WO2004095579A1 - Method of producing semiconductor integrated circuit device on soi substrate - Google Patents

Method of producing semiconductor integrated circuit device on soi substrate Download PDF

Info

Publication number
WO2004095579A1
WO2004095579A1 PCT/JP2003/005200 JP0305200W WO2004095579A1 WO 2004095579 A1 WO2004095579 A1 WO 2004095579A1 JP 0305200 W JP0305200 W JP 0305200W WO 2004095579 A1 WO2004095579 A1 WO 2004095579A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
integrated circuit
semiconductor integrated
circuit device
substrate
Prior art date
Application number
PCT/JP2003/005200
Other languages
French (fr)
Japanese (ja)
Inventor
Jun Sakuma
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/005200 priority Critical patent/WO2004095579A1/en
Publication of WO2004095579A1 publication Critical patent/WO2004095579A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body

Definitions

  • the present invention generally relates to a semiconductor device, and more particularly to a method for manufacturing a semiconductor device on a SOI substrate.
  • An SOI (silicon-on-insulator) substrate is a substrate in which a single-crystal Si layer that constitutes an active layer such as a channel layer is formed on an insulating film, achieving ideal element isolation and suppressing the short channel effect. It has various favorable features such as suppression of CMOS latch-up, suppression of soft errors, and suppression of parasitic capacitance, and is considered to be important as a substrate for future low power consumption ultra-high speed semiconductor circuit devices. .
  • An SOI substrate is formed by a process of bonding an Si substrate on which an SiO 2 film is formed or by a process of implanting oxygen atoms into the Si substrate. Technologies that can do this are being developed.
  • FIG. 1 shows a cross-sectional view of a typical SOI substrate 10.
  • SOI substrate 1 0 is formed on S i substrate 1 1 which carries the S io 2 film 1 1 A thickness of a few hundred nanometers, the S i O 2 film 1 1 On A, a single-crystal Si film 12 having a thickness of several tens to several hundreds of nanometers is formed.
  • FIG. 2 shows an example of a semiconductor integrated circuit device in which semiconductor elements are formed on the SOI substrate 10 of FIG.
  • the single crystal Si film 12 is patterned in device regions 12A to 12D, and a MOS transistor is provided in each of the device regions 12A to 12D. Is formed.
  • the element content Hanaremizo formed between adjacent element regions 1 2 A to 1 2 D is filled by S i 0 2 film 1 1 B.
  • the Si single crystal film 12 is patterned on the SOI substrate 10 including such defects 12 X and 12 Y by a normal mask process using a SiN mask, and is defined by the element isolation region.
  • the SiN film 13 formed as a mask pattern fills the defect 12X or 12Y.
  • the device isolation so as this is filled between the flattened by CMP S i N mask pattern 1 3 A to 1 3 G Attempting to form an insulating film pattern ⁇ ⁇
  • the slurry used in the CMP process is applied to the dicing surface of the Si ⁇ 2 film 12 S exposed in the defect region 12 Y. Participants such as grinding waste P force S may be trapped. Such trapped particles P cannot be easily removed by ⁇ Etching ⁇ scrubbing. On the other hand, these particles P may be liberated in a subsequent process, in which case, the production yield of the semiconductor device is reduced.
  • the SiN mask patterns 13A to 13G are removed by the etching process to expose the element regions 12A to 12E.
  • the tail that had occurred in area 1 2 X was also removed.
  • voids are formed below the element isolation insulating film pattern in the defect region 12X.
  • the SiN residue 13 X previously generated in the step of FIG. 5 is also exposed on the surface of the SiO 2 film 12 S as a result of the CMP step, When the etching process is performed, voids may be formed.
  • Patent Document Japanese Patent Application Laid-Open No. H8-3390974
  • Patent Literature Japanese Patent Application Laid-Open No. 2000-5311 18 Disclosure of the Invention
  • An object of the present invention is to provide a method of manufacturing a semiconductor device, which can efficiently use an expensive substrate without wasting even when a defect is included, and a semiconductor integrated circuit device manufactured by the manufacturing method.
  • Another object of the present invention is to
  • the step of forming the element pattern is to perform a method of manufacturing a semiconductor integrated circuit device which is performed while avoiding the region including the defect.
  • Another object of the present invention is to Board and
  • the surface of the tflf substrate includes a recess defined by a step
  • the recess is covered with a pattern filling the step
  • the semiconductor device is to provide a semiconductor integrated circuit device formed so as to avoid the concave portion.
  • Another object of the present invention is to
  • the step of forming the element region pattern is to perform a method of manufacturing a semiconductor integrated circuit device which is performed while avoiding the region including the defect.
  • the element formation is performed while avoiding the concave portions on the substrate surface, even if the substrate has a defect on the surface, it can be relieved and used.
  • the concave portion is covered with the mask pattern, so that no pattern jungling is performed in the concave portion.
  • the problem of the formation of a defect pattern that occurs when exposure is performed in the presence of a step is avoided.
  • by removing a mask pattern covering a defect after a chemical mechanical polishing step used for forming an element isolation insulating film defects such as particles generated at the time of chemical polishing are removed. Can be removed simultaneously with the removal of the mask pattern.
  • Figure 1 is a diagram showing the cross-sectional structure of the SOI substrate
  • FIG. 2 is a diagram showing an example of a semiconductor integrated circuit device formed on the SOI substrate of FIG. 1;
  • FIG. 3 is a diagram showing an example of a defect included in the SOI substrate;
  • 4 to 6 are diagrams illustrating problems that occur when a semiconductor device is formed on the SOI substrate including the defect of FIG. 3;
  • FIG. 7 is a plan view showing an SOI substrate used in the first embodiment of the present invention.
  • FIGS. 8A to 8H are views showing a manufacturing process of the semiconductor integrated circuit device according to the first embodiment of the present invention.
  • FIG. 9 is a plan view showing an SOI substrate used in a second embodiment of the present invention.
  • FIGS. 10A to 10C are diagrams showing a manufacturing process of a semiconductor integrated circuit device according to a second embodiment of the present invention.
  • FIGS. 11A to 11F are diagrams showing a manufacturing process of a semiconductor integrated circuit device according to a third embodiment of the present invention.
  • FIG. 12 is a view showing a modification of the third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 7 is a plan view showing the SOI substrate 20 according to the first embodiment of the present invention.
  • the SOI substrate 2 0 is shall to have a laminated structure described in Figure 1 above, a number of chip regions 2 0 Iota ⁇ 2 0 9 is a matrix are separated by a scribe line Is defined.
  • the chip area 2 0 ⁇ 2 0 6, 2 08 ⁇ 2 0 9 does not include the defect
  • the chip area 2 0 7, defects 1 2 X and 1 2 previously described Includes defect D similar to Y.
  • the defect area including these defects is also denoted by reference numerals 12X and 12Y.
  • the CVD method the S i N film 1 3 on the SOI substrate 2 0, wherein S i N film 1 3 Te Contact Rere the chip area 2 0 7 defect 1 2 X, 1 2 Y is deposited so as to fill the, then at FIG. 8 B process, the S i N film 1 3 deposited in this way is patterned, the chip area 2 0 7
  • the SiN mask patterns 13A, 13B and 13E are formed corresponding to the element regions to be formed.
  • the SiN film 13 is patterned by a resist process (not shown) based on the coordinates of the defect D obtained in the previous step of FIG. Are formed at the same time as the SiN mask patterns 13A, 13B and 13E.
  • the Si layer 12 is patterned using the SiN mask patterns 13A, 13B, 13C, 13D, and 13E as masks, and the element regions 12A to 13E correspond to the mask patterns 13A to 13E, respectively.
  • Forms I 2 E since the element regions 12C and 12D have defects 12X and 12Y, even if the Si layer 12 is patterned using the SiN pattern 13C or 13D as a mask, these portions will not be present. No element region is formed, and a fragmentary Si pattern 12C or 12D is formed instead.
  • the SiN mask patterns 13A, 13B, 13C, 13D, and 13E are removed by a wet etching process in the step of FIG. 8F, and further obtained in the step of FIG. A polysilicon film 14 is deposited on the structure of FIG. 8F.
  • the polysilicon film 14 thus formed is patterned in the element regions 12A, 12B and 12E excluding the defect regions 12X and 12Y to form polysilicon patterns 14A and 14E. Form B and 14E. Accordingly, the defect regions 12X and 12Y are covered with polysilicon films 14C and 14D.
  • the polysilicon pattern 14A forms a gate electrode. In this case, although not shown, a gate insulating film is formed between the single-crystal Si layer constituting the element region 12A and the polysilicon gate electrode pattern 14A, although not shown. ing.
  • the defect regions 12X and 12Y are covered with the SiN film 13 in the step of FIG. 8A. Since the covering SIN patterns 13C and 13D are lifted off in the process of FIG. 8F, for example, on the SiO2 film 12S covering the SIN pattern 13C or 13D in the CMP process of FIG. 8E. Even if foreign substances such as particles or defects exist in the substrate, these foreign substances and defects are removed together with the SiN patterns 13C and 13D, and are not carried into the steps after FIG. 8G.
  • the single-crystal Si film 12 has a thickness of 20 to 50 nm, the depths of the defects 12X and 12Y are 50 to 100 nm, and the single crystals at the defects 12X and 12Y.
  • the overhang amount of the Si film 12 is about 100 nm, the SiN film 13 is formed to a thickness of 150 nm, and the thickness of the Si film 14 is set to about 500 nm. The problem that foreign matter having a diameter of 0.1 / xm or more remains in the defect is avoided.
  • the polysilicon film 14 formed in the step of FIG.8G is not patterned in the defect area 12X or 12Y in the step of FIG.8H, and therefore, even if there is a step in these defect areas. No defective pattern is formed due to poor exposure or the like.
  • the layer 13 used to form the mask patterns 13A to 13E is not limited to the SiN film, but may be a Si2 film or a metal film such as W. Is also possible.
  • FIG. 9 shows an SOI substrate 40 according to a second embodiment of the present invention.
  • the portions corresponding to the portions described above are denoted by the same reference numerals, and description thereof will be omitted.
  • this embodiment deals with a case where a large number of defects are formed in a specific chip area of the SOI substrate 40, for example, the area 207.
  • the present invention can improve the production yield of the semiconductor device by excluding the chip itself from the subsequent processes.
  • the chip area 20 ⁇ to 20 shown in FIG. 9 and the chip area 4 OA and 4 OB is defined corresponding to one of the, in the chip region 4 0 B is missing that put in the single crystal S i film 1 2 and S I_ ⁇ 2 film 1 1 A As a result, a defect 41 X is formed.
  • the structure of FIG. 1OA is covered with a SiN film 13 and a resist film 41 is applied thereon.
  • resist patterns 41A to 41E are formed in the chip region 4OA, and the SiN film 13 is further formed.
  • the SIN patterns 13A to 13E are formed in the chip region 40A.
  • the Si single crystal film 12 is patterned using the resist patterns 13A to 13E as a mask, so that the SiN patterns 13A to 13A are formed in the chip region 4OA.
  • An element region is formed corresponding to 3E.
  • an element is formed while the chip area 40 B including the defect 40 X is continuously covered with the SiN film 13. Absent.
  • the area of the portion 12C, 12D where no element is formed due to the presence of the defect regions 12X, 12Y in the previous embodiment is extended to the entire chip. It can be thought that it did.
  • the SOI substrate 11 including the defects 12 X and 12 Y is transported to the focused ion beam processing apparatus together with the coordinate values of the defect, and the defect region 1 Patterns 5 IX and 51 Y made of polysilicon or tungsten are deposited corresponding to 2 X and 12 Y, respectively, so as to cover the defects.
  • a patterning of a SiN film is performed on the structure of FIG. 11A.
  • 311 ⁇ patterns 138, 13B and 13E are formed
  • the single crystal Si film is formed using the SiN patterns 13A, 13B and 13E and the patterns 51X and 51Y as masks.
  • the structure of FIG. 11C is covered with a high-quality SiO 2 film 12S formed by a high-density plasma CVD method, and in the step of FIG. The structure is polished to obtain a structure in which gaps between the element regions 12A to 12E are filled with the high-quality oxide film 12S.
  • the metal patterns 5IX and 51Y are removed as necessary, and the steps described with reference to FIGS. 8G to 8H are further performed to obtain a desired semiconductor integrated circuit device.
  • the defect regions 12X and 12Y are formed, and as shown in FIG. 12, a step caused by the defect is formed by the polysilicon pattern 12P formed by the focused ion beam processing. It is also possible to fill to eliminate.
  • the element formation is performed while avoiding the concave portions on the substrate surface, even if the substrate has a defect on the surface, it can be relieved and used.
  • the concave portion is covered with the mask pattern, so that patterning is not performed in the concave portion.
  • the problem of the formation of a defect pattern that occurs when exposure is performed in the presence of a step is avoided.
  • by removing a mask pattern covering a defect after a chemical mechanical polishing step used to form an element isolation insulating film defects such as particles generated during chemical opportunity polishing are removed. Can be removed simultaneously with the removal of the mask pattern. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)

Abstract

A method of producing a semiconductor integrated circuit device comprising the steps of recognizing defects present on a substrate surface, covering the substrate surface including the defects with a layer, and patterning the layer in an element region defined on the substrate to form an element region pattern corresponding to the element region, the element region pattern forming step being implemented with the defects-containing regions excluded.

Description

S O I基板上への半導体集積回路装置の製造方法 技術分野  Method of manufacturing semiconductor integrated circuit device on SOI substrate
本発明は一般に半導体装置に係り、 特に S O I基板上への半導体装置の製造方 法に関する。 背景技術  The present invention generally relates to a semiconductor device, and more particularly to a method for manufacturing a semiconductor device on a SOI substrate. Background art
S O I (silicon-on-insulator)基板はチャネル層などの活性層を構成する単結晶 S i層を絶縁膜上に形成した基板であり、 理想的な素子分離が実現でき、 ショー トチャネル効果の抑制、 CMOSラッチアップの抑制、 ソフトエラーの抑制、 寄生 キャパシタンスの抑制等、 様々な好ましい特徴があり、 将来の低消費電力 '超高 速半導 積回路装置の基板として重要であると考えられている。  An SOI (silicon-on-insulator) substrate is a substrate in which a single-crystal Si layer that constitutes an active layer such as a channel layer is formed on an insulating film, achieving ideal element isolation and suppressing the short channel effect. It has various favorable features such as suppression of CMOS latch-up, suppression of soft errors, and suppression of parasitic capacitance, and is considered to be important as a substrate for future low power consumption ultra-high speed semiconductor circuit devices. .
S O I基板は S i O2膜を形成された S i基板を貼りあわせるプロセスにより、 あるいは S i基板中への酸素原子の注入プロセスにより形成されるが、 最近では S O I基板を比較的低価格で量産できる技術が開発されている。 An SOI substrate is formed by a process of bonding an Si substrate on which an SiO 2 film is formed or by a process of implanting oxygen atoms into the Si substrate. Technologies that can do this are being developed.
図 1は典型的な S O I基板 1 0の断面図を示す。  FIG. 1 shows a cross-sectional view of a typical SOI substrate 10.
図 1を参照するに、 S O I基板 1 0は数百ナノメートルの厚さの S i o2膜 1 1 Aを担持する S i基板 1 1上に形成されており、 前記 S i O2膜 1 1 A上には 厚さが数十〜数百ナノメートルの単結晶 S i膜 1 2が形成されている。 Referring to FIG. 1, SOI substrate 1 0 is formed on S i substrate 1 1 which carries the S io 2 film 1 1 A thickness of a few hundred nanometers, the S i O 2 film 1 1 On A, a single-crystal Si film 12 having a thickness of several tens to several hundreds of nanometers is formed.
図 2は、 図 1の S O I基板 1 0上に半導体素子を形成した半導体集積回路装置 の例を示す。  FIG. 2 shows an example of a semiconductor integrated circuit device in which semiconductor elements are formed on the SOI substrate 10 of FIG.
図 2を参照するに、 前記単結晶 S i膜 1 2は素子領域 1 2 A〜1 2 Dにパター ユングされており、 各々の素子領域 1 2 A〜1 2 D中には MO Sトランジスタが 形成されている。 また隣接する素子領域 1 2 A〜1 2 Dの間に形成される素子分 離溝は、 S i 02膜 1 1 Bにより充填されている。 Referring to FIG. 2, the single crystal Si film 12 is patterned in device regions 12A to 12D, and a MOS transistor is provided in each of the device regions 12A to 12D. Is formed. The element content Hanaremizo formed between adjacent element regions 1 2 A to 1 2 D is filled by S i 0 2 film 1 1 B.
かかる構成の半導体集積回路装置では、 先にも述べたようにほぼ理想的な素子 分離が実現でき、 また各々の素子領域 1 2 A〜l 2 Dにおける接合容量が、 その 下方に S i 02膜 1 1 Aを形成した効果により低減されるのがわかる。 一方、 このような S O I基板は、 単純に S iバルタウェハを研磨することで形 成できるわけではなく、 S i基板 1 1上に S i 02膜 1 1 Aおよび高品質 S i単 結晶膜 1 2を積層した多層構成を有している。 このため、 図 3に示すように、 S i単結晶層 1 2あるいはその下の S i〇2膜 1 1 Aの損傷や欠落などにより、 欠 陥 1 2 Xあるいは 1 2 Yが形成される可能性がある。 In the semiconductor integrated circuit device having such a configuration, almost ideal element separation can be realized as described above, and the junction capacitance in each of the element regions 12A to 12D is lower than that by S i 0 2 It can be seen that it is reduced by the effect of forming the film 11A. On the other hand, such an SOI substrate cannot be formed simply by polishing a Si balta wafer, and the Si 0 2 film 11 A and the high-quality Si single crystal film 1 are formed on the Si substrate 11. It has a multilayer structure in which 2 are laminated. Therefore, as shown in FIG. 3, a defect 12 X or 12 Y may be formed due to damage or a defect of the Si single crystal layer 12 or the underlying Si〇 2 film 11 A. There is.
そこでこのような欠陥 1 2 X, 1 2 Yを含む S O I基板 1 0上に S i Nマスク を使った通常のマスクプロセスにより S i単結晶膜 1 2をパターユングし、 素子 分離領域により画成された素子領域を形成しようとする場合、図 4に示すように、 マスクパターンとして形成された S i N膜 1 3が前記欠陥 1 2 Xあるいは 1 2 Y を充填してしまう。  Therefore, the Si single crystal film 12 is patterned on the SOI substrate 10 including such defects 12 X and 12 Y by a normal mask process using a SiN mask, and is defined by the element isolation region. In order to form the formed element region, as shown in FIG. 4, the SiN film 13 formed as a mask pattern fills the defect 12X or 12Y.
そこで、 このような S i N膜 1 3をレジストプロセスによりパターユングして 素子領域 1 2 A〜1 2 Eに対応したマスクパターン 1 3 A〜1 3 Eを形成しょう とした 、 図 5に示すように、 前記欠陥領域 1 2 Xにおいてレジスト膜の が欠陥を画成する段差部において局所的に増大することによる露光ドーズ量の不 足に起因して、 すそ引きや、 S i N残渣 1 3 Xの発生が生じ、 またより浅い前記 欠陥領域 1 2 Yにおいては S i O2膜 1 1 Aに形成された欠陥面が露出する場合 が生じる。 ただし、 図 5の例では、 素子領域 1 2 Cおよび 1 2 Dに前記欠陥 1 2 Xおよび 1 2 Yがそれぞれ形成されている。 Thus, an attempt was made to pattern such a SiN film 13 by a resist process to form mask patterns 13A to 13E corresponding to the element regions 12A to 12E, as shown in FIG. As described above, in the defect region 1 2 X, due to the lack of the exposure dose due to the local increase of the resist film at the step defining the defect, the tailing and the SiN residue 13 X is generated, and a defect surface formed on the SiO 2 film 11A is exposed in the shallower defective region 12Y. However, in the example of FIG. 5, the defects 12X and 12Y are formed in the element regions 12C and 12D, respectively.
そこで、 図 5の構造上に S i 02膜 1 2 Sを堆積し、 これを CMP法で平坦化 して S i Nマスクパターン 1 3 A〜1 3 Gの間を充填するように素子分離絶縁膜 パターンを形成しようとした^ \ 図 6に示すように、 前記欠陥領域 1 2 Yにお いて露出した S i〇2膜 1 2 Sのデイツシング面に、 CM P工程で使われるスラ リや研磨屑などのパーテイクノレ P力 Sトラップされる場合がある。 このようなトラ ップされたパーティクル Pは、 ゥエツト処理ゃスクラビングを行っても容易には 除去できない。 一方、 これらのパーティクル Pはその後の工程で遊離する可能性 もあり、 その場合には半導体装置の製造歩留まりを低下させる。 Therefore, depositing the S i 0 2 film 1 2 S on the structure of FIG. 5, the device isolation so as this is filled between the flattened by CMP S i N mask pattern 1 3 A to 1 3 G Attempting to form an insulating film pattern ^ \ As shown in FIG. 6, the slurry used in the CMP process is applied to the dicing surface of the Si〇2 film 12 S exposed in the defect region 12 Y. Participants such as grinding waste P force S may be trapped. Such trapped particles P cannot be easily removed by {Etching} scrubbing. On the other hand, these particles P may be liberated in a subsequent process, in which case, the production yield of the semiconductor device is reduced.
さらに図 6の状態では S i Nマスクパターン 1 3 A〜1 3 Gはゥエツトエッチ ング処理により除去され素子領域 1 2 A〜1 2 Eが露出されているが、 かかるプ 口セスを行うと、 欠陥領域 1 2 Xにおいて生じていたすそ引き部も同時に除去さ れてしまい、 その結果、 前記欠陥領域 1 2 Xにおいては素子分離絶縁膜パターン の下部にボイドが形成されてしまうのがわかる。 また、 先に図 5の工程で生じて いる S i N残渣 1 3 Xも、 かかる CM P工程の結果、 前記 S i 02膜 1 2 Sの表 面に露出した場合、 前記ゥヱットエッチング処理行うとボイドを形成する恐れが ある。 Further, in the state shown in FIG. 6, the SiN mask patterns 13A to 13G are removed by the etching process to expose the element regions 12A to 12E. At the same time, the tail that had occurred in area 1 2 X was also removed. As a result, it can be seen that voids are formed below the element isolation insulating film pattern in the defect region 12X. In addition, if the SiN residue 13 X previously generated in the step of FIG. 5 is also exposed on the surface of the SiO 2 film 12 S as a result of the CMP step, When the etching process is performed, voids may be formed.
通常の S iウェハを使った半導体装置の製造工程では、 このような欠陥を有す るウェハがあった場合には、 かかるゥェハを欠陥ゥェハとして廃棄することで、 ウェハの欠陥に起因する歩留まりの低下を回避している力 特に S O I基板など の場合には、 最近では価格が安くなつたといっても高価であり、 このような欠陥 を有する基板であっても、 費用の観点から、 欠陥を救済して使いたい要求が存在 する。  In the process of manufacturing a semiconductor device using a normal Si wafer, if there is a wafer having such a defect, the wafer is discarded as a defective wafer, thereby reducing the yield due to the wafer defect. The power of avoiding the decline Especially in the case of SOI substrates, etc., the price has recently been reduced, but it is expensive, and even with such a defect, the defect is relieved from the viewpoint of cost There are requirements that we want to use.
[特許文献] 特開平 8— 3 3 9 0 7 4号公報  [Patent Document] Japanese Patent Application Laid-Open No. H8-3390974
[特許文献] 特開 2 0 0 1— 5 3 1 1 8号公報 発明の開示  [Patent Literature] Japanese Patent Application Laid-Open No. 2000-5311 18 Disclosure of the Invention
そこで本発明は上記の課題を解決した、 新規で有用な半導体装置およびその製 造方法を提供することを概括的目的とする。  Accordingly, it is a general object of the present invention to provide a new and useful semiconductor device and a method for manufacturing the same, which have solved the above-mentioned problems.
本発明のより具体的な目的は、  More specific objects of the present invention are:
高価な基板を、 欠陥が含まれる場合にも無駄にすることなく効率的に利用でき る半導体装置の製造方法、 およびかかる製造方法により製造された半導体集積回 路装置を提供することにある。  An object of the present invention is to provide a method of manufacturing a semiconductor device, which can efficiently use an expensive substrate without wasting even when a defect is included, and a semiconductor integrated circuit device manufactured by the manufacturing method.
本発明の他の目的は、  Another object of the present invention is to
基板表面上に存在する欠陥を認識する工程と、  Recognizing a defect present on the substrate surface;
前記基板表面を層により覆う工程と、  Covering the substrate surface with a layer,
前記基板上の素子領域において、 前記層をパターユングし、 素子パターンを形 成する工程とよりなり、  Forming a device pattern in the device region on the substrate by patterning the layer,
前記素子パターンを形成する工程は、 前記欠陥を含む領域を避けて実行される 半導体集積回路装置の製造方法を^ ^することにある。  The step of forming the element pattern is to perform a method of manufacturing a semiconductor integrated circuit device which is performed while avoiding the region including the defect.
本発明の他の目的は、 基板と、 Another object of the present invention is to Board and
前記基板上に形成された半導体装置とよりなる半導体集積回路装置において、 tflf己基板表面には、 段差で画成された凹部が含まれており、  In a semiconductor integrated circuit device comprising a semiconductor device formed on the substrate, the surface of the tflf substrate includes a recess defined by a step,
前記凹部は、 前記段差を充填するパターンにより覆われており、  The recess is covered with a pattern filling the step,
前記半導体装置は前記凹部を避けて形成されている半導体集積回路装置を提供 することにある。  The semiconductor device is to provide a semiconductor integrated circuit device formed so as to avoid the concave portion.
本発明の他の目的は、  Another object of the present invention is to
基板表面上に存在する欠陥を認識する工程と、  Recognizing a defect present on the substrate surface;
前記欠陥を、 層により選択的に充填する工程と、  Selectively filling the defects with a layer;
前記基板上に画成された素子領域において素子領域パターンを形成する工程と よりなり、  Forming an element region pattern in an element region defined on the substrate,
前記素子領域パターンを形成する工程は、 前記欠陥を含む領域を避けて実行さ れる半導体集積回路装置の製造方法を # ^することにある。  The step of forming the element region pattern is to perform a method of manufacturing a semiconductor integrated circuit device which is performed while avoiding the region including the defect.
本発明によれば、 素子形成が基板表面の凹部を避けて実行されるため、 表面に 欠陥を有する基板であっても、 これを救済して使用することが可能になる。 特に 本発明によれば、 前記凹部がマスクパターンにより覆われ、 このため廳己凹部内 においてパターユングがなされることがない。 その結果、 段差の存在下において 露光を行った場合に生じる欠陥パターンの形成の問題が回避される。 また本発明 によれば、 欠陥を覆うマスクパターンを、 素子分離絶縁膜を形成するのに使われ る化学機械研磨工程の後で除去することにより、 化 械研磨の際に生じるパー ティクルなどの欠陥を、 前記マスクパターンの除去と同時に除去することが可能 である。  According to the present invention, since the element formation is performed while avoiding the concave portions on the substrate surface, even if the substrate has a defect on the surface, it can be relieved and used. In particular, according to the present invention, the concave portion is covered with the mask pattern, so that no pattern jungling is performed in the concave portion. As a result, the problem of the formation of a defect pattern that occurs when exposure is performed in the presence of a step is avoided. Further, according to the present invention, by removing a mask pattern covering a defect after a chemical mechanical polishing step used for forming an element isolation insulating film, defects such as particles generated at the time of chemical polishing are removed. Can be removed simultaneously with the removal of the mask pattern.
本発明のその他の Ι¾ および特徴は、 以下に図面を参照しながら行う本発明の 詳細な説明より明らかとなろう。 図面の簡単な説明  Other features and characteristics of the present invention will become apparent from the following detailed description of the present invention with reference to the drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 S O I基板の断面構造を示す図;  Figure 1 is a diagram showing the cross-sectional structure of the SOI substrate;
図 2は、 図 1の S O I基板上に形成された半導体集積回路装置の例を示す図; 図 3は、 S O I基板に含まれる欠陥の例を示す図; 図 4〜6は、 図 3の欠陥を含む S O I基板上に半導体装置を形成した場合に生 じる課題を説明する図; FIG. 2 is a diagram showing an example of a semiconductor integrated circuit device formed on the SOI substrate of FIG. 1; FIG. 3 is a diagram showing an example of a defect included in the SOI substrate; 4 to 6 are diagrams illustrating problems that occur when a semiconductor device is formed on the SOI substrate including the defect of FIG. 3;
図 7は、 本発明の第 1実施例で使われる S O I基板を示す平面図;  FIG. 7 is a plan view showing an SOI substrate used in the first embodiment of the present invention;
図 8 A〜 8 Hは、 本発明第 1実施例による半導体集積回路装置の製造工程を示 す図;  8A to 8H are views showing a manufacturing process of the semiconductor integrated circuit device according to the first embodiment of the present invention;
図 9は、 本発明の第 2実施例で使われる S O I基板を示す平面図;  FIG. 9 is a plan view showing an SOI substrate used in a second embodiment of the present invention;
図 1 0 A〜1 0 Cは、 本発明第 2実施例による半導体集積回路装置の製造工程 を示す図;  10A to 10C are diagrams showing a manufacturing process of a semiconductor integrated circuit device according to a second embodiment of the present invention;
図 1 1 A〜: 1 1 Fは、 本発明第 3実施例による半導体集積回路装置の製造工程 を示す図;  11A to 11F are diagrams showing a manufacturing process of a semiconductor integrated circuit device according to a third embodiment of the present invention;
図 1 2は、 本発明第 3実施例の一変形例を示す図である。 発明を実施するための最良の態様  FIG. 12 is a view showing a modification of the third embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
[第 1実施例]  [First embodiment]
図 7は、 本発明の第 1実施例による S O I基板 2 0を示す平面図である。  FIG. 7 is a plan view showing the SOI substrate 20 according to the first embodiment of the present invention.
図 7を参照するに、 前記 S O I基板 2 0は先に図 1で説明した積層構造を有す るものであり、 多数のチップ領域 2 0 ι〜 2 09がスクライブラインで隔てられて マトリクス状に画成されている。 図示の例では、 チップ領域 2 0 ι〜2 06, 2 08 〜 2 09には欠陥は含まれていないが、 チップ領域 2 07には、 先に説明した欠陥 1 2 Xおよび 1 2 Yと同様な欠陥 Dが含まれている。 以下の説明では、 これらの 欠陥を含む欠陥領域をも符号 1 2 X, 1 2 Yで表記する。 Referring to FIG. 7, the SOI substrate 2 0 is shall to have a laminated structure described in Figure 1 above, a number of chip regions 2 0 Iota~ 2 0 9 is a matrix are separated by a scribe line Is defined. In the illustrated example, although the chip area 2 0 ι~2 0 6, 2 08 ~ 2 0 9 does not include the defect, the chip area 2 0 7, defects 1 2 X and 1 2 previously described Includes defect D similar to Y. In the following description, the defect area including these defects is also denoted by reference numerals 12X and 12Y.
以下、 図 8 A〜8 Hを参照しながら、 前記チップ領域 2 07への半導体装置の 製造工程を説明する。 Hereinafter, with reference to FIG. 8 A~8 H, explaining the manufacturing process of the semiconductor device to said chip region 2 0 7.
本実施例では最初に図 8 Aの工程で、 前記 S O I基板 2 0上に S i N膜 1 3を C V D法により、 前記 S i N膜 1 3が前記チップ領域 2 07におレヽて前記欠陥 1 2 X, 1 2 Yを充填するように堆積し、 次に図 8 Bの工程において、 このように して堆積した S i N膜 1 3をパターニングして、 前記チップ領域 2 07に形成さ れる素子領域に対応して S i Nマスクパターン 1 3 A, 1 3 Bおよび 1 3 Eを形 成する。 さらに図 8 Bの工程では、 先の図 7の工程で得られた欠陥 Dの座標に基づいて 前記 S i N膜 13を、 図示を省略したレジストプロセスによりパターエングし、 前記欠陥 12 X, 12 Yを覆うように、 S i パターン 13 Cおよび 13Dを、 前記 S i Nマスクパターン 13A, 13Bおよび 13 Eと同時に形成する。 次に前記 S i Nマスクパターン 13 A, 13 B, 13 C, 13D, 13Eをマ スクに前記 S i層 12をパターエングし、 前記マスクパターン 13A〜13Eに それぞれ对応して素子領域 12 A〜: I 2 Eを形成する。 ただし前記素子領域 12 Cおよび 12Dには欠陥 12X, 12 Yが存在しているため、 前記 S i層 12を 前記 S i Nパターン 13 Cあるいは 13Dをマスクにパターユングしてもこれら の部分には素子領域は形成されず、 代わりに断片的な S iパターン 12Cあるい は 12Dが形成される。 In the step of initially Figure 8 A in the present embodiment, the CVD method the S i N film 1 3 on the SOI substrate 2 0, wherein S i N film 1 3 Te Contact Rere the chip area 2 0 7 defect 1 2 X, 1 2 Y is deposited so as to fill the, then at FIG. 8 B process, the S i N film 1 3 deposited in this way is patterned, the chip area 2 0 7 The SiN mask patterns 13A, 13B and 13E are formed corresponding to the element regions to be formed. 8B, the SiN film 13 is patterned by a resist process (not shown) based on the coordinates of the defect D obtained in the previous step of FIG. Are formed at the same time as the SiN mask patterns 13A, 13B and 13E. Next, the Si layer 12 is patterned using the SiN mask patterns 13A, 13B, 13C, 13D, and 13E as masks, and the element regions 12A to 13E correspond to the mask patterns 13A to 13E, respectively. : Forms I 2 E. However, since the element regions 12C and 12D have defects 12X and 12Y, even if the Si layer 12 is patterned using the SiN pattern 13C or 13D as a mask, these portions will not be present. No element region is formed, and a fragmentary Si pattern 12C or 12D is formed instead.
本実施例では次に図 8 Dの工程において図 8 Cの構造上に高密度プラズマを使 つた CVD法などにより、 高品質の S i 02膜 12 Sを、 前記 S i 02膜が前記素 子領域 12A〜12 Eの間の部分を充填するように堆積し、 さらにこれを図 8 E の工程において CMP法にて研磨し、 前記素子領域 12A〜12Eの間に、 前記 S i O2膜 12Sにより、 図 2で説明した素子分離絶縁膜パターン 1 1 Bを形成 する。 Due next high-density plasma using ivy CVD method in FIG. 8 C structural in the step of FIG. 8 D in the present embodiment, the S i 0 2 film 12 S of high quality, the S i 0 2 film said deposited so as to fill a portion between the element region 12A~12 E, polished by the CMP method in addition FIG. 8 E process it, between the device region 12A to 12E, the S i O 2 With the film 12S, the element isolation insulating film pattern 11B described in FIG. 2 is formed.
さらに本実施例では図 8 Fの工程において前記 S iNマスクパターン 13A, 13 B, 13C, 13D, 13 Eがゥエツトエッチングプロセスにより除去され、 さらに図 8 Gの工程において、 このようにして得られた図 8 Fの構造上にポリシ リコン膜 14がー様に堆積される。  Further, in the present embodiment, the SiN mask patterns 13A, 13B, 13C, 13D, and 13E are removed by a wet etching process in the step of FIG. 8F, and further obtained in the step of FIG. A polysilicon film 14 is deposited on the structure of FIG. 8F.
さらに図 8 Hの工程において、 このようにして形成されたポリシリコン膜 14 を前記欠陥領域 12 X, 12Yを除いた素子領域 12A, 12B, 12Eにおい てパターユングし、 ポリシリコンパターン 14 A, 14 Bおよび 14 Eを形成す る。 またこれに伴レ、、 前記欠陥領域 12Xおよび 12 Yはポリシリコン膜 14C および 14Dにより覆われる。 例えば前記素子領域 12 Aにおいて前記ポリシリ コンパターン 14 Aはゲート電極を形成する。 この場合、 図示は省略するが、 前 記素子領域 12Aを構成する単結晶 S i層と前記ポリシリコンゲート電極パター ン 14 Aとの間には、 図示は省略するが、 ゲート絶縁膜が形成されている。 以上に説明した本実施例による半導体装置の製造工程においては、 図 8 Aのェ 程において前記欠陥領域 12X, 12Yが S i N膜 13により覆われた後、 前記 欠陥領域 12 X, 12 Yを覆う S i Nパターン 13 C, 13Dが図 8 Fの工程に おいてリフトオフされるため、 例え図 8 Eの CMP工程において前記 S i Nパタ ーン 13Cあるいは 13Dを覆う S i O2膜 12 S上にパーティクルなどの異物、 あるいは欠陥が存在していても、 これらの異物や欠陥は前記 S i Nパターン 13 C, 13Dと共に除去され、 図 8 G以降の工程に持ち込まれることはない。 Further, in the step of FIG. 8H, the polysilicon film 14 thus formed is patterned in the element regions 12A, 12B and 12E excluding the defect regions 12X and 12Y to form polysilicon patterns 14A and 14E. Form B and 14E. Accordingly, the defect regions 12X and 12Y are covered with polysilicon films 14C and 14D. For example, in the element region 12A, the polysilicon pattern 14A forms a gate electrode. In this case, although not shown, a gate insulating film is formed between the single-crystal Si layer constituting the element region 12A and the polysilicon gate electrode pattern 14A, although not shown. ing. In the manufacturing process of the semiconductor device according to the present embodiment described above, after the defect regions 12X and 12Y are covered with the SiN film 13 in the step of FIG. 8A, the defect regions 12X and 12Y are removed. Since the covering SIN patterns 13C and 13D are lifted off in the process of FIG. 8F, for example, on the SiO2 film 12S covering the SIN pattern 13C or 13D in the CMP process of FIG. 8E. Even if foreign substances such as particles or defects exist in the substrate, these foreign substances and defects are removed together with the SiN patterns 13C and 13D, and are not carried into the steps after FIG. 8G.
特に前記単結晶 S i膜 12が 20〜 50n mの厚さを有し、 前記欠陥 12 X, 12 Yの深さが 50〜: 100 nmで、 また前記欠陥 12 X, 12 Yにおける単結 晶 S i膜 12のオーバーハング量が 100 nm程度の場合、 S i N膜 13を 15 0 nmの厚さに形成し、 さらに酸ィ匕 S i膜 14の膜厚を約 500 nmとすること で、 径が 0. 1 /xm以上の異物が前記欠陥に残留する問題が回避される。  In particular, the single-crystal Si film 12 has a thickness of 20 to 50 nm, the depths of the defects 12X and 12Y are 50 to 100 nm, and the single crystals at the defects 12X and 12Y. When the overhang amount of the Si film 12 is about 100 nm, the SiN film 13 is formed to a thickness of 150 nm, and the thickness of the Si film 14 is set to about 500 nm. The problem that foreign matter having a diameter of 0.1 / xm or more remains in the defect is avoided.
さらに図 8 Gの工程において形成されたポリシリコン膜 14は、 図 8Hの工程 で前記欠陥領域 12Xあるいは 12 Yにおいてパターニングされることはなく、 このためこれらの欠陥領域において段差が存在していても、 露光不良などにより 欠陥パターンが形成されることはない。  Further, the polysilicon film 14 formed in the step of FIG.8G is not patterned in the defect area 12X or 12Y in the step of FIG.8H, and therefore, even if there is a step in these defect areas. No defective pattern is formed due to poor exposure or the like.
なお、 本実施例においてマスクパターン 13A〜13 Eを形成するのに使われ る層 13は S i N膜に限定されるものではなく、 S i〇2膜、 あるいは Wなどの メタル膜を使うことも可能である。  In the present embodiment, the layer 13 used to form the mask patterns 13A to 13E is not limited to the SiN film, but may be a Si2 film or a metal film such as W. Is also possible.
[第 2実施例] [Second embodiment]
図 9は、 本発明の第 2実施例による S O I基板 40を示す。 ただし図 9中、 先 に説明した部分に対応する部分には同一の参照符号を付し、 説明を省略する。 図 9を参照するに、 本実施例では S O I基板 40の特定のチップ領域、 例えば 領域 207に多数の欠陥が形成されている場合を取り扱う。  FIG. 9 shows an SOI substrate 40 according to a second embodiment of the present invention. However, in FIG. 9, the portions corresponding to the portions described above are denoted by the same reference numerals, and description thereof will be omitted. Referring to FIG. 9, this embodiment deals with a case where a large number of defects are formed in a specific chip area of the SOI substrate 40, for example, the area 207.
このようにチップ領域上に多数の欠陥 Dが存在する場合、 本発明ではそのチッ プ自体を以後のプロセスから除外することにより、 半導体装置の製造歩留まりを 向上させることが可能である。  In the case where a large number of defects D are present on the chip region, the present invention can improve the production yield of the semiconductor device by excluding the chip itself from the subsequent processes.
図 1 OAを参照するに、 S i基板 11上には図 9に示すチップ領域 20ι〜20 9のいずれかに対応したチップ領域 4 O Aおよび 4 O Bが画成されており、 前記 チップ領域 4 0 Bにおいては単結晶 S i膜 1 2および S i〇2膜 1 1 A中におけ る欠落により、 欠陥 4 1 Xが形成されている。 Referring to FIG. 1 OA, the chip area 20ι to 20 shown in FIG. 9 and the chip area 4 OA and 4 OB is defined corresponding to one of the, in the chip region 4 0 B is missing that put in the single crystal S i film 1 2 and S I_〇 2 film 1 1 A As a result, a defect 41 X is formed.
そこで本実施例では図 1 O Bの工程において図 1 O Aの構造を S i N膜 1 3に より覆い、 さらにその上にレジスト膜 4 1を塗付する。  Therefore, in the present embodiment, in the step of FIG. 1OB, the structure of FIG. 1OA is covered with a SiN film 13 and a resist film 41 is applied thereon.
さらに、 このようにして塗付したレジスト膜 4 1を露光および現像することに より、前記チップ領域 4 O Aにおいてレジストパターン 4 1 A〜4 1 Eを形成し、 さらに前記 S i N膜 1 3を、 前記レジストパターン 4 1 A〜4 1 Eをマスクにパ ターニングすることにより、 前記チップ領域 4 0 Aに S i Nパターン1 3 A〜l 3 Eを形成する。  Further, by exposing and developing the resist film 41 coated in this manner, resist patterns 41A to 41E are formed in the chip region 4OA, and the SiN film 13 is further formed. By performing patterning using the resist patterns 41A to 41E as a mask, the SIN patterns 13A to 13E are formed in the chip region 40A.
さらに以後の工程において前記 S i単結晶膜 1 2を、 前記レジストパターン 1 3 A〜l 3 Eをマスクにパターエングすることにより、前記チップ領域 4 O Aに、 前記 S i Nパターン 1 3 A〜l 3 Eに対応して素子領域が形成される。  Further, in the subsequent steps, the Si single crystal film 12 is patterned using the resist patterns 13A to 13E as a mask, so that the SiN patterns 13A to 13A are formed in the chip region 4OA. An element region is formed corresponding to 3E.
これに対し、 本実施例では図 1 0 Cに示すように、 欠陥 4 0 Xを含むチップ領 域 4 0 Bは前記 S i N膜 1 3により連続的に覆われたままで、 素子形成はなされ ない。  On the other hand, in the present embodiment, as shown in FIG. 10C, an element is formed while the chip area 40 B including the defect 40 X is continuously covered with the SiN film 13. Absent.
このように、 本実施例は先の実施例において欠陥領域 1 2 X, 1 2 Yの存在の ために素子形成がなされない部分 1 2 C, 1 2 Dの面積を、 そのチップ全体に拡 張したものと考えることができる。  Thus, in this embodiment, the area of the portion 12C, 12D where no element is formed due to the presence of the defect regions 12X, 12Y in the previous embodiment is extended to the entire chip. It can be thought that it did.
[第 3実施例] [Third embodiment]
次に、 本発明の第 3実施例による半導体装置の製造工程を、 図 1 1 A〜: L 1 F を参照しながら説明する。 ただし図中、 先に説明した部分に対応する部分には同 一の参照符号を付し、 説明を省略する。  Next, a manufacturing process of a semiconductor device according to a third embodiment of the present invention will be described with reference to FIGS. However, in the figure, parts corresponding to the parts described above are denoted by the same reference numerals, and description thereof will be omitted.
図 1 1 Aを参照するに、 本実施例では欠陥 1 2 Xおよび 1 2 Yを含む S O I基 板 1 1を、 前記欠陥の座標値と共に、 集束イオンビーム加工装置に搬送し、 前記 欠陥領域 1 2 Xおよび 1 2 Yにそれぞれ対応して、 前記欠陥を覆うように、 ポリ シリコンあるいはタングステンよりなるパターン 5 I X, 5 1 Yを堆積する。 次に図 1 1 Bの工程において、 図 1 1 Aの構造上に S i N膜のパターユングに より、 311^パターン13八, 13 Bおよび 13 Eを形成し、 さらに図 11 Cの 工程において前記 S i Nパターン 13A, 13B, 13 Eおよびパターン 51 X, 51Yをマスクに前記単結晶 S i膜 12をパターエングし、 素子領域 12A〜1 2Eを形成する。 ただしこのようにして形成された素子領域 12A〜12Eのう ち、 領域 12Cおよび 12Dは前記欠陥 12Xおよび 12 Yを有している。 さらに図 11 Dの工程において前記図 11Cの構造を、 高密度プラズマ CVD 法により形成される高品質 S i 02膜 12 Sにより覆い、 さらに図 1 1 Eの工程 において CMP法により、 図 11Dの構造を研磨し、 素子領域 12A〜12Eの 間隙が前記高品質酸化膜 12 Sにより充填された構造を得る。 Referring to FIG. 11A, in this embodiment, the SOI substrate 11 including the defects 12 X and 12 Y is transported to the focused ion beam processing apparatus together with the coordinate values of the defect, and the defect region 1 Patterns 5 IX and 51 Y made of polysilicon or tungsten are deposited corresponding to 2 X and 12 Y, respectively, so as to cover the defects. Next, in the process of FIG. 11B, a patterning of a SiN film is performed on the structure of FIG. 11A. Thus, 311 ^ patterns 138, 13B and 13E are formed, and in the step of FIG. 11C, the single crystal Si film is formed using the SiN patterns 13A, 13B and 13E and the patterns 51X and 51Y as masks. 12 is patterned to form element regions 12A to 12E. However, of the element regions 12A to 12E thus formed, the regions 12C and 12D have the defects 12X and 12Y. Further, in the step of FIG. 11D, the structure of FIG. 11C is covered with a high-quality SiO 2 film 12S formed by a high-density plasma CVD method, and in the step of FIG. The structure is polished to obtain a structure in which gaps between the element regions 12A to 12E are filled with the high-quality oxide film 12S.
さらに図 11 Fの工程において前記メタルパターン 5 IX, 51 Yを必要に応 じて除去し、 さらに先に図 8 G〜 8 Hで説明した工程を行うことにより、 所望の 半導体集積回路装置が得られる。  Further, in the step of FIG. 11F, the metal patterns 5IX and 51Y are removed as necessary, and the steps described with reference to FIGS. 8G to 8H are further performed to obtain a desired semiconductor integrated circuit device. Can be
さらに本実施例においては、 図 11 Aの工程において前記欠陥領域 12 X, 12Yを, 図 12に示すように、 集束イオンビーム加工により形成されたポリシ リコンパターン 12 Pにより、 前記欠陥に伴う段差が解消するように充填するこ とも可能である。  Further, in the present embodiment, in the step of FIG. 11A, the defect regions 12X and 12Y are formed, and as shown in FIG. 12, a step caused by the defect is formed by the polysilicon pattern 12P formed by the focused ion beam processing. It is also possible to fill to eliminate.
以上、 本発明を好ましい実施例について説明したが、 本発明はかかる特定の実 施例に限定されるものではなく、 特許請求の範囲に記載した要旨内において様々 な変形'変更が可能である。 産業上の利用可能性  As described above, the present invention has been described with reference to the preferred embodiments. However, the present invention is not limited to the specific embodiments, and various modifications and changes can be made within the gist of the claims. Industrial applicability
本発明によれば、 素子形成が基板表面の凹部を避けて実行されるため、 表面に 欠陥を有する基板であっても、 これを救済して使用することが可能になる。 特に 本発明によれば、 前記凹部がマスクパターンにより覆われ、 このため前記凹部内 においてパターエングがなされることがなレ、。 その結果、 段差の存在下において 露光を行った場合に生じる欠陥パターンの形成の問題が回避される。 また本発明 によれば、 欠陥を覆うマスクパターンを、 素子分離絶縁膜を形成するのに使われ る化学機械研磨工程の後で除去することにより、 化学機会研磨の際に生じるパー ティクルなどの欠陥を、 前記マスクパターンの除去と同時に除去することが可能 である。 According to the present invention, since the element formation is performed while avoiding the concave portions on the substrate surface, even if the substrate has a defect on the surface, it can be relieved and used. In particular, according to the present invention, the concave portion is covered with the mask pattern, so that patterning is not performed in the concave portion. As a result, the problem of the formation of a defect pattern that occurs when exposure is performed in the presence of a step is avoided. Further, according to the present invention, by removing a mask pattern covering a defect after a chemical mechanical polishing step used to form an element isolation insulating film, defects such as particles generated during chemical opportunity polishing are removed. Can be removed simultaneously with the removal of the mask pattern. It is.

Claims

請求の範囲 The scope of the claims
1 . 基板と、 1. The substrate and
前記基板上に形成された半導体装置とよりなる半導体集積回路装置において、 前記基板表面には、 段差で画成された凹部が欠陥として含まれており、 前記凹部は、 前記段差を充填するパターンにより覆われており、  In a semiconductor integrated circuit device including a semiconductor device formed on the substrate, a concave portion defined by a step is included as a defect in the substrate surface, and the concave portion is formed by a pattern filling the step. Covered,
前記半導体装置は前記凹部を避けて形成されている半導体集積回路装置。 The semiconductor device is a semiconductor integrated circuit device formed avoiding the concave portion.
2 . 前記基板は、 S O I基板である請求項 1記載の半導体集積回路装置。2. The semiconductor integrated circuit device according to claim 1, wherein the substrate is a SOI substrate.
3 . 前記パターンはポリシリコン膜よりなる請求項 1記載の半導体集積回路 装置。 3. The semiconductor integrated circuit device according to claim 1, wherein the pattern is made of a polysilicon film.
4 . 前記パターンはメタル膜よりなる請求項 1記載の半導体集積回路装置。 4. The semiconductor integrated circuit device according to claim 1, wherein the pattern comprises a metal film.
5 . 前記パターンは S i O2膜よりなる請求項 1記載の半導体集積回路装置。 5. The semiconductor integrated circuit device according to claim 1, wherein the pattern comprises a SiO 2 film.
6 . 前記パターンは、 中央部が周辺部よりも凹んだ形状を有する請求項 1記 載の半導体集積回路装置。 6. The semiconductor integrated circuit device according to claim 1, wherein the pattern has a shape in which a central portion is recessed from a peripheral portion.
7 . 前記パターンは、 ほぼ平坦ィ匕面を構成する請求項 1記載の半導体集積回  7. The semiconductor integrated circuit according to claim 1, wherein the pattern constitutes a substantially flat surface.
8 . 基板表面上に存在する欠陥を認識する工程と、 8. Recognizing defects present on the substrate surface;
前記基板表面を、 前記欠陥も含め、 層により覆う工程と、  Covering the substrate surface with a layer, including the defect,
前記基板上に画成された素子領域にぉレヽて前記層をパターユングし、 前記素子 領域に対応した素子領域パターンを形成する工程とよりなり、  Patterning the layer over an element region defined on the substrate to form an element region pattern corresponding to the element region,
前記素子領域パターンを形成する工程は、 前記欠陥を含む領域を避けて実行さ れる半導体集積回路装置の製造方法。  The method of manufacturing a semiconductor integrated circuit device, wherein the step of forming the element region pattern is performed while avoiding the region including the defect.
9 . 前記基板は S O I基板よりなり、 前記欠陥は前記 S O I基板表面に形成 された凹部である請求項 8記載の半導体集積回路装置の製造方法。  9. The method for manufacturing a semiconductor integrated circuit device according to claim 8, wherein the substrate is an SOI substrate, and the defect is a concave portion formed on a surface of the SOI substrate.
1 0 . 前記素子領域パターンを形成する工程は、 前記層のうち、 前記欠陥を 覆っている部分が残るように実行される請求項 8記載の半導体集積回路装置の製 造方法。  10. The method of manufacturing a semiconductor integrated circuit device according to claim 8, wherein the step of forming the element region pattern is performed so that a portion of the layer covering the defect remains.
1 1 . 前記素子領域パターンを形成する工程は、 前記層をパターニングする ことにより、 前記欠陥を避けるように第 1のマスクパターンを形成する工程と、 前記層をパターニングすることにより、 前記欠陥を覆う第 2のマスクパターン を形成する工程と、 11. The step of forming the element region pattern includes: forming a first mask pattern so as to avoid the defect by patterning the layer; Forming a second mask pattern covering the defect by patterning the layer;
ΙίίΐΞ基板を、前記第 1および第 2のマスクパターンをマスクにパターユングし、 前記素子領域に対応して前記素子領域パターンを形成する工程とを含み、 前記第 1のマスクパターンを形成する工程と前記第 2のマスクパターンを形成 する工程とは同時に実行される請求項 8記載の半導 ΙΦ ^積回路装置の製造方法。  パ patterning the substrate using the first and second mask patterns as a mask, and forming the element region pattern corresponding to the element region; and forming the first mask pattern. 9. The method according to claim 8, wherein the step of forming the second mask pattern is performed simultaneously.
1 2 . さらに前記素子領域パターンを形成する工程の後、 前記基板上に前記 第 1および第 2のマスクパターンを覆うように絶縁膜を形成する工程と、 前記絶縁膜を、 前記第 1および第 2のマスクパターンも含めて化学機械研磨す る工程と、  12. After the step of further forming the element region pattern, a step of forming an insulating film on the substrate so as to cover the first and second mask patterns; A step of chemical mechanical polishing including the mask pattern of 2,
前記第 1および第 2のマスクパターンを除去する工程とを含む請求項 1 1記載 の半導体集積回路装置の製造方法。  12. The method for manufacturing a semiconductor integrated circuit device according to claim 11, further comprising: a step of removing said first and second mask patterns.
1 3 . さらに前記第 1および第 2のマスクパターンを除去する工程の後、 前 記基板上にポリシリコン層を堆積する工程と、 前記ポリシリコン層を前記素子領 域においてパターエングし、 素子パターンを形成する工程とを含み、 前記素子パ ターンを形成する工程は、 前記ポリシリコン層のうち、 前記欠陥を覆っている部 分が残るように実行される請求項 1 2記載の半導体集積回路装置の製造方法。  13. After further removing the first and second mask patterns, depositing a polysilicon layer on the substrate, patterning the polysilicon layer in the device region, and removing the device pattern. 13. The semiconductor integrated circuit device according to claim 12, further comprising: forming the element pattern, wherein the step of forming the element pattern is performed so that a portion of the polysilicon layer covering the defect remains. Production method.
1 4 . 前記層は、 S i N膜, S i O2膜あるいはメタル膜よりなる請求項 8 記載の半導体集積回路装置の製造方法。 1 4. The layers, S i N film, S i O 2 film or the manufacturing method of a semiconductor integrated circuit device according to claim 8, wherein consisting metal film.
1 5 . 基板表面上に存在する欠陥を認識する工程と、  15. A process for recognizing defects existing on the substrate surface;
前記欠陥を、 層により選択的に充填する工程と、  Selectively filling the defects with a layer;
前記基板上に画成された素子領域において素子領域パターンを形成する工程と よりなり、  Forming an element region pattern in an element region defined on the substrate,
前記素子領域パターンを形成する工程は、 前記欠陥を含む領域を避けて実行さ れる半導体集積回路装置の製造方法。  The method of manufacturing a semiconductor integrated circuit device, wherein the step of forming the element region pattern is performed while avoiding the region including the defect.
1 6 . 前記欠陥を選択的に充填する工程は、 集束イオンビーム加工により実 行される請求項 1 5記載の半導体集積回路装置の製造方法。  16. The method for manufacturing a semiconductor integrated circuit device according to claim 15, wherein the step of selectively filling the defect is performed by focused ion beam processing.
PCT/JP2003/005200 2003-04-23 2003-04-23 Method of producing semiconductor integrated circuit device on soi substrate WO2004095579A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005200 WO2004095579A1 (en) 2003-04-23 2003-04-23 Method of producing semiconductor integrated circuit device on soi substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005200 WO2004095579A1 (en) 2003-04-23 2003-04-23 Method of producing semiconductor integrated circuit device on soi substrate

Publications (1)

Publication Number Publication Date
WO2004095579A1 true WO2004095579A1 (en) 2004-11-04

Family

ID=33307222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005200 WO2004095579A1 (en) 2003-04-23 2003-04-23 Method of producing semiconductor integrated circuit device on soi substrate

Country Status (1)

Country Link
WO (1) WO2004095579A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351978A (en) * 1976-10-22 1978-05-11 Hitachi Ltd Manufacture of semiconductor device
JPH0378729A (en) * 1989-08-22 1991-04-03 Toppan Printing Co Ltd Production of thin film transistor array
JPH0582633A (en) * 1991-09-19 1993-04-02 Hitachi Ltd Laminated substrate and manufacturing method
US5352341A (en) * 1993-06-24 1994-10-04 Texas Instruments Incorporated Reducing leakage current in silicon-on-insulator substrates
JPH11233417A (en) * 1998-02-18 1999-08-27 Mitsubishi Electric Corp X-ray mask and its manufacture
JP2001356367A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Liquid crystal image display device and method for manufacturing semiconductor device for image display device
JP2002358029A (en) * 2001-06-04 2002-12-13 Hitachi Ltd Flat display panel and method for correcting defect in wiring of flat display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351978A (en) * 1976-10-22 1978-05-11 Hitachi Ltd Manufacture of semiconductor device
JPH0378729A (en) * 1989-08-22 1991-04-03 Toppan Printing Co Ltd Production of thin film transistor array
JPH0582633A (en) * 1991-09-19 1993-04-02 Hitachi Ltd Laminated substrate and manufacturing method
US5352341A (en) * 1993-06-24 1994-10-04 Texas Instruments Incorporated Reducing leakage current in silicon-on-insulator substrates
JPH11233417A (en) * 1998-02-18 1999-08-27 Mitsubishi Electric Corp X-ray mask and its manufacture
JP2001356367A (en) * 2000-06-13 2001-12-26 Matsushita Electric Ind Co Ltd Liquid crystal image display device and method for manufacturing semiconductor device for image display device
JP2002358029A (en) * 2001-06-04 2002-12-13 Hitachi Ltd Flat display panel and method for correcting defect in wiring of flat display panel

Similar Documents

Publication Publication Date Title
CN104054171B (en) The planarization substrate surface engaged for substrate
JP2004529504A (en) A method and structure for forming an integrated circuit device using dummy features.
TW200937508A (en) Substrate provided with semiconductor films and manufacturing method thereof
TW201919125A (en) Method of manufacturing small-diameter wafer
JP2000349145A (en) Semiconductor device
US6864177B2 (en) Method for manufacturing metal line contact plug of semiconductor device
JP3645142B2 (en) Semiconductor wafer processing method and semiconductor device manufacturing method
WO2004095579A1 (en) Method of producing semiconductor integrated circuit device on soi substrate
JP3651344B2 (en) Manufacturing method of semiconductor device
US7883956B2 (en) Method of forming coplanar active and isolation regions and structures thereof
JPH08274286A (en) Manufacture of soi substrate
US6486049B2 (en) Method of fabricating semiconductor devices with contact studs formed without major polishing defects
US6503811B1 (en) Substrate having a semiconductor layer, and method for fabricating the same
US20020031896A1 (en) Method for fabricating semiconductor device having trench isolations
JPH06215993A (en) Composite semiconductor substrate and manufacture thereof
JP3694904B2 (en) Manufacturing method of semiconductor device
JP2004153053A (en) Manufacturing method of semiconductor integrated circuit device
JP5674304B2 (en) Manufacturing method of SOI wafer
JP2924821B2 (en) Semiconductor integrated circuit manufacturing equipment
TW410375B (en) Method of forming dummy pattern on the open area of the multi-function mask to improve the yield of die
TW202236382A (en) Method for bonding two semiconductor structures
JP2003249546A (en) Semiconductor wafer, method of processing the same, and method of manufacturing semiconductor device
CN115101411A (en) Method for improving roughness and pollution of wafer back
KR20120122634A (en) Method for forming overlay vernier
KR20060071995A (en) Manufacturing method for the semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP