is preferably used because both functions of heating and water supply can be achieved simultaneously. The time for keeping the above temperature and discharging the distillate from the upper part of the batch distillation apparatus (treatment time) is not particularly limited, but is preferably 4 hours or less, more preferably 2 hours or less, depending on the treatment temperature. Is 1 hour or less, more preferably 45 minutes or less, preferably 10 minutes or more, and more preferably 20 minutes or more. If the treatment time is too short, the volatile siloxane is not sufficiently reduced, and if the treatment time is too long, the productivity is reduced and the decomposition of the polyorganosiloxane may occur, which is not preferable.
スラリ一は静置すると樹脂成分が沈降する場合がある。 その場合ストリツピン グの効率が低下するばかりでなく、 沈降した樹脂が融着し粗大化したり、 蒸留装 置内壁に融着するなどの問題を引き起こす場合がある。 それを防止する目的で、 バッチ式蒸留装置内部にスラリーを導入、 もしくはラテックス状のポリオルガノ シロキサン含有樹脂を導入し凝固する段階から、 加熱昇温 ·ストリッビング処理 を経て、 内部に残されたスラリーを排出するまでの間、 攪拌を継続することが好 ましい。  When the slurry is allowed to stand, the resin component may settle. In this case, not only does the stripping efficiency decrease, but also problems such as the sedimented resin fusing and coarsening, and fusing to the inner wall of the distillation apparatus may be caused. In order to prevent this, slurry is introduced into the batch distillation apparatus, or the latex-like polyorganosiloxane-containing resin is introduced and solidified. It is preferable to continue stirring until discharging.
ストリツビング処理後にバッチ式蒸留装置内部に残留するスラリ一は、 揮発性 シ口キサン含有量が低減されたポリオルガノシ口キサン含有樹脂からなるもので ある。 必要に応じこれを脱水 '乾燥することにより、 ポリオルガノシロキサン含 有樹脂を粉体またはクラムとして回収することができる。 加熱ストリッビングを連続法で行う場合には、 あらかじめスラリー状態とした ポリオルガノシロキサン含有樹脂を連続流通装置中に通過させる。 連続流通装置 は管状、 筒状、 タンク状などのものを用いることができ、 また管状のものを用い る場合には直管状、 円管状、 スパイラル管状など様々な形状のものを用いること ができる。 直管状もしくは筒状のものを用いる場合には、 例えば垂直下降方向、 垂直上昇方向、 水平方向その他の方向に流通させることができる。 樹脂による閉 塞を防止する観点からは直管状、 筒状、 タンク状のものが好ましく、 個々のスラ リ一粒子間の処理時間むらを減らすためには直管状、 筒状のものが好ましく用い られる。 またバッチ法と同様の理由で水蒸気供給を行う場合には、 垂直の直管状、 筒状、 タンク状のものが好ましく用いられる。 The slurry remaining in the batch distillation apparatus after the stripping treatment is made of a polyorganosiloxane-containing xane-containing resin having a reduced content of volatile siloxane. The polyorganosiloxane-containing resin can be recovered as a powder or crumb by dehydrating and drying it if necessary. When the heating stripping is performed by a continuous method, the polyorganosiloxane-containing resin which has been previously slurried is passed through a continuous flow device. The continuous flow device may be in the form of a tube, a tube, a tank, or the like. In the case of using a tube, various shapes such as a straight tube, a circular tube, and a spiral tube may be used. In the case of using a straight tube or a tube, it can be circulated in, for example, a vertical descending direction, a vertical rising direction, a horizontal direction, or the like. From the viewpoint of preventing blockage by the resin, a straight tube, a tube, or a tank is preferable, and a straight tube or a tube is preferably used to reduce uneven processing time between individual slurry particles. . When steam is supplied for the same reason as in the batch method, a vertical straight tube, tube, or tank is preferably used.
連続法にぉレ、ても、 ストリツピング処理を行う温度条件 ·時間はバッチ法と同 様であり、 必要な処理時間 ·スラリ一処理量に応じて適切な大きさの連続流通装 置を採用する。 また加熱方法もバッチ法と同様の条件が適用できる。  In the case of the continuous method, the temperature conditions and time for stripping are the same as in the batch method, and the required processing time and continuous flow equipment of an appropriate size are adopted according to the amount of slurry processed. . The same conditions as in the batch method can be applied to the heating method.
連続法にぉレ、ても、 揮発性シ口キサンを含む留出成分は連続流通装置の上部か ら排出され、 連続流通装置の排出部から揮発性シロキサン含有量が低減されたポ リオルガノシロキサン含有樹脂スラリ一を得ることができる。  Even in the continuous process, the distillate component containing volatile siloxanes is discharged from the upper part of the continuous flow device, and the polyorganosiloxane with reduced volatile siloxane content is discharged from the discharge part of the continuous flow device. A contained resin slurry can be obtained.
バッチ法、 連続法のいずれを用いる場合においても、 処理に供するポリオノレガ ノシロキサン含有樹脂スラリ一の濃度は好ましくは 1重量。 /0以上、 より好ましく は 5 %重量以上、 さらには 1 0重量%以上であり、 好ましくは 5 0重量%以下、 より好ましくは 3 0重量%以下、 さらには 2 0重量%以下である。 濃度が低すぎ ると生産性及びエネルギー効率が悪く、 濃度が高すぎるとバッチ法の場合は攪拌 不良により融着し、 連続法の場合は閉塞などの問題が起こる場合がある。 Regardless of whether the batch method or the continuous method is used, the concentration of the resin slurry containing polyonoreganosiloxane used for the treatment is preferably 1% by weight. / 0 or more, more preferably 5% by weight or more, further 10% by weight or more, preferably 50% by weight or less, more preferably 30% by weight or less, and further preferably 20% by weight or less. If the concentration is too low, productivity and energy efficiency are poor. If the concentration is too high, fusion may occur due to poor stirring in the case of the batch method, and clogging or the like may occur in the case of the continuous method.
本発明の方法により水蒸気とともに留出する揮発性シ口キサンは、 大気圧下で 沸点を有するシロキサン化合物を含む概念である。 例えば、 大気圧下において 3 5 0 °C以下の沸点を有するシロキサン化合物を挙げることができる。 用いるポリ オルガノシロキサンの原料に依存するが、 揮発性シロキサンの例としては、 へキ サメチルジシロキサン (MM) 、 ォクタメチルトリシロキサン (MDM) 、 1, 3, 5 _へキサメチルシクロ トリシロキサン (D 3 ) 、 1 , 3, 5, 7—ォクタ メチルシクロテトラシロキサン (D4) 、 1, 3, 5, 7, 9ーデカメチルシク 口ペンタシロキサン (D5) 、 1, 3, 5, 7, 9, 11—ドデカメチルシクロ へキサシロキサン (D6) 、 1, 3, 5, 7, 9, 11, 13—テトラデカメチ ルシクロへプタシロキサン (D7) 、 1, 3, 5, 7—ォクタフエニノレシクロテ トラシロキサン、 1, 3, 5, 7—テトラメチル一 1, 3, 5, 7—テトラフエ エルシクロテトラシロキサンなどを挙げることができる。 また、 メルカプトプロ ピル基、 メタクリロイルォキシプロピル基、 ビニル基、 ァリル基などグラフト交 叉剤由来の官能基により珪素原子上のメチル基が一部置換された化合物も例示で きる。 The volatile siloxane which is distilled off together with water vapor by the method of the present invention is a concept containing a siloxane compound having a boiling point at atmospheric pressure. For example, a siloxane compound having a boiling point of 350 ° C. or less at atmospheric pressure can be used. Depending on the polyorganosiloxane materials used, examples of volatile siloxanes include hexamethyldisiloxane (MM), octamethyltrisiloxane (MDM), 1,3,5-hexamethylcyclotrisiloxane (D 3), 1, 3, 5, 7— Methylcyclotetrasiloxane (D4), 1,3,5,7,9-decamethylcyclopentapentasiloxane (D5), 1,3,5,7,9,11-dodecamethylcyclohexasiloxane (D6), 1,3 , 5,7,9,11,13-Tetradecamethylcycloheptasiloxane (D7), 1,3,5,7-Octafeninolecyclotetrasiloxane, 1,3,5,7-Tetramethyl-1,1, 3,5,7-tetrafluorocyclotetrasiloxane and the like can be mentioned. Further, a compound in which a methyl group on a silicon atom is partially substituted by a functional group derived from a graft crossing agent such as a mercaptopropyl group, a methacryloyloxypropyl group, a vinyl group, and an aryl group can also be exemplified.
本発明において、 水蒸気とともに留出する揮発性シロキサンを回収する方法と しては、 気体状態のまま米国特許第 5922108号明細書に示されるケィ藻土 カラム、 または活性炭フィルターなどに通過させ、 吸着させた後、 必要に応じて これを脱着して回収することができる。 他の好ましい回収方法としては、 留出成 分を通常知られている熱交 などのコンデンサ一等を経由して冷却することに より液ィヒし、 さらに液一液分離により軽液層として、 または液体吸着フィルター を用いて回収する方法、 更に好ましい方法として、 排出ガスを前述と同様に冷却 して液化した後さらに 17°C以下に冷却し、 揮発性シロキサン成分のみを固化し て濾過、 遠心分離、 サイクロンなどの固一液分離法により回収する方法がある。 固一液分離によるこの方法によれば、 水分や水溶性成分から簡易に効率よく揮発 性シロキサンのみを回収することができる。 17°C以下に冷却するのが好ましい 理由は、 揮発性シロキサン中に最も多く含まれる成分である 1, 3, 5, 7—ォ クタメチルシクロテトラシロキサンの融点が 17. 5°Cであるからであり、 より 好ましくは 10°C以下、 さらには 5 °C以下に冷却するとなおいつそう固一液分離 による回収が安定的に実施できる。  In the present invention, as a method for recovering volatile siloxane distilled out together with water vapor, a gaseous state is passed through a kieselguhr column shown in U.S. Pat. After that, it can be removed and collected as needed. Another preferred method of recovery is to distill the distillate component by cooling it through a commonly known condenser such as heat exchange, and then separate it into a light liquid layer by liquid-liquid separation. Alternatively, a method of recovering using a liquid adsorption filter is more preferable. There are methods of separation and recovery by solid-liquid separation method such as cyclone. According to this method using solid-liquid separation, only volatile siloxane can be easily and efficiently recovered from water and water-soluble components. It is preferable to cool to 17 ° C or less because the melting point of 1,3,5,7-octamethylcyclotetrasiloxane, which is the most abundant component in volatile siloxane, is 17.5 ° C. More preferably, when the temperature is cooled to 10 ° C. or lower, and more preferably 5 ° C. or lower, the recovery by solid-liquid separation can be performed more stably.
かくして、 揮発性シロキサンを低減させたポリオルガノシロキサン含有樹脂組 成物の新規な製造方法、 および留出成分から揮発性シロキサン成分を効率よく回 収する方法が提供される。 また、 本発明の方法を、 特開平 07— 330905号 公報、 特開平 07— 278473号公報、 特開平 06— 107796号公報など により得られたオイル状のポリオルガノシロキサンを機械乳化したェマルジョン を用いる方法、 特開 2001— 288269号公報、 特開平 1 1— 222554 号公報、 米国特許第 56 6 1 2 1 5号、 米国特許第 4600436号、 特開 20 02- 24958 2号公報、 特開 2002— 2848 7 7号公報、 特開 2002 - 1 2 1 284号公報などの先行技術に示される揮発性シロキサン低減方法と組 み合わせて用いることができ、 その場合にはより揮発性シロキサン量が低減され たポリオルガノシロキサン含有樹脂を得ることができ好ましい。 Thus, a novel method for producing a polyorganosiloxane-containing resin composition with reduced volatile siloxane and a method for efficiently recovering a volatile siloxane component from a distillate component are provided. Further, the method of the present invention is described in JP-A-07-330905, JP-A-07-278473, JP-A-06-107796 and the like. Using an emulsion obtained by mechanically emulsifying an oily polyorganosiloxane obtained by the method described in JP-A-2001-288269, JP-A-11-222554, US Pat. No. 5,661,215, US Pat. No. 4,600,436, Japanese Patent Application Laid-Open No. 2002-029582, Japanese Patent Application Laid-Open No. 2002-284877, Japanese Patent Application Laid-Open No. 2002-212284, etc. In such a case, a polyorganosiloxane-containing resin having a reduced volatile siloxane content can be obtained, which is preferable.
本発明はまた、 前述のようにスラリ一状のポリオルガノシロキサン含有樹脂を 加熱ストリッビングすることにより揮発性シロキサンを低減せしめたポリオルガ ノシロキサン含有樹脂をも開示する。 ポリオルガノシロキサン含有樹脂がポリオ ルガノシロキサン含有グラフト共重合体からなる場合、 ポリオルガノシロキサン 粒子のグラフト変性前にェマルジヨンなどの状態で加熱ストリッビングを行う場 合に比べて、 本発明の方法によればグラフト変性などの化学反応をすベて終了し た後にスラリーに転換してから加熱ストリッビングを行うので、 グラフト重合に 際して、 グラフト変成剤由来のグラフト点が熱による変質などを受けておらず、 有効に利用される。 例えばメルカプト基で変性したポリオルガノシロキサンを用 いる場合、 メルカプト基のスルフィド結合形成反応によるポリオルガノシロキサ ン分子間架橋など設計外の硬化反応が起こり難い。 またェマルジヨンを加熱スト リッビングする方法では、 ポリオルガノシロキサン含有樹脂を粉体等の乾燥状態 で得るために、 通常、 該樹脂のェマルジヨンにいったん熱を加え、 冷却後凝固し、 再度加熱熱処理して、 乾燥プロセスを経るが、 本発明のスラリーを加熱ストリツ ビングする方法では加熱は 1度だけで済む。 そのため得られる樹脂に予想外の熱 劣化をもたらす可能性を抑制できるばかりでなく、 エネルギー的にも生産性の観 点からも有利であり、 さらに高温のスラリー状態で一定時間維持されるので脱水 後の含水率が低減するという効果も同時に得られ、 少ないエネルギーで、 また短 時間で乾燥を済ませることができるという利点も生じる。  The present invention also discloses a polyorganosiloxane-containing resin in which volatile siloxane is reduced by heating and stripping the slurry-like polyorganosiloxane-containing resin as described above. According to the method of the present invention, when the polyorganosiloxane-containing resin is composed of a polyorganosiloxane-containing graft copolymer, the heat stripping is performed in a state of emulsion or the like before the graft modification of the polyorganosiloxane particles. After the completion of all chemical reactions such as graft modification, the slurry is converted into a slurry and then heat stripping is performed.Therefore, during the graft polymerization, the graft points derived from the graft modifying agent may have undergone thermal deterioration, etc. Used effectively. For example, when a polyorganosiloxane modified with a mercapto group is used, an undesigned curing reaction such as cross-linking between polyorganosiloxane molecules due to a sulfide bond forming reaction of the mercapto group hardly occurs. In addition, in the method of heating and stripping the emulsion, in order to obtain the polyorganosiloxane-containing resin in a dry state such as a powder, usually, the emulsion of the resin is once heated, cooled, solidified, and then heat-treated again. After the drying process, the method of heating and stripping the slurry of the present invention requires only one heating. This not only suppresses the possibility of unexpected thermal degradation of the resulting resin, it is also advantageous from the viewpoint of energy and productivity, and is maintained in a high-temperature slurry state for a certain period of time. The effect of reducing the water content is also obtained at the same time, and there is an advantage that drying can be completed with less energy and in a shorter time.
本発明はまた、 前記ポリオルガノシロキサン含有樹脂を含む難燃剤をも開示す る。 例えば、 ポリオノレガノシロキサン含有グラフト共重合体ラテックスから本発 明のポリオルガノシロキサン含有樹脂を得、 これを例えば、 ポリカーボネート、 またはポリカーボネート/ポリエチレンテレフタレート樹脂 (PCZPET) 、 ポリカーボネート ポリブチレンテレフタレート樹脂 (PC/PBT) 、 ポリ力 ーボネート/アクリロニトリル一ブタジエン一スチレン樹脂 (PCZABS) な どのポリカーボネート系樹脂に配合して成形した場合には、 前述の理由によりグ ラフト構造が良好に形成されるためポリカーボネート系樹脂中にポリオノレガノシ 口キサン含有樹脂が良好に分散し、 耐衝撃性 ·難燃性を良好に付与することがで ぎる。 The present invention also discloses a flame retardant comprising the polyorganosiloxane-containing resin. For example, the present invention is based on a polyonoleganosiloxane-containing graft copolymer latex. A light polyorganosiloxane-containing resin is obtained, which is used, for example, in polycarbonate or polycarbonate / polyethylene terephthalate resin (PCZPET), polycarbonate polybutylene terephthalate resin (PC / PBT), polycarbonate / acrylonitrile-butadiene-styrene resin (PCZABS). When molded with a polycarbonate-based resin, etc., the graphitic structure is well formed for the above-mentioned reason, so that the resin containing polyoxane-legged siloxane is well dispersed in the polycarbonate-based resin. Good flammability can be provided.
本発明は、 前記ポリオルガノシロキサン含有樹脂と熱可塑性樹脂、 熱硬化性樹 脂およびエラストマ一から選択される 1種以上の樹脂とを含む樹脂組成物を 開 示し、 併せてポリオルガノシロキサン含有樹脂組成物とすることができる。 前述 と同じ理由により良好にマトリクス樹脂中に分散するポリオルガノシロキサン含 有樹脂が得られ、 良好な耐衝撃性やヒートショック性などを付与したり、 脆ィ匕温 度を改良することができる。  The present invention discloses a resin composition containing the polyorganosiloxane-containing resin and at least one resin selected from thermoplastic resins, thermosetting resins and elastomers. Things. For the same reason as described above, a polyorganosiloxane-containing resin which is favorably dispersed in a matrix resin can be obtained, and good impact resistance and heat shock properties can be imparted, and the brittle temperature can be improved.
前記エラストマ一とは、 熱可塑性エラストマ一を含む概念である。  The term “elastomer” is a concept including a thermoplastic elastomer.
熱可塑性樹脂の具体例としては、 ポリカーボネート (PC) 、 ポリエチレンテ レフタレート (PET) 、 ポリブチレンテレフタレート (PBT) 、 ポリフエ二 レンエーテノレ (PPE) 、 ポリフエ二レンサルファイ ド (PPS) 、 ポリメチル メタタリレート (PMMA) 、 ポリアリーレン、 アクリロニトリル一ブタジエン —スチレン樹脂 (ABS) 、 アクリロニトリル一アクリル酸エステルースチレン 樹脂 (AAS) 、 塩化ビュル (PVC) 、 ポリスチレン (PS t) 、 メチルメタ クリレートースチレン共重合体 (MS) 、 アクリロニトリル一スチレン共重合体 (AS) 、 ナイロンなど、 またはこれらの混合物などが挙げられる。  Specific examples of the thermoplastic resin include polycarbonate (PC), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polymethyl methacrylate (PMMA), Polyarylene, acrylonitrile-butadiene-styrene resin (ABS), acrylonitrile-monoacrylate-styrene resin (AAS), butyl chloride (PVC), polystyrene (PSt), methyl methacrylate-styrene copolymer (MS), acrylonitrile Examples include styrene copolymer (AS), nylon, and the like, and mixtures thereof.
熱硬化性樹脂の具体例としては、 エポキシ樹脂、 フヱノール樹脂、 尿素樹脂、 メラミン樹脂、 ポリイミ ドなどが挙げられ、 エラストマ一の具体例としては、 ブ チルァクリレート系ゴムなどのァクリルゴム、 ブタジエン一ァクリロニトリル系 共重合体などの二トリルゴム、 クロロプレンゴム、 天然ゴム、 ブタジエンゴム、 スチレン一ブタジエンゴム、 メチルメタクリレート一ブチルァクリレートブロッ ク共重合体、 スチレン一^ f ソブチレンブロック共重合体、 スチレン一ブタジエン ブロック共重合体、 水添スチレン—ブタジエンブロック共重合体、 ポリエステル エラストマ一などが挙げられるが、 これらに限定されるものではない。 Specific examples of the thermosetting resin include an epoxy resin, a phenol resin, a urea resin, a melamine resin, and a polyimide. Specific examples of the elastomer include an acryl rubber such as a butyl acrylate rubber and a butadiene acrylonitrile copolymer. Nitrile rubber such as polymers, chloroprene rubber, natural rubber, butadiene rubber, styrene-butadiene rubber, methyl methacrylate-butyl acrylate block Block copolymer, styrene-1-f-sobutylene block copolymer, styrene-butadiene block copolymer, hydrogenated styrene-butadiene block copolymer, polyester elastomer, etc., but are not limited thereto. Absent.
なお、 本発明の樹脂組成物では必要に応じて顔料、 酸化防止剤、 ドリップ防止 剤、 フィラーなどを配合することができる。  In the resin composition of the present invention, a pigment, an antioxidant, an anti-drip agent, a filler, and the like can be added as needed.
力べして、 本発明の新規なポリオノレガノシロキサン含有樹月旨の製造方法により 揮発性シロキサン含有量が少なく、 環境負荷の低減されたポリオルガノシロキサ ン含有樹脂が提供可能となる。 また耐衝撃性'難燃性の良好な難燃剤、 または耐 衝撃性やヒートショック性、 脆化温度などに優れた樹脂組成物を得ることができ る。  By virtue of the novel method for producing a polyonoleganosiloxane-containing resin of the present invention, a polyorganosiloxane-containing resin having a low volatile siloxane content and a reduced environmental load can be provided. Further, a flame retardant having good impact resistance and flame retardancy, or a resin composition having excellent impact resistance, heat shock resistance, embrittlement temperature, and the like can be obtained.
【実施例】 【Example】
本発明を実施例に基づき具体的に説明するが、 本発明はこれらのみに限定され ない。 以下 「部」 は 「重量部」 を表す。  The present invention will be specifically described based on examples, but the present invention is not limited thereto. Hereinafter, “parts” means “parts by weight”.
[固形分含有率]  [Solid content]
ラテックスもしくはスラリーを 1 3 0 °Cの熱風乾燥機で 2時間乾燥し、 (1 3 0 °Cで 2時間乾燥した後の残渣の重量) / (乾燥前のもとのラテックスまたはス ラリー重量) として算出した。  Dry the latex or slurry in a hot air drier at 130 ° C for 2 hours, and (weight of residue after drying at 130 ° C for 2 hours) / (weight of original latex or slurry before drying) It was calculated as
[重合転化率]  [Polymerization conversion rate]
(仕込み総量 (部) X固形分含有率一 (乳化剤仕込み量 (部) +無機酸及び Z 又は有機酸仕込み量 (部) +ラジカル重合開始剤仕込み量 (部) +還元剤 (部) (Total charge (parts) X solid content ratio-(Emulsifier charge (parts) + inorganic acid and Z or organic acid charge (parts) + radical polymerization initiator charge (parts) + reducing agent (parts)
+酸化還元触媒 (部) ) ) Z (仕込み単量体量 (部) ) として算出した。 + Redox catalyst (parts))) Calculated as Z (amount of charged monomer (parts)).
[体積平均粒子径]  [Volume average particle size]
シードポリマー、 ポリオルガノシロキサン粒子およびグラフト共重合体の体積 平均粒子径をラテックスの状態で測定した。 測定装置として、 日機装株式会社製 の M I C R O T R A C U P A 1 5 0を用いて、 光散乱法により体積平均粒子 径 (μ πι) を測定した。  The volume average particle diameters of the seed polymer, polyorganosiloxane particles and graft copolymer were measured in the state of a latex. The volume average particle size (μπι) was measured by a light scattering method using MicRoTRACUUPA150, manufactured by Nikkiso Co., Ltd.
[トルエン不溶分率] ラテックスにメタノールを添加することにより凝固してから一晩放置し、 透明 な液層を除去した。 さらにメタノールを添加して一晩放置してから透明な液層を 除去、 その後乾燥させてポリオルガノシロキサンの固体を得た。 この 0. 3 gを 室温にてトルエン 10 Om 1に 40時間浸漬後、 上澄みを除去しトルエンが膨潤 したトルエン不溶分を得、 さらにそれを乾燥させた。 トルエン不溶分率は、 (ト ルェン乾燥後の重量) z (トルエン浸漬前の重量) として求めた。 [Toluene insoluble content] The latex was coagulated by adding methanol to the latex and left overnight to remove a transparent liquid layer. Further, methanol was added thereto, and the mixture was allowed to stand overnight. Then, a transparent liquid layer was removed, and then dried to obtain a solid of polyorganosiloxane. This 0.3 g was immersed in 10 Om 1 of toluene at room temperature for 40 hours, and the supernatant was removed to obtain a toluene-insoluble portion in which toluene was swollen, and further dried. The toluene insoluble content was determined as (weight after drying with toluene) z (weight before immersing in toluene).
[重量平均分子量 (Mw) ]  [Weight average molecular weight (Mw)]
トルエン不溶分率を得るときと同様にして、 ポリオルガノシロキサンの固体を 得た。 この固体中のクロ口ホルム可溶分を用いて、 ゲル浸透クロマトグラフィー (GPC) 分析することにより重量平均分子量 (Mw) を決定した。 GPC分析 においては W a t e r s社製 G P Cシステムを使用し、 カラムはポリスチレンゲ ルカラム Sh o d e x K— 806および K805 (昭和電工 (株) 製) を用 レ、、 クロ口ホルムを溶出液とし、 ポリスチレン換算で解析した。  A polyorganosiloxane solid was obtained in the same manner as when obtaining the toluene insoluble content. The weight-average molecular weight (Mw) was determined by gel permeation chromatography (GPC) analysis using the form-mouth soluble matter in this solid. In the GPC analysis, a Waters GPC system was used. The columns were polystyrene gel columns, Shodex K-806 and K805 (manufactured by Showa Denko KK). Analyzed.
[揮発性シロキサン含有率]  [Volatile siloxane content]
ガスクロマトグラフ (GC) 解析により求めた。 ラテックス、 樹脂スラリー、 もしくは粉体にメチルェチルケトンを添加して抽出を行い、 内部標準としてォク タメチノレトリシロキサンを添加した。 カラム: S i l i c o n e DC—550, 20 w t %クロモソルブ WNAW# 60— 80を充填した 3mm ψ X 3mを使 用し、 ガスクロマトグラフ GC_ 14B ( (株) 島津製作所製) で実施した。 ォ クタメチルテトラシクロシロキサン (D4) 、 デカメチルシクロペンタシロキサ ン (D5) 、 ドデカメチルシクロへキサシロキサン (D6) 量を分析して求め、 樹脂固形分に対するそれら総重量の割合を揮発性シロキサン含有率とした。  It was determined by gas chromatography (GC) analysis. Methyl ethyl ketone was added to latex, resin slurry, or powder for extraction, and octamethinoretrisiloxane was added as an internal standard. Column: Silicone DC—550, 20 wt% Chromosolve WNAW # 60—80, 3 mm × 3 m filled with 80 mm, using a gas chromatograph GC_14B (manufactured by Shimadzu Corporation). The amounts of octamethyltetracyclosiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) were determined by analysis, and the ratio of the total weight to the solid resin content was determined by volatile siloxane. The content was determined.
[含水率]  [Moisture content]
樹脂の含水率は樹脂を 130°Cで 2時間乾燥し、 (乾燥した後の樹脂重量) / (乾燥前の樹脂重量) として求めた。  The water content of the resin was determined by drying the resin at 130 ° C. for 2 hours and calculating (weight of resin after drying) / (weight of resin before drying).
[耐衝撃性]  [Shock resistance]
ASTM D— 256に準じて、 ノッチつき 1 8インチバーを用いて一 1 0°Cでのアイゾット試験により評価した。 隱性] It was evaluated by an Izod test at 110 ° C. using a notched 18-inch bar according to ASTM D-256. Obscurity]
UL 94 V試験により評価した。 評価には 1 20インチ (1. 2 mm) 厚 の試験片を用いた。  Evaluated by UL 94 V test. A 120-inch (1.2 mm) thick test specimen was used for the evaluation.
(製造例 1) シードポリマー (SD— 1) の製造  (Production Example 1) Production of seed polymer (SD-1)
撹拌機、 還流冷却器、 チッ素吹込口、 単量体追加口、 温度計を備えた 5ロフラ スコに、 水 400重量部および 10%ドデシルベンゼンスルホン酸ソーダ水溶液 を 12重量部 (固形分) を混合したのち 50°Cに昇温し、 液温が 50°Cに達した 後、 窒素置換を行った。 その後プチルァクリレート 10重量部、 t一ドデシルメ ルカブタン 3重量部を加えた。 30分後、 パラメンタンハイドロパーォキサイド 0. 01重量部 (固形分) 、 ナトリウムホルムアルデヒ ドスルホキシレート (S FS) 0. 3重量部、 エチレンジァミン四酢酸ニナトリウム (EDTA) 0. 0 1重量部、 硫酸第一鉄 0. 0025重量部を添加し、 1時間攪拌した。 プチルァ タリレート 90重量部、 tードデシルメルカプタン 27重量部、 および、 パラメ ンタンハイド口パーオキサイド 0. 09重量部 (固形分) の混合液を 3時間かけ て連続追カ卩した。 その後、 2時間の後重合を行い、 粒子径が 0. 03 /zm、 重合 転化率が 90% ( t—ドデシルメルカプタンを原料成分とみなした) のシードボ リマー (SD— 1) を含むラテックスを得た。  400 parts by weight of water and 12 parts by weight of 10% aqueous sodium dodecylbenzenesulfonate (solid content) were placed in a 5-liter flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer addition port, and thermometer. After mixing, the temperature was raised to 50 ° C. After the liquid temperature reached 50 ° C, nitrogen substitution was performed. Thereafter, 10 parts by weight of butyl acrylate and 3 parts by weight of t-dodecylmercaptan were added. After 30 minutes, 0.01 part by weight of paramenthane hydroperoxide (solid content), 0.3 part by weight of sodium formaldehyde sulfoxylate (S FS), 0.01 part by weight of disodium ethylenediaminetetraacetate (EDTA) And 0.0025 parts by weight of ferrous sulfate were added and stirred for 1 hour. A mixture of 90 parts by weight of butyl phthalate, 27 parts by weight of t-decyl mercaptan, and 0.09 parts by weight (solid content) of peroxide at the mouth of paramentanide was continuously added over 3 hours. Thereafter, post-polymerization was performed for 2 hours to obtain a latex containing a seed polymer (SD-1) having a particle size of 0.03 / zm and a polymerization conversion of 90% (t-dodecyl mercaptan was regarded as a raw material component). Was.
(製造例 2、 3) ポリオルガノシロキサン粒子 (S_l、 2) の製造  (Production Examples 2 and 3) Production of polyorganosiloxane particles (S_l, 2)
表 1に示す組成でホモミキサーにより 7500 r pmで 5分間撹拌してシロキ サンエマルジョンを調製した。 別途、 表 1に示した量の固形分に相当するシード ポリマー (SD— 1) ラテックスを撹拌機、 還流冷却器、 窒素吹込口、 単量体追 加口、 温度計を備えた 5口フラスコに仕込んだ。 このフラスコに先のェマルジョ ンを一括して添加した。 窒素気流下系を撹拌しながら、 次に 10%ドデシルペン ゼンスルホン酸 (DBSA) 水溶液 1重量部 (固形分) を添加し、 その後 80°C に昇温した。 80 °C到達後 15時間反応させ、 25 °Cに冷却して 20時間放置後、 系の pHを 3%水酸ィ匕ナトリウム水溶液で 6. 5にして重合を終了し、 ポリオル ガノシロキサン粒子 (S_l、 2) を含むラテックスを得た。 重合転化率、 ポリ オノレガノシロキサン粒子のラテックスの体積平均粒子径ぉよびトルェン不溶分率、 重量平均分子量 (Mw) 、 揮発性シロキサン含有率を測定した結果を表 1に示す。 With the composition shown in Table 1, the mixture was stirred with a homomixer at 7500 rpm for 5 minutes to prepare a siloxane emulsion. Separately, a seed polymer (SD-1) latex corresponding to the solid content in the amount shown in Table 1 was placed in a 5-neck flask equipped with a stirrer, reflux condenser, nitrogen inlet, monomer inlet, and thermometer. I charged. The above emulsion was added all at once to the flask. While stirring the system under a nitrogen stream, 1 part by weight (solid content) of a 10% aqueous solution of dodecyl benzene sulfonic acid (DBSA) was added, and then the temperature was raised to 80 ° C. After reaching 80 ° C, react for 15 hours, cool to 25 ° C and leave for 20 hours, then adjust the pH of the system to 6.5 with 3% sodium hydroxide solution to complete the polymerization, and obtain polyorganosiloxane particles ( A latex containing S_l, 2) was obtained. Polymerization conversion rate, poly Table 1 shows the results of measurement of the volume average particle diameter, the toluene insoluble content, the weight average molecular weight (Mw), and the volatile siloxane content of the latex of onoreganosiloxane particles.
【表 1】 【table 1】
Figure imgf000018_0001
Figure imgf000018_0001
SDBS: ドデシルペンゼン刀レホン酸ナトリウム  SDBS: Dodecyl Penzen Sword Sodium Lefonate
DBSA: ドデシルペンゼン刀レホン酸  DBSA: Dodecyl penzen sword Lefonic acid
D4: 1,3,5,7—才クタメチルシクロテ卜ラシロキサン  D4: 1,3,5,7-year-old kutamethylcyclotetrasiloxane
DSMA: 3-メタりリロイル才キシプロピルジメトキシメチルシラン  DSMA: 3-Metallyloyl xypropyldimethoxymethylsilane
MPrDMS: 3-メルカプトプロピルジメトキシメチルシラン  MPrDMS: 3-mercaptopropyldimethoxymethylsilane
(製造例 4、 5 ) ポリオルガノシロキサン粒子 (S _ 3、 4 ) の製造 (Production Examples 4 and 5) Production of polyorganosiloxane particles (S_3, 4)
ポリオルガノシロキサン粒子 (S— 1、 2 ) を含むラテックス 1 k gを加熱ジ ャケット、 撹拌機、 凝縮された液体を捕集できる容器を取り付けた還流冷却器、 底部に配した蒸気吹込口、 圧力計、 温度計を備えた耐圧容器に仕込み、 消泡剤と してエチレンォキサイド含有率 2 2 %のエチレンォキサイドとプロピレンォキサ ィドのブロック共重合体 (日本油脂 (株) 製、 商品名 :プロノン 1 0 2 ) を前記 ラテックスの固形分 1 0 0重量部に 0 . 0 5重量部添加した。 水蒸気供給を 3 k gZ時で行い、 140°Cに到達後にストリツビングを開始した。 内液温を 140 〜150°Cで維持するように留出ガスの排出量を制御しながら、 30分間ストリ ッビングを行い、 ポリオルガノシロキサン粒子 (S— 3、 4) を含むラテックス を得た。 重合転化率、 ポリオルガノシロキサン粒子のラテツタスの体積平均粒子 径およびトルエン不溶分率、 重量平均分子量 (Mw) 、 揮発性シロキサン含有率 を測定した結果を表 1 (部は重量部を表す) に示す。 1 kg of latex containing polyorganosiloxane particles (S-1, 2) is heated with a heating jacket, a stirrer, a reflux condenser equipped with a container capable of collecting condensed liquid, a steam inlet at the bottom, a pressure gauge A block copolymer of ethylene oxide and propylene oxide with an ethylene oxide content of 22% (made by Nippon Oil & Fats Co., Ltd.) Trade name: Pronone 102) was added in an amount of 0.05 part by weight to 100 parts by weight of the solid content of the latex. 3 k steam supply This was performed at gZ, and after reaching 140 ° C, stripping was started. Stripping was performed for 30 minutes while controlling the amount of distillate gas discharged so that the internal liquid temperature was maintained at 140 to 150 ° C, to obtain a latex containing polyorganosiloxane particles (S-3, 4). Table 1 (parts represent parts by weight) shows the results of measurement of the polymerization conversion, the volume average particle diameter of latex of polyorganosiloxane particles, the toluene insoluble content, the weight average molecular weight (Mw), and the volatile siloxane content. .
(製造例 6、 7) ポリオルガノシロキサン含有グラフト共重合体 (SG—1、 2) の製造 (Production Examples 6 and 7) Production of polyorganosiloxane-containing graft copolymer (SG-1, 2)
撹拌機、 還流冷却器、 窒素吹込口、 単量体追加口および温度計を備えた 5ロフ ラスコに、 純水 240重量部 (ポリオノレガノシロキサン粒子を含むラテックスか らの持ち込み分を含む) 、 および製造例 2, 3で得たポリオルガノシロキサン粒 子 (S— 1、 2) のラテックスを表 2に示す量 (ただし、 表 2は固形分相当) 仕 込み、 系を撹拌しながら窒素気流下に表 2に示す温度まで昇温した。 表 2に示す 温度到達の 1時間後に、 ナトリゥムホルムアルデヒドスルホキシレート (S F S) 0. 2重量部、 エチレンジァミン 4酢酸 2ナトリウム (EDTA) 0. 01 重量部、 硫酸第一鉄 0. 0025重量部を添加したのち、 表 2に示す組成のダラ フト単量体の混合物 (MG― 1 ) を一括で追加し、 表 2に示す温度で 1時間撹拌 を続けた。 その後、 表 2に示す組成のグラフト単量体の混合物 (MG—2) を 1 時間かけて滴下追加し、 追加終了後、 さらに 2時間撹拌を続けることによってポ リオルガノシロキサン含有グラフト共重合体 (SG— 1、 2) のラテックスを得 た。 グラフト単量体 (1段目、 2段目合計) すべての重合転化率、 ラテックスの 体積平均粒子径、 揮発性シロキサン含有率を測定した結果を表 2 (部は重量部を 表す) に示す。 【表 2】 A 5-lofrasco equipped with a stirrer, reflux condenser, nitrogen inlet, monomer addition port, and thermometer, 240 parts by weight of pure water (including the amount brought in from the latex containing polyonoreganosiloxane particles), Then, the latex of polyorganosiloxane particles (S-1, 2) obtained in Production Examples 2 and 3 was charged in the amount shown in Table 2 (however, Table 2 corresponds to the solid content), and the system was stirred under a nitrogen stream. Then, the temperature was raised to the temperature shown in Table 2. One hour after reaching the temperature shown in Table 2, 0.2 parts by weight of sodium formaldehyde sulfoxylate (SFS), 0.01 parts by weight of ethylenediamine tetraacetic acid disodium (EDTA), and 0.0025 parts by weight of ferrous sulfate After the addition of the mixture, a mixture of the draft monomers (MG-1) having the composition shown in Table 2 was added all at once, and stirring was continued at the temperature shown in Table 2 for 1 hour. Thereafter, a mixture of the graft monomers (MG-2) having the composition shown in Table 2 was added dropwise over 1 hour, and after the addition was completed, stirring was continued for another 2 hours to obtain the polyorganosiloxane-containing graft copolymer (MG). A latex of SG-1 and 2) was obtained. Table 2 (parts indicate parts by weight) shows the results of measuring the polymerization conversion, the volume average particle diameter of the latex, and the volatile siloxane content of all the graft monomers (total of the first and second stages). [Table 2]
Figure imgf000020_0001
Figure imgf000020_0001
AIMA:ァリルメタクリレート  AIMA: aryl methacrylate
MMA:メチルメタゥリレート  MMA: methyl metaperylate
TBPIPC: t-ブチルパーォキシイソプロピル力—ポネ- TBPIPC: t-butyl peroxyisopropyl force
CHP:クメンハイド口パーオキサイド CHP: Cumene Hydrate Peroxide
(製造例 8、 9) ポリオルガノシロキサン含有グラフト共重合体 (SG, 一 1、 2) の製造 (Production Examples 8, 9) Production of polyorganosiloxane-containing graft copolymer (SG, 1-1, 2)
ポリオルガノシロキサン粒子 (S— 1、 2) を含むラテックスのかわりにポリ オルガノシロキサン粒子 (S— 3、 4) を含むラテックスを用いた以外は製造例 6、 7と同様とし、 ポリオルガノシロキサン含有グラフト共重合体 (SG' — 1 2) を得た。 グラフト単量体すベての重合転化率、 ラテックスの体積平均粒子径、 揮発性シロキサン含有率を測定した結果を表 2に示す。 The same procedure as in Production Examples 6 and 7 was repeated except that a latex containing polyorganosiloxane particles (S-3, 4) was used instead of a latex containing polyorganosiloxane particles (S-1, 2). Copolymer (SG '— 1 2) was obtained. Table 2 shows the results obtained by measuring the polymerization conversion, the volume average particle diameter of the latex, and the volatile siloxane content of all the graft monomers.
(製造例 1 0、 1 1) ポリオルガノシロキサン含有グラフト共重合体 (SG' _3、 4) の製造  (Production examples 10 and 11) Production of polyorganosiloxane-containing graft copolymer (SG'_3, 4)
製造例 6, 7で得たのと同じラテックス 1 k gを加熱ジャケット、 撹拌機、 凝 縮された液体を捕集できる容器を取り付けた還流冷却器、 底部に配した蒸気吹込 口、 圧力計、 温度計を備えた耐圧容器に仕込み、 消泡剤としてエチレンォキサイ ド含有率 22%のエチレンォキサイドとプロピレンォキサイドのブロック共重合 体 (日本油脂 (株) 製、 商品名 :プロノン 1 02) を前記ラテックスの固形分 1 00重量部に0. 05重量部添加した。 水蒸気供給を 3 k g/時で行い、 14 0°Cに到達後にストリツビングを開始した。 内液温を 140〜 1 50°Cで維持す るように留出ガスの排出量を制御しながら、 30分間ストリッビングを行い、 ポ リオルガノシロキサン含有グラフト共重合体 (SG, —3、 4) を含むラテック スを得た。 結果を表 2に示す。  1 kg of the same latex obtained in Production Examples 6 and 7 was heated with a heating jacket, a stirrer, a reflux condenser equipped with a container capable of collecting condensed liquid, a steam inlet at the bottom, a pressure gauge, and a temperature. Charged into a pressure vessel equipped with a meter, and used as a defoamer as a block copolymer of ethylene oxide and propylene oxide with an ethylene oxide content of 22% (produced by NOF Corporation, trade name: Pronon 102) ) Was added to 0.05 parts by weight to 100 parts by weight of the solid content of the latex. Steam was supplied at 3 kg / hour, and stripping was started after reaching 140 ° C. Stripping was performed for 30 minutes while controlling the amount of distillate gas discharged so that the internal solution temperature was maintained at 140 to 150 ° C, and the polyorganosiloxane-containing graft copolymer (SG, —3, 4) ) Was obtained. Table 2 shows the results.
(実施例 1、 2) ポリオルガノシロキサン含有グラフト共重合体 (SG— 1、 2) のスラリーストリッビング  (Examples 1 and 2) Slurry stripping of polyorganosiloxane-containing graft copolymer (SG-1, 2)
製造例 6、 7で得たポリオルガノシロキサン含有グラフト共重合体 (SG— 1、 2) のラテックスを水で希釈し、 固形分含有率が 1 5 %となるように調整した後 に、 2. 5%塩化カルシウム水溶液 4重量部 (固形分) を添加して、 凝固スラリ 一を得た。 このスラリーをさらに水で希釈して固形分含有率が 1 0重量。 /0となる ように調整した。 このスラリー l k gを、 加熱ジャケット、 撹拌機、 凝縮された 液体を捕集できる容器を取り付けた還流冷却器、 底部に配した蒸気吹込口、 圧力 計、 温度計を備えた耐圧容器に仕込み、 攪拌しながら水蒸気を 3 k g/時で供給 した。 After diluting the latex of the polyorganosiloxane-containing graft copolymer (SG-1, 2) obtained in Production Examples 6 and 7 with water and adjusting the solid content to 15%, 2. A solidified slurry was obtained by adding 4 parts by weight (solid content) of a 5% calcium chloride aqueous solution. This slurry was further diluted with water to have a solid content of 10% by weight. / 0 was adjusted. This slurry (1 kg) was charged into a pressure vessel equipped with a heating jacket, a stirrer, a reflux condenser equipped with a vessel capable of collecting condensed liquid, a steam inlet at the bottom, a pressure gauge, and a thermometer, and stirred. Steam was supplied at a rate of 3 kg / hour.
内液温が 145°C到達後にストリツビングを開始した。 内液温を 140〜 1 5 0°Cで維持するように留出ガスの排出量を制御しながら、 30分間ストリッピン グを行ったのち、 内部に残されたスラリーを排出した。 その後にスラリーを脱水 し、 脱水ケーキを得た。 ストリツビング中、 留出した揮発性シロキサンを水蒸気 とともに還流冷却器で凝縮して捕集する間、 捕集容器を 5 °Cに冷却した。 ストリ ッビング終了後、 捕集容器内の液温が 10°C以下になったのを確認してから濾過 し、 揮発性シロキサンを回収した。 脱水スラリーに含まれる揮発性シロキサンの 含有率、 脱水ケーキの含水率、 回収した揮発性シロキサン量 (スラリー中の固形 分に対する割合) を表 3に示した。 After the internal solution temperature reached 145 ° C, stripping was started. The stripping was performed for 30 minutes while controlling the discharge amount of the distillate gas so as to maintain the internal liquid temperature at 140 to 150 ° C, and then the slurry left inside was discharged. Thereafter, the slurry was dewatered to obtain a dewatered cake. During stripping, distilled volatile siloxane is At the same time, the collection vessel was cooled to 5 ° C while condensing and collecting with a reflux condenser. After the stripping was completed, it was confirmed that the liquid temperature in the collection container was 10 ° C or less, and then filtration was performed to collect volatile siloxane. Table 3 shows the volatile siloxane content in the dewatered slurry, the water content of the dewatered cake, and the amount of the recovered volatile siloxane (the ratio to the solid content in the slurry).
次いで、 脱水ケーキを乾燥し、 得られた粉体 3重量部を、 ポリテトラフルォロ エチレン (ダイキン工業株式会社製、 商品名:ポリフロン FA— 500) 0. 4 部とともにポリカーボネート樹脂 (出光石油化学株式会社製、 商品名:タフロン FN1 700A) 100重量部に対して配合した。 得られた配合物を 2軸押出機 Next, the dewatered cake was dried, and 3 parts by weight of the obtained powder was mixed with 0.4 parts of polytetrafluoroethylene (manufactured by Daikin Industries, Ltd., trade name: Polyflon FA-500) in a polycarbonate resin (Idemitsu Petrochemical Co., Ltd.). Made by Co., Ltd., trade name: Toughlon FN1 700A) It was blended to 100 parts by weight. The obtained compound is twin-screw extruder
(日本製鋼株式会社製 TEX44 SS) で 270°Cにて溶融混練し、 ペレット を製造した。 得られたペレツトをシリンダー温度 300°Cに設定した株式会社フ ァナック (FANUC) 製の FAS 100 B射出成形機で 1 8インチのアイゾ ット試験片および 1Z20インチ難燃性評価用試験片を作成した。 得られた試験 片を用いて前記評価方法に従って評価した。 結果を表 3に示した。 (TEX44 SS, manufactured by Nippon Steel Corporation) at 270 ° C to produce pellets. The obtained pellets were used to create 18-inch Izod test specimens and 1Z20-inch flame retardancy test specimens using a FAS100 B injection molding machine manufactured by FANUC Co., Ltd., where the cylinder temperature was set to 300 ° C. did. Using the obtained test pieces, evaluation was performed according to the evaluation method described above. Table 3 shows the results.
【表 3】 [Table 3]
実施例 1 2 3 4 5 6 ポリオルガノシロキサン含有樹 SG-1 SG-2 SG-2 SG-2 SG-2 SG-2 脂 Example 1 2 3 4 5 6 Polyorganosiloxane-containing tree SG-1 SG-2 SG-2 SG-2 SG-2 SG-2 Fat
ストリツピンク条件 °c 140- 140〜 140~ 110~ 110〜 140~ Street pink condition ° c 140- 140 ~ 140 ~ 110 ~ 110 ~ 140 ~
150 150 150 120 120 150 処理時間 時間 0.5 0.5 1 0.5 1 0.5 内圧 Mpa 0.26~ 0.26~ 0.26〜 0.10~ 0·10〜 0.26〜  150 150 150 120 120 150 Processing time Time 0.5 0.5 1 0.5 1 0.5 Internal pressure Mpa 0.26 ~ 0.26 ~ 0.26 ~ 0.10 ~ 010 ~ 0.26 ~
0.36 0.36 0.36 0.11 0.11 0.36 揮発性シロキサン 5.0% 4.8% 5.1% 9.1% 7.5% 5.2% 含有率  0.36 0.36 0.36 0.11 0.11 0.36 Volatile siloxane 5.0% 4.8% 5.1% 9.1% 7.5% 5.2% Content
脱水ケーキの 41% 39% 35% 50% 47% 42% 含水率 41% 39% 35% 50% 47% 42% moisture content of dehydrated cake
回収シロキサン量 7.7% 6.0% 5.8% 2.6% 3.9% 3.9% 難燃性 総燃焼時 秒 49 44 48 39 42 45Recovered siloxane amount 7.7% 6.0% 5.8% 2.6% 3.9% 3.9% Flame retardant Total combustion time 49 44 48 39 42 45
(1/20 inch) 間 (1/20 inch)
ドリップ 回 0 0 0 0 0 0 耐衝撃性 - 10°C kJ/m2 29 31 28 33 31 29 (アイゾッ卜強度) (実施例 3〜 5 ) Drip times 0 0 0 0 0 0 Impact resistance-10 ° C kJ / m 2 29 31 28 33 31 29 (Izot strength) (Examples 3 to 5)
スラリーストリッビング処理の温度と処理時間を表 3に示したとおりとした以 外には、 実施例 2同様とした。 結果を表 3に示した。  Example 2 was the same as Example 2 except that the temperature and processing time of the slurry stripping treatment were as shown in Table 3. Table 3 shows the results.
(実施例 6 )  (Example 6)
ストリツビング中、 留出した揮発性シロキサンを水蒸気とともに還流冷却器で 凝縮して捕集する間、 捕集容器を 2 5 °Cに冷却したこと、 ストリツビング終了後 捕集容器内の液体を同温度でー晚静置してから上澄みの油分を回収した以外には、 実施例 2同様とした。 結果を表 3に示した。  During the stripping, the collected container was cooled to 25 ° C while the distilled volatile siloxane was condensed and collected in a reflux condenser with water vapor.After the stripping was completed, the liquid in the collection container was kept at the same temperature. -Same as Example 2 except that the supernatant oil was recovered after standing still. Table 3 shows the results.
(参考例 1、 2 )  (Reference Examples 1 and 2)
製造例 6、 7で得たポリオルガノシロキサン含有グラフト共重合体 (S G— 1、 2 ) のラテックスを水で希釈し、 固形分含有率が 1 5 %となるように調整した後 に、 2 . 5 %塩化カルシウム水溶液 4重量部 (固形分) を添加して、 凝固スラリ 一を得た。 このスラリーをさらに水で希釈して固形分含有率が 1 0 %となるよう に調整した。 このスラリーを、 ステンレスポッ ト中で攪拌しながら 9 5 °Cまでカロ 熱し、 3 0分間 9 5 °Cで加熱を継続した。 その後脱水を行い、 脱水ケーキを得た。 脱水スラリーに含まれる揮発性シロキサンの含有率、 脱水ケーキの含水率を表 4 に示した。 なお、 揮発性シロキサンの回収はできなかった。  After diluting the latex of the polyorganosiloxane-containing graft copolymer (SG-1, 2) obtained in Production Examples 6 and 7 with water and adjusting the solid content to 15%, 2. A coagulated slurry was obtained by adding 4 parts by weight (solid content) of a 5% calcium chloride aqueous solution. The slurry was further diluted with water to adjust the solid content to 10%. The slurry was heated to 95 ° C while being stirred in a stainless steel pot, and heating was continued at 95 ° C for 30 minutes. Thereafter, dehydration was performed to obtain a dehydrated cake. Table 4 shows the volatile siloxane content in the dewatered slurry and the water content of the dewatered cake. The volatile siloxane could not be recovered.
得られた脱水ケーキは乾燥し、 実施例 1と同様にしてポリカーボネート樹脂に 配合して成形を行い、 同様の評価を行った。 結果を表 4に示した。  The obtained dehydrated cake was dried, blended with a polycarbonate resin and molded in the same manner as in Example 1, and the same evaluation was performed. Table 4 shows the results.
(参考例 3、 4 )  (Reference Examples 3 and 4)
製造例 6、 7で得たポリオルガノシロキサン含有ダラフト共重合体 ( S G— 1、 2 ) のラテックスのかわりに製造例 8、 9で得たポリオルガノシロキサン含有グ ラフト共重合体 (S G, 一 1、 2 ) を用いた以外は、 参考例 1、 2と同様とした。 結果を表 4に示した。  Instead of the latex of the polyorganosiloxane-containing daraft copolymer (SG-1, 2) obtained in Production Examples 6 and 7, the polyorganosiloxane-containing graft copolymer (SG, 1-1) obtained in Production Examples 8 and 9 was used. , And 2) were the same as in Reference Examples 1 and 2. Table 4 shows the results.
(参考例 5、 6 )  (Reference Examples 5, 6)
製造例 6、 7で得たポリオルガノシロキサン含有グラフト共重合体 (S G— 1、 2 ) のラテックスのかわりに製造例 1 0、 1 1で得たポリオルガノシロキサン含 有グラフト共重合体 (SG' — 3 4) を用いた以外は、 参考例 1 2と同様と した。 結果を表 4に示した。 Instead of the latex of the polyorganosiloxane-containing graft copolymer (SG-1,2) obtained in Production Examples 6 and 7, the polyorganosiloxane-containing graft copolymer obtained in Production Examples 10 and 11 was used instead. The procedure was the same as in Reference Example 12 except that a grafted copolymer (SG'-34) was used. Table 4 shows the results.
【表 4】 [Table 4]
Figure imgf000024_0001
なお、 表中において、 SDB Sはドデシルベンゼンスルホン酸ナトリウム、 D B S Aはドデシルベンゼンスルホン酸、 04は1 3 5 7—オタタメチルシ クロテトラシロキサン、 DSMAはメタクリロイルォキシプロピルジメ トキシメ チルシラン、 MP r DMSはメルカプトプロピルジメ トキシメチルシラン、 MM Aはメチルメタタリレート、 A 1 MAはァリルメタクリレート、 TBP I PCは t一ブチルパーォキシイソプロピルカーボネート、 CHPはクメンハイド口パー ォキサイドを表す。
Figure imgf000024_0001
In the table, SDB S is sodium dodecylbenzenesulfonate, DBSA is dodecylbenzenesulfonic acid, 04 is 135-O-methylcyclotetrasiloxane, DSMA is methacryloyloxypropyl dimethoxymethylsilane, and MPr DMS is mercaptopropyl. Dimethoxymethylsilane, MMA stands for methyl methacrylate, A 1 MA stands for aryl methacrylate, TBP I PC stands for t-butyl peroxyisopropyl carbonate, and CHP stands for cumene hydroxide peroxide.
以上の結果から、 本発明の製造方法により得たポリオルガノシロキサン含有樹 脂の脱水ケーキに含まれる揮発性シロキサンは低減されていることが分かる。 ま た、 脱水ケーキの含水率が低下していることも示された。 すなわちこれは、 後の 乾燥工程において揮発性シロキサンの揮散と、 乾燥負荷が低減されることを意味 する。 さらに本発明の留出成分からの揮発性シロキサンの分離方法により、 良好 に揮発性シロキサンが回収できることが分かる。 また本発明の製造方法により得 たポリオルガノシロキサン含有樹脂を配合したポリカーボネート樹脂は、 上記の 特徴と同時に、 ラテックス状態においてス トリツビングを行った場合の樹脂 (参 考例 3〜6 ) と比べて、 難燃性や場合により強度が大幅に優れ、 ストリツビング を行わない場合の樹脂 (参考例 1、 2 ) と同等の優れた難燃性と耐衝撃性のバラ ンスを有することが示された。 From the above results, it is understood that the volatile siloxane contained in the dehydrated cake of the polyorganosiloxane-containing resin obtained by the production method of the present invention is reduced. It was also shown that the moisture content of the dehydrated cake was reduced. In other words, this means that the volatile siloxane is volatilized in the subsequent drying step and the drying load is reduced. Further, the method for separating volatile siloxanes from distillate components of the present invention It can be seen that volatile siloxane can be recovered. In addition, the polycarbonate resin containing the polyorganosiloxane-containing resin obtained by the production method of the present invention has the same characteristics as those described above, compared with the resin obtained when stripping is performed in a latex state (Reference Examples 3 to 6). The flame retardancy and strength in some cases were significantly superior, and it was shown to have the same balance of flame retardancy and impact resistance as the resin without stripping (Reference Examples 1 and 2).
産業上の利用可能性 Industrial applicability
ポリオルガノシ口キサン含有樹脂の製造にぉレ、て、 揮発性シ口キサンを低減し、 回収するための新規な方法が提供される。 本発明の方法によれば、 ポリオルガノ シロキサン含有樹脂を最終的に粉体として回収する際必要な熱エネルギーと言つ た乾燥負荷が小さく、 さらに排気ガス中の揮発性シロキサンによる環境負荷など が抑制される。 同時に、 得られるポリオルガノシロキサン含有樹脂は製造時にお ける熱劣化が抑制されているため予想外の品質低下が起こりにくく、 例えばポリ カーボネート樹脂に配合した場合には、 良好な難燃性と耐衝撃性をバランス良く 得ることができる。  A novel method for reducing and recovering volatile siloxanes is provided in the production of polyorganosiloxane-containing resins. ADVANTAGE OF THE INVENTION According to the method of this invention, the drying load called thermal energy required at the time of recovering a polyorganosiloxane-containing resin as a powder finally is small, and the environmental load by volatile siloxane in exhaust gas is suppressed. You. At the same time, the resulting polyorganosiloxane-containing resin is resistant to unexpected deterioration in quality due to reduced thermal degradation during manufacturing.For example, when blended with polycarbonate resin, it has good flame retardancy and impact resistance. Sex can be obtained in a well-balanced manner.

Claims

請求の範囲 The scope of the claims
1 . スラリー状のポリオルガノシロキサン含有樹脂を加熱ストリッビングするこ とにより揮発性シロキサンを低減することを特徴とするポリオルガノシロキサン 含有樹脂の製造方法。 1. A method for producing a polyorganosiloxane-containing resin, comprising reducing volatile siloxane by heating and stripping a slurry of the polyorganosiloxane-containing resin.
2 . スラリー状のポリオルガノシロキサン含有樹脂が、 ラテックス状態のポリオ ルガノシロキサン含有樹脂を凝固して得られるものである請求項 1に記載のポリ オルガノシロキサン含有樹脂の製造方法。  2. The method for producing a polyorganosiloxane-containing resin according to claim 1, wherein the slurry-like polyorganosiloxane-containing resin is obtained by coagulating a latex-state polyorganosiloxane-containing resin.
3 . ポリオルガノシロキサン含有樹脂が、 ポリオルガノシロキサン系粒子の存在 下に一官能性および または多官能性のラジカル重合性単量体を一段以上重合し て得られるポリオルガノシロキサン系グラフト共重合体である請求項 1または 2 に記載のポリオルガノシロキサン含有樹脂の製造方法。  3. The polyorganosiloxane-containing resin is a polyorganosiloxane-based graft copolymer obtained by polymerizing one or more monofunctional and / or polyfunctional radical polymerizable monomers in the presence of polyorganosiloxane-based particles. 3. The method for producing the polyorganosiloxane-containing resin according to claim 1 or 2.
4 . 1 0 0 °C以上で加熱ストリツビングする請求項 1〜 3何れかに記載のポリオ ルガノシロキサン含有樹脂の製造方法。  The method for producing a polyorganosiloxane-containing resin according to any one of claims 1 to 3, wherein the heat stripping is performed at a temperature of 4.100 ° C or more.
5 . スラリーへの水蒸気供給を伴う請求項 1〜4何れかに記載のポリオルガノシ 口キサン含有樹脂の製造方法。  5. The method for producing a polyorganosiloxane xan-containing resin according to any one of claims 1 to 4, wherein steam is supplied to the slurry.
6 . 揮発性シロキサンを含む留出成分を冷却することにより揮発性シロキサンを 分離する請求項 1〜 5何れかに記載のポリオルガノシロキサン含有樹脂の製造方 法。  6. The method for producing a polyorganosiloxane-containing resin according to any one of claims 1 to 5, wherein the volatile siloxane is separated by cooling a distillate component containing the volatile siloxane.
7 . 揮発性シロキサンを含む留出成分を 1 7 °C以下に冷却することにより揮発性 シロキサンを分離する請求項 6記載のポリオルガノシロキサン含有樹脂の製造方 法。  7. The method for producing a polyorganosiloxane-containing resin according to claim 6, wherein the volatile siloxane is separated by cooling a distillate component containing the volatile siloxane to 17 ° C. or lower.
8 . 揮発性シロキサンを分離する際、 固体として分離する請求項 7記載のポリオ ルガノシロキサン含有樹脂の製造方法。  8. The method for producing a polyorganosiloxane-containing resin according to claim 7, wherein the volatile siloxane is separated as a solid when the volatile siloxane is separated.
9 . 請求項 1〜 5何れかに記載の方法により製造された揮発性シロキサンの低減 されたポリオルガノシロキサン含有樹脂。  9. A polyorganosiloxane-containing resin having reduced volatile siloxane produced by the method according to any one of claims 1 to 5.
1 0. 請求項 9に記載のポリオルガノシロキサン含有樹脂を含む難燃剤。 10. A flame retardant comprising the polyorganosiloxane-containing resin according to claim 9.
1 1 . 請求項 9に記載のポリオルガノシロキサン含有樹脂と、 熱可塑性樹脂、 熱 硬化性樹脂およびエラストマ一から選択される 1種以上の樹脂を含む樹脂組成物。 11. A resin composition comprising the polyorganosiloxane-containing resin according to claim 9 and at least one resin selected from a thermoplastic resin, a thermosetting resin, and an elastomer.
PCT/JP2004/005345 2003-04-28 2004-04-14 Method for producing polyorganosiloxane-containing resin WO2004096876A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005505837A JP4763458B2 (en) 2003-04-28 2004-04-14 Method for producing polyorganosiloxane-containing resin
CA002522464A CA2522464A1 (en) 2003-04-28 2004-04-14 Method for producing polyorganosiloxane-containing resin
AU2004234224A AU2004234224A1 (en) 2003-04-28 2004-04-14 Method for producing polyorganosiloxane-containing resin
US10/553,952 US7393915B2 (en) 2003-04-28 2004-04-14 Method for producing polyorganosiloxane-containing resin
EP04727403A EP1619213A4 (en) 2003-04-28 2004-04-14 Method for producing polyorganosiloxane-containing resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-123751 2003-04-28
JP2003123751 2003-04-28

Publications (1)

Publication Number Publication Date
WO2004096876A1 true WO2004096876A1 (en) 2004-11-11

Family

ID=33410137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005345 WO2004096876A1 (en) 2003-04-28 2004-04-14 Method for producing polyorganosiloxane-containing resin

Country Status (9)

Country Link
US (1) US7393915B2 (en)
EP (1) EP1619213A4 (en)
JP (1) JP4763458B2 (en)
KR (1) KR20060007026A (en)
CN (1) CN1777625A (en)
AU (1) AU2004234224A1 (en)
CA (1) CA2522464A1 (en)
TW (1) TW200500418A (en)
WO (1) WO2004096876A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070167567A1 (en) * 2004-02-24 2007-07-19 Tomomichi Hashimoto Graft copolymer, flame retardant composed of graft copolymer, and resin composition containing flame retardant
DE102007024967A1 (en) * 2007-05-30 2008-12-04 Wacker Chemie Ag Reaction resins containing core-shell particles and process for their preparation and their use
BR112013020305A2 (en) 2011-02-09 2016-10-18 Mitsubishi Rayon Co polyorganosiloxane latex, graft copolymer utilizing it, thermoplastic resin composition and molded body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995536A (en) * 1995-09-29 1997-04-08 Toray Dow Corning Silicone Co Ltd Production of oxyalkylenated polyorganosiloxane
JP2000017029A (en) * 1998-06-29 2000-01-18 Mitsubishi Rayon Co Ltd Composite rubber-based flame retardant and flame- retardant resin composition using the same
JP2000103857A (en) * 1998-08-26 2000-04-11 Dow Corning Corp Preparation of silicone polymer
JP2000256464A (en) * 1998-12-31 2000-09-19 General Electric Co <Ge> Polymerization of fluorosilicone polymer
JP2002201243A (en) * 2000-12-28 2002-07-19 Jsr Corp Aqueous dispersion of polyorganosiloaxne/organic polymer composite particle and its production method
JP2002249582A (en) * 2001-02-13 2002-09-06 Dow Corning Corp Method of continuous manufacture of slicone emulsion having low residual volatile siloxane oigomer content
JP2002284877A (en) * 2001-02-13 2002-10-03 Dow Corning Corp Manufacturing method of silicone emulsion containing small amount of residual siloxane oligomer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3073380A (en) * 1962-03-27 1963-01-15 Parkson Ind Equipment Company Concentration of foaming materials
US3469617A (en) * 1967-03-20 1969-09-30 Parkson Ind Equipment Co Method for stripping of volatile substanes from fluids
US4104459A (en) * 1974-08-19 1978-08-01 Ethyl Corporation Treating polyvinyl chloride resins
US4096160A (en) * 1976-04-21 1978-06-20 General Electric Company Continuous devolatilization of silanol-terminated silicone polymer
JPH068402B2 (en) * 1982-09-27 1994-02-02 ゼネラル・エレクトリック・カンパニイ Durable silicone emulsion polish
JPH0653810B2 (en) * 1985-08-21 1994-07-20 三菱レイヨン株式会社 Granular polymer and method for producing the same
JPH01131272A (en) * 1987-11-16 1989-05-24 Shin Etsu Chem Co Ltd Rubber composition
JPH06248153A (en) * 1993-03-01 1994-09-06 Shin Etsu Chem Co Ltd Flame-retardant resin composition
JP2000226420A (en) * 1999-02-04 2000-08-15 Mitsubishi Rayon Co Ltd Flame retardant, preparation thereof and flame- retarded resin composition containing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995536A (en) * 1995-09-29 1997-04-08 Toray Dow Corning Silicone Co Ltd Production of oxyalkylenated polyorganosiloxane
JP2000017029A (en) * 1998-06-29 2000-01-18 Mitsubishi Rayon Co Ltd Composite rubber-based flame retardant and flame- retardant resin composition using the same
JP2000103857A (en) * 1998-08-26 2000-04-11 Dow Corning Corp Preparation of silicone polymer
JP2000256464A (en) * 1998-12-31 2000-09-19 General Electric Co <Ge> Polymerization of fluorosilicone polymer
JP2002201243A (en) * 2000-12-28 2002-07-19 Jsr Corp Aqueous dispersion of polyorganosiloaxne/organic polymer composite particle and its production method
JP2002249582A (en) * 2001-02-13 2002-09-06 Dow Corning Corp Method of continuous manufacture of slicone emulsion having low residual volatile siloxane oigomer content
JP2002284877A (en) * 2001-02-13 2002-10-03 Dow Corning Corp Manufacturing method of silicone emulsion containing small amount of residual siloxane oligomer

Also Published As

Publication number Publication date
EP1619213A1 (en) 2006-01-25
US7393915B2 (en) 2008-07-01
AU2004234224A1 (en) 2004-11-11
TW200500418A (en) 2005-01-01
CA2522464A1 (en) 2004-11-11
JP4763458B2 (en) 2011-08-31
AU2004234224A2 (en) 2004-11-11
US20060258821A1 (en) 2006-11-16
JPWO2004096876A1 (en) 2006-07-13
KR20060007026A (en) 2006-01-23
EP1619213A4 (en) 2009-09-23
CN1777625A (en) 2006-05-24

Similar Documents

Publication Publication Date Title
JP2002173501A (en) Rubber-modified resin and thermoplastic resin composition containing the same
JP7006748B2 (en) Method for manufacturing rubber latex containing polyorganosiloxane
EP1141093A1 (en) Emulsion polymerized silicone rubber-based impact modifiers, method for making, and blends thereof
WO2005108450A1 (en) Copolymer, graft copolymer, graft copolymer particle, flame retardant, and resin composition
WO2005087866A1 (en) Organopolysiloxane-containing graft copolymer composition
WO1997010283A1 (en) Particulate silicone-modified acrylic rubber, particulate graft copolymer based on silicone-modified acrylic rubber, and thermoplastic resin composition
WO2004096876A1 (en) Method for producing polyorganosiloxane-containing resin
WO2019168007A1 (en) Powder of polyorganosiloxane-containing graft copolymer, resin composition including same, and molded object of said resin composition
JPWO2005087844A1 (en) Method for producing polyorganosiloxane-containing resin and resin composition containing the resin
JP5064026B2 (en) Graft copolymer and resin composition containing the same
JP3200218B2 (en) Graft copolymer and method for producing the same
JPH0830102B2 (en) Composite rubber-based graft copolymer particles
JP2003137946A (en) Rubber-modified resin and thermoplastic resin composition containing the same
JP3549573B2 (en) Method for producing powdery polymer
JP4368181B2 (en) Method for producing modifier composition
JPH0711096A (en) Thermoplastic resin composition
JP2008019349A (en) Compound rubber type graft copolymer and thermoplastic resin composition
JPH11116813A (en) Production of organosiloxane-based graft copolymer particle
WO2006123627A1 (en) Method for producing polyorganosiloxane crosslinked particle-containing emulsion, polyorganosiloxane crosslinked particle-containing emulsion, and polyorganosiloxane-containing graft copolymer
JP2006273917A (en) Method for producing polyorganosiloxane particle
JP2010018667A (en) Method for manufacturing dispersion containing polymer particle and resin composition containing polymer particle
JP2005314587A (en) Graft copolymer, flame retardant consisting of copolymer and resin composition blended with flame retardant
JPH02123116A (en) Polyorganosiloxane modified thermoplastic resin
JP2015196811A (en) Slidability improver for polyolefin resin, polyolefin resin composition and molded article thereof
JPWO2006016490A1 (en) Method for producing polyorganosiloxane latex, graft copolymer using the latex, and resin composition containing the graft copolymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005505837

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004234224

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2522464

Country of ref document: CA

Ref document number: 2004727403

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057019822

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006258821

Country of ref document: US

Ref document number: 10553952

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2004234224

Country of ref document: AU

Date of ref document: 20040414

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 20048106246

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2004234224

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 1020057019822

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004727403

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10553952

Country of ref document: US