WO2004094944A1 - Method and apparatus for measuring distance - Google Patents

Method and apparatus for measuring distance Download PDF

Info

Publication number
WO2004094944A1
WO2004094944A1 PCT/JP2003/005211 JP0305211W WO2004094944A1 WO 2004094944 A1 WO2004094944 A1 WO 2004094944A1 JP 0305211 W JP0305211 W JP 0305211W WO 2004094944 A1 WO2004094944 A1 WO 2004094944A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
imaging
optical element
aberration
distance measuring
Prior art date
Application number
PCT/JP2003/005211
Other languages
French (fr)
Japanese (ja)
Inventor
Seijiro Tomita
Original Assignee
Seijiro Tomita
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seijiro Tomita filed Critical Seijiro Tomita
Priority to JP2004571088A priority Critical patent/JPWO2004094944A1/en
Priority to PCT/JP2003/005211 priority patent/WO2004094944A1/en
Priority to AU2003231457A priority patent/AU2003231457A1/en
Publication of WO2004094944A1 publication Critical patent/WO2004094944A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders

Definitions

  • the present invention relates to a method and an apparatus for measuring a distance, and in particular to an image pickup device provided with an image pickup device, and an image obtained by photographing an object by two image pickup means having optical axes crossed at a predetermined cross point (compare ence point: CP).
  • the present invention relates to a distance measuring method and apparatus capable of accurately measuring the distance from a camera to a subject by processing.
  • three-dimensional image information is obtained by imaging an object (subject) using a plurality of imaging means, for example, a camera, and is displayed as a real image according to human visual characteristics. That is being done.
  • the binocular parallax method imaging is performed by setting the base line length of the naked eye (for example, 72 mm) and setting each value in consideration of the visual field convergence angle range of the naked eye.
  • an appropriate parallax (lateral displacement of the image) is given according to the distance and the shape to the object recognized by the observer.
  • stereoscopic video content intended for large-scale entertainment facilities is produced with the assumption of a large screen size on which the content will be screened.
  • the screen size was too large, the stereoscopic effect was too strong to give an uncomfortable feeling.
  • the screen size was small, the stereoscopic effect was small and unsatisfactory.
  • the positional relationship between the stereoscopic video imaging and display system and the observer is not always constant, and the observer is not always located at the position intended by the content creator, and the observer is displaced from the predetermined observation position of the stereoscopic video device. In this case, the creator cannot observe the intended image.
  • the present invention has been made in view of the above-mentioned problems of the conventional technology, and measures a distance at which a correct position of an object can be reliably obtained with only information obtained by two imaging devices. It is an object to provide a method and an apparatus.
  • the present invention according to claim 1 includes two image pickup means each having an image sensor and crossing the optical axis at a predetermined cross point (comparence point: CP).
  • An object is photographed, coordinates of the same object photographed by the image pickup devices of the two image pickup devices are obtained on the image pickup device, and a distance from the image pickup position to the object is calculated from the information acquired by the coordinate acquisition device.
  • This is a method for measuring the distance.
  • ADVANTAGE OF THE INVENTION According to this invention, the position to an object can be calculated
  • the distance measuring method and the distance measuring device distance according to the first aspect, wherein the calculation of the distance includes a table means provided with an output value for an input value in advance.
  • the calculation of the distance includes a table means provided with an output value for an input value in advance.
  • an aberration inherent in the optical element of the imaging unit is corrected.
  • a proper position can be measured by knowing in advance the inherent aberrations of a lens or the like and correcting them.
  • the distance measuring method wherein the correction of the aberration of the optical element includes a table having an output value with respect to an input position of the optical element in advance. It is characterized by using means. According to the present invention, a correction value for an input value is immediately output without requiring any arithmetic processing.
  • the calculation of the distance and the correction of aberration of the optical element are the same table. It is characterized by using means. According to the present invention, the calculation of the distance for one value and the correction of the aberration of the optical element can be performed in one table, and each calculation can be corrected quickly, and the calculation and correction are required. The number of devices can be minimized.
  • two image pickup units each including an image pickup element, wherein the optical axes are crossed at a predetermined cross point (compare entrance point: CP);
  • Coordinate acquisition means for obtaining coordinates on the image sensor of the same object photographed by both image sensors; and arithmetic means for calculating the distance from the imaging position to the object from the information acquired by the coordinate acquisition means.
  • a characteristic distance measuring device You. ADVANTAGE OF THE INVENTION According to this invention, the position to an object can be calculated
  • the distance calculation includes a table unit having an output value for an input value in advance. Is what you do. According to the present invention, an output value can be obtained immediately with respect to an input value, so that the calculation speed can be increased quickly, and it is not necessary to use a high-speed calculation means.
  • the present invention described in claim 8 is characterized in that it comprises an aberration correcting means for correcting an inherent aberration of the optical element of the distance measuring method imaging means according to claim 7. According to the present invention, a proper position can be measured by knowing in advance the inherent aberrations of a lens or the like and correcting them.
  • the present invention described in claim 9 is the distance measuring device according to claim 5, wherein the aberration correcting means is a table means provided in advance with an output value corresponding to the position of the input optical element. It is characterized by having. According to the present invention, a correction value for an input value is immediately output without requiring any arithmetic processing.
  • the arithmetic unit and the aberration correction unit of the optical element are the same table unit. It is characterized by the following. ADVANTAGE OF THE INVENTION According to this invention, calculation of the distance with respect to one value and correction
  • FIG. 1 is a block diagram showing an embodiment of a distance measuring device according to the present invention.
  • FIG. 2 is a flowchart showing a processing flow in the distance measuring device shown in FIG.
  • FIG. 3 is a block diagram showing a distance measuring device according to the present invention.
  • FIG. 4 is a diagram showing a state of distance measurement according to the present invention.
  • FIG. 1 is a system configuration diagram showing an embodiment of the present invention.
  • 1 ⁇ ., 1 p is Left camera and the right camera is an imaging means
  • 2 have 2 R image pickup device of the right and left mounted on the camera 1 L
  • 1 R for example, C CD is an element, in 1 5 1 each lateral direction (y-direction)
  • Two light receiving elements (756 each from the center lines C R and C L ) are provided.
  • each camera is arranged at a distance of S / 2 (for example, 36 mm, or 10 cm) from the center O (0, 0) of the reference axis (xy axis), and their optical axes ( CL, CR) intersect at the cross point CP (C, 0) 1 m away.
  • the target object P is located at the position (L, ⁇ ).
  • Reference numeral 3 coordinate acquisition means for acquiring a coordinate position which receives the object point ⁇ -receiving element 2 have 2 R
  • reference numeral 4 is aberration for correcting the aberration of the optical element such as a lens which comprises said image pickup means 1 1 R 2 shows a capturing means.
  • This aberration includes so-called Seidel's five aberrations.
  • Reference numeral 5 denotes a calculating unit that receives outputs of the coordinate obtaining unit 3 and the aberration correcting unit 4 and finally calculates a distance L to the object point P and a distance ⁇ y to the optical axis O. .
  • processing of the distance measuring device according to the present example will be described.
  • photographing by photographing means (Sl) acquisition of coordinates by both image sensors (S2), correction of optical element aberration (S3), and calculation and output of L and Ay by this (S1) S 4).
  • Figure 3 shows a more specific configuration.
  • the coordinate acquisition means 3, the aberration correction means 4, and the calculation means 5 have a calculation processing unit 11 and a table 12 storing lens aberration correction data and Ay calculation data.
  • the L and Ay calculated by the arithmetic processing unit 11 and the image data captured by the CCD image sensors 2 L and 2 R are transmitted to the stereoscopic display device 22 via the stereoscopic image display processing device 21. Is displayed three-dimensionally.
  • f in the figure represents the focal length of the lens of the imaging means.
  • Equation 1 becomes simple as follows.
  • t an A is a constant that is the angle of view of the camera, and can be obtained in advance by calculation and measurement.
  • the following numerical value 756 is the number of elements from the center of the CCD image sensor to the left and right edges, and this value changes the number of elements of the image sensor and the starting point of calculation (for example, changing the starting point to the left end Can be changed as appropriate.
  • X R and XL are the amount of image shift
  • the distance L to the object point and the shift ⁇ y in the left-right direction are obtained from the images of the left and right imaging elements.
  • the table can store in advance the correction amount of the aberration for the optical element, and this value can be appropriately changed according to the correction amount of the lens used.
  • the present invention described in claim 1 provides an image pickup device, each of which includes an image pickup device, and images an object by two image pickup units whose optical axes are crossed at a predetermined cross point (compare ence point: CP). Determining a coordinate on the image sensor of the same object photographed by the image sensor of the imaging means, and calculating a distance from the imaging position to the object from the information acquired by the coordinate acquisition means. It is. ADVANTAGE OF THE INVENTION According to this invention, the position to an object can be calculated
  • the distance calculation includes a table in which output values for input values are provided in advance. It is characterized by using means. According to the present invention, an output value can be obtained immediately with respect to an input value, so that the calculation speed can be increased quickly, and it is not necessary to use a high-speed calculation means.
  • an inherent aberration of the optical element of the imaging unit is corrected.
  • a proper position can be measured by knowing in advance the inherent aberrations of a lens or the like and correcting them.
  • the correction of the aberration of the optical element includes a table means which is provided in advance with an output value corresponding to a position of the input optical element. This is characterized by performing the above. According to the present invention, a correction value for an input value is immediately output without requiring any arithmetic processing.
  • the calculation of the distance and the correction of aberration of the optical element are the same table. It is characterized by using means. ADVANTAGE OF THE INVENTION According to this invention, calculation of the distance with respect to one value and correction
  • two image pickup means each including an image pickup element, wherein the optical axes are crossed at a predetermined cross point (compare-enforcement point: CP); and Coordinate acquisition means for obtaining coordinates on the image sensor of the same object photographed by both image sensors; and arithmetic means for calculating the distance from the imaging position to the object from the information acquired by the coordinate acquisition means.
  • This is a characteristic distance measuring device.
  • the distance calculation includes a staple unit having an output value corresponding to an input value in advance. It is. According to the present invention, an output value is immediately obtained for an input value, so that the operation speed can be increased quickly, and it is not necessary to use a high-speed operation means.
  • the present invention described in claim 8 is the distance measuring method described in claim 7, further comprising an aberration correcting unit that corrects an inherent aberration of the optical element of the imaging unit. .
  • a proper position can be measured by knowing in advance the inherent aberrations of a lens or the like and correcting them.
  • the present invention described in claim 9 is the distance measuring device according to claim 5, wherein the aberration correcting means is a table means provided in advance with an output value corresponding to the position of the input optical element. It is characterized by having. According to the present invention, arithmetic processing is required. The correction value for the input value is output immediately without any need.
  • the arithmetic unit and the aberration correction unit of the optical element are provided in the same table. It is characterized in that it is a flexible means. ADVANTAGE OF THE INVENTION According to this invention, calculation of the distance with respect to one value and correction

Abstract

A method and an apparatus for measuring the distance capable of determining the correct position of an object only from information attained by means of two imaging units, characterized in that the object is photographed by two imaging means each comprising an imaging element and having an optical axis crossed at a specified cross point (convergence point: CP), coordinates of the identical object photographed by the imaging elements of two imaging means are determined on the imaging element, and the distance from the imaging position to the object is operated from information acquired by a coordinate acquiring means.

Description

明 細 書 '  Specification '
距離の測定方法及び装置  Distance measuring method and device
技術分野  Technical field
本発明は距離の測定方法及び装置に係り、 特にそれぞれ撮像素子を備え、 所定 のクロスポイント (コンパージエンスポイント : C P ) で光軸を交叉させた 2台 の撮像手段で物体を撮影した画像を処理することによりカメラから被写体までの 距離を正確に測定することができる距離の測定方法及び装置に関する  The present invention relates to a method and an apparatus for measuring a distance, and in particular to an image pickup device provided with an image pickup device, and an image obtained by photographing an object by two image pickup means having optical axes crossed at a predetermined cross point (compare ence point: CP). The present invention relates to a distance measuring method and apparatus capable of accurately measuring the distance from a camera to a subject by processing.
技術背景 従来、 複数の撮像手段例えばカメ ラを用いて物体 (被写体) を撮像するこ とによ り三次元的な映像情報を得て、 これを人間の視覚的特性に合わせて実 像表示することが行われている。  BACKGROUND ART Conventionally, three-dimensional image information is obtained by imaging an object (subject) using a plurality of imaging means, for example, a camera, and is displayed as a real image according to human visual characteristics. That is being done.
その一つと して両眼視差方式があげられる。 両眼視差方式は、 2台のカメ ラ配置を肉眼の基線長 (例えば 7 2 m m ) を設定し、 また肉眼の視野輻輳角 範囲を考慮して各値を設定して撮像する。  One of them is the binocular parallax method. In the binocular parallax method, imaging is performed by setting the base line length of the naked eye (for example, 72 mm) and setting each value in consideration of the visual field convergence angle range of the naked eye.
そして、 これらの画像を表示する際、 観察者に認識される物体との距離、 形状に応じた適切な視差 (像の横ずれ) を与えて表示する。  Then, when displaying these images, an appropriate parallax (lateral displacement of the image) is given according to the distance and the shape to the object recognized by the observer.
このため、 撮影時のカメ ラの撮影位置と、 観測者の視点位置の変化に応じ て表示画像を変更する必要がある。  For this reason, it is necessary to change the displayed image according to changes in the camera shooting position and the observer's viewpoint position during shooting.
さ らに、 同一のコンテンツを画面サイズの異なる表示装置で再生すると、 左右映像の視差量が異なると、画面サイズによって画面からの飛び出し量が 変化して、 自然な立体映像を得ることができない。  Furthermore, when the same content is played back on display devices having different screen sizes, if the parallax between the left and right images is different, the amount of projection from the screen changes depending on the screen size, and a natural stereoscopic image cannot be obtained.
すなわち、 大型ァミ ユ ーズメ ント施設を対象と した立体映像コンテンッは そのコ ンテンツが上映される大きな画面サイズを想定して制作されている ため、 同じスク リーンサイズを有する劇場や装置でなければ適正な立体感が 得られず、画面サイズが大きいと立体感が強すぎて不快感を与えたりするほ か、 画面サイズが小さいと立体感が少なく物足り なかった。  In other words, stereoscopic video content intended for large-scale entertainment facilities is produced with the assumption of a large screen size on which the content will be screened. When the screen size was too large, the stereoscopic effect was too strong to give an uncomfortable feeling. In addition, when the screen size was small, the stereoscopic effect was small and unsatisfactory.
また、 このよ うなコンテンツは、 様々な場面の継ぎ合わせであるから、 各 場面の撮影条件、 撮影部のレンズの焦点距離、 2つの撮影部の間隔などが統 一されているとは限らないから、 単純にこのよ うな場面をつなぎ合わせると、 一つのコンテンッで異なる立体感が表示され、視聴者に違和感や身体的不' I矢 感を与えること となった。 Also, since such content is a splice of various scenes, Since the shooting conditions of the scene, the focal length of the lens of the shooting unit, and the distance between the two shooting units are not always the same, simply joining such scenes will give different stereoscopic effects in one content. Was displayed, giving the viewer a sense of incongruity and physical discomfort.
更に、 立体映像撮影表示システムと観察者との位置関係は必ずしも一定で はなく 、 コンテンッ制作者が意図した位置に観察者がいるとは限らず、 観察 者が立体映像装置の所定観察位置からずれた場合には、制作者が意図した映 像を観察させることができない。  Furthermore, the positional relationship between the stereoscopic video imaging and display system and the observer is not always constant, and the observer is not always located at the position intended by the content creator, and the observer is displaced from the predetermined observation position of the stereoscopic video device. In this case, the creator cannot observe the intended image.
このため、 立体映像コンテンツを制作する場合、 最終的に表示する画面サ ィズ (ディ スプレイやスク リーンのサイズ) を想定し、 撮影用立体カメ ラの ク ロスポイ ン ト (コンパージエンスポイ ン ト : C P ) 、 コ ンピュータグラフ イ ツクの視差量を調整して制作するものの、 一度制作されたコンテンツは、 立体映像撮影表示システムの画面サイズが変わる と立体感が異なってしま う ことから、 画面サイズに応じて立体映像を再度制作する必要があった。 ま た、 C G ( Comput er Graph i c s ) で立体映像を作成する場合は、 レンダリ ン グ等をやり直す必要があった。  For this reason, when producing stereoscopic video content, the screen size (display or screen size) to be finally displayed is assumed, and the cross-points of the shooting stereo camera (compare en- gage points: CP) and computer graphs are produced by adjusting the amount of parallax, but once the content is produced, the stereoscopic effect will differ if the screen size of the stereoscopic video shooting and display system changes. Accordingly, it was necessary to produce a stereoscopic image again. In addition, when creating a stereoscopic image using CG (Computer Graph ics), rendering and the like had to be performed again.
また上記従来例では、 単に撮像時のカメラ配置での画像表示を行うだけである ため、 同じ対象に対して観測者が視点位置を変えて見た場合に、 新たに生じる遮 蔽部、 あるいは元々は見えていなかつたが初めて見える部分などを正しく反映し た画像を生成することができず、 制作者が意図した画像を観者に伝えることがで きなかった。  Further, in the above-described conventional example, since the image is simply displayed with the camera arrangement at the time of imaging, when an observer changes the viewpoint position with respect to the same object, a newly generated shielding unit or an original shielding unit is formed. It was not possible to generate an image that correctly reflected the part that was not visible and that was visible for the first time, and was unable to convey the image intended by the creator to the viewer.
本発明は上述したような従来の技術が有する問題点に鑑みてなされたもので あって、 対象物の正しい位置を 2台の撮像装置が得る情報だけで確実に求めるこ とができる距離の測定方法及び装置を提供することを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the conventional technology, and measures a distance at which a correct position of an object can be reliably obtained with only information obtained by two imaging devices. It is an object to provide a method and an apparatus.
発明の開示  Disclosure of the invention
請求の範囲 1に記載の本癸明は、 それぞれ撮像素子を備え、 所定のクロスボイ ント (コンパ一ジエンスポイント : C P ) で光軸を交叉させた 2台の撮像手段で 物体を撮影し、 前記 2台の撮像手段の撮像素子で撮影された同一物体の撮像素子 上の座標を求め、 該座標取得手段が取得した情報から撮像位置から物体までの距 離を演算することを特徴とする距離の測定方法である。 本発明によれば、 2つの 撮像手段に基づく画像情報だけから物体までの位置を正確かつ容易に求めること ができる。 The present invention according to claim 1 includes two image pickup means each having an image sensor and crossing the optical axis at a predetermined cross point (comparence point: CP). An object is photographed, coordinates of the same object photographed by the image pickup devices of the two image pickup devices are obtained on the image pickup device, and a distance from the image pickup position to the object is calculated from the information acquired by the coordinate acquisition device. This is a method for measuring the distance. ADVANTAGE OF THE INVENTION According to this invention, the position to an object can be calculated | required accurately and easily from only the image information based on two imaging means.
請求の範囲 2に記載の本発明は、 請求の範囲 1に記載の距離の測定方法及び距 離の測定装置距離において、 前記距離の演算は入力された値に対する出力値を予 め備えたテーブル手段を用いて行うことを特徴とするものである。 本発明によれ ば、 入力された値に対して直ちに出力値が得られ演算速度を早急なものとするこ とができる他、 高速な演算手段を用いる必要がなくなる。  According to a second aspect of the present invention, there is provided the distance measuring method and the distance measuring device distance according to the first aspect, wherein the calculation of the distance includes a table means provided with an output value for an input value in advance. This is characterized by performing the above. According to the present invention, an output value can be obtained immediately with respect to an input value, so that the calculation speed can be increased quickly, and it is not necessary to use a high-speed calculation means.
請求の範囲 3に記載の本発明は、 前記請求の範囲 1に記載の距離の測定方法に おいて、 撮像手段の光学素子が有する固有の収差を捕正することを特徴とするも のである。 本発明によれば、 レンズなどの有する固有の収差を予め知っておきこ れらを補正して、 正しい位置を測定することができる。  According to a third aspect of the present invention, in the method for measuring a distance according to the first aspect, an aberration inherent in the optical element of the imaging unit is corrected. According to the present invention, a proper position can be measured by knowing in advance the inherent aberrations of a lens or the like and correcting them.
請求の範囲 4に記載の本発明は、 請求の範囲 1に記載の距離の測定方法におい て、 前記光学素子の収差の捕正は、 入力される光学素子の位置に対する出力値を 予め備えたテーブル手段を用いて行うことを特徴とするものである。 本発明によ れば、演算処理を必要とせず、入力された値に対する補正値が直ちに出力される。 請求の範囲 5に記載の本発明は、 請求の範囲 1乃至請求の範囲 4のいずれかに 記載の距離の測定方法において、 前記距離の演算と、 光学素子の収差の捕正は同 一のテーブル手段を用いて行うことを特徴とするものである。 本発明によれば、 一つの値に対する距離の演算と、 光学素子の収差の補正とを 1つのテーブルで行 うことができ、 各演算補正を迅速に行うことができる他、 演算及び補正に要する デバイスの数を最小限にすることができる。  According to a fourth aspect of the present invention, there is provided the distance measuring method according to the first aspect, wherein the correction of the aberration of the optical element includes a table having an output value with respect to an input position of the optical element in advance. It is characterized by using means. According to the present invention, a correction value for an input value is immediately output without requiring any arithmetic processing. According to a fifth aspect of the present invention, in the distance measuring method according to any one of the first to fourth aspects, the calculation of the distance and the correction of aberration of the optical element are the same table. It is characterized by using means. According to the present invention, the calculation of the distance for one value and the correction of the aberration of the optical element can be performed in one table, and each calculation can be corrected quickly, and the calculation and correction are required. The number of devices can be minimized.
請求の範囲 6に記載の本発明は、 それぞれ撮像素子を備え、 所定のクロスボイ ント (コンパージエンスボイント: C P )で光軸を交叉させた 2台の撮像手段と、 前記 2台の撮像手段の両方の撮像素子で撮影された同一物体の撮像素子上の座標 を求める座標取得手段と、 該座標取得手段が取得した情報から撮像位置から物体 までの距離を演算する演算手段とを備えたことを特徴とする距離の測定装置であ る。 本発明よれば、 2つの撮像手段に基づく画像情報だけから物体までの位置を 正確かつ容易に求めることができる。 According to a sixth aspect of the present invention, there are provided two image pickup units each including an image pickup element, wherein the optical axes are crossed at a predetermined cross point (compare entrance point: CP); Coordinate acquisition means for obtaining coordinates on the image sensor of the same object photographed by both image sensors; and arithmetic means for calculating the distance from the imaging position to the object from the information acquired by the coordinate acquisition means. A characteristic distance measuring device You. ADVANTAGE OF THE INVENTION According to this invention, the position to an object can be calculated | required accurately and easily from only the image information based on two imaging means.
請求の範囲 7に記載の本発明は、 請求の範囲 6に記載の距離の測定装置におい て、 前記距離の演算は入力された値に対する出力値を予め備えたテーブル手段を 備えたことを特徴とするものである。 本発明によれば、 入力された値に対して直 ちに出力値が得られ演算速度を早急なものとすることができる他、 高速な演算手 段を用いる必要がなくなる。  According to a seventh aspect of the present invention, in the distance measuring device according to the sixth aspect, the distance calculation includes a table unit having an output value for an input value in advance. Is what you do. According to the present invention, an output value can be obtained immediately with respect to an input value, so that the calculation speed can be increased quickly, and it is not necessary to use a high-speed calculation means.
請求の範囲 8に記載の本発明は、 請求の範囲 7に記載の距離の測定方法撮像手 段の光学素子が有する固有の収差を捕正する収差補正手段を備えたことを特徴と する。 本発明によれば、 レンズなどの有する固有の収差を予め知っておきこれら を補正して、 正しい位置を測定することができる。  The present invention described in claim 8 is characterized in that it comprises an aberration correcting means for correcting an inherent aberration of the optical element of the distance measuring method imaging means according to claim 7. According to the present invention, a proper position can be measured by knowing in advance the inherent aberrations of a lens or the like and correcting them.
請求の範囲 9に記載の本発明は、 請求の範囲 5に記載の距離の測定装置におい て、 収差捕正手段は、 入力される光学素子の位置に対する出力値を予め備えたテ 一ブル手段であることを特徴とするものである。 本発明によれば、 演算処理を必 要とせず、 入力された値に対する捕正値が直ちに出力される。  The present invention described in claim 9 is the distance measuring device according to claim 5, wherein the aberration correcting means is a table means provided in advance with an output value corresponding to the position of the input optical element. It is characterized by having. According to the present invention, a correction value for an input value is immediately output without requiring any arithmetic processing.
請求の範囲 1 0に記載の本発明は、 請求の範囲 6乃至請求の範囲 9のいずれか 記載の距離の測定装置前記距離において、 演算手段と光学素子の収差補正手段を 同一のテーブル手段としたことを特徴とするものである。 本発明によれば、 一つ の値に対する距離の演算と、 光学素子の収差の捕正とを 1つのテーブルで行うこ とができ、 各演算捕正を迅速に行うことができる他、 演算及び捕正に要するデバ イスの数を最小限にすることができる。  According to a tenth aspect of the present invention, in the distance measuring device according to any one of the sixth to ninth aspects, in the distance, the arithmetic unit and the aberration correction unit of the optical element are the same table unit. It is characterized by the following. ADVANTAGE OF THE INVENTION According to this invention, calculation of the distance with respect to one value and correction | amendment of the aberration of an optical element can be performed with one table, and each calculation correction | amendment can be performed quickly, and calculation and The number of devices required for collection can be minimized.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明に係る距離の測定装置の実施の形態例を示すプロック図である。 図 2は、 図 1に示した距離の測定装置における処理の流れを示すフローチヤ一 トである。  FIG. 1 is a block diagram showing an embodiment of a distance measuring device according to the present invention. FIG. 2 is a flowchart showing a processing flow in the distance measuring device shown in FIG.
図 3は、 本発明に係る距離の測定装置を示すプロック図である。  FIG. 3 is a block diagram showing a distance measuring device according to the present invention.
図 4は、 本発明に係る距離測定の状態を示す図である。  FIG. 4 is a diagram showing a state of distance measurement according to the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
図 1は本発明の形態例を示すシステム構成図である。 図 1中、 1 τ., 1 p は、 撮像手段である左カメラ及び右カメラ、 2い 2Rは各カメラ 1 L, 1 Rに搭載さ れた左右の撮像素子、 例えば C CD素子であり、 各横方向 (y方向) に 1 5 1 2 素子 (中心線 CR、 CLからは各 7 5 6 ) の受光素子を備える。 FIG. 1 is a system configuration diagram showing an embodiment of the present invention. In Figure 1, 1 τ., 1 p is Left camera and the right camera is an imaging means, 2 have 2 R image pickup device of the right and left mounted on the camera 1 L, 1 R, for example, C CD is an element, in 1 5 1 each lateral direction (y-direction) Two light receiving elements (756 each from the center lines C R and C L ) are provided.
本例では、 各カメラは基準軸 (x y軸) のセンター O (0, 0) から各 S / 2 (例えば 3 6 mm、 or 1 0 c m) 離間されて配置されており、 それらの光軸 (C L, CR) は 1 m先のクロスポイント C P (C, 0) で交叉している。 また、 本 例では対象とする物体 Pは位置 (L、 Δ γ) にあるものである。  In this example, each camera is arranged at a distance of S / 2 (for example, 36 mm, or 10 cm) from the center O (0, 0) of the reference axis (xy axis), and their optical axes ( CL, CR) intersect at the cross point CP (C, 0) 1 m away. In this example, the target object P is located at the position (L, Δγ).
符号 3は物点 Ρを受光素子 2い 2 Rで受光した位置の座標を取得する座標取得 手段、 符号 4は前記撮像手段 1 1 Rが備えているレンズ等の光学素子の収差を 補正する収差捕正手段を示している。 この収差には所謂ザイデルの 5収差等が含 まれる。 Reference numeral 3 coordinate acquisition means for acquiring a coordinate position which receives the object point Ρ-receiving element 2 have 2 R, reference numeral 4 is aberration for correcting the aberration of the optical element such as a lens which comprises said image pickup means 1 1 R 2 shows a capturing means. This aberration includes so-called Seidel's five aberrations.
また、 符号 5は、 演算手段であって、 前記座標取得手段 3及び収差捕正手段 4 の出力を受け、最終的に物点 Pまでの距離 Lと光軸 Oまでの距離 Δ yを演算する。 つぎに、 本例に係る距離の測定装置の処理について説明する。 本例では、 撮影 手段での撮影 (S l)、 両撮像素子での座標の取得 (S 2)、 光学素子収差の補正 (S 3)、 これによる L、 A yの演算及び出力を行う (S 4)。  Reference numeral 5 denotes a calculating unit that receives outputs of the coordinate obtaining unit 3 and the aberration correcting unit 4 and finally calculates a distance L to the object point P and a distance Δy to the optical axis O. . Next, processing of the distance measuring device according to the present example will be described. In this example, photographing by photographing means (Sl), acquisition of coordinates by both image sensors (S2), correction of optical element aberration (S3), and calculation and output of L and Ay by this (S1) S 4).
図 3にさらに具体的構成を示す。本例では、座標取得手段 3、収差補正手段 4、 及び演算手段 5は、 演算処理部 1 1 とレンズ収差捕正データ、 A y演算データを 格納したテーブル 1 2とを有する。  Figure 3 shows a more specific configuration. In this example, the coordinate acquisition means 3, the aberration correction means 4, and the calculation means 5 have a calculation processing unit 11 and a table 12 storing lens aberration correction data and Ay calculation data.
そして、この演算処理部 1 1で演算された L、 A y及び各 C CD撮像素子 2 L, 2 Rで撮像された画像データが立体画像表示処理装置 2 1を経て立体表示装置 2 2に送られて立体表示される。  Then, the L and Ay calculated by the arithmetic processing unit 11 and the image data captured by the CCD image sensors 2 L and 2 R are transmitted to the stereoscopic display device 22 via the stereoscopic image display processing device 21. Is displayed three-dimensionally.
次に本発明における距離 Lと Δ yとの計算について図 1及び図 4を参照して説 明する。 ここで図中 f は撮像手段のレンズの焦点距離を表している。  Next, the calculation of the distance L and Δy in the present invention will be described with reference to FIGS. Here, f in the figure represents the focal length of the lens of the imaging means.
左カメラにおいては、 以下の式が成立する。  For the left camera, the following equation holds.
yLp/{(A y/c o s 0 L)+ 〔(厶 z—厶 y t a n 0 L) s i η Θ J }=f/ { ( z c/ c o s Θ -〔(A z—A y t a n 0L) s i n Θ J } (式 1 ) 右カメラの式でも同様の式が成り立つ。 そして、 y L p / {(A y / cos 0 L ) + [(m z—m ytan 0 L ) si η Θ J} = f / {(zc / cos Θ-[(A z—A ytan 0 L ) sin {J} (Equation 1) The same equation holds for the expression of the right camera. And
0 L=0R=eとしてカメラを固定すると式 1は以下のように簡単となる。 If the camera is fixed with 0 L = 0 R = e, Equation 1 becomes simple as follows.
yLP/{(A y/c o s 0 )+ 〔(厶 z 厶 y t a n 0 ) s i η Θ ] }=f/{( z c/c o s 0 )- 〔(厶 z -厶 y t a n 0 ) s i n Θ ] } (式 2 ) 図 4より三角形 f 、 y , p, O yと三角形 f P Q相似であるので、、 y LP / {(A y / cos 0) + [(m z m ytan 0) si η Θ]} = f / {(zc / cos 0)-[(m z -m ytan 0) sin Θ]}} equation 2) 4 than the triangle f, y, p, since it is O y and triangle f PQ similar ,,
y LP/ 'A' =f/ 'B' となる。 y LP / 'A' = f / 'B'.
ここで Ά' = Ό' + 'd' Where Ά '= Ό' + 'd'
'Β' = 'e' - 'f' として分け、 'c' 'd' 'e' 'f, を導き出すと、 c' = (厶 y/c o s Θ )  'Β' = 'e'-Divide as 'f' and derive 'c' 'd' 'e' 'f, c' = (m y / cos Θ)
d' =(Δ ζ -Δ y t a n Θ )/ s i n Θ  d '= (Δ ζ -Δ y t a n Θ) / s i n Θ
e =( z c/c o s Θ )  e = (z c / c o s Θ)
f ' =(Δ ζ -Δ γ ΐ Β η θ ) · c o s Θ になる。  f '= (Δζ-Δγΐ Β ηθ) · cos Θ.
c' 〜 'f' を yL/ 'A' =f/ 'B' に代入すると、 Substituting c 'to' f 'into y L /' A '= f /' B 'gives
yLP/{ (厶 y/c o s 0 )+ 〔(厶 z—A y t a n 0 ) s i n θ ] }=f/{( z c/c o s Θ )- 〔(厶 z 厶 y t a n 0 ) c o s 0〕 } (式 3 ) この 2式(式 2及び式 3)基本式から) Δ z、 Δ yを出せば良い。 y LP / {(m y / cos 0) + [(m z—A ytan 0) sin θ]} = f / {(zc / cos Θ)-[(m z m ytan 0) cos 0]} (expression 3) It is only necessary to calculate Δz and Δy from these two equations (Equation 2 and Equation 3).
ここで t a n Aはカメラの画角で定数であるので、 計算及ぴ定測であらかじめ及 めておくことができる。 また、 以下の数値 7 5 6は C CD撮像素子の中央から左 右の端縁までの素子数であり、 この値は、 撮像素子の素子数及び計算の起端点を 変更 (例えば起端点を左端にする等) することにより適宜変更できる。 Here, t an A is a constant that is the angle of view of the camera, and can be obtained in advance by calculation and measurement. In addition, the following numerical value 756 is the number of elements from the center of the CCD image sensor to the left and right edges, and this value changes the number of elements of the image sensor and the starting point of calculation (for example, changing the starting point to the left end Can be changed as appropriate.
また、 Also,
'R' は、  'R' is
〔(厶 z +A y t a n 0 ) s i n 0—(厶 V / c o s Θ ) ] I し { z / c o S Θ— 〔、厶 Z + A y t a n 0 )/c o s 9 ] } t a n A3 =+x R/756 [(M z + A ytan 0) sin 0— (m V / cos Θ)] I then {z / co S Θ— [, m Z + A ytan 0) / cos 9]} tan A3 = + x R / 756
'じ は、 '
〔(Δ ζ 厶 y t a n 0 ) s i n 0 + (厶 y/ c o s 0 )〕 / C { z / c o s Θ - 〔(厶 z— [(Δ ζ m ytan 0) sin 0 + (m y / cos 0)] / C {z / cos Θ-[(m z—
Figure imgf000009_0001
Figure imgf000009_0001
y.)} A0//tapo9cstx756anA.+ = 'P' =-756 - t a n 9 - s i n 0+ C (756- x L · ί α η θ · ί η Α)/ο ο 3 θ ] y.)} A0 // tapo9cstx756anA. + = 'P' = -756-tan 9-sin 0+ C (756- x L · ί α η θ · ί η Α) / ο ο 3 θ]
{ 〔一 'Q' - 厶 z + ' R ' x R( z _厶 z)〕 I '0' } = { 〔- 'Q' - 厶 z + ' R ' x L( z—厶 z)〕 I 'Ρ' } {[One 'Q'-m z + 'R' x R (z _ m z)] I '0'} = {[-'Q'-m z + 'R' x L (z-m z)] I 'Ρ'}
- ' Q, 'Ρ' Δ ζ + ' R , 'Ρ' x R · z - ' R ' 'P' x R · Δ z =- 'Q' '0' . 厶 z + <0 ' R ' x L · z - '0' ' R ' x L · Δ z -'Q,' Ρ 'Δ ζ +' R, 'Ρ' x R · z-'R''P' x R · Δ z =-'Q''0'. Mm z + <0 'R' x Lz -'0''R' x L
(- £Q' 'P, — ' R , 'P' . xR+ '0' ' R ' x L+ 'Q' '0' ) Δ z =+ <0, ' R ' - ' R ' 'P' xR . z =( '0' ' R , x L- ' R ' 'P' x R) z (- £ Q '' P, — 'R,' P '. X R +' 0 '' R 'x L +' Q '' 0 ') Δ z = + <0,' R '-' R '' P 'x R .z = (' 0 '' R, x L- 'R''P' x R ) z
'S, =- 'Q' 'P' ' R ' 'P, . x R+ '0' ' R ' x L+ 'Q' <0, 'S, =-' Q '' P '' R '' P,. X R + '0''R' x L + 'Q'<0,
'0' = '0' ' R ' xL- ' R ' 'P, x R '0' = '0''R' x L- 'R''P, x R
ここで、  here,
XR、 XLは画像のズレ量 X R and XL are the amount of image shift
zはクロスポイント  z is the cross point
求めるのは Δ zである。 What we want is Δ z.
'R' は下式で求められる。  'R' is calculated by the following equation.
756(A z +A y t a n 0 ) s i n 0 _ 〔 (756 · Α γ )/。 ο 3 θ〕 = 〔(ζ · χ n A)/ c o s Θ ] -{ 〔x R(A z +A y t a n 0 ) t a n A] / c o s Θ } 756 (A z + A ytan 0) sin 0 _ [(756 · Αγ) /. ο 3 θ] = [(ζ · χn A) / cos Θ]-{[x R (A z + A ytan 0) tan A] / cos Θ}
756 · 厶 z + [ ( x R · t a n A)/ c o s ] · 厶 z = [ ( z · x R - t a n A)/ c o — 〔(x R - A y t a n 0 · t a n A)/ c o s Θ ] —756 · 厶 y · t a n Θ · s 十 [ (756 · Δ y )/ c o s 0〕 756 · m z + [(x R · tan A) / cos] · m z = [(z · x R -tan A) / co — [(x R -A ytan 0 · tan A) / cos Θ] — 756 · m y · tan Θ · s ten [(756 · Δ y) / cos 0]
{ (756 · c o s Θ +x R · t a n A)/ c o s θ } Δ z =( z · x R · t a n A- x R · t a n Θ · t a n A-756 · 厶 y · s i n20 +756 · Δ y )/ c o s Θ {(756 · cos Θ + x R · tan A) / cos θ} Δ z = (z · x R · tan A- x R · tan Θ · tan A-756 ·厶y · sin 2 0 +756 · Δ y) / cos Θ
'じ は下式で求められる。 756 (Λ z -Δ y t a n θ ) s i n Θ + C (756 - A y )/ c o s 9 ] = [ ( z - x L - t a n A)/ c o s Θ ] -{ 〔xL(A z 厶 y t a n Θ ) t a n A] / c o s Θ } Is calculated by the following equation. 756 (Λ z -Δ ytan θ) sin Θ + C (756-A y) / cos 9] = [(z-x L -tan A) / cos Θ]-{(x L (A z m ytan Θ) tan A] / cos Θ}
756 · 厶 z + C ( x L · t a n A)/ c o s θ〕 · Δ z = 〔(z · x L - t a n A)/ c o s Θ ] + [ (x L - A y t a n 0 · t a n A)/ c o s Θ ] —756 ' A y ' t a n Θ · s i n Θ - 〔(756 · Δ y )/ c o s Θ ] 756 -厶z + C (x L · tan A) / cos θ ] · delta z = [(z · x L - tan A ) / cos Θ] + [(x L - A ytan 0 · tan A) / cos Θ] —756 'A y' tan Θ · sin Θ-[(756 · Δ y) / cos Θ]
{ (756 · c o s Θ +x L · t a n A)/ c o s Θ } A z =( z · x L · t a n A+ x L · Δ y · t a n Θ · t a n A-756 · Δ y · s i n 2 Θ +756 · 厶 y ) / c o s 0 基本式より Δ yも計算する。なお Δ yは、本例ではセンターからのズレ量である。{(756 · cos Θ + x L · tan A) / cos Θ} A z = (z · x L · tan A + x L · Δ y · tan Θ · tan A-756 · Δ y · sin 2 Θ +756 · Mm y) / cos 0 Calculate Δ y from the basic formula. Note that Δy is the amount of deviation from the center in this example.
( z · X R · t a n A-x„ · A y - t a n θ · t a n A-756 · Δ y · s i n 2 Θ +756 · Δ y )/ C (756 · c o s Θ ) + ( x R · t a n A)] = ( z · x L · t a n A + x L · Δ y · t a n Θ · t a n A+756 · A y · s i n2 Θ -756 · A y )/ 〔(756 · c o s Θ ) + (x L · t a n A) ] (Z · X R · tan Ax "· A y - tan θ · tan A-756 · Δ y · sin 2 Θ +756 · Δ y) / C (756 · cos Θ) + (x R · tan A)] = (z · x L · tan A + x L · Δ y · tan Θ · tan A + 756 · A y · sin 2 Θ -756 · A y) / [(756 · cos Θ) + ( x L · tan A)]
〔 z · x R · t a n A + (-x R · t a n Θ · t a n A-756 s i n 2 Θ +756) Δ y〕 I 'V = 〔 z · x L · t a n A + (x L - t a n Θ · t a n A+756 · s i n 2 Θ -756) Δ y〕 / 'M' [Z · x R · tan A + (-x R · tan Θ · tan A-756 sin 2 Θ +756) Δ y ] I 'V = [z · x L · tan A + (x L - tan Θ · tan A + 756 sin 2 Θ -756) Δ y) / 'M'
L' = ( z · x R · t a n A- x R · A y · t a n Θ · t a n A-756 · A y · s i n 2 Θ +756 ' A y )/ 〔(756 · c o s Θ ) + (xR · t a n A)〕 L '= (z · x R · tan A- x R · A y · tan Θ · tan A-756 · A y · sin 2 Θ +756' A y) / [(756 · cos Θ) + ( x R · Tan A))
'M, = ( z · x L · t a n A + x L ' A y ' t a n Θ · t a n A+756 · 厶 y · s i n2 Θ - 756 · A y )/ C (756 - c o s 0 ) + (x L - t a n A)] 'M, = (z · x L · tan A + x L' A y 'tan Θ · tan A + 756 ·厶y · sin 2 Θ - 756 · A y) / C (756 - cos 0) + (x L -tan A)]
'N' = -x R · t a n Θ · t a n A-756 s i n 2 Θ +756 'N' = -x R · tan Θ · tan A-756 sin 2 Θ +756
'0' =x L · t a n Θ · t a n A+756 · s i n 2 Θ - 756 '0' = x L · tan Θ · tan A + 756 · sin 2 Θ - 756
' Q =z - χ„ · t a n A  'Q = z-χ „t a n A
' R' = z · x L - t a n A M, 'Q' + 'M, 'N, 厶 y= 'L' 'R' + 'L' Ό' Δ y 'R' = zx L -tan A M, 'Q' + 'M,' N, m y = 'L''R' + 'L' Ό 'Δ y
{ 'M' 'N' - 'じ 'Ο' } A y = ( ' 'R' - 'Μ' 'Q' ) {'M' 'N'-'J' Ο '} A y = (' 'R'-'Μ' 'Q')
Δ y = <S, I 'Τ' Δ y = <S, I 'Τ'
これにより、 左右の撮像素子の画像から、 物点までの距離 L及び左右方向のず れ両 Δ yが求められる。  As a result, the distance L to the object point and the shift Δy in the left-right direction are obtained from the images of the left and right imaging elements.
本例では、 この結果をテーブルに予め格納しておく ことにより、 画像取得時か ら瞬時に L及び Δ yの値を出力することができる。  In this example, by storing this result in a table in advance, the values of L and Δy can be output instantaneously from the time of image acquisition.
また、 テーブルには予め光学素子に関する収差の捕正量を格納しておく ことが でき、 この値は使用するレンズ等の補正量に合わせて適宜変更できる。  In addition, the table can store in advance the correction amount of the aberration for the optical element, and this value can be appropriately changed according to the correction amount of the lens used.
産業上の利用可能性  Industrial applicability
請求の範囲 1に記載の本発明は、 それぞれ撮像素子を備え、 所定のクロスボイ ント (コンパージエンスポイント : C P) で光軸を交叉させた 2台の撮像手段で 物体を撮影し、 前記 2台の撮像手段の撮像素子で撮影された同一物体の撮像素子 上の座標を求め、 該座標取得手段が取得した情報から撮像位置から物体までの距 離を演算することを特徴とする距離の測定方法である。 本発明によれば、 2つの 撮像手段に基づく画像情報だけから物体までの位置を正確かつ容易に求めること ができる。  The present invention described in claim 1 provides an image pickup device, each of which includes an image pickup device, and images an object by two image pickup units whose optical axes are crossed at a predetermined cross point (compare ence point: CP). Determining a coordinate on the image sensor of the same object photographed by the image sensor of the imaging means, and calculating a distance from the imaging position to the object from the information acquired by the coordinate acquisition means. It is. ADVANTAGE OF THE INVENTION According to this invention, the position to an object can be calculated | required accurately and easily from only the image information based on two imaging means.
請求の範囲 2に記載の本発明は、 請求の範囲 1に記載の距離の測定方法及ぴ距 離の測定装置距離において、 前記距離の演算は入力された値に対する出力値を予 め備えたテーブル手段を用いて行うことを特徴とするものである。 本発明によれ ば、 入力された値に対して直ちに出力値が得られ演算速度を早急なものとするこ とができる他、 高速な演算手段を用いる必要がなくなる。  According to a second aspect of the present invention, in the distance measuring method and the distance measuring device distance according to the first aspect, the distance calculation includes a table in which output values for input values are provided in advance. It is characterized by using means. According to the present invention, an output value can be obtained immediately with respect to an input value, so that the calculation speed can be increased quickly, and it is not necessary to use a high-speed calculation means.
請求の範囲 3に記載の本発明は、 前記請求の範囲 1に記載の距離の測定方法に おいて、 撮像手段の光学素子が有する固有の収差を補正することを特徴とするも のである。 本発明によれば、 レンズなどの有する固有の収差を予め知っておきこ れらを補正して、'正しい位置を測定することができる。 請求の範囲 4に記載の本発明は、 請求の範囲 1に記載の距離の測定方法におい て、 前記光学素子の収差の補正は、 入力される光学素子の位置に対する出力値を 予め備えたテーブル手段を用いて行うことを特徴とするものである。 本発明によ れば、演算処理を必要とせず、入力された値に対する補正値が直ちに出力される。 請求の範囲 5に記載の本発明は、 請求の範囲 1乃至請求の範囲 4のいずれかに 記載の距離の測定方法において、 前記距離の演算と、 光学素子の収差の捕正は同 一のテーブル手段を用いて行うことを特徴とするものである。 本発明によれば、 一つの値に対する距離の演算と、 光学素子の収差の捕正とを 1つのテーブルで行 うことができ、 各演算捕正を迅速に行うことができる他、 演算及び捕正に要する デバイスの数を最小限にすることができる。 According to a third aspect of the present invention, in the distance measuring method according to the first aspect, an inherent aberration of the optical element of the imaging unit is corrected. According to the present invention, a proper position can be measured by knowing in advance the inherent aberrations of a lens or the like and correcting them. According to a fourth aspect of the present invention, there is provided the distance measuring method according to the first aspect, wherein the correction of the aberration of the optical element includes a table means which is provided in advance with an output value corresponding to a position of the input optical element. This is characterized by performing the above. According to the present invention, a correction value for an input value is immediately output without requiring any arithmetic processing. According to a fifth aspect of the present invention, in the distance measuring method according to any one of the first to fourth aspects, the calculation of the distance and the correction of aberration of the optical element are the same table. It is characterized by using means. ADVANTAGE OF THE INVENTION According to this invention, calculation of the distance with respect to one value and correction | amendment of the aberration of an optical element can be performed in one table, and each calculation correction | amendment can be performed quickly, and calculation and capture are possible. The number of devices required can be minimized.
請求の範囲 6に記載の本発明は、 それぞれ撮像素子を備え、 所定のクロスボイ ント (コンパージエンスボイント : C P ) で光軸を交叉させた 2台の撮像手段と、 前記 2台の撮像手段の両方の撮像素子で撮影された同一物体の撮像素子上の座標 を求める座標取得手段と、 該座標取得手段が取得した情報から撮像位置から物体 までの距離を演算する演算手段とを備えたことを特徴とする距離の測定装置であ る。 本発明よれば、 2つの撮像手段に基づぐ画像情報だけから物体までの位置を 正確かつ容易に求めることができる。  According to a sixth aspect of the present invention, there are provided two image pickup means each including an image pickup element, wherein the optical axes are crossed at a predetermined cross point (compare-enforcement point: CP); and Coordinate acquisition means for obtaining coordinates on the image sensor of the same object photographed by both image sensors; and arithmetic means for calculating the distance from the imaging position to the object from the information acquired by the coordinate acquisition means. This is a characteristic distance measuring device. ADVANTAGE OF THE INVENTION According to this invention, the position to an object can be calculated | required accurately and easily from only the image information based on two imaging means.
請求の範囲 7に記載の本発明は、請求の範囲 6記載に距離の測定装置において、 前記距離の演算は入力された値に対する出力値を予め備えたテープル手段を備え たことを特徴とするものである。 本発明によれば、 入力された値に対して直ちに 出力値が得られ演算速度を早急なものとすることができる他、 高速な演算手段を 用いる必要がなくなる。  According to a seventh aspect of the present invention, in the distance measuring device according to the sixth aspect, the distance calculation includes a staple unit having an output value corresponding to an input value in advance. It is. According to the present invention, an output value is immediately obtained for an input value, so that the operation speed can be increased quickly, and it is not necessary to use a high-speed operation means.
請求の範囲 8に記載の本発明は、 請求の範囲 7に記載の距離の測定方法におい て、 撮像手段の光学素子が有する固有の収差を捕正する収差補正手段を備えたこ とを特徴とする。 本発明によれば、 レンズなどの有する固有の収差を予め知って おきこれらを捕正して、 正しい位置を測定することができる。  The present invention described in claim 8 is the distance measuring method described in claim 7, further comprising an aberration correcting unit that corrects an inherent aberration of the optical element of the imaging unit. . According to the present invention, a proper position can be measured by knowing in advance the inherent aberrations of a lens or the like and correcting them.
請求の範囲 9に記載の本発明は、 請求の範囲 5に記載の距離の測定装置におい て、 収差捕正手段は、 入力される光学素子の位置に対する出力値を予め備えたテ 一ブル手段であることを特徴とするものである。 本発明によれば、 演算処理を必 要とせず、 入力された値に対する補正値が直ちに出力される。 The present invention described in claim 9 is the distance measuring device according to claim 5, wherein the aberration correcting means is a table means provided in advance with an output value corresponding to the position of the input optical element. It is characterized by having. According to the present invention, arithmetic processing is required. The correction value for the input value is output immediately without any need.
請求の範囲 1 0に記載の本発明は、 請求の範囲 6乃至請求の範囲 9のいずれかに 記載の距離の測定装置前記距離において、 演算手段と光学素子の収差捕正手段を 同一のテ一ブル手段としたことを特徴とするものである。 本発明によれば、 一つ の値に対する距離の演算と、 光学素子の収差の捕正とを 1つのテーブルで行うこ とができ、 各演算補正を迅速に行うことができる他、 演算及び補正に要するデバ イスの数を最小限にすることができる。 According to a tenth aspect of the present invention, in the distance measuring device according to any one of the sixth to ninth aspects, the arithmetic unit and the aberration correction unit of the optical element are provided in the same table. It is characterized in that it is a flexible means. ADVANTAGE OF THE INVENTION According to this invention, calculation of the distance with respect to one value and correction | amendment of the aberration of an optical element can be performed by one table, and each calculation correction | amendment can be performed quickly, and calculation and correction Can minimize the number of devices required.

Claims

請求の範囲 The scope of the claims
1 . それぞれ撮像素子を備え、 所定のクロスポイント (コンパージエンスポイン ト : C P ) で光軸を交叉させた 2台の撮像手段で物体を撮影し、  1. Each object is equipped with an image sensor, and an object is photographed by two image pickup means whose optical axes are crossed at a predetermined cross point (compare point: C P).
前記 2台の撮像手段の撮像素子で撮影された同一物体の撮像素子上の座標を求 め、  The coordinates of the same object photographed by the imaging devices of the two imaging units are obtained on the imaging device,
該座標取得手段が取得した情報から撮像位置から物体までの距離を演算するこ とを特徴とする距離の測定方法。  A distance measuring method comprising calculating a distance from an imaging position to an object from information acquired by the coordinate acquiring means.
2 . 前記距離の演算は入力された値に対する出力値を予め備えたテーブル手段を 用いて行うことを特徴とする請求の範囲 1記載の距離の測定方法。  2. The method for measuring a distance according to claim 1, wherein the calculation of the distance is performed using table means provided in advance with an output value corresponding to an input value.
3、 撮像手段の光学素子が有する固有の収差を捕正することを特徴とする請求の 範囲 1に記載の距離の測定方法。 3. The distance measuring method according to claim 1, wherein an inherent aberration of an optical element of the imaging means is captured.
4 . 前記光学素子の収差の捕正は、 入力される光学素子の位置に対する出力値を 予め備えたテーブル手段を用いて行うことを特徴とする請求の範囲 1に記載の距 離の測定方法。  4. The distance measuring method according to claim 1, wherein the correction of the aberration of the optical element is performed using a table means provided in advance with an output value corresponding to the position of the input optical element.
5 . 前記距離の演算と、 光学素子の収差の補正は同一のテーブル手段を用いて行 うことを特徴とする請求の範囲 1乃至請求の範囲 4のいずれかに記載の距離の測 定方法。  5. The distance measuring method according to any one of claims 1 to 4, wherein the calculation of the distance and the correction of the aberration of the optical element are performed using the same table.
6 . それぞれ撮像素子を備え、 所定のクロスポイント (コンパージエンスポイン ト : C P ) で光軸を交叉させた 2台の撮像手段と、  6. Two imaging means, each equipped with an image sensor, with the optical axis crossing at a predetermined cross point (compare point: CP);
前記 2台の撮像手段の両方の撮像素子で撮影された同一物体の撮像素子上の座 標を求める座標取得手段と、  Coordinate acquisition means for obtaining coordinates on the image sensor of the same object photographed by both image sensors of the two image means;
該座標取得手段が取得した情報から撮像位置から物体までの距離を演算する演 算手段とを備えたことを特徴とする距離の測定装置。  Calculating means for calculating the distance from the imaging position to the object from the information obtained by the coordinate obtaining means.
7 . 前記距離の演算は入力された値に対する出力値を予め備えたテーブル手段を 備えたことを特徴とする請求の範囲 5に記載の距離の測定方法。  7. The distance measuring method according to claim 5, wherein the distance calculation includes a table unit having an output value corresponding to an input value in advance.
8、 撮像手段の光学素子が有する固有の収差を補正する収差補正手段を備えたこ とを特徴とする請求の範囲 7に記載の距離の測定方法。  8. The distance measuring method according to claim 7, further comprising an aberration correcting unit that corrects an inherent aberration of the optical element of the imaging unit.
9 . 前記収差捕正手段は、 入力される光学素子の位置に対する出力値を予め備え たテーブル手段であることを特徴とする請求の範囲 5に記載の距離の測定方法。 9. The distance measuring method according to claim 5, wherein the aberration correction unit is a table unit that is provided with an output value with respect to a position of an optical element to be input.
1 0. 前記距離の演算手段と光学素子の収差捕正手段は、 同一のテーブル手段で あることを特徴とする請求の範囲 6乃至請求の範囲 9のいずれかに記載の距離の 測定装置。 ' 10. The distance measuring device according to any one of claims 6 to 9, wherein the distance calculating means and the aberration correcting means of the optical element are the same table means. '
PCT/JP2003/005211 2003-04-23 2003-04-23 Method and apparatus for measuring distance WO2004094944A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004571088A JPWO2004094944A1 (en) 2003-04-23 2003-04-23 Distance measuring method and apparatus
PCT/JP2003/005211 WO2004094944A1 (en) 2003-04-23 2003-04-23 Method and apparatus for measuring distance
AU2003231457A AU2003231457A1 (en) 2003-04-23 2003-04-23 Method and apparatus for measuring distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005211 WO2004094944A1 (en) 2003-04-23 2003-04-23 Method and apparatus for measuring distance

Publications (1)

Publication Number Publication Date
WO2004094944A1 true WO2004094944A1 (en) 2004-11-04

Family

ID=33307228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005211 WO2004094944A1 (en) 2003-04-23 2003-04-23 Method and apparatus for measuring distance

Country Status (3)

Country Link
JP (1) JPWO2004094944A1 (en)
AU (1) AU2003231457A1 (en)
WO (1) WO2004094944A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974500B2 (en) * 1992-06-11 1999-11-10 キヤノン株式会社 Compound eye imaging device
JP3284190B2 (en) * 1998-05-14 2002-05-20 富士重工業株式会社 Image correction device for stereo camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2974500B2 (en) * 1992-06-11 1999-11-10 キヤノン株式会社 Compound eye imaging device
JP3284190B2 (en) * 1998-05-14 2002-05-20 富士重工業株式会社 Image correction device for stereo camera

Also Published As

Publication number Publication date
AU2003231457A1 (en) 2004-11-19
JPWO2004094944A1 (en) 2006-07-13

Similar Documents

Publication Publication Date Title
US11928838B2 (en) Calibration system and method to align a 3D virtual scene and a 3D real world for a stereoscopic head-mounted display
EP3651683B1 (en) Computer-implemented method and system for planning the placement of orthodontic brackets using immersive photographs
JP3802630B2 (en) Stereoscopic image generating apparatus and stereoscopic image generating method
JP5247590B2 (en) Information processing apparatus and calibration processing method
JP5965726B2 (en) Stereoscopic endoscope device
US20160295194A1 (en) Stereoscopic vision system generatng stereoscopic images with a monoscopic endoscope and an external adapter lens and method using the same to generate stereoscopic images
TWI532009B (en) Method and apparatus for generating image with shallow depth of field
JP2008227865A (en) Head-mounted imaging/displaying device and image generating device
WO2018056155A1 (en) Information processing device, image generation method and head-mounted display
JP5441527B2 (en) Stereoscopic image forming apparatus for stereoscopic video display apparatus
JP4580678B2 (en) Gaze point display device
JP2022183177A (en) Head-mounted display device
KR100982171B1 (en) The System for Capturing 2D Facial Image
JP2010124191A (en) Video image display device
CN107636532A (en) Camera device, endoscope apparatus and image capture method
JP2006017632A (en) Three-dimensional image processor, optical axis adjustment method, and optical axis adjustment support method
CN113925441B (en) Imaging method and imaging system based on endoscope
JP2011217229A (en) Imaging apparatus and display method
JP6257260B2 (en) Imaging apparatus and control method thereof
WO2004094944A1 (en) Method and apparatus for measuring distance
JP2006340017A (en) Device and method for stereoscopic video image display
JPH10170227A (en) Display device
CN111464808B (en) Stereoscopic display device and parameter correction method thereof
JPWO2004100564A1 (en) 3D image display method and apparatus
JP2006041795A (en) Image display apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004571088

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase