WO2004090123A2 - Δ-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle - Google Patents

Δ-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle Download PDF

Info

Publication number
WO2004090123A2
WO2004090123A2 PCT/EP2004/003628 EP2004003628W WO2004090123A2 WO 2004090123 A2 WO2004090123 A2 WO 2004090123A2 EP 2004003628 W EP2004003628 W EP 2004003628W WO 2004090123 A2 WO2004090123 A2 WO 2004090123A2
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acids
desaturase
nucleic acid
sequence
organism
Prior art date
Application number
PCT/EP2004/003628
Other languages
English (en)
French (fr)
Other versions
WO2004090123A3 (de
Inventor
Petra Cirpus
Jörg BAUER
Astrid Meyer
Ernst Heinz
Ulrich ZÄHRINGER
Original Assignee
Basf Plant Science Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Plant Science Gmbh filed Critical Basf Plant Science Gmbh
Priority to US10/552,127 priority Critical patent/US7629503B2/en
Priority to JP2006505010A priority patent/JP4732333B2/ja
Priority to EP04725899.1A priority patent/EP1613744B1/de
Priority to AU2004227075A priority patent/AU2004227075B8/en
Priority to CA2521378A priority patent/CA2521378C/en
Priority to BRPI0409209-0A priority patent/BRPI0409209A/pt
Priority to MXPA05010571A priority patent/MXPA05010571A/es
Publication of WO2004090123A2 publication Critical patent/WO2004090123A2/de
Publication of WO2004090123A3 publication Critical patent/WO2004090123A3/de
Priority to NO20054372A priority patent/NO20054372L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8247Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified lipid metabolism, e.g. seed oil composition

Definitions

  • the present invention relates to an improved process for the specific production of unsaturated ⁇ -3 fatty acids and a process for the production of triglycerides with an increased content of unsaturated fatty acids, especially of ⁇ -3 fatty acids with more than three double bonds.
  • the invention relates to the production of a transgenic organism, preferably a transgenic plant or a transgenic microorganism with an increased content of fatty acids, oils or lipids with ⁇ -4 double bonds due to the expression of a ⁇ -4 desaturase from Euglena gracilis.
  • the invention relates to expression cassettes containing a nucleic acid sequence, a vector and organisms containing at least one nucleic acid sequence or an expression cassette.
  • the invention also relates to unsaturated fatty acids and triglycerides with an increased unsaturated fatty acid content and their use.
  • Fatty acids and triglycerides have a large number of applications in the food industry, animal nutrition, cosmetics and in the pharmaceutical sector. Depending on whether it is free saturated or unsaturated fatty acids or triglycerides with an increased content of saturated or unsaturated fatty acids, they are suitable for a wide variety of applications.
  • Polyunsaturated long chain ⁇ 3 fatty acids such as eicosapentaenoic acid (EPA) or docosahexaenoic acid (DPA) are important components of human nutrition due to their different roles in health, aspects such as the development of the child's brain, the functionality of the eye, the synthesis of hormones and others Signaling substances, as well as the prevention of cardiovascular complaints, cancer and diabetes include (Poulos, A Lipids 30: 1-14, 1995; Horrocks, LA and Yeo YK Pharmacol Res 40: 211-225, 1999). For this reason, there is a need for the production of polyunsaturated long-chain fatty acids.
  • EPA eicosapentaenoic acid
  • DPA docosahexaenoic acid
  • polyunsaturated fatty acids are added to baby food to increase the nutritional value, as well as for the unhindered development of the baby .
  • Mainly the various fatty acids and triglycerides are obtained from microorganisms such as Mortierella or from oil-producing plants such as soybeans, rapeseed, sunflower and others, whereby they usually in the form of their triacylglycerides.
  • long-chain unsaturated fatty acids do not occur in higher riants.
  • the long-chain fatty acids mostly come from fish oil or from the fermentation of corresponding algae (eg Thraustochytrium) or fungi (eg Mortierella).
  • the free fatty acids are advantageously produced by saponification.
  • oils with saturated or unsaturated fatty acids are preferred, for example, lipids with unsaturated fatty acids, especially polyunsaturated fatty acids, are preferred in human nutrition because they have a positive influence on the cholesterol level in the blood and thus on the possibility of heart disease. They are used in various diet foods or medications.
  • ⁇ -6 desaturases are described in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 and WO 99/27111 and also the use for production in transgenic organisms as described in WO9846763
  • DHA docosahexaenoic acid
  • FIG. 1 Various synthetic routes are discussed for the synthesis of docosahexaenoic acid (DHA) (FIG. 1).
  • DHA is produced in marine bacteria such as Vibrio sp. or Shewanella sp. according to the polyketide route (Yu, R. et al. Lipids 35: 1061-1064, 2000; Takeyama, H. et al. Microbiology 143: 2725-2731, 1197)).
  • nucleic acid sequences according to the invention which code for polypeptides with ⁇ -4-desaturase activity, selected from the group: a) a nucleic acid sequence with the sequence shown in SEQ ID NO: 1, b) nucleic acid sequences which result from the degenerate genetic codes can be derived from the coding sequence contained in SEQ ID NO: 1, or c) derivatives of the nucleic acid sequence shown in SEQ ID NO: 1, which code for polypeptides with the amino acid sequences shown in SEQ ID NO: 2 - and at least 40% Have homology at the amino acid level with SEQ ID NO: 2 and have a ⁇ -4 desaturase activity.
  • a ⁇ 4-desaturase from Euglena gracilis is particularly specific for the conversion of docopentaenoic acid (DPA) to docohexaenoic acid (DHA) when it is expressed in a heterologous system.
  • DPA docopentaenoic acid
  • DHA docohexaenoic acid
  • Docosahexaenoic acid can thus be produced in plants or microorganisms, the specificity of the enzyme found greatly reducing the formation of undesired by-products.
  • the double bond at position C4-C5 of the fatty acid is only inserted if a double bond already exists in position C7-C8.
  • the enzyme found can thus be used not only for the synthesis of DHA from DPA, but also for the synthesis of special fatty acids which occur only to a limited extent or not at all in nature.
  • Examples of such fatty acids are 16: 2 ⁇ 4, ⁇ 7 or 16: 3 ⁇ 4, ⁇ 7, ⁇ 10, ⁇ 13 ..
  • ⁇ 4-desaturase genes described hitherto have only a low activity and specificity, it was therefore furthermore an object of the invention to introduce specific desaturase enzymes for the synthesis of polyunsaturated long-chain fatty acids in the seeds of oilseeds and to avoid the production of undesired by-products.
  • This object has been achieved by cloning the nucleic acid disclosed above.
  • the ⁇ -4-desaturase found differs from the ⁇ 4-desaturases already described in that it has substantially different nucleotide and amino acid sequences.
  • the Euglena sequence shows only 35% similarity to the Thraustochytrium ⁇ sequence (WO200226946) at the amino acid level.
  • FIG. 2 shows a sequence comparison of the Euglena sequence found with the sequence from Thraustochytrium
  • FIG. 3 shows the GAP alignment shown.
  • ⁇ -4-desaturase in the context of the invention encompasses proteins which participate in the desaturation of fatty acids, advantageously fatty acids which have a double bond at position 7 of the fatty acid chain, and their homologs, derivatives or analogs.
  • derivatives of the invention encode
  • the invention also encompasses nucleic acid molecules which differ from one of the nucleotide sequences shown in SEQ ID NO: 1 (and parts thereof) because of the degenerate genetic code and thus encode the same ⁇ -4-desaturase as that which is shown in SEQ ID NO : 1 nucleotide sequence shown is encoded.
  • ⁇ -4 desaturase nucleotide sequence shown in SEQ ID NO: 1 DNA sequence polymorphisms that result in changes in the amino acid sequences of ⁇ -4 desaturase may exist within a population. These genetic polymorphisms in the ⁇ -4 desaturase gene can exist between individuals within a population due to natural variation. These natural variants usually cause a variance of 1 to 5% in the nucleotide sequence of the ⁇ -4-desaturase gene.
  • PFAS polyunsaturated fatty acids
  • the enzyme ⁇ -4-desaturase according to the invention advantageously introduces a c / s double bond in position C 4 -C 5 into fatty acid residues of glycerolipids (see SEQ ID NO: 1 and NO: 2).
  • the enzyme also has a ⁇ -4-desaturase activity which advantageously only introduces a c / s double bond in position C 4 -C ⁇ into fatty acid residues of glycerolipids.
  • the enzyme with the sequence mentioned in SEQ ID NO: 1 and NO: 2 also has this activity.
  • the sequences shown in SEQ ID NO: 1 and NO: 2 are monofunctional ⁇ -4 desaturase.
  • the nucleic acid sequence according to the invention (or fragments thereof) can advantageously be used to isolate further genomic sequences via homology screening.
  • the derivatives mentioned can be isolated, for example, from other organisms in eukaryotic organisms such as Rianzen such as specifically mosses, dinoflagellates or fungi.
  • Allelic variants include, in particular, functional variants which can be obtained by deleting, inserting or substituting nucleotides from the sequence shown in SEQ ID NO: 1, the enzymatic activity of the derived synthesized proteins being retained.
  • DNA sequences can be isolated from other eukaryotes such as those mentioned above starting from the DNA sequence described in SEQ ID NO: 1 or parts of these sequences, for example using conventional hybridization methods or the PCR technique. These DNA sequences hybridize to the sequences mentioned under standard conditions. Short oligonucleotides, for example of the conserved regions, which can be determined by comparison with other desaturase genes in a manner known to the person skilled in the art, are advantageously used for hybrid sighting. The histidine box sequences are advantageously used.
  • nucleic acids according to the invention or the complete sequences can also be used for the hybridization.
  • These standard conditions vary depending on the nucleic acid used: oligonucleotide, longer fragment or complete sequence or depending on the type of nucleic acid DNA or RNA used for the hybridization.
  • the melting temperatures for DNA: DNA hybrids are approx. 10 ° C lower than those of DNA: RNA hybrids of the same length.
  • DNA hybrids are advantageously 0.1 ⁇ SSC and temperatures between approximately 20 ° C. to 45 ° C., preferably between approximately 30 ° C. to 45 ° C.
  • the hybridization conditions are advantageously 0.1 ⁇ SSC and temperatures between approximately 30 ° C. to 55 ° C., preferably between approximately 45 ° C.
  • homologs of the sequence SEQ ID NO: 1 are furthermore to be understood, for example, as eukaryotic homologs, shortened sequences, single-stranded DNA of the coding and non-coding DNA sequence or RNA of the coding and non-coding DNA sequence.
  • homologs of the sequence SEQ ID NO: 1 are to be understood as derivatives such as promoter variants. These variants can be changed by one or more nucleotide exchanges, by insertion (s) and / or deletion (s), but without the functionality or effectiveness of the promoters being impaired.
  • the effectiveness of the promoters can be increased by changing their sequence, or completely replaced by more effective promoters, including organisms of other species.
  • Derivatives are also advantageously to be understood as variants whose nucleotide sequence in the range from -1 to -2000 before the start codon has been changed such that the gene expression and / or the protein expression is changed, preferably increased. Derivatives are also to be understood as variants which have been changed at the 3 'end.
  • Derivatives are also to be understood as the antisense DNAs which can be used to inhibit the protein biosynthesis of the proteins according to the invention. These antisense DNAs belong to the non-functional derivatives according to the invention, such as derivatives which have no enzymatic activity. Further methods known to those skilled in the art for the production of nonfunctional derivatives are the so-called cosuppression, the use of ribozymes and introns. Ribozymes are catalytic RNA molecules with ribonuclease activity that can cut single-stranded nucleic acids such as mRNA, with which they have complementarity.
  • ribozymes As a result, with the aid of these ribozymes (Haselhoff and Gerlach, Nature, 334, 1988: 585-591), mRNA transcripts can be cleaved catalytically and the translation of this RNA can thus be suppressed.
  • Such ribozymes can be tailored specifically to their tasks (US 4,987,071; US 5,116,742 and Bartel et al., Science 261, 1993: 1411-1418). With the help of the antisense DNA, fatty acids, lipids or oils with an increased proportion of saturated fatty acids can be produced.
  • the nucleic acid sequence according to the invention which codes for a ⁇ -4-desaturase, can be produced synthetically or obtained naturally or contain a mixture of synthetic and natural DNA constituents, and can consist of different heterologous ⁇ -4-desaturase gene segments from different organisms.
  • synthetic nucleotide sequences with codons are generated which are preferred by the corresponding host organisms, for example Rianzen. This usually leads to optimal expression of the heterologous genes.
  • These plant-preferred codons can be determined from the highest protein abundance codons expressed in most interesting plant species.
  • Corynebacterium glutamicum is given in: Wada et al. (1992) Nucleic Acids Res. 20: 2111-2118). Such experiments can be carried out using standard methods and are known to the person skilled in the art.
  • Functionally equivalent sequences which code for the ⁇ -4-desaturase gene are those derivatives of the sequence according to the invention which, despite a different nucleotide sequence, still have the desired functions, that is to say the enzymatic activity and have specific selectivity of the proteins.
  • Functional equivalents thus include naturally occurring variants of the sequences described here, as well as artificial, for example, obtained by chemical synthesis, adapted to the codon use of a plant, artificial nucleotide sequences.
  • artificial DNA sequences are suitable, as long as they have the desired property, as described above, for example increasing the content of ⁇ -4 double bonds in fatty acids, oils or lipids in the lance by overexpression of the ⁇ -4 desaturase gene in crop plants convey.
  • Such artificial DNA sequences can have, for example, back-translation of proteins constructed using molecular modeling, ⁇ -4-desaturase activity or can be determined by in vitro selection. Possible techniques for the in vitro evolution of DNA to change or improve the DNA sequences are described in Patten, PA et al., Current Opinion in Biotechnology 8, 724-733 (1997) or in Moore, JC et al., Journal of Molecular Biology 272, 336-347 (1997). Coding DNA sequences which are obtained by back-translating a polypeptide sequence according to the codon usage specific for the host plant are particularly suitable. The specific codon usage can easily be determined by a person skilled in plant genetic methods by computer evaluations of other, known genes of the plant to be transformed.
  • Suitable equivalent nucleic acid sequences are sequences which code for fusion proteins, part of the fusion protein being a ⁇ -4-desaturase polypeptide or a functionally equivalent part thereof.
  • the second part of the fusion protein can be, for example, another polypeptide with enzymatic activity or an antigenic polypeptide sequence with the aid of which it is possible to detect ⁇ -4-desaturase expression (for example myc-tag or his-tag).
  • this is preferably a regulatory protein sequence, such as a signal sequence for the ER, which directs the ⁇ -4-desaturase protein to the desired site of action.
  • the isolated nucleic acid sequences according to the invention advantageously originate from a plant such as a monocot or dicot plant.
  • the nucleic acid sequences preferably originate from the class of the Euglenophyceae such as the orders Eutreptiales, Euglenales, Rhabdomonadales, Sphenomonadales, Heteronematales or Euglenamorphales, the sequences derive particularly advantageously from the genus and species Euglena gracilis, Astasia longa, Khawkinea ovisclumana, Phocusclinocinusclumana, Phacus clusana, Phacus clusana, Phacus clinus, Phacus clinus, Phacus clusana, Phacus clinus, Phacus clinus, Phacus clinus, Phacus clinus, Phacus clinus, Phacus clinus, Phacus clinus,
  • ⁇ -4-desaturase genes can advantageously be combined with other genes of fatty acid biosynthesis in the process according to the invention.
  • examples of such genes are the acyltransferases, further desaturases or elongases.
  • the combination with, for example, NADH cytochrome B5 reductases is advantageous, which can absorb or release reduction equivalents.
  • amino acid sequences according to the invention are to be understood as proteins which have an amino acid sequence shown in the sequence SEQ ID NO: 2 or one thereof by substitution, inversion, insertion or deletion of one or more
  • certain amino acids can be replaced by those with similar physicochemical properties (space filling, basicity, hydrophobicity, etc.).
  • arginine residues are exchanged for lysine residues, valine residues for isoleucine residues or aspartic acid residues for glutamic acid residues.
  • one or more amino acids can also be interchanged, added or removed in their order, or several of these measures can be combined with one another.
  • Derivatives are also to be understood as functional equivalents which in particular also include natural or artificial mutations of an originally isolated sequence coding for ⁇ -4-desaturase, which furthermore show the desired function, that is to say their enzymatic activity and substrate selectivity are not significantly reduced. Mutations include substitutions, additions, deletions, exchanges or insertions of one or more nucleotide residues.
  • the present invention also encompasses those nucleotide sequences which are obtained by modification of the ⁇ -4-desaturase nucleotide sequence. The aim of such a modification can e.g. further narrowing down the coding sequence contained therein or e.g. also the insertion of further restriction enzyme interfaces.
  • the nucleic acid sequence can advantageously be, for example, a DNA or cDNA sequence.
  • Coding sequences suitable for insertion into an expression cassette according to the invention are, for example, those which code for a ⁇ -4-desaturase with the sequences described above and which give the host the ability to - overproduce fatty acids, oils or lipids with double bonds in ⁇ -4 - Give position, especially if ⁇ 3 fatty acids with at least four double bonds are produced.
  • These sequences can be of homologous or heterologous origin.
  • These regulatory sequences are intended to enable targeted expression of the genes and protein expression. Depending on the host organism, this can mean, for example, that the gene is only expressed and / or overexpressed after induction, or that it is expressed and / or overexpressed immediately.
  • these regulatory sequences are sequences to which inducers or repressors bind and thus regulate the expression of the nucleic acid.
  • the natural regulation of these sequences may still be present in front of the actual structural genes and may have been genetically modified so that the natural regulation has been switched off and the expression of the genes increased.
  • the gene construct can also have a simpler structure, that is to say no additional regulation signals have been inserted in front of the nucleic acid sequence or its derivatives, and the natural promoter with its regulation has not been removed. Instead, the natural regulatory sequence was mutated so that regulation no longer takes place and / or gene expression is increased.
  • the gene construct can also advantageously contain one or more so-called “enhancer sequences” functionally linked to the promoter, which enable increased expression of the nucleic acid sequence. Additional advantageous sequences, such as further regulatory ones, can also be inserted at the 3 'end of the DNA sequences Elements or terminators.
  • the regulatory sequences or factors can preferably have a positive influence on the gene expression of the introduced genes and thereby increase it.
  • the regulatory elements can advantageously be strengthened at the transcription level by using strong transcription signals such as promoters and / or "enhancers".
  • an increase in translation is also possible, for example, by improving the stability of the mRNA.
  • promoters which can advantageously control the expression of foreign genes in organisms in plants or fungi are suitable as promoters in the expression cassette.
  • one preferably uses a plant promoter or promoters which originate from a plant virus.
  • Advantageous regulatory sequences for the method according to the invention are, for example, in promoters such as cos, tac, trp, tet, trp-tet, Ipp, lac, Ipp-lac, lacl q " 'T7, T5, T3 - contain gal, trc, ara, SP6, ⁇ -P R - or in the ⁇ -P L promoter, which are advantageously used in gram-negative bacteria.
  • the expression cassette can also contain a chemically inducible promoter, by means of which the expression of the exogenous ⁇ -4-desaturase gene in the organisms can advantageously be controlled in the rianz at a specific point in time.
  • advantageous lance promoters are, for example
  • PRP1 promoter [Ward et al., PlantMol. Biol. 22 (1993), 361-366], one that is inducible by benzenesulfonamide (EP 388186), one that is inducible by tetracycline (Gatz et al., (1992) Plant J.2,397-404), one that is inducible by salicylic acid Promoter (WO 95/19443), an abscisic acid-inducible (EP335528) or an ethanol- or cyclohexanone-inducible (W093 / 21334) promoter.
  • plant promoters are, for example, the promoter of the cytosolic FBPase from potato, the ST-LSI promoter from potato (Stockhaus et al., EMBO J. 8 (1989) 2445-245), the promoter of the phosphoribosylpyrophosphate amidotransferase from Glycine max (see also Genbank Accession Number U87999) or a node-specific promoter as in EP 249676 can advantageously be used.
  • Those plant promoters which ensure expression in tissues or parts of plantsA organs in which fatty acid biosynthesis or its precursors take place, such as, for example, in the endosperm or in the developing embryo, are particularly advantageous.
  • advantageous promoters which ensure seed-specific expression, such as the USP promoter or derivatives thereof, the LEB4 promoter, the phaseolin promoter or the napin promoter.
  • the particularly advantageous USP promoter or its derivatives listed according to the invention mediate gene expression very early in seed development (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67).
  • Further advantageous seed-specific promoters that can be used for monocot and dicot rianzes are the promoters suitable for dicotyls, as well as rapeseed napin gene promoters (US Pat. No.
  • the oleosin promoter from Arabidopsis W098 / 45461), the Phaseolin promoter from Phaseolus vulgaris (US5,504,200), the Bce4 promoter from Brassica (WO91 / 13980) or the leguminous B4 promoter (LeB4, Baeumlein et al., Plant J., 2, 2, 1992: 233- 239) or promoters suitable for monocotyledons such as the promoters, the promoters of the lpt2 or lpt1 gene from barley (WO95 / 15389 and WO95 / 23230) or the promoters of the barley Hordein gene, the rice glutelin gene, the rice oryzin gene , the rice prolamin gene, the wheat gliadin gene, the wheat glutelin gene, the maize zein gene, the oat glutelin gene, the sorghum kasirin gene or the rye secalin gene, which
  • promoters are particularly preferred which ensure expression in tissues or plant parts in which, for example, the biosynthesis of fatty acids, oils and lipids or their precursors takes place.
  • too name promoters that ensure seed-specific expression.
  • Synthases hydroperoxide lyases or fatty acid elongase (s).
  • the genes for the ⁇ -15, ⁇ -12, ⁇ -9, ⁇ -6, ⁇ -5 desaturase, ⁇ -ketoacyl reductases, ⁇ -ketoacyl synthases, elongases or the various hydroxylases and Called acyl ACP thioesterases.
  • Desaturase and elongase genes are advantageously used in the nucleic acid construct.
  • DNA fragments When preparing an expression cassette, various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • the promoter and terminator regions can expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp within the regulatory areas, often less than 60 bp, but at least 5 bp.
  • the promoter can be native or homologous as well as foreign or heterologous to the host organism, for example to the host plant.
  • the expression cassette contains in the 5'-3 'transcription direction the promoter, a DNA sequence which codes for a ⁇ -4-desaturase gene and a region for the transcriptional termination. Different termination areas are interchangeable.
  • Preferred polyadenylation signals are plant polyadenylation signals, preferably those which essentially correspond to T-DNA polyadenylation signals from Agrobacterium tumefaciens, in particular gene 3 of T-DNA (octopine synthase) of the Ti plasmid pTiACH ⁇ (Gielen et al., EMBO J.3 ( 1984), 835 ff) or corresponding functional equivalents.
  • An expression cassette is produced by fusing a suitable promoter with a suitable ⁇ -4-desaturase DNA sequence and a polyadenylation signal according to common recombination and cloning techniques, as described, for example, in T. Maniatis, EF Fritsch and J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) and in TJ Silhavy, ML Berman and LW. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) and in Ausubel, FM et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley-Interscience (1987).
  • various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • the promoter and terminator regions can expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp within the regulatory areas, often less than 60 bp, but at least 5 bp.
  • the promoter can be native or homologous as well as foreign or heterologous to the host plant.
  • the expression cassette contains in the 5'-3 'transcription direction the promoter, a DNA sequence which codes for a ⁇ -4-desaturase gene and a region for the transcriptional termination. Different termination areas are interchangeable.
  • various DNA fragments can be manipulated in order to obtain a nucleotide sequence which expediently reads in the correct direction and which is equipped with a correct reading frame.
  • adapters or linkers can be attached to the fragments.
  • the promoter and terminator regions can expediently be provided in the transcription direction with a linker or polylinker which contains one or more restriction sites for the insertion of this sequence.
  • the linker has 1 to 10, usually 1 to 8, preferably 2 to 6, restriction sites.
  • the linker has a size of less than 100 bp, often less than 60 bp, but at least 5 bp within the regulatory ranges.
  • the promoter can be native or homologous as well as foreign or heterologous to the host plant.
  • the expression cassette contains in the 5'-3 'transcription direction the promoter, a DNA sequence which codes for a ⁇ -4-desaturase gene and a region for the transcriptional termination. Different termination areas are interchangeable.
  • the DNA sequences coding for two ⁇ -4 desaturases from Euglena gracilis contain all the sequence features which are necessary in order to achieve a localization correct for the location of the fatty acid, lipid or oil biosynthesis. Therefore no further targeting sequences per se are necessary. However, such a localization can be desirable and advantageous and can therefore be artificially changed or strengthened, so that such fusion constructs are also a preferred advantageous embodiment of the invention. Sequences which ensure targeting in plastids are particularly preferred. Under certain circumstances, targeting in other compartments (referenced: Kermode, Grit. Rev. Plant Sei.
  • nucleic acid sequences according to the invention are advantageously cloned together with at least one reporter gene in an expression cassette which is introduced into the organism via a vector or directly into the genome.
  • This reporter gene should be easily detectable via a growth, fluorescence, chemo, bioluminescence or resistance assay or via a photometric
  • Enable measurement examples include reporter genes antibiotic or herbicide resistance genes, hydrolase genes, fluorescence protein genes, bioluminescence genes, sugar or nucleotide metabolism genes or biosynthesis genes such as the Ura3 gene, the Ilv2 gene, the luciferase gene, the ⁇ -galactosidase gene, the 2ffoxyglucose, the gfp gene, 6-phosphate-phosphatase gene, the ß-glucuronidase gene, ß-
  • an expression cassette comprises upstream, i.e. at the 5 'end of the coding sequence, a promoter and downstream, i.e. at the 3 'end, a polyadenylation signal and, if appropriate, further regulatory elements which are operatively linked to the intervening coding sequence for the ⁇ -4-desaturase and / or ⁇ -4-desaturase DNA sequence.
  • An operative link is understood to mean the sequential arrangement of promoter, coding sequence, terminator and, if appropriate, further regulatory elements in such a way that each of the regulatory elements can fulfill its function as intended when expressing the coding sequence.
  • the sequences preferred for the operative linkage are targeting sequences to ensure subcellular localization in plastids.
  • An expression cassette can contain, for example, a constitutive promoter (preferably the USP or napin promoter), the gene to be expressed and the ER retention signal.
  • a constitutive promoter preferably the USP or napin promoter
  • the amino acid sequence KDEL lysine, aspartic acid, glutamic acid, leucine
  • KDEL lysine, aspartic acid, glutamic acid, leucine
  • the expression cassette is advantageously inserted into a vector such as, for example, a plasmid, a phage or other DNA, which enables optimal expression of the genes in the host organism.
  • a vector such as, for example, a plasmid, a phage or other DNA, which enables optimal expression of the genes in the host organism.
  • Suitable plasmids are, for example, in E.
  • yeast promoters are, for example, 2 ° cM, pAG-1, YEp6, YEp13 or pEMBLYe23.
  • Examples of algae or plant promoters are pLGV23, pGHIac + , pBIN19, PAK2004, pVKH or pDH51 (see Schmidt, R. and Willmitzer, L, 1988).
  • the above-mentioned vectors or derivatives of the above-mentioned vectors represent a small selection of the possible plasmids. Further plasmids are well known to the person skilled in the art and can be found, for example, in the book Cloning Vectors (Eds. Pouwels PH et al. Elsevier, Amsterdam-New York-Oxford , 1985, ISBN 0444904018).
  • Suitable plant vectors are described in "Methods in Plant Molecular Biology and Biotechnology” (CRC Press), Chap. 6/7, pp.71-119.
  • Advantageous vectors are so-called shuttle vectors or binary vectors that replicate in E. coli and Agrobacterium.
  • vectors are also understood to mean all other vectors known to the person skilled in the art, such as phages, viruses such as SV40, CMV, baculovirus, adenovirus, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA. These vectors can be replicated autonomously in the host organism or can be replicated chromosomally. Chromosomal replication is preferred.
  • the expression cassette according to the invention can also advantageously be introduced into the organisms in the form of a linear DNA and integrated into the genome of the host organism via heterologous or homologous recombination.
  • This linear DNA can consist of a linearized plasmid or only the expression cassette as a vector or the nucleic acid sequences according to the invention.
  • the nucleic acid sequence according to the invention can also be introduced into an organism on its own. If, in addition to the nucleic acid sequence according to the invention, further genes are to be introduced into the organism, all of them can be introduced into the organism together with a reporter gene in a single vector or each individual gene with a reporter gene in one vector, the different vectors being introduced simultaneously or successively can.
  • the vector advantageously contains at least one copy of the nucleic acid sequences according to the invention and / or the expression cassette according to the invention.
  • the plant expression cassette can be transformed into the transformation vector pRT ((a) Toepfer et al., 1993, Methods Enzymol., 217: 66-78; (b) Toepfer et al. 1987, Nucl. Acids. Res. 15: 5890 ff. ) to be built in.
  • Fusion vectors used in prokaryotes often use inducible systems with and without fusion proteins or fusion ligopeptides, it being possible for these fusions to take place both at the Kn terminal and at the C terminal or other usable domains of a protein.
  • Such fusion vectors generally serve: i.) To increase the expression rate of the RNA ii.) To increase the achievable protein synthesis rate, iii.) To increase the solubility of the protein, iv.) Or to purify it by means of a binding sequence which can be used for affinity chromatography simplify.
  • proteolytic cleavage sites are also introduced via fusion proteins, which also makes it possible to purify part of the fusion protein.
  • recognition sequences for proteases are e.g. Factor Xa, thrombin and enterokinase.
  • Typical advantageous fusion and expression vectors are pGEX [Pharmacia Biotech Ine; Smith, D.B. and Johnson, K.S. (1988) Gene 67: 31-40], pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which contains glutathione S-transferase (GST), maltose binding protein, or protein A.
  • GST glutathione S-transferase
  • E. coli expression vectors are pTrc [Amann et al., (1988) Gene 69: 301-315] and pET vectors [Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; Stratagene, Amsterdam, Netherlands].
  • vectors for use in yeast are pYepSed (Baldari, et al., (1987) Embo J. 6: 229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30: 933-943), pJRY88 (Schultz et al., (1987) Gene 54: 113-123), and pYES derivatives (Invitrogen Corporation, San Diego, CA).
  • Vectors for use in filamentous fungi are described in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, et al., Eds., P. 1-28, Cambridge University Press: Cambridge.
  • insect cell expression vectors can also be used advantageously, e.g. for expression in Sf 9 cells. These are e.g. the vectors of the pAc series (Smith et al. (1983) Mol. Cell Biol. 3: 2156-2165) and the pVL series (Lucklow and Summers (1989) Virolog ⁇ 170: 31-39).
  • lanceol cells or algae cells can advantageously be used for gene expression.
  • lance expression vectors can be found in Becker, D., et al. (1992) "New plant binary vectors with selectable markers located proximal to the left border ", Plant Mol. Biol. 20: 1195-1197 or in Bevan, MW (1984)" Binary Agrobacterium vectors for plant transformation ", Nucl. Acid. Res. 12: 8711-8721.
  • nucleic acid sequences according to the invention can be expressed in mammalian cells.
  • Examples of corresponding expression vectors are pCDM8 and pMT2PC mentioned in: Seed, B. (1987) Nature 329: 840 or Kaufman et al. (1987) EMBO J. 6: 187-195).
  • Promoters to be used are preferably of viral origin, e.g. Promoters of polyoma, adenovirus 2, cytomegalovirus or simian virus 40. Further prokaryotic and eukaryotic expression systems are mentioned in chapters 16 and 17 in Sambrook et al., Molecular Cloning: A Laboratory Manual.2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
  • the nucleic acids according to the invention, the expression cassette or the vector can be introduced into organisms, for example in plants, by all methods known to the person skilled in the art.
  • the person skilled in the art can use the corresponding textbooks from Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, by F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley and Sons, by D.M. Glover et al., DNA Cloning Vol.1, (1995), IRL Press (ISBN 019-963476-9), by Kaiser et al. (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press or Guthrie et al. See Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, 1994, Academic Press.
  • transformation The transfer of foreign genes into the genome of a plant is called transformation.
  • the methods described for the transformation and regeneration of rianances from stained tissue or stained cells for transient or stable transformation are used. Suitable methods are protoplast transformation by polyethylene glycol-induced DNA uptake, the biolistic method with the gene cannon - the so-called particle bombardment method, electroporation, the incubation of dry embryos in DNA-containing solution, microinjection and the gene transfer mediated by Agrobacterium.
  • the methods mentioned are described, for example, in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, edited by SD Kung and R. Wu, Academic Press (1993) 128-143 and in Potrykus Annu. Rev.
  • the construct to be expressed is preferably cloned into a vector which is suitable for transforming Agrobacterium tumefaciens, for example pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711).
  • Agrobacteria transformed with such a vector can then be used in a known manner to transform riances, in particular crop plants, such as tobacco plants, for example, by bathing wounded leaves or leaf pieces in an agrobacterial solution and then cultivating them in suitable media.
  • the transformation of Rianzen with Agrobacterium tumefaciens is, for example, by Höfgen and Willmitzer in Nucl. acid Res.
  • Agrobacteria transformed with an expression vector according to the invention can also be used in a known manner to transform plants such as test plants such as Arabidopsis or crop plants such as cereals, corn, oats, rye, barley, wheat, soybeans, rice, cotton, sugar beet, canola, sunflower, flax, hemp, Potato, tobacco, tomato, carrot, paprika, rapeseed, tapioca, manioc, Reilwurz, Tagetes, alfalfa, lettuce and the various tree, nut and wine species, especially of oil-containing crops, such as soy, peanut, castor oil, sunflower, corn, Cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean are used, for example by bathing wounded leaves or pieces of leaf in an agrobacterial solution and then cultivating them in suitable media.
  • PUFAs for example stearidonic acid
  • Eicosapentaenoic acid and docosahexaenoic acid are suitable for Borage or Primulaceae. Flax is particularly advantageously suitable for producing PUFAS with the nucleic acid sequences according to the invention, advantageously in combination with further desaturases and elongases.
  • the genetically modified Ranzanz cells can be regenerated using all methods known to those skilled in the art. Appropriate methods can be found in the above-mentioned writings by S.D. Kung and R. Wu, Potrykus or Höfgen and Willmitzer can be found.
  • Suitable transgenic organisms or host organisms for the nucleic acid according to the invention, the expression cassette or the vector are in principle advantageously all organisms which are able to synthesize fatty acids, especially unsaturated fatty acids or are suitable for the expression of recombinant genes such as microorganisms, non-human animals or riances.
  • Examples include plants such as Arabidopsis, Asteraceae such as Calendula or crop plants such as soybean, peanut, castor oil, sunflower, corn, cotton, flax, rapeseed, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean, microorganisms such as fungi, for example the genus Mortierella, Saprolegnia or Pythium, bacteria such as the genus Escherichia, yeasts such as the genus Saccharomyces, cyanobacteria, ciliates, algae or protozoa such as dinoflagellates such as Crypthecodinium.
  • fungi for example the genus Mortierella, Saprolegnia or Pythium
  • bacteria such as the genus Escherichia
  • yeasts such as the genus Saccharomyces
  • cyanobacteria ciliates
  • algae or protozoa such as dinoflagellates such as Crypthe
  • Organisms which can naturally synthesize oils in large amounts such as fungi such as Mortierella alpina, Pythium insidiosum or plants such as soybean, rapeseed, coconut, oil palm, safflower, castor bean, calendula, peanut, cocoa bean or sunflower or yeasts such as Saccharomyces cerevisiae, are particularly preferred soy, rapeseed, sunflower, flax, calendula or Saccharomyces cerevisiae.
  • transgenic animals are also suitable as host organisms, for example C. elegans.
  • transgenic organism or transgenic lance in the sense of the invention means that the nucleic acids used in the method are not in their natural position in the genome of an organism, and the nucleic acids can be expressed homologously or heterologously.
  • transgene also means that the nucleic acids according to the invention are in their natural place in the genome of an organism, but that the sequence has been changed compared to the natural sequence and / or that the regulatory sequences of the natural sequences have been changed.
  • Transgenic is preferably to be understood as meaning the expression of the nucleic acids according to the invention at a non-natural location in the genome, that is to say that the nucleic acids are homologous or preferably heterologous.
  • Preferred transgenic organisms are fungi such as Mortierella or Rianzen are the oil fruit plants.
  • Transgene means, for example, with respect to a nucleic acid sequence, an expression cassette or a vector containing a nucleic acid sequence which codes for the ⁇ -4-desaturase or its derivatives, or an organism transforms all such by genetic engineering methods with this nucleic acid sequence, an expression cassette or a vector Constructions that have come about in which either a) the ⁇ -4-desaturase nucleic acid sequence, or b) a genetic control sequence functionally linked to the ⁇ -4-desaturase nucleic acid sequence, for example a promoter, or c) (a) and (b ) are not in their natural, genetic environment or have been modified by genetic engineering methods, the modification being, for example, a substitution, addition, deletion, inversion or insertion of one or more nucleotide residues.
  • Natural genetic environment means the natural chromosomal locus in the organism of origin or the presence in a genomic library.
  • the natural, genetic environment of the nucleic acid sequence is preferably at least partially preserved.
  • the environment flanks the nucleic acid sequence at least on one side and has a sequence length of at least 50 bp, preferably at least 500 bp, particularly preferably at least 1000 bp, very particularly preferably at least 5000 bp.
  • Useful host cells are also mentioned in: Goeddel, Gene Expression Technology: Methods in Enzymology 85, Academic Press, San Diego, CA (1990).
  • Expression strains which can be used for example those which have a lower protease activity, are described in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128.
  • Another object of the invention relates to the use of an expression cassette containing DNA sequences coding for a ⁇ -4 desaturase gene or DNA sequences hybridizing therewith for the transformation of Ranzanz cells, tissues or parts of plants.
  • the aim of the use is to increase the content of fatty acids, oils or lipids with an increased content of and double bonds in the ⁇ -4 position.
  • the expression cassette or the nucleic acid sequences according to the invention containing a ⁇ -4 desaturase gene sequence can also be used to transform the organisms mentioned above by way of example, such as bacteria, cyanobacteria, yeasts, filamentous fungi, ciliates and algae with the aim of increasing the content of fatty acids, oils or lipids ⁇ -4 double bonds can be used.
  • increasing the content of fatty acids, oils or lipids with ⁇ -4 double bonds means, for example, the artificially acquired ability to increase the biosynthesis by functional overexpression of the ⁇ -4-desaturase gene in the organisms according to the invention advantageously in the transgenic rianances according to the invention compared to the non-genetically modified starting plants at least for the duration of at least one plant generation.
  • the biosynthetic site of fatty acids, oils or lipids is generally the seed or cell layers of the seed, so that a seed-specific expression of the ⁇ -4-desaturase gene makes sense.
  • biosynthesis of fatty acids, oils or lipids need not be limited to the seed tissue, but can also be tissue-specific in all other parts of the plant - for example in epidermal cells or in the tubers.
  • constitutive expression of the exogenous ⁇ -4 desaturase gene is advantageous.
  • inducible expression may also appear desirable.
  • the effectiveness of the expression of the ⁇ -4-desaturase gene can be determined, for example, in vitro by sprout meristem propagation.
  • a change in the type and level of expression of the ⁇ -4-desaturase gene and its effect on the Fatty acid, oil or lipid biosynthesis performance can be tested on test plants in greenhouse experiments.
  • the invention also relates to transgenic plants, transformed with an expression cassette containing a .DELTA.4-desaturase gene sequence or DNA sequences hybridizing therewith, and also transgenic cells, tissues, parts and propagation material of such riances.
  • Transgenic crop plants such as e.g. Barley, wheat, rye, oats, corn, soybeans, rice, cotton, sugar beet, rapeseed and canola, sunflower, flax, hemp, potato, tobacco, tomato, rapeseed, tapioca, cassava, Reilwurz, alfalfa, lettuce and the various tree , Nut and wine species.
  • Plants in the sense of the invention are mono- and dicotyledonous plants, mosses or algae.
  • a further embodiment according to the invention is, as described above, transgenic plants which contain a functional or non-functional nucleic acid sequence according to the invention or a functional or non-functional expression cassette according to the invention.
  • Non-functional means that no enzymatically active protein is synthesized anymore.
  • non-functional nucleic acids or nucleic acid constructs are also to be understood as so-called antisense DNA, which leads to transgenic riances which have a reduction in the enzymatic activity or no enzymatic activity. With the help of the antisense technique, especially if the nucleic acid sequence according to the invention is combined with others
  • Fatty acid synthesis genes are combined in the antisense DNA, it is possible to synthesize triglycerides with an increased content of saturated fatty acids or saturated fatty acids.
  • Transgenic rianzens are understood to mean individual plant cells and their cultures on solid media or in liquid culture, plant parts and whole plants.
  • a method for transforming a plant characterized in that expression cassettes according to the invention containing a ⁇ -4-desaturase gene sequence from primulaceae or DNA 'sequences which hybridize therewith are introduced into a rancellum cell, into callus tissue, an entire plant or protoplasts of plants.
  • Another object of the invention is a process for the production of unsaturated fatty acids, characterized in that at least one nucleic acid sequence according to the invention described above or at least one nucleic acid construct according to the invention is placed in a preferably oil-producing organism, attracts this organism and that oil contained in the organism is isolated and releases the fatty acids contained in the oil.
  • These unsaturated fatty acids advantageously contain ⁇ -4 double bonds.
  • the fatty acids can be released from the oils or lipids, for example via basic hydrolysis, for example with NaOH or KOH.
  • a process for the production of triglycerides with an increased unsaturated fatty acid content characterized in that at least one nucleic acid sequence according to the invention described above or at least one expression cassette according to the invention is placed in an oil-producing organism, attracts this organism and isolates oil contained in the organism, belongs to the subject matter of the invention.
  • a further subject of the invention is a process for the production of triglycerides with an increased unsaturated fatty acid content by incubating triglycerides with saturated or unsaturated or saturated and unsaturated fatty acids with at least the protein which is encoded by the sequence SEQ ID NO: 1.
  • the process is advantageously carried out in the presence of compounds which can absorb or give off reduction equivalents. The fatty acids can then be released from the triglycerides.
  • Transgenic riances are advantageously used as organisms in the process according to the invention.
  • These Rianzen contain the polyunsaturated fatty acids synthesized in the process according to the invention and can advantageously be marketed directly without the oils, lipids or fatty acids synthesized having to be isolated.
  • Plants in the process according to the invention include whole plants and all parts of plants, plant organs or parts of leaves such as leaf, stem, seeds, roots, tubers, anthers, fibers, root hairs, stems, embryos, calli, kotelydones, petioles, crop material, plant tissue, reproductive tissue, Cell cultures that are derived from the transgenic plant and / or can be used to produce the transgenic plant.
  • the semen comprises all parts of the semen such as the seminal shell, epidermal and sperm cells, endosperm or embyro tissue.
  • the compounds produced in the process according to the invention can, however, also advantageously be used to isolate plants from the organisms in the form of their oils, fats, lipids and / or free fatty acids.
  • Polyunsaturated fatty acids produced by this method can be harvested by harvesting the organisms either from the culture in which they grow or from the field. This can be done by pressing or extracting the plant parts, preferably the plant seeds.
  • the oils, fats, lipids and / or free fatty acids can be obtained by cold pressing or cold pressing without the addition of heat by pressing.
  • the seeds pretreated in this way can then be pressed or extracted with solvents such as warm hexane.
  • solvents such as warm hexane.
  • these are extracted directly after harvesting, for example, without further work steps, or extracted after digestion using various methods known to the skilled worker. In this way, more than 96% of the compounds produced in the process can be isolated.
  • the products thus obtained are then processed further, that is to say refined. For example, the plant mucus and turbidity are removed first.
  • the so-called degumming can be carried out enzymatically or, for example, chemically / physically by adding acid such as phosphoric acid.
  • the free fatty acids are then removed by treatment with a base, for example sodium hydroxide solution.
  • a base for example sodium hydroxide solution.
  • the product obtained is washed thoroughly with water to remove the lye remaining in the product and dried.
  • the products are subjected to bleaching with, for example, bleaching earth or activated carbon. Finally, the product is still deodorized with steam, for example.
  • the PUFAs produced in the process are advantageously obtained in the form of their oils, lipids or fatty acids or fractions thereof.
  • a further embodiment according to the invention is the use of the oil, lipid, the fatty acids and / or the fatty acid composition in animal feed, food, cosmetics or pharmaceuticals.
  • oil is understood to mean a fatty acid mixture which contains unsaturated, saturated, preferably esterified fatty acid (s). It is preferred that the oil, lipid or fat has a high proportion of polyunsaturated free or advantageously esterified fatty acid (s), in particular linoleic acid, ⁇ -oleolenic acid, dihomo-y-linolenic acid, arachidonic acid, ⁇ -linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, Has docosapentaenoic acid or docosahexaenoic acid.
  • s polyunsaturated free or advantageously esterified fatty acid
  • the proportion of unsaturated esterified fatty acids is about 30%, more preferred is 50%, more preferred is 60%, 70%, 80% or more.
  • the proportion of fatty acid after conversion of the fatty acids into the methyl esters can be determined by gas chromatography by transesterification.
  • the oil, lipid or fat can be various other saturated or unsaturated fatty acids, e.g. Calendulic acid, paimitinic, palmitoleic, stearic, oleic acid etc. contain.
  • the proportion of the different fatty acids in the oil or fat can vary depending on the starting organism.
  • the polyunsaturated fatty acids produced in the process are, for example, sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters.
  • the polyunsaturated fatty acids containing can be described as described above, for example via a Alkali treatment, for example aqueous KOH or NaOH or acidic hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol or via an enzymatic cleavage, and isolation via, for example, phase separation and subsequent acidification via, for example, H 2 SO 4 .
  • the fatty acids can also be released directly without the workup described above.
  • the above-mentioned processes advantageously enable the synthesis of fatty acids or triglycerides with an increased content of fatty acids with ⁇ -4 double bonds, preferably using docosapentaenoic acid as the substrate for the reaction of the ⁇ 4-desaturase.
  • the above-mentioned process thus advantageously enables the synthesis of fatty acids, such as docosahexaenoic acid.
  • fatty acids or triglycerides with an increased content of saturated fatty acids can also be produced in one process.
  • organisms for the processes mentioned are rianzes such as arabidopsis, primulaceae, borage, barley, wheat, rye, oats, maize, soybean, rice, cotton, sugar beet, rapeseed and canola, sunflower, flax, hemp, potatoes, tobacco, tomato, Oilseed rape, tapioca, cassava, Reilwurz, alfalfa, peanut, castor, coconut, oil palm, safflower (Carthamus tinctorius) or cocoa bean, microorganisms such as mushrooms Mortierella, Saprolegnia or Pythium, bacteria such as the genus Escherichia, cyanobacteria, yeasts like yeast , Algae or protozoa such as dinoflagellates such as crypthecodinium.
  • rianzes such as arabidopsis, primulaceae, borage, barley, wheat, rye, oats, maize, soybean, rice, cotton
  • Organisms which can naturally synthesize oils in large quantities such as microorganisms such as fungi such as Mortierella alpina, Pythium insidiosum or plants such as soybean, rape, coconut, oil palm, safflower, castor bean, calendula, peanut, cocoa bean or sunflower or yeasts such as Saccharomyces cerevisiae, are preferred. Soybeans, rapeseed, sunflower, Carthamus or Saccharomyces cerevisiae are particularly preferred. Depending on the host organism, the organisms used in the processes are grown or cultivated in a manner known to those skilled in the art.
  • microorganisms such as Mortierella alpina, Pythium insidiosum or plants such as soybean, rape, coconut, oil palm, safflower, castor bean, calendula, peanut, cocoa bean or sunflower or yeasts such as Saccharomyces cerevisiae
  • Microorganisms are usually in a liquid medium that contains a carbon source mostly in the form of sugars, a nitrogen source mostly in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as iron, manganese, magnesium salts and possibly vitamins, at temperatures between 0 ° C and 100 ° C, preferably between 10 ° C to 60 ° C attracted with oxygen.
  • the pH of the nutrient liquid can be kept at a fixed value, that is to say it can be regulated during cultivation or not.
  • the cultivation can be batch-wise, semi-batch wise or continuous. Nutrients can be introduced at the beginning of the fermentation or fed semi-continuously or continuously. After transformation, plants are first regenerated as described above and then grown or cultivated as usual.
  • the lipids are usually obtained from the organisms.
  • the organisms can first be digested after harvesting or used directly.
  • the lipids are advantageously extracted with suitable solvents such as apolar solvents such as hexane or ethanol, isopropanol or mixtures such as hexane / isopropanol, phenol / chloroform / isoamyl alcohol at temperatures between 0 ° C. to 80 ° C., preferably between 20 ° C. to 50 ° C.
  • the biomass is usually extracted with an excess of solvent, for example an excess of solvent to biomass of 1: 4.
  • the solvent is then removed, for example by distillation.
  • the extraction can also be done with supercritical CO 2 . After extraction, the remaining biomass can be removed, for example, by filtration.
  • the crude oil obtained in this way can then be further purified, for example by removing turbidity by adding polar solvents such as acetone or chloroform and then filtering or centrifuging. Further cleaning via columns is also possible.
  • polar solvents such as acetone or chloroform
  • Another object of the invention are unsaturated fatty acids and trigylcerides with an increased content of unsaturated fatty acids, which were prepared by the above-mentioned processes, and their use for the production of food, animal feed, cosmetics or pharmaceuticals. For this purpose, they are added to the food, animal feed, cosmetics or pharmaceuticals in the usual amounts.
  • the sequencing of recombinant DNA molecules was carried out using a laser fluorescence DNA sequencer from ABI using the Sanger method (Sanger et al. (1977) Proc. Natl. Acad. Be. USA74, 5463-5467). Fragments resulting from a polymerase chain reaction were sequenced and checked to avoid polymerase errors in the constructs to be expressed.
  • Example 3 Cloning of the ⁇ -4 desaturase from Euglena gracilis Euglena gracilis strain 1224-5 / 25 was obtained from the Collection for Algae Cultures Göttingen (SAG). For isolation, the strain was in Medium II (Calvayrac R and Douce R, FEBS Letters 7: 259-262, 1970) for 4 days at 23 ° C. under a light / dark interval of 8 h / 16 h (35 mol s-1 m-2 light intensity).
  • RNA from a four-day Euglena culture was isolated using the RNAeasy kit from Qiagen (Valencia, CA, US). Poly-A + RNA (mRNA) was isolated from the total RNA using oligo-dT cellulose (Sambrook et al., 1989). The RNA was reverse transcribed using the Reverse Transcription System Kit from Promega and the synthesized cDNA was cloned into the lambda ZAP vector (lambda ZAP Gold, Stratagene). According to the manufacturer's instructions, the cDNA for the plasmid DNA was extracted and clones were sequenced for random sequencing. One sequence showed similarity to ⁇ -4 desaturases. The sequence found was used as a probe for screening the phage cDNA (2 * 10 5 plaques). After two rounds of screening, a full-length sequence cDNA was identified.
  • Example 4 Cloning of expression plasmids for heterologous expression in yeast.
  • the cloned cDNA contains two putative start codons, which result in two open reading frames with a difference of 9 bases. Only the shorter reading frame (SEQ ID NO: 1 showed later activity.
  • the following pair of primers was used to mount this reading frame in the vector pYES2 (Invitrogen):
  • the PCR product was incubated for 2 hours at 37 ° C. with the restriction enzymes Kpnl and Xhol.
  • the yeast expression vector pYES2 was incubated in the same way.
  • the 1638 bp PCR product and the vector were then separated by agarose gel electrophoresis and the corresponding DNA fragments were cut out.
  • the DNA is purified using the Qiagen gel purification kit according to the manufacturer's instructions.
  • the vector and ⁇ -4-desaturase cDNA were then ligated.
  • the Rapid Ligation Kit from Röche was used for this.
  • the resulting plasmid pYES2-EGD4-2 was verified by sequencing and transformed into the Saccharomyces strain SC334 by EleMroporation (1500 V).
  • the yeasts were then plated on minimal medium without uracil. Cells that were able to grow on minimal medium without uracil thus contain the plasmid pYES2-EGD4-2.
  • Example 5 Cloning of expression plasmids for seed-specific expression in plants
  • a further transformation vector based on pSUN-USP was generated.
  • Notl interfaces were inserted at the 5 'and 3' end of the coding sequence using the following primer pair :.
  • the PCR ProduM was incubated for 16 h at 37 ° C. with the restriction enzyme Notl.
  • the lance expression expression Mor pSUN300-USP was incubated in the same way.
  • the 1642 bp PCR ProduM and the 7624 bp VeMor were separated by agarose gel gel chromatography and the corresponding DNA fragments were cut out.
  • the DNA is purified using the Qiagen gel purification kit according to the manufacturer's instructions.
  • the vector and ⁇ -4-desaturase cDNA were then ligated.
  • the Rapid Ligation Kit from Röche was used for this.
  • the resulting plasmid pSUN-EGD4-2 was verified by sequencing.
  • pSUN300 is a derivative of the plasmid pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25: 989-994).
  • pSUN-USP originated from pSUN300 by inserting a USP promoter as an EcoRI fragment in pSUN300.
  • the polyadenylation signal is that of the octopine synthase gene from the A.
  • tumefaciens Ti plasmid (ocs terminator, Genbank Accession V00088) (De Greve.H., Dhaese, P Seurinck, J., Lemmers.M., Van Montagu. M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet.
  • the USP promoter corresponds to nucleotides 1 -684 (Genbank Accession X56240), which contains part of the non-coding region of the USP gene in the promoter
  • the 684 base pair promoter fragment was synthesized using standard T7 primer (Stratagene) and with the aid of a synthesized primer using a PCR ReaMion according to standard methods amplified. (Primer sequence: 5'-
  • the PCR fragment was cut with EcoRI / Sall and inserted into the vector pSUN300 with OCS terminator.
  • the plasmid called pSUN-USP was created.
  • the KonstruM was used to transform Arabidopsis thaliana, rapeseed, tobacco and linseed.
  • Example 6 Generation of transgenic riances a) Generation of transgenic rape plants (modified according to Moloney et al., 1992, Plant Cell Reports, 8: 238-242)
  • Petioles or hypocotyledons of freshly germinated sterile rape plants were incubated in a Petri dish with a 1:50 Agroba serial dilution for 5-10 minutes. This is followed by a 3-day column incubation in the dark at 25 ° C. on 3MS medium with 0.8% Bacto agar. The cultivation was continued after 3 days with 16 hours of light / 8 hours of darkness and in a weekly rhythm on MS medium with 500 mg / l claforan (cefotaxime sodium), 50 mg / l kana ycin, 20 microM benzylamino-purine (BAP) and 1, 6 g / l glucose continued. Growing shoots were transferred to MS medium with 2% sucrose, 250 mg / l Claforan and 0.8% Bacto agar. If no roots formed after three weeks, 2-indole butyric acid was added to the medium as the growth hormone for rooting.
  • 2-indole butyric acid was added to the medium as the
  • Regenerated shoots are obtained on 2MS medium with kanamycin and claforan, transferred to soil after rooting and grown after cultivation in a climatic chamber or in a greenhouse for two weeks, brought to flower, harvested ripe seeds and used for ⁇ -4 desaturase expression Lipid analyzes examined. Lines with increased levels or double bonds at the ⁇ -4 position are identified. In the stably transformed transgenic lines, which functionally express the transgene, an increased content of double bonds at the ⁇ -4 position can be found in comparison to untransformed control plants. b) The production of transgenic linseed plants can, for example, according to the
  • the yeast cells were grown in 1 ml of minimal medium with 0.2% raffinose for two days and then transferred to 5 ml of the same medium. This culture was grown to an OD600 of 0.05 for 6 h at 30 ° C. 100 ⁇ M of the fatty acid substrates (67 ⁇ M for 16: 1 ⁇ 7) were then added and the expression of the ⁇ -4-desaturase was induced by adding 2% galactose. The cells were then incubated for 4 days at 15 ° C., harvested, washed with 100 mM NaHC03 and used for the fatty acid analysis by means of GC. Fig. 4 shows the result of the fatty acid analysis.
  • the fed fatty acid DPA (docosapentaenoic acid) was desaturated to DHA (docosahexaenoic acid) in the yeast strain with the pYES-EGD4-2 KonstruM.
  • the substrate specificities were determined by feeding the transformed yeast strains with the different fatty acids (Tab. 1). The conversion of the fed fatty acids to their ⁇ 4 desatured products was then determined.
  • Example 8 Position analysis of the ⁇ 4-desaturated fatty acids
  • the position of the ⁇ -4-desatured fatty acids was also analyzed.
  • the position of polyunsaturated fatty acids in the triacylglyceride is important from a nutritional point of view. It has been described that unsaturated fatty acids, especially in the sn-2 position of triacylglycerides, are rapidly absorbed in the intestine of mammals.
  • the following procedure was carried out:
  • Example 4 100 ml of yeast culture expressing the ⁇ -4-desaturase from yeast were fed with 16: 1 ⁇ 7 and with 22: 4 ⁇ 7,10,13, 16 and then incubated. The total lipids were isolated from the yeast using chloroform / methanol / water ExtraMion (Bligh, EG and Dyer, WJ Can J Biochem Physiol 37: 911-917, 1959) and separated by thin layer chromatography (chloroform / methanol / acetic acid 65: 25: 8). Phosphatidylcholine was scraped off the thin-layer plates and extracted with 2 ml of chloroform / methanol (2/1).
  • the extracted Phosphatidyl choiine was dried and resuspended in 50 ⁇ L 100% Trition-100. 1 ml of 50 mM HEPES, 2 mM CaCl 2 and 10,000 units of lipase (Rhizopus arrhizus delemar, Sigma) were added to the solution. After 2 hours of incubation at 37 ° C, the solution was acidified with acetic acid (100%) and the lipids and free fatty acids extracted with chloroform / methanol. The free fatty acids and the resulting lysophosphatidylcholine were separated by thin layer chromatography, scraped from the plate and analyzed by GC.
  • the effect of genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound can be determined by growing the modified microorganisms or the modified lance under suitable conditions (such as those described above) and that Medium and / or the cellular components for the increased produMion of the desired ProduMes (ie lipids or a fatty acid) is examined.
  • suitable conditions such as those described above
  • These analysis techniques are known to the person skilled in the art and include Spe microscopy, thin-layer chromatography, staining methods of various types, enzymatic and microbiological methods and analytical chromatography, such as high-performance liquid chromatography (see for example Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, pp. 89-90 and S.443-613, VCH: Weinheim (1985); Fallon, A., et al.,
  • plant lipids are obtained from plant material as described by Cahoon et al. (1999) Proc. Natl. Acad. Be. USA 96 (22): 12935-12940, and Browse et al. (1986) Analytic Biochemistry 152: 141-145.
  • the qualitative and quantitative lipid or fatty acid analysis is described by Christie, William W., Advances in Lipid Methodology, Ayr / Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromafography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S.
  • fatty acids abbreviations: FAME, fatty acid methyl ester; GC-MS, gas-liquid chromatography-mass spectrometry; TAG, triacylglycerol; TLC, thin-layer chromatography.
  • the unambiguous detection of the presence of fatty acid products can be obtained by analysis of recombinant organisms according to standard analysis methods: GC, GC-MS or TLC, as described variously by Christie and the literature therein (1997, in: Advances on Lipid Methodology, Fourth Ed. : Christie, Oily Press, Dundee, 119-169; 1998, gas chromatography mass spectrometry, lipids 33: 343-353).
  • the material to be analyzed can be broken up by sonication, glass mill grinding, liquid nitrogen and grinding, or other applicable methods.
  • the material must be centrifuged after breaking up.
  • the sediment is in aqua dest. resuspended, heated at 100 ° C for 10 min, cooled on ice and centrifuged again, followed by ExtraMion in 0.5 M sulfuric acid in methanol with 2% dimethoxypropane for 1 hour at 90 ° C, which leads to hydrolyzed oil and lipid compounds, which result in transmethylated lipids.
  • fatty acid methyl esters are extracted in petroleum ether and finally a GC analysis using a capillary column (chrome pack, WCOT fused silica, CP-Wax-52 CB, 25 microm, 0.32 mm) at a temperature gradient between 170 ° C and 240 ° C for 20 min and 5 min at 240 ° C.
  • the identity of the fatty acid methyl esters obtained must be defined using standards available from commercial sources (i.e. Sigma). Plant material is first homogenized mechanically using mortars to make it more accessible to an ExtraMion.
  • the mixture is then heated to 100 ° C. for 10 minutes and, after cooling on ice, sedimented again.
  • the cell sediment is hydrolyzed with 1 M methanolic sulfuric acid and 2% dimethoxypropane at 90 ° C for 1 h and the lipids are transmethylated.
  • the resulting fatty acid methyl esters (FAME) are extracted into petroleum ether.
  • the extracted FAME are analyzed by gas liquid chromatography with a capillary column (chrome pack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0.32 mm) and a temperature gradient from 170 ° C to 240 ° C in 20 min and 5 min at 240 ° C.
  • the identity of the fatty acid methyl esters is confirmed by comparison with corresponding FAME standards (Sigma).
  • the identity and position of the double bond can be further analyzed by suitable chemical derivatization of the FAME mixtures, for example to 4,4-dimethoxyoxazoline derivatives (Christie, 1998) by means of GC-MS.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Nutrition Science (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Cosmetics (AREA)
  • Fodder In General (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Edible Oils And Fats (AREA)

Abstract

Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur spezifischen Hers stellung von ungesättigten ω-3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω-3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an Fettsäuren, Ölen oder Lipiden mit Δ-4-Doppelbindungen aufgrund der Expression einer Δ-4-Desaturase aus Euglena gracilis. usserdem betrifft die Erfindung Expressionskassetten enthaltend eine Nukleinsäuresequenz, einen Vektor und Organismen enthaltend mindestens eine Nukleinsäuresequenz bzw. eine Expressionskassette. Ausserdem betrifft die Erfindung ungesättigte Fettsäuren sowie Trigiyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung. Fettsäuren und Trigiyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet.

Description

Δ-4-Desaturasen aus Euglena gracilis, exprimierende Rianzen und PUFA enthaltende Öle
Beschreibung
Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur spezifischen Herstellung von ungesättigten ω-3 Fettsäuren sowie ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, besonders von ω-3 Fettsäuren mit mehr als drei Doppelbindungen. Die Erfindung betrifft die Herstellung eines transgenen Organismus bevorzugt einer transgenen Pflanze oder eines transgenen Mikroorganismus mit erhöhtem Gehalt an Fettsäuren, Ölen oder Lipiden mit Δ-4-Doppelbindungen aufgrund der Expression einer Δ-4-Desaturase aus Euglena gracilis.
Außerdem betrifft die Erfindung Expressionskassetten enthaltend eine Nukleinsauresequenz, einen Vektor und Organismen enthaltend mindestens eine Nukleinsauresequenz bzw. eine Expressionskassette. Außerdem betrifft die Erfindung ungesättigte Fettsäuren sowie Triglyceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren und deren Verwendung.
Fettsäuren und Triglyceride haben eine Vielzahl von Anwendungen in der Lebensmittelindustrie, der Tierernährung, der Kosmetik und im Pharmabereich. Je nachdem ob es sich um freie gesättigte oder ungesättigte Fettsäuren oder um Triglyceride mit einem erhöhten Gehalt an gesättigten oder ungesättigten Fettsäuren handelt, sind sie für die unterschiedlichsten Anwendungen geeignet.
Mehrfach ungesättigte langkettige ω3-Fettsäuren wie Eicosapentaensäure (EPA) oder Docosahexaensäure (DPA) sind wichtige Komponenten der menschlichen Ernährung aufgrund ihrer verschiedenen Rollen in der Gesundheit, die Aspekte wie die Entwicklung des kindlichen Gehirns, der Funktionalität des Auges, der Synthese von Hormonen und anderer Signalstoffe, sowie die Vorbeugung von Herz-Kreislauf-Beschwerden, Krebs und Diabetes umfassen (Poulos, A Lipids 30:1-14, 1995; Horrocks, LA und Yeo YK Pharmacol Res 40:211-225, 1999). Es besteht aus diesem Grund ein Bedarf an der Produktion mehrfach ungesättigter langkettiger Fettsäuren.
So werden beispielsweise mehrfach ungesättigte Fettsäuren Babynahrung zur Erhöhung des Nährwertes zugesetzt, sowie zur ungehinderten Entwicklung des Säuglings.. Hauptsächlich werden die verschiedenen Fettsäuren und Triglyceride aus Mikroorganismen wie Mortierella oder aus Öl-produzierenden Pflanzen wie Soja, Raps, Sonnenblume und weiteren gewonnen, wobei sie in der Regel in Form ihrer Triacylglyceride anfallen. In höheren Rianzen treten allerdings keine langkettigen ungesättigten Fettsäuren auf. Die langkettigen Fettsäuren stammen zum größten Teil aus Fischöl bzw. aus der Fermentation von entsprechenden Algen (z.B. Thrausto- chytrium) bzw. Pilzen (z.B. Mortierella). Die freien Fettsäuren werden vorteilhaft durch Verseifung hergestellt. Je nach Anwendungszweck sind Öle mit gesättigten oder ungesättigten Fettsäuren bevorzugt, so sind z.B. in der humanen Ernährung Lipide mit ungesättigten Fettsäuren speziell mehrfach ungesättigten Fettsäuren bevorzugt, da sie einen positiven Einfluss auf den Cholesterinspiegel im Blut und damit auf die Möglichkeit einer Herzerkrankung haben. Sie finden in verschiedenen diätischen Lebensmitteln oder Medikamenten Anwendung.
Aufgrund ihrer positiven Eigenschaften hat es in der Vergangenheit nicht an Ansätzen gefehlt, Gene, die an der Synthese von Fettsäuren bzw. Triglyceriden beteiligt sind, für die Herstellung von Ölen in verschiedenen Organismen mit geändertem Gehalt an ungesättigten Fettsäuren verfügbar zu machen. So wird in WO 91/13972 und seinem US-Äquivalent eine Δ-9-Desaturase beschrieben. In WO 93/11245 wird eine delta - 15-Desaturase in WO 94/11516 wird eine Δ-12-Desaturase beansprucht. Weitere Desaturasen werden beispielsweise in EP-A-0550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-A-0794250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 oder Huang et al., Lipids 34, 1999: 649-659 beschrieben. Die biochemische Charakterisierung der verschiedenen Desaturasen ist jedoch bisher nur unzureichend erfolgt, da die Enzyme als membrangebundene Proteine nur sehr schwer zu isolieren und charakterisieren sind (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26, 1988: 777-792). In der Regel erfolgt die Charakterisierung membrangebundener Desaturasen durch Einbringung in einen geeigneten Organismus, der anschließend auf Enzymaktivität mittels Edukt- und Produktanalyse untersucht wird. Δ -6-Desaturasen werden in WO 93/06712, US 5,614,393, US5614393, WO 96/21022, WO0021557 und WO 99/27111 beschrieben und auch die Anwendung zur Produktion in transgenen Organismen beschrieben wie in WO9846763
WO9846764, WO9846765. Dabei wird auch die Expression verschiedener Desaturasen wie in WO9964616 oder W09846776 und Bildung polyungesättigter Fettsäuren beschrieben und beansprucht.
Für die Synthese von Docosahexaensäure (DHA) werden verschiedene Synthesewege diskutiert (Fig. 1). So erfolgt die Produktion von DHA in marinen Bakterien wie Vibrio sp. oder Shewanella sp. nach dem Polyketid-Weg (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology 143:2725-2731, 1197)).
Ein alternative Strategie verläuft über die wechselnde Aktivität von Desaturasen und Elongasen (Zank, T.K. et al. Plant Journal 31 :255-268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). Der letzte Schritt stellt dabei das Einfügen der Doppelbindung in Position C4-C5 durch eine Δ4-Desaturase dar. In diesem Zusammenhang wurde von Sprecher et al. (Voss, A. et al. Journal of Biological Chemistry 266:19995- 20000, 1991) demonstriert, dass DHA auch unabhängig einer Δ-4-Desaturase in Rattenlebern synthetisiert werden kann. Für die Herstellung in Rianzen und Mikro- Organismen ist der sogenannte Sprecher-Syntheseweg (siehe Figur 1) allerdings nicht geeignet, da die Regulationsmechanismen, die der α-Oxidation zugrunde liegen, nicht bekannt sind. Verschiedene Δ4-Desaturasen sind bereits in WO200226946 und WO2002090493 beschrieben.
Bzgl. der Effektivität der Expression von Desaturasen und ihrem Einfluss auf die Bildung polyungesättigter Fettsäuren ist anzumerken, dass durch Expression der entsprechenden Desaturase wie bisher beschrieben (siehe oben) lediglich geringe Gehalte an delta-4 ungesättigten Fettsäuren/Lipiden erreicht wurden. Des weiteren ist für die obengenannten Enzyme keine Spezifität für die ernährungsphysiologisch wichtige sn-2 Position in Glycerolipiden beschrieben (Hunter, JE, Lipids 36(7):655-668, 2001). Nach wie vor besteht daher ein großer Bedarf an neuen und besser geeigneten Genen, die für Enzyme kodieren, die an der Biosynthese ungesättigter Fettsäuren beteiligt sind und es ermöglichen, bestimmte Fettsäuren spezifisch in einem technischen Maßstab herzustellen, ohne dass unerwünschte Nebenprodukte entstehen. Bei der Auswahl von Biosynthesegenen sind vor allem zwei Merkmale besonders wichtig. Zum einen besteht nach wie vor ein Bedarf an verbesserten Verfahren zur Gewinnung möglichst hoher Gehalte an polyungesättigten Fettsäuren. Zum anderen sollten die eingesetzten Enzyme hoch spezifisch für ein bestimmtes Substrat sein, da möglichst keine ungewünschten Nebenprodukte entstehen dürfen, die möglicherweise negative oder bisher nicht erforschte physiologische Effekte in der Nahrungsmittelanwendung haben.
Um eine Anreicherung der Nahrung und des Futters mit diesen spezifisch hergestellten, mehrfach ungesättigten Fettsäuren zu ermöglichen, besteht daher ein großer Bedarf an einem einfachen, kostengünstigen Verfahren zur Herstellung dieser mehrfach ungesättigten Fettsäuren mit Hilfe von möglichst spezifischen Enzymen, die an der Fettsäurebiosynthese beteiligt sind.
Es bestand daher die Aufgabe für die Herstellung von mehrfach ungesättigten Fettsäuren in einem Organismus vorteilhaft in einem eukaryontischen Organismus bevorzugt in einer Pflanze neue Nukleinsäuren zu isolieren, die möglichst spezifisch an der Synthese dieser mehrfach ungesättigten Fettsäuren beteiligt sind. Diese Aufgabe wurde durch die erfindungsgemäßen isolierten Nukleinsäuresequenzen gelöst, die für Polypeptide mit Δ-4-Desaturaseaktivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsauresequenz mit der in SEQ ID NO: 1 dargestellten Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten genetischen Codes von der in SEQ ID NO: 1 enthaltenden codierenden Sequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 1 dargestellten Nukleinsauresequenz, die für Polypeptide mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenzen - codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2 aufweisen und eine Δ-4-Desaturaseaktivität aufweisen. Überraschenderweise wurde gefunden, dass eine Δ4-Desaturasen aus Euglena gracilis besonders spezifisch für die Umsetzung von Docopentaensäure (DPA) zu Docohexaensäure (DHA) ist, wenn sie in einem heterologen System exprimiert werden. Damit kann Docosahexaensäure in Pflanzen oder Microorganismen her- gestellt werden, wobei die Spezifität des gefundenen Enzyms das Entstehen von unerwünschten Nebenprodukten stark reduziert. Dabei wird die Doppelbindung an Position C4-C5 der Fettsäure nur eingefügt, wenn in Position C7-C8 bereits eine Doppelbindung vorhanden ist. Das gefundene Enzym kann damit nicht nur zur Synthese von DHA aus DPA, sondern auch zur Synthese von speziellen Fettsäuren, die in der Natur nur begrenzt bis gar nicht vorkommen, verwendet werden. Beispiele solcher Fettsäuren sind 16:2 Δ4, Δ7 oder 16:3 Δ4, Δ7, Δ10, Δ13..
Dies unterscheidet vorteilhaft die gefundene Δ4-Desaturase neben der erhöhten Spezifität und Aktivität den Enzymen des Standes der Technik.
Da bisher beschriebene Δ4-Desaturasegene nur eine geringe Aktivität und Spezifität besitzen, bestand daher für die Erfindung weiterhin die Aufgabe spezifische Desatura- se-Enzym für die Synthese mehrfach ungesättigter langkettiger Fettsäuren in den Samen von Ölsaaten einzubringen und die Produktion von unerwünschten Nebenprodukten zu vermeiden. Diese Aufgabe wurde durch die Klonierung der oben offenbarten Nukleinsäure gelöst. Die gefundene Δ-4-Desaturase unterscheidet sich von den bereits beschriebenen Δ4- Desaturasen durch wesentlich unterschiedliche Nukleotid- und Aminosäuresequenz. Die Euglena-Sequenz zeigt zu der Thraustochytrium<Sequenz (WO200226946) nur 35 % Ähnlichkeit auf Aminosäure-Ebene.. In Fig.2 ist ein Sequenzvergleich der gefundenen Euglena-Sequenz mit der Sequenz aus Thraustochytrium, in Fig. 3 ist das GAP-Alignment gezeigt.
Der Begriff "Δ-4-Desaturase" im Sinne der Erfindung umfasst Proteine, die an der Desaturierung von Fettsäuren vorteilhaft von Fettsäuren, die an Position 7 der Fettsäurekette eine Doppelbindung haben, teilnehmen, sowie ihre Homologen, Derivaten oder Analoga. Bei einer weiteren Ausführungsform kodieren Derivate des erfindungsgemäßen
Nukleinsäuremoleküls wieder gegeben in SEQ ID NO: 1 Proteine mit mindestens 40 %, vorteilhaft etwa 50 bis 60 %, vorzugsweise mindestens etwa 60 bis 70 % und stärker bevorzugt mindestens etwa 70 bis 80 %, 80 bis 90 %, 90 bis 95 % und am stärksten bevorzugt mindestens etwa 96 %, 97 %, 98 %, 99 % oder mehr Homologie (= Identität) zur vollständigen Aminosäuresequenz der SEQ ID NO: 2. Die Homologie wurde über den gesamten Aminosäure- bzw. Nukleinsäuresequenzbereich berechnet. Für die Sequenzverglejche wurde das Programm PileUp verwendet (J. Mol. Evolution., 25, 351-360, 1987, Higgins et al., CABIOS, 5 1989: 151-153) oder die Programme Gap und BestFit [Needleman and Wunsch (J. Mol. Biol.48; 443-453 (1970) und. Smith and Waterman (Adv. Appl. Math. 2; 482-489 (1981)], die im GCG Software- Packet [Gene- tics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711 (1991)] enthalten sind. Die oben in Prozent angegebenen Sequenzhomologiewerte wurden mit dem Programm BestFit über den gesamten Sequenzbereich mit folgenden Einstellungen ermittelt: Gap Weight: 8, Length Weight: 2.
Die Erfindung umfasst zudem Nukleinsäuremoleküle, die sich von einer der in SEQ ID NO: 1 gezeigten Nukleotidsequenzen (und Teilen davon) aufgrund des degenerierten genetischen Codes unterscheiden und somit die gleiche Δ-4-Desaturase kodieren wie diejenige, die von der in SEQ ID NO: 1 gezeigten Nukleotidsequenz kodiert wird.
Zusätzlich zu der in SEQ ID NO: 1 gezeigten Δ-4-Desaturase-Nukleotidsequenz erkennt der Fachmann, dass DNA-Sequenzpolymorphismen, die zu Änderungen in den Aminosäuresequenzen der Δ-4-Desaturase führen, innerhalb einer Population existieren können. Diese genetischen Polymorphismen im Δ-4-Desaturase-Gen können zwischen Individuen innerhalb einer Population aufgrund von natürlicher Variation existieren. Diese natürlichen Varianten bewirken üblicherweise eine Varianz von 1 bis 5 % in der Nukleotidsequenz des Δ-4-Desaturase-Gens. Sämtliche und alle dieser Nukleotidvariationen und daraus resultierende Aminosäurepolymorphismen in der Δ-4-Desaturase, die das Ergebnis natürlicher Variation sind und die funktionelle Aktivität der Δ-4-Desaturase nicht verändern, sollen im Umfang der Erfindung enthalten sein. Unter mehrfach ungesättigten Fettsäuren (PUFAS) sind im folgenden doppelt oder mehrfach ungesättigte Fettsäuren, die Doppelbindungen aufweisen, zu verstehen. Die Doppelbindungen können konjugiert oder nicht konjugiert sein.
Das erfindungsgemäße Enzym Δ-4-Desaturase führt vorteilhaft in Fettsäurereste von Glycerolipiden eine c/s-Doppelbindung in Position C4-C5 ein (siehe SEQ ID NO: 1 und NO: 2). Das Enzym hat außerdem eine Δ-4-Desaturase-Aktivität, die vorteilhaft in Fettsäurereste von Glycerolipiden ausschließlich eine c/s-Doppelbindung in Position C4-Cε einführt. Diese Aktivität hat auch das Enzym mit der in SEQ ID NO: 1 und NO: 2 genannten Sequenz, Bei den in SEQ ID NO: 1 und NO: 2 dargestellten Sequenzen handelt es sich um eine monofunktionelle Δ-4-Desaturase. Die erfindungsgemäße Nukleinsauresequenz (oder Fragmente davon können vorteilhaft zur Isolierung weiterer genomischer Sequenzen über Homologiescreening verwendet werden.
Die genannten Derivate lassen sich beispielsweise aus anderen Organismen eukary- ontischen Organismen wie Rianzen wie speziell Moosen, Dinoflagellaten oder Pilze isolieren.
Allelvarianten umfassen insbesondere funktionelle Varianten, die durch Deletion, Insertion oder Substitution von Nukleotiden aus der in SEQ ID NO: 1 dargestellten Sequenz erhältlich sind, wobei die enzymatische Aktivität der abgeleiteten synthetisierten Proteine erhalten bleibt. Solche DNA-Sequenzen lassen sich ausgehend von den in SEQ ID NO: 1 beschriebenen DNA-Sequenz oder Teilen dieser Sequenzen, beispielsweise mit üblichen Hybridisierungsverfahren oder der PCR-Technik aus anderen Eukaryonten wie beispielsweise den oben genannt isolieren. Diese DNA-Sequenzen hybridisieren unter Standardbedingungen mit den genannten Sequenzen. Zur Hybridvisierung werden vorteilhaft kurze Oligonukleotide beispielsweise der konservierten Bereiche, die über Vergleiche mit anderen Desaturasegenen in dem Fachmann bekannter Weise ermittelt werden können, verwendet. Vorteilhaft werden die Histidin-Box-Sequenzen verwendet. Es können aber auch längere Fragmente der erfindungsgemäßen Nukleinsäuren oder die vollständigen Sequenzen für die Hybridisierung verwendet werden. Je nach der verwendeten Nukleinsäure: Oligonukleotid, längeres Fragment oder vollständige Sequenz oder je nachdem welche Nukleinsäureart DNA oder RNA für die Hybridisierung verwendet werden, variieren diese Standardbedingungen. So liegen beispielsweise die Schmelztemperaturen für DNA:DNA-Hybride ca. 10°C niedriger als die von DNA:RNA-Hybriden gleicher Länge.
Unter Standardbedingungen sind beispielsweise je nach Nukleinsäure Temperaturen zwischen 42 und 58°C in einer wässrigen Pufferlösung mit einer Konzentration zwischen 0,1 bis 5 x SSC (1 X SSC = 0,15 M NaCI, 15 mM Natriumeitrat, pH 7,2) oder zusätzlich in Gegenwart von 50 % Formamid wie beispielsweise 42°C in 5 x SSC, 50 % Formamid zu verstehen. Vorteilhafterweise liegen die Hybridisierungsbedingun- gen für DNA:DNA-Hybride bei 0,1 x SSC und Temperaturen zwischen etwa 20°C bis 45°C, bevorzugt zwischen etwa 30°C bis 45°C. Für DNA:RNA-Hybride liegen die Hybridisierungsbedingungen vorteilhaft bei 0,1 x SSC und Temperaturen zwischen etwa 30°C bis 55°C, bevorzugt zwischen etwa 45°C bis 55°C. Diese angegebenen Temperaturen für die Hybridisierung sind beispielhaft kalkulierte Schmelztemperaturwerte für eine Nukleinsäure mit einer Länge von ca. 100 Nukleotiden und einem G + C-Gehalt von 50 % in Abwesenheit von Formamid. Die experimentellen Bedingungen für die DNA-Hybridisierung sind in einschlägigen Lehrbüchern der Genetik wie beispielsweise Sambrook et al., „Molecular Cloning", Cold Spring Harbor Laboratory, 1989, beschrieben und lassen sich nach dem Fachmann bekannten Formeln beispielsweise abhängig von der Länge der Nukleinsäuren, der Art der Hybride oder dem G + C-Gehalt berechnen. Weitere Informationen zur Hybridisierung kann der Fachmann folgenden Lehrbüchern entnehmen: Ausubel et al. (eds), 1985, Current Protocols in Molecular Biology, John Wiley & Sons, New York; Harnes and Higgins (eds), 1985, Nucleic Acids Hybridization: A Practical Approach, IRL Press at Oxford University Press, Oxford; Brown (ed), 1991, Essential Molecular Biology: A Practical Approach, IRL Press at Oxford University Press, Oxford.
Weiterhin sind unter Derivaten Homologe der Sequenz SEQ ID NO: 1 beispielsweise eukaryontische Homologe, verkürzte Sequenzen, Einzelstrang-DNA der codierenden und nichtcodierenden DNA-Sequenz oder RNA der codierenden und nichtcodierenden DNA-Sequenz zu verstehen. Außerdem sind unter Homologen der Sequenz SEQ ID NO: 1 Derivate wie beispielsweise Promotorvarianten zu verstehen. Diese Varianten können durch ein oder mehrere Nukleotidaustausche, durch lnsertion(en) und/oder Deletion(en) verändert sein, ohne dass aber die Funktionalität bzw. Wirksamkeit der Promotoren beeinträch- tigt sind. Des weiteren können die Promotoren durch Veränderung ihrer Sequenz in ihrer Wirksamkeit erhöht oder komplett durch wirksamere Promotoren auch artfremder Organismen ausgetauscht werden.
Unter Derivaten sind auch vorteilhaft Varianten zu verstehen, deren Nukleotidsequenz im Bereich -1 bis -2000 vor dem Startkodon so verändert wurden, dass die Gen- expression und/oder die Proteinexpression verändert, bevorzugt erhöht wird. Weiterhin sind unter Derivaten auch Varianten zu verstehen, die am 3'-Ende verändert wurden.
Unter Derivaten sind auch die Antisense-DNAs zu verstehen, die zur Hemmung der Proteinbiosynthese der erfindungsgemäßen Proteine verwendet werden können. Diese Antisense-DNAs gehören zu den erfindungsgemäßen nichtfunktionellen Derivaten, wie Derivate, die keine enzymatische Aktivität aufweisen. Weitere dem Fachmann bekannte Methoden der Herstellung von nichtfunktionellen Derivaten sind die sogenannte Cosuppression, die Verwendung von Ribozymen und Introns. Ribozyme sind katalyti- sche RNA-Moleküle mit Ribonukleaseaktivität, die Einzelstrang Nukleinsäuren wie mRNA, zu denen sie eine Komplementarität aufweisen, schneiden können. Dadurch können mit Hilfe dieser Ribozyme (Haselhoff and Gerlach, Nature, 334, 1988: 585- 591) mRNA-Transkripte katalytisch gespalten werden und so die Translation dieser RNA unterdrückt werden. Derartige Ribozyme können speziell auf ihre Aufgaben hin zugeschnitten werden (US 4,987,071; US 5,116,742 und Bartel et al., Science 261, 1993: 1411-1418). Mit Hilfe der Antisense-DNA können dadurch Fettsäuren, Lipide oder Öle mit einem erhöhten Anteil an gesättigten Fettsäuren hergestellt werden.
Die erfindungsgemäße Nukleinsauresequenz, die für eine Δ-4-Desaturase kodiert, können synthetisch hergestellt oder natürlich gewonnen sein oder eine Mischung aus synthetischen und natürlichen DNA-Bestandteilen enthalten, sowie aus verschiedenen heterologen Δ-4-Desaturase-Genabschnitten verschiedener Organismen bestehen. Im allgemeinen werden synthetische Nukleotid-Sequenzen mit Codons erzeugt, die von den entsprechenden Wirtsorganismen beispielsweise Rianzen bevorzugt werden. Dies führt in der Regel zu einer optimalen Expression der heterologen Gene. Diese von Pflanzen bevorzugten Codons können aus Codons mit der höchsten Proteinhäufigkeit bestimmt werden, die in den meisten interessanten Rlanzenspezies exprimiert werden. Ein Beispiel für Corynebacterium glutamicum ist gegeben in: Wada et al. (1992) Nucleic Acids Res.20:2111-2118). Die Durchführung solcher Experimente sind mit Hilfe von Standardmethoden durchführbar und sind dem Fachmann auf dem Gebiet bekannt.
Funktioneil äquivalente Sequenzen, die für das Δ-4-Desaturase-Gen kodieren, sind solche Derivate der erfindungsgemäßen Sequenz, welche trotz abweichender Nukleotidsequenz noch die gewünschten Funktionen, das heißt die enzymatische Aktivität und spezifische Selektivität der Proteine besitzen. Funktionelle Äquivalente umfassen somit natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene, an den Codon-Gebrauch einer Pflanze angepasste, künstliche Nukleotid-Sequenzen. Außerdem sind artifizielle DNA-Sequenzen geeignet, solange sie, wie oben beschrieben, die gewünschte Eigenschaft beispielsweise der Erhöhung des Gehaltes von Δ-4- Doppelbindungen in Fettsäuren, Ölen oder Lipiden in der Rlanze durch Überexpression des Δ-4-Desaturase-Gens in Kulturpflanzen vermitteln. Solche artifiziellen DNA- Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Modelling konstruierter Proteine, Δ-4-Desaturase-Aktivität aufweisen oder durch in vitro-Selektion ermittelt werden. Mögliche Techniken zur in vitro-Evolution von DNA zur Veränderung bzw. Verbesserung der DNA-Sequenzen sind beschrieben bei Patten, P.A. et al., Current Opinion in Biotechnology 8, 724-733( 1997) oder bei Moore, J.C. et al., Journal of Molecular Biology 272, 336-347 (1997). Besonders geeignet sind codierende DNA- Sequenzen, die durch Rückübersetzung einer Polypeptidsequenz gemäß der für die Wirtspflanze spezifischen Kodon-Nutzung erhalten werden. Die spezifische Kodon - Nutzung kann ein mit pflanzengenetischen Methoden vertrauter Fachmann durch Computerauswertungen anderer, bekannter Gene der zu transformierenden Pflanze leicht ermitteln. Als weitere geeignete äquivalente Nukleinsäure-Sequenzen sind zu nennen Sequenzen, welche für Fusionsproteine kodieren, wobei Bestandteil des Fusionsproteins ein Δ-4-Desaturase-Polypeptid oder ein funktionell äquivalenter Teil davon ist. Der zweite Teil des Fusionsproteins kann z.B. ein weiteres Polypeptid mit enzymatischer Aktivität sein oder eine antigene Polypeptidsequenz mit deren Hilfe ein Nachweis auf Δ-4- Desaturase-Expression möglich ist (z.B. myc-tag oder his-tag). Bevorzugt handelt es sich dabei jedoch um eine regulative Proteinsequenz, wie z.B. ein Signalsequenz für das ER, das das Δ-4-Desaturase-Protein an den gewünschten Wirkort leitet.
Vorteilhaft stammen die erfindungsgemäßen isolierten Nukleinsäuresequenzen aus einer Pflanze wie einer monokotylen oder dikotylen Pflanze. Bevorzugt stammen die Nukleinsäuresequenzen aus der Klasse der Euglenophyceae wie den Ordnungen Eutreptiales, Euglenales, Rhabdomonadales, Sphenomonadales, Heteronematales oder Euglenamorphales besonders vorteilhaft stammen die Sequenzen aus der Gattung und Art Euglena gracilis, Astasia longa, Khawkinea quartana, Phacus smulkowskianus, Lepocinclis ovum, Lepocinclis ovata, Eutreptia viridis, Distigma proteus, Distigma curvatum, Rhabdomonas intermedia, Rhabdomonas gibba, Rhab- domonas spiralis, Gyropaigne lefevrei, Rhabdomonas incurva, Peranema trichophorum oder Petalomonas cantuscygni, ganz besonders vorteilhaft stammen sie aus Euglena gracilis.
Vorteilhaft können die Δ-4-Desaturase-Gene im erfindungsgemäßen Verfahren mit weiteren Genen der Fettsäurebiosynthese kombiniert werden. Beispiele für derartige Gene sind die Acyltransferasen, weitere Desaturasen oder Elongasen. Für die in vivo und speziell in vitro Synthese ist die Kombination mit z.B. NADH-Cytochrom B5 Reduktasen vorteilhaft, die Reduktionsäquivalente aufnehmen oder abgeben können.
Unter den erfindungsgemäßen Aminosäuresequenzen sind Proteine zu verstehen, die eine in der Sequenz SEQ ID NO: 2 dargestellten Aminosäuresequenz oder eine daraus durch Substitution, Inversion, Insertion oder Deletion von einem oder mehreren
Aminosäureresten erhältliche Sequenz enthalten, wobei die enzymatische Aktivitäten des in SEQ ID NO: 2 dargestellten Proteins erhalten bleibt bzw. nicht wesentlich reduziert wird. Unter nicht wesentlich reduziert sind alle Enzyme zu verstehen, die noch mindestens 10 %, bevorzugt 20 %, besonders bevorzugt 30 % der enzymati- sehen Aktivität des Ausgangsenzyms aufweisen. Dabei können beispielsweise bestimmte Aminosäuren durch solche mit ähnlichen physikochemischen Eigenschaften (Raumerfüllung, Basizität, Hydrophobizität etc.) ersetzt werden. Beispielsweise werden Argininreste gegen Lysinreste, Valinreste gegen Isoleucinreste oder Asparaginsäure- reste gegen Glutaminsäurereste ausgetauscht. Es können aber auch ein oder mehrere Aminosäuren in ihrer Reihenfolge vertauscht, hinzugefügt oder entfernt werden, oder es können mehrere dieser Maßnahmen miteinander kombiniert werden.
Unter Derivaten sind auch funktionelle Äquivalente zu verstehen, die insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für Δ-4- Desaturase codierende Sequenz beinhalten, welche weiterhin die gewünschte Funktion, das heißt deren enzymatische Aktivität und Substratselektivität nicht wesentlich reduziert ist, zeigen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder Insertionen eines oder mehrerer Nukleotidreste. Somit werden beispielsweise auch solche Nukleotidsequenzen durch die vorliegende Erfindung mit umfasst, welche man durch Modifikation der Δ-4-Desaturase Nukleotid- sequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Eingrenzung der darin enthaltenen codierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktionsenzym-Schnittstellen sein.
Funktionelle Äquivalente sind auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment, abgeschwächt (= nicht wesentlich reduziert) oder verstärkt ist (= Enzymaktivität stärker als die Aktivität des Ausgangsenzym, das heißt Aktivität ist höher als 100 %, bevorzugt höher als 110 %, besonders bevorzugt höher als 130 %).
Die Nukleinsauresequenz kann dabei vorteilhaft beispielsweise eine DNA- oder cDNA- Sequenz sein. Zur Insertion in eine erfindungsgemäßen Expressionskassette geeigne- te codierende Sequenzen sind beispielsweise solche, die für eine Δ-4-Desaturase mit den oben beschriebenen Sequenzen kodieren und die dem Wirt die Fähigkeit zur - Überproduktion von Fettsäuren, Ölen oder Lipiden mit Doppelbindungen in Δ-4- Position verleihen, besonders wenn dabei ω 3 Fettsäuren mit mindestens vier Doppelbindungen hergestellt werden. Diese Sequenzen können homologen oder heterologen Ursprungs sein. Unter der erfindungsgemäßen Expressionskassette (= Nukleinsäurekonstrukt oder - fragment) sind die in SEQ ID NO: 1 genannte Sequenz, die sich als Ergebnis des genetischen Codes und/oder deren funktioneilen oder nicht funktioneilen Derivate zu verstehen, die mit einem oder mehreren Regulationssignalen vorteilhafterweise zur Erhöhung der Genexpression funktioneil verknüpft wurden und welche die Expression der codierenden Sequenz in der Wirtszelle steuern. Diese regulatorischen Sequenzen sollen die gezielte Expression der Gene und der Proteinexpression ermöglichen. Dies kann beispielsweise je nach Wirtsorganismus bedeuten, dass das Gen erst nach Induktion exprimiert und/oder überexprimiert wird, oder dass es sofort exprimiert und/oder überexprimiert wird. Beispielsweise handelt es sich bei diesen regulatorischen Sequenzen um Sequenzen an die Induktoren oder Repressoren binden und so die Expression der Nukleinsäure regulieren. Zusätzlich zu diesen neuen Regulationssequenzen oder anstelle dieser Sequenzen kann die natürliche Regulation dieser Sequenzen vor den eigentlichen Strukturgenen noch vorhanden sein und gegebenen- falls genetisch verändert worden sein, so dass die natürliche Regulation ausgeschaltet und die Expression der Gene erhöht wurde. Das Genkonstrukt kann aber auch einfacher aufgebaut sein, das heißt es wurden keine zusätzlichen Regulationssignale vor die Nukleinsauresequenz oder dessen Derivate inseriert und der natürliche Promotor mit seiner Regulation wurde nicht entfernt. Stattdessen wurde die natürliche Regulationssequenz so mutiert, dass keine Regulation mehr erfolgt und/oder die Genexpression gesteigert wird. Diese veränderten Promotoren können in Form von Teilsequenzen (= Promotor mit Teilen der erfindungsgemäßen Nukleinsäuresequenzen) auch allein vor das natürliche Gen zur Steigerung der Aktivität gebracht werden. Das Genkonstrukt kann außerdem vorteilhafterweise auch eine oder mehrere soge- nannte „enhancer Sequenzen" funktioneil verknüpft mit dem Promotor enthalten, die eine erhöhte Expression der Nukleinsauresequenz ermöglichen. Auch am 3'-Ende der DNA-Sequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden wie weitere regulatorische Elemente oder Terminatoren. Das Δ-4-Desaturase-Gen kann in einer oder mehreren Kopien in der Expressionskassette (= Genkonstrukt) enthalten sein.
Die regulatorischen Sequenzen bzw. Faktoren können dabei wie oben beschrieben vorzugsweise die Genexpression der eingeführten Gene positiv beeinflussen und dadurch erhöhen. So kann eine Verstärkung der regulatorischen Elemente vorteilhafterweise auf der Transkriptionsebene erfolgen, indem starke Transkriptionssignale wie Promotoren und/oder "Enhancer" verwendet werden. Daneben ist aber auch eine Verstärkung der Translation möglich, indem beispielsweise die Stabilität der mRNA verbessert wird.
Als Promotoren in der Expressionskassette sind grundsätzlich alle Promotoren geeignet, die die Expression von Fremdgenen in Organismen vorteilhaft in Pflanzen oder Pilzen steuern können. Vorzugsweise verwendet man insbesondere ein pflanzliche Promotoren oder Promotoren, die aus einem Rlanzenvirus entstammen. Vorteilhafte Regulationssequenzen für das erfindungsgemäße Verfahren sind beispielsweise in Promotoren wie cos-, tac-, trp-, tet-, trp-tet-, Ipp-, lac-, Ipp-lac-, laclq"' T7-, T5-, T3-, gal-, trc-, ara-, SP6-, λ-PR- oder im λ-PL-Promotor enthalten, die vorteilhafterweise in gram-negativen Bakterien Anwendung finden. Weitere vorteilhafte Regulationssequenzen sind beispielsweise in den gram-positiven Promotoren amy und SP02, in den Hefe- oder Pilzpromotoren ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH oder in den Pflanzenpromotoren wie CaMV/35S [Franck et al., Cell 21 (1980) 285-294], SSU, OCS, Iib4, STLS1, B33, nos (= Nopalin Synthase Promotor) oder im Ubiquitin- Promotor enthalten. Die Expressionskassette kann auch einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen Δ-4-Desaturase-Gens in den Organismen vorteilhaft in den Rianzen zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige vorteilhafte Rlanzenpromotoren sind beispielsweise der
PRP1-Promotor [Ward et al., PlantMol. Biol.22(1993), 361-366], ein durch Benzensul- fonamid-induzierbarer (EP 388186), ein durch Tetrazykiin-induzierbarer (Gatz et al., (1992) Plant J.2,397-404), ein durch Salizylsäure induzierbarer Promotor (WO 95/19443), ein durch Abscisinsäure-induzierbarer (EP335528) bzw. ein durch Ethanol- oder Cyclohexanon-induzierbarer (W093/21334) Promotor. Weitere Pflanzenpromotoren sind beispielsweise der Promotor der cytosolischen FBPase aus Kartoffel, der ST-LSI Promotor aus Kartoffel (Stockhaus et al., EMBO J. 8 (1989) 2445- 245), der Promotor der Phosphoribosylpyrophosphat Amidotransferase aus Glycine max (siehe auch Genbank Accession Nummer U87999) oder ein Nodien-spezifischen Promotor wie in EP 249676 können vorteilhaft verwandt werden. Vorteilhaft sind insbesonders solche pflanzliche Promotoren, die die Expression in Geweben oder PflanzenteilenA-organen sicherstellen, in denen die Fettsäurebiosynthese bzw. dessen Vorstufen stattfindet wie beispielsweise im Endosperm oder im sich entwickelnden - Embryo. Insbesondere zu nennen sind vorteilhafte Promotoren, die eine samenspezifi- sehe Expression gewährleisten wie beispielsweise der USP-Promotor oder Derivate davon, der LEB4-Promotor, der Phaseolin-Promotor oder der Napin-Promotor. Der erfindungsgemäß aufgeführte und besonders vorteilhafte USP-Promotor oder dessen Derivate vermitteln in der Samenentwicklung eine sehr früh Genexpression (Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67). Weitere vorteilhafte samenspezifische Promotoren, die für monokotyle und dikotyle Rianzen verwendet werden können, sind die für Dikotyle geeignete Promotoren wie ebenfalls beispielhaft ausgeführte Napin- gen-Promotor aus Raps (US5,608,152), der Oleosin-Promotor aus Arabidopsis (W098/45461), der Phaseolin-Promotor aus Phaseolus vulgaris (US5,504,200), der Bce4-Promotor aus Brassica (WO91/13980) oder der Leguminosen B4-Promotor (LeB4, Baeumlein et al., Plant J., 2, 2, 1992: 233 - 239) oder für Monokotyle geeignete Promotoren wie die Promotoren die Promotoren des lpt2- oder lpt1 -Gens aus Gerste (W095/15389 und WO95/23230) oder die Promotoren des Gersten Hordein-Gens, des Reis Glutelin-Gens, des Reis Oryzin-Gens, des Reis Prolamin-Gens, des Weizen Gliadin-Gens, des Weizen Glutelin-Gens, des Mais Zein-Gens, des Hafer Glutelin- Gens, des Sorghum Kasirin-Gens oder des Roggen Secalin-Gens, die in WO99/16890 beschrieben werden.
Weiterhin sind insbesondere solche Promotoren bevorzugt, die die Expression in Geweben oder Rlanzenteilen sicherstellen, in denen beispielsweise die Biosynthese von Fettsäuren, Ölen und Lipiden bzw. deren Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine samenspezifische Expression gewährleisten. Zu nennen sind der Promotor des Napin-Gens aus Raps (US 5,608,152), des USP- Promotor aus Vicia faba (USP = unbekanntes Samenprotein, Baeumlein et al., Mol Gen Genet, 1991, 225 (3): 459-67), des Oleosin-Gens aus Arabidopsis (W098/45461), des Phaseolin-Promotors (US 5,504,200) oder der Promotor des Legumin B4-Gens (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2): 233-9). Weiterhin sind zu nennen Promotoren, wie der des lpt2 oder lpt1 -Gens aus Gerste (W095/15389 und WO95/23230), die in monokotylen Pflanzen samenspezifische Expression vermitteln.
In der Expressionskassette (= Genkonstrukt, Nukleinsäurekonstrukt) können wie oben beschrieben noch weitere Gene, die in die Organismen eingebracht werden sollen, enthalten sein. Diese Gene können unter getrennter Regulation oder unter der gleichen Regulationsregion wie das Δ-4-DESATURASE-Gen liegen. Bei diesen Genen handelt es sich beispielsweise um weitere Biosynthesegene vorteilhaft der Fettsäurebiosynthese wie Biosynthesegene des Fettsäure- oder Lipidstoffwechsels, die eine gesteigerte Synthese ermöglichen, ausgewählt aus der Gruppe Acyl-CoA-
Dehydrogenase(n), Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP- Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid- Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl- Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure-Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-Lipasen, Allenoxid-
Synthasen, Hydroperoxid-Lyasen oder Fettsäure-Elongase(n). Beispielsweise seien die Gene für die Δ-15-, Δ-12-, Δ-9-, Δ-6-, Δ-5-Desaturase, ß-Ketoacyl-Reductasen, ß-Ketoacyl-Synthasen, Elongasen oder die verschiedenen Hydroxylasen und Acyl- ACP-Thioesterasen genannt. Vorteilhaft werden Desaturase- und Elongasegene im Nukleinsäurekonstrukt verwendet. Besonders vorteilhaft werden Gene ausgewählt aus der Gruppe Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desatuase-, Δ-9- Desaturase-, Δ-12-Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-9-Elongase im Konstrukt verwendet.
Prinzipiell können alle natürlichen Promotoren mit ihren Regulationssequenzen wie die oben genannten für die erfindungsgemäße Expressionskassette und das erfindungsgemäße Verfahren, wie unten beschrieben, verwendet werden. Darüber hinaus können auch synthetische Promotoren vorteilhaft verwendet werden.
Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente (= erfindungsgemäße Nukleinsäuren) miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstel- len für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allge- meinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zum Wirtsorganismus beispielsweise zur Wirtspflanze sein. Die Expressionskassette beinhaltet in der 5'-3'- Transkriptionsrichtung den Promotor, eine DNA-Sequenz, die für ein Δ-4-Desaturase- Gen codiert und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.
Ferner können Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige DNA oder Restriktionsschnittstellen entfernen, eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen wie z.B. Transitionen und Transversionen in Frage kommen, können in v/fro-Mutagenese, -primerrepair-, Restriktion oder Ligation verwendet werden. Bei geeigneten Manipulationen, wie z.B. Restriktion, -chewing-back- oder Auffüllen von Überhängen für -bluntends-, können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden. Von Bedeutung für eine vorteilhafte hohe Expression kann u.a. das Anhängen des spezifischen ER-Retentionssignals SEKDEL sein (Schouten, A. et al., Plant Mol. Biol. 30 (1996), 781-792), die durchschnittliche Expressionshöhe wird damit verdreifacht bis vervierfacht. Es können auch andere Retentionssignale, die natürlicherweise bei im ER lokalisierten pflanzlichen und tierischen Proteinen vorkommen, für den Aufbau der Kassette eingesetzt werden.
Bevorzugte Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHδ entsprechen (Gielen et al., EMBO J.3 (1984), 835 ff) oder entsprechende funktionelle Äquivalente.
Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten Δ-4-Desaturase-DNA-Sequenz sowie einem Polyade- nylierungssignal nach gängigen Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und LW. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley- Interscience (1987) beschrieben werden. Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden. Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allge- meinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet in der 5'-3'-Transkriptionsrichtung den Promotor, eine DNA-Sequenz die für ein Δ-4-Desaturase-Gen codiert und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.
Bei der Präparation einer Expressionskassette können verschiedene DNA-Fragmente manipuliert werden, um eine Nukleotid-Sequenz zu erhalten, die zweckmäßigerweise in der korrekten Richtung liest und die mit einem korrekten Leseraster ausgestattet ist. Für die Verbindung der DNA-Fragmente miteinander können an die Fragmente Adaptoren oder Linker angesetzt werden.
Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp. Der Promotor kann sowohl nativ bzw. homolog als auch fremdartig bzw. heterolog zur Wirtspflanze sein. Die Expressionskassette beinhaltet in der 5'-3'-Transkriptionsrichtung den Promotor, eine DNA-Sequenz die für ein Δ-4-Desaturase-Gen codiert und eine Region für die transkriptionale Termination. Verschiedene Terminationsbereiche sind gegeneinander beliebig austauschbar.
Die DNA Sequenzen codierend für zwei Δ-4-Desaturasen aus Euglena gracilis beinhaltet alle Sequenzmerkmale, die notwendig sind, um eine dem Ort der Fettsäure-, Lipid- oder Ölbiosynthese korrekte Lokalisation zu erreichen. Daher sind keine weiteren Targetingsequenzen per se notwendig. Allerdings kann eine solche Lokalisation wünschenswert und vorteilhaft sein und daher künstlich verändert oder verstärkt werden, so dass auch solche Fusionskonstrukte eine bevorzugte vorteilhafte Ausführungsform der Erfindung sind. Insbesondere bevorzugt sind Sequenzen, die ein Targeting in Piastiden gewährleisten. Unter bestimmten Umständen kann auch ein Targeting in andere Kompartimente (referiert: Kermode, Grit. Rev. Plant Sei. 15, 4 (1996), 285-423) z.B. in die Vakuole, in das Mitochondrium, in das Endoplasmatische Retikulum (ER), Peroxisomen, Lipidkörper oder durch ein Fehlen entsprechender operativer Sequenzen ein Verbleib im Kompartiment des Entstehens, dem Zytosol, wünschenswert sein. Vorteilhafterweise werden die erfindungsgemäßen Nukleinsäuresequenzen zusammen mit mindestens einem Reportergen in eine Expressionskassette Moniert, die in den Organismus über einen Vektor oder direkt in das Genom eingebracht wird. Dieses Reportergen sollte eine leichte Detektierbarkeit über einen Wachstums-, Fluoreszenz-, Chemo-, Biolumineszenz- oder Resistenzassay oder über eine photometrische
Messung ermöglichen. Beispielhaft seien als Reportergene Antibiotika- oder Herbizidresistenzgenre, Hydrolasegene, Fluoreszenzproteingene, Biolumineszenzgene, Zucker- oder Nukleotidstoffwechselgene oder Biosynthesegene wie das Ura3-Gen, das Ilv2-Gen, das Luciferasegen, das α-Galactosidasegen, das gfp-Gen, das 2- Desoxyglucose-6-phosphat-Phosphatasegen, das ß-Glucuronidase-Gen, ß-
Lactamasegen, das Neomycinphosphotransferasegen, das Hygromycinphosphotrans- ferasegen oder das BASTA (= Gluphosinatresistenz)-Gen genannt. Diese Gene ermöglichen eine leichte Messbarkeit und Quantifizierbarkeit der Transcriptionsaktivität und damit der Expression der Gene. Damit lassen sich Genomstellen identifizieren, die eine unterschiedliche Produktivität zeigen.
Gemäß einer bevorzugten Ausführungsform umfasst eine Expressionskassette stromaufwärts, d.h. am 5'-Ende der codierenden Sequenz, einen Promotor und stromabwärts, d.h. am 3'-Ende, ein Polyadenylierungssignal und gegebenenfalls weitere regulatorische Elemente, welche mit der dazwischenliegenden codierenden Sequenz für die Δ-4-Desaturase und/oder Δ-4-Desaturase DNA Sequenz operativ verknüpft sind. Unter einer operativen Verknüpfung versteht man die sequenzielle Anordnung von Promotor, codierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, dass jedes der regulativen Elemente seine Funktion bei der Expression der codierenden Sequenz bestimmungsgemäß erfüllen kann. Die zur operativen Verknüpfung bevorzugten Sequenzen sind Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation in Piastiden. Aber auch Targeting- Sequenzen zur Gewährleistung der subzellulären Lokalisation im Mitochondrium, im Endoplasmatischen Retikulum (= ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten sind bei Bedarf einsetzbar sowie Translationsverstärker wie die 5'- Führungssequenz aus dem Tabak-Mosaik- Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711).
Eine Expressionskassette kann beispielsweise einen konstitutiven Promotor (bevorzugt den USP- oder Napin-Promotor), das zu exprimierende Gen und das ER- Retentionssignal enthalten. Als ER-Retentionssignal wird bevorzugt die Aminosäure- sequenz KDEL (Lysin, Asparaginsäure, Glutaminsäure, Leucin) verwendet.
Die Expressionskassette wird zur Expression in einem prokaryontischen oder eukary- ontischen Wirtsorganismus beispielsweise einem Mikroorganismus wie einem Pilz oder einer Rlanze vorteilhafterweise in einen Vektor wie beispielsweise einem Plasmid, einem Phagen oder sonstiger DNA inseriert, der eine optimale Expression der Gene im Wirtsorganismus ermöglicht. Geeignete Plasmide sind beispielsweise in E. coli pLG338, pACYC184, pBR-Serie wie z.B. pBR322, pUC-Serie wie pUC18 oder pUC19, M113mp-Serie, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, plN-HI113-B1, λgt11 oder pBdCI, in Streptomyces plJ101, plJ364, plJ702 oder plJ361 , in Bacillus pUB110, pC194 oder pBD214, in Corynebacterium pSA77 oder pAJ667, in Pilzen pALS1, plL2 oder pBB116, weitere vorteilhafte Pilzvektoren werden von Romanos, M.A. et al., [(1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488] und von van den Hondel, C.A.M.J.J. et al. [(1991) "Heterologous gene expression in filamentous fungi] sowie in More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego] und in "Gene transfer Systems and vector development for filamentous fungi,, [van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) in: Applied Molecular Genetics of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge] beschrieben. Vorteilhafte Hefepromotoren sind beispielsweise 2°cM, pAG-1, YEp6, YEp13 oder pEMBLYe23. Beispiele für Algen- oder Pflanzenpromotoren sind pLGV23, pGHIac+, pBIN19, PAK2004, pVKH oder pDH51 (siehe Schmidt, R. and Willmitzer, L, 1988). Die oben genannten Vektoren oder Derivate der vorstehend genannten Vektoren stellen eine kleine Auswahl der möglichen Plasmide dar. Weitere Plasmide sind dem Fachmann wohl bekannt und können beispielsweise aus dem Buch Cloning Vectors (Eds. Pouwels P.H. et al. Elsevier, Amsterdam-New York-Oxford, 1985 , ISBN 0444904018) entnommen werden. Geeignete pflanzliche Vektoren werden unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S.71- 119 beschrieben. Vorteilhafte Vektoren sind sog. shuttle-Vektoren oder binäre Vektoren, die in E. coli und Agrobacterium replizieren.
Unter Vektoren sind außer Plasmiden auch alle anderen dem Fachmann bekannten Vektoren wie beispielsweise Phagen, Viren wie SV40, CMV, Baculovirus, Adenovirus, Transposons, IS-Elemente, Phasmide, Phagemide, Cosmide, lineare oder zirkuläre DNA zu verstehen. Diese Vektoren können autonom im Wirtsorganismus repliziert oder chromosomal repliziert werden bevorzugt ist eine chromosomale Replikation.
In einer weiteren Ausgestaltungsform des Vektors kann die erfindungsgemäße Expressionskassette auch vorteilhafterweise in Form einer linearen DNA in die Organismen eingeführt werden und über heterologe oder homologe Rekombination in das Genom des Wirtsorganismus integriert werden. Diese lineare DNA kann aus einem linearisierten Plasmid oder nur aus der Expressionskassette als Vektor oder den erfindungsgemäßen Nukleinsäuresequenzen bestehen.
In einer weiteren vorteilhaften Ausführungsform kann die erfindungsgemäße Nukleinsauresequenz auch alleine in einen Organismus eingebracht werden. Sollen neben der erfindungsgemäßen Nukleinsauresequenz weitere Gene in den Organismus eingeführt werden, so können alle zusammen mit einem Reportergen in einem einzigen Vektor oder jedes einzelne Gen mit einem Reportergen in je einem Vektor in den Organismus eingebracht werden, wobei die verschiedenen Vektoren gleichzeitig oder sukzessive eingebracht werden können. Der Vektor enthält vorteilhaft mindestens eine Kopie der erfindungsgemäßen Nukleinsäuresequenzen und/oder der erfindungsgemäßen Expressionskassette. Beispielhaft kann die pflanzliche Expressionskassette in den Transformationsvektor pRT ((a) Toepfer et al., 1993, Methods Enzymol., 217: 66-78; (b) Toepfer et al. 1987, Nucl. Acids. Res. 15: 5890 ff.) eingebaut werden.
Alternativ kann ein rekombinanter Vektor (= Expressionsvektor) auch in-vitro transkri- biert und translatiert werden, z.B. durch Nutzung des T7 Promotors und der T7 RNA Polymerase.
In Prokaryoten verwendete Expressionsvektoren nutzen häufig induzierbare Systeme mit und ohne Fusionsproteinen bzw. Fusionsobligopeptiden, wobei diese Fusionen sowohl Kn-Terminal als auch C-terminal oder anderen nutzbaren Domänen eines Proteins erfolgen können. Solche Fusionsvektoren dienen in der Regel dazu: i.) die Expressionsrate der RNA zu erhöhen ii.) die erzielbare Proteinsyntheserate zu erhöhen, iii.) die Löslichkeit des Proteins zu erhöhen, iv.) oder die Reinigung durch einen für die Affinitätschromatographie nutzbare Bindesequenz zu vereinfachen. Häufig werden auch proteolytische Spaltstellen über Fusionsproteine eingeführt, was die Abspaltung eines Teils des Fusionsproteins auch der Reinigung ermöglicht. Solche Erkennungssequenzen für Proteasen erkennen sind z.B. Faktor Xa, Thrombin und Enterokinase.
Typische vorteilhafte Fusions- und Expressionsvektoren sind pGEX [Pharmacia Biotech Ine; Smith, D.B. and Johnson, K.S. (1988) Gene 67: 31-40], pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) welches Glutathion S-transferase beinhaltet (GST), Maltose Bindeprotein, oder Protein A.
Weitere Beispiele für E. coli Expressionsvektoren sind pTrc [Amann et al., (1988) Gene 69:301-315] und pET Vektoren [Studier et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89; Stratagene, Amsterdam, Niederlande].
Weitere vorteilhafte Vektoren zur Verwendung in Hefe sind pYepSed (Baldari, et al., (1987) Embo J. 6:229-234), pMFa (Kurjan and Herskowitz, (1982) Cell 30:933-943), pJRY88 (Schultz et al., (1987) Gene 54:113-123), and pYES-Derivate (Invitrogen Corporation, San Diego, CA). Vektoren für die Nutzung in filamentösen Pilzen sind beschrieben in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer Systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, et al., eds., p. 1-28, Cambridge University Press: Cambridge.
Alternativ können auch vorteilhaft Insektenzellexpressionsvektoren genutzt werden z.B. für die Expression in Sf 9 Zellen. Dies sind z.B. die Vektoren der pAc Serie (Smith et al. (1983) Mol. Cell Biol.3:2156-2165) und der pVL series (Lucklow and Summers (1989) Virologγ 170:31 -39).
Des weiteren können zur Genexpression vorteilhaft Rlanzenzellen oder Algenzellen genutzt werden. Beispiele für Rlanzenexpressionsvektoren finden sich in Becker, D., et al. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol.20: 1195-1197 oder in Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acid. Res. 12: 8711-8721.
Weiterhin können die erfindungsgemäßen Nukleinsäuresequenzen in Säugerzellen exprimiert werden. Beispiel für entsprechende Expressionsvektoren sind pCDM8 und pMT2PC genannt in: Seed, B. (1987) Nature 329:840 oder Kaufman et al. (1987) EMBO J. 6: 187-195). Dabei sind vorzugsweise zu nutzende Promotoren viralen Ursprungs wie z.B. Promotoren des Polyoma, Adenovirus 2, Cytomegalovirus oder Simian Virus 40. Weitere prokaryotische und eukaryotische Expressionssysteme sind genannt in Kapitel 16 und 17 in Sambrook et al., Molecular Cloning: A Laboratory Manual.2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
Das Einbringen der erfindungsgemäßen Nukleinsäuren, der Expressionskassette oder des Vektors in Organismen beispielsweise in Pflanzen kann prinzipiell nach allen dem Fachmann bekannten Methoden erfolgen. Für Mikroorganismen kann der Fachmann entsprechende Methoden den Lehrbüchern von Sambrook, J. et al. (1989) Molecular cloning: A laboratory manual, Cold Spring Harbor Laboratory Press, von F.M. Ausubel et al. (1994) Current protocols in molecular biology, John Wiley and Sons, von D.M. Glover et al., DNA Cloning Vol.1, (1995), IRL Press (ISBN 019-963476-9), von Kaiser et al. (1994) Methods in Yeast Genetics, Cold Spring Habor Laboratory Press oder Guthrie et al. Guide to Yeast Genetics and Molecular Biology, Methods in Enzymology, 1994, Academic Press entnehmen.
Die Übertragung von Fremdgenen in das Genom einer Rlanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Rianzen aus Rlanzengeweben oder Rlanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplasten- transformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone - die sogenannte particle bombardment Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press (1993) 128-143 sowie in Potrykus Annu. Rev. Plant Physiol. Plant Molec. Biol.42 (1991) 205-225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor Moniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984) 8711). Mit einem solchen Vektor transformierte Agrobakterien können dann in bekannter Weise zur Transformation von Rianzen, insbesondere von Kulturpflanzen, wie z.B. von Tabakpflanzen, verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden. Die Transformation von Rianzen mit Agrobacterium tumefaciens wird beispielsweise von Höfgen und Willmitzer in Nucl. Acid Res. (1988) 16, 9877 beschrieben oder ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1 , Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15-38. Mit einem erfindungsgemäßen Expressionsvektor transformierte Agrobakterien können ebenfalls in bekannter Weise zur Transformation von Pflanzen wie Testpflanzen wie Arabidopsis oder Kulturpflanzen wie Getreide, Mais, Hafer, Roggen, Gerste, Weizen, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Karotte, Paprika, Raps, Tapioka, Maniok, Reilwurz, Tagetes, Alfalfa, Salat und den verschiedenen Baum-, Nuss- und Weinspezies, insbesondere von Ölhaltigen Kulturpflanzen, wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, Färbersaf lor (Carthamus tinctorius) oder Kakaobohne verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden. Besonders zur Herstellung von PUFAs, beispielsweise Stearidonsäure,
Eicosapentaensäure und Docosahexaensäure eignen sich Borage oder Primulaceen. Besonders vorteilhaft eignet sich Lein zur Herstellung von PUFAS mit dem erfindungsgemäßen Nukleinsäuresequenzen vorteilhaft in Kombination mit weiteren Desaturasen und Elongasen. Die genetisch veränderten RIanzenzellen können über alle dem Fachmann bekannten Methoden regeneriert werden. Entsprechende Methoden können den oben genannten Schriften von S.D. Kung und R. Wu, Potrykus oder Höfgen und Willmitzer entnommen werden.
Als transgene Organismen bzw. Wirtsorganismen für die erfindungsgemäße Nuklein- säure, die Expressionskassette oder den Vektor eignen sich prinzipiell vorteilhaft alle Organismen, die in der Lage sind Fettsäuren speziell ungesättigte Fettsäuren zu synthetisieren bzw. für die Expression rekombinanter Gene geeignet sind wie Mikro- rorganismen, nicht-humane Tiere oder Rianzen. Beispielhaft seien Pflanzen wie Arabidopsis, Asteraceae wie Calendula oder Kulturpflanzen wie Soja, Erdnuss, Rizinus, Sonnenblume, Mais, Baumwolle, Flachs, Raps, Kokosnuss, Ölpalme, Färbersaflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze beispielsweise die Gattung Mortierella, Saprolegnia oder Pythium, Bakterien wie die Gattung Escherichia, Hefen wie die Gattung Saccharomyces, Cyanobakterien, Ciliaten, Algen oder Protozoen wie Dinoflagellaten wie Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Pilze wie Mortierella alpina, Pythium insidiosum oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, Färbersaflor, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Raps, Sonnenblume, Lein, Calendula oder Saccharomyces cerevisiae. Prinzipiell sind als Wirtsorganismen auch transgene Tiere geeignet beispielsweise C. elegans. Unter transgenen Organismus bzw. transgener Rlanze im Sinne der Erfindung ist zu verstehen, dass die im Verfahren verwendeten Nukleinsäuren nicht an ihrer natürlichen Stelle im Genom eines Organismus sind, dabei können die Nukleinsäuren homolog oder heterolog exprimiert werden. Transgen bedeutet aber auch wie genannt, dass die erfindungsgemäßen Nukleinsäuren an ihrem natürlichen Platz im Genom eines Organismus sind, dass jedoch die Sequenz gegenüber der natürlichen Sequenz verändert wurde und/oder das die Regulationssequenzen, der natürlichen Sequenzen verändert wurden. Bevorzugt ist unter transgen die Expression der erfindungsgemäßen Nukleinsäuren an nicht natürlicher Stelle im Genom zu verstehen, das heißt eine homologe oder bevorzugt heterologe Expression der Nukleinsäuren liegt vor. Bevorzugte transgene Organismen sind Pilze wie Mortierella oder Rianzen sind die Ölfruchtpflanzen.
"Transgen" meint damit beispielsweise bezüglich einer Nukleinsauresequenz, einer Expressionskassette oder einem Vektor enthaltend eine Nukleinsauresequenz, die für die Δ-4-Desaturase oder deren Derivate codiert, oder einem Organismus transformiert mit dieser Nukleinsauresequenz, einer Expressionskassette oder einem Vektor alle solche durch gentechnische Methoden zustandegekommene Konstruktionen, in denen sich entweder a) die Δ-4-Desaturase-Nukleinsäuresequenz, oder b) eine mit der Δ-4-Desaturase-Nukleinsäuresequenz funktioneil verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder c) (a) und (b) sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitutio- nen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleo- tidreste sein kann. Natürliche genetische Umgebung meint den natürlichen chromoso- malen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsauresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsauresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp.
Nutzbare Wirtszellen sind weiterhin genannt in: Goeddel, Gene Expression Technology: Methods in Enzymology 85, Academic Press, San Diego, CA (1990). Verwendbare Expressionsstämme z.B. solche, die eine geringere Proteaseaktivität aufweisen sind beschrieben in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128. Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer Expressionskassette enthaltend DNA-Sequenzen codierend für ein Δ-4-Desaturase-Gen oder mit diesen hybridisierende DNA-Sequenzen zur Transformation von RIanzenzellen, - geweben oder Pflanzenteilen. Ziel der Verwendung ist die Erhöhung des Gehaltes an Fettsäuren, Ölen oder Lipiden mit erhöhtem Gehalt an und Doppelbindungen in Δ-4- Position.
Dabei kann je nach Wahl des Promotors die Expression des Δ-4-Desaturase-Gens spezifisch in den Blättern, in den Samen, den Knollen oder anderen Teilen der Pflanze erfolgen. Solche Fettsäuren, Öle oder Lipide mit Δ-4-Doppelbindungen überproduzie- renden transgenen Rianzen, deren Vermehrungsgut, sowie deren RIanzenzellen, - gewebe oder -teile, sind ein weiterer Gegenstand der vorliegenden Erfindung. Ein bevorzugter erfindungsgemäßer Gegenstand sind transgene Rlanze enthaltend eine erfindungsgemäße funktionelle oder nicht funktionelle (= Antisense-DNA oder enzymatische inaktives Enzym) Nukleinsauresequenz oder eine funktionelle oder nicht funktionelle Expressionskassette.
Die Expressionskassette oder die erfindungsgemäßen Nukleinsäuresequenzen enthaltend eine Δ-4-Desaturasegensequenz kann darüber hinaus auch zur Transformation der oben beispielhaft genannten Organismen wie Bakterien, Cyanobakterien, Hefen, filamentösen Pilzen, Ciliaten und Algen mit dem Ziel einer Erhöhung des Gehaltes an Fettsäuren, Ölen oder Lipiden Δ-4-Doppelbindungen eingesetzt werden.
Erhöhung des Gehaltes von Fettsäuren, Ölen oder Lipiden mit Δ-4-Doppelbindungen bedeutet im Rahmen der vorliegenden Erfindung beispielsweise die künstlich erworbene Fähigkeit einer erhöhten Biosyntheseleistung durch funktionelle Überexpression des Δ-4-Desaturase-Gens in den erfindungsgemäßen Organismen vorteilhaft in den erfindungsgemäßen transgenen Rianzen gegenüber den nicht gentechnisch modifizierten Ausgangspflanzen zumindest für die Dauer mindestens einer Pflanzengeneration.
Der Biosyntheseort von Fettsäuren, Ölen oder Lipiden beispielsweise ist im allgemeinen der Samen oder Zellschichten des Samens, so dass eine samenspezifische Expression des Δ-4-Desaturase-Gens sinnvoll ist. Es ist jedoch naheliegend, dass die Biosynthese von Fettsäuren, Ölen oder Lipiden nicht auf das Samengewebe beschränkt sein muss, sondern auch in allen übrigen Teilen der Pflanze - beispielsweise in Epidermiszellen oder in den Knollen - gewebespezifisch erfolgen kann.
Darüber hinaus ist eine konstitutive Expression des exogenen Δ-4-Desaturase-Gens von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert erscheinen.
Die Wirksamkeit der Expression des Δ-4-Desaturase-Gens kann beispielsweise in vitro durch Sprossmeristemvermehrung ermittelt werden. Zudem kann eine in Art und Höhe veränderte Expression des Δ-4-Desaturase-Gens und deren Auswirkung auf die Fettsäure-, Öl- oder Lipidbiosyntheseleistung an Testpflanzen in Gewächshausversuchen getestet werden.
Gegenstand der Erfindung sind außerdem transgene Pflanzen, transformiert mit einer Expressioπskassette enthaltend eine Δ-4-Desaturase-Gensequenz oder mit dieser hybridisierende DNA-Sequenzen, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher Rianzen. Besonders bevorzugt sind dabei transgene Kulturpflanzen, wie z.B. Gerste, Weizen, Roggen, Hafer, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Raps und Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Tapioka, Maniok, Reilwurz, Alfalfa, Salat und die verschiedenen Baum-, Nuss und Weinspezies.
Pflanzen im Sinne der Erfindung sind mono- und dikotyle Pflanzen, Moose oder Algen.
Eine weitere erfindungsgemäße Ausgestaltung sind wie oben beschriebenen transgene Pflanzen, die eine funktionelle oder nicht funktionelle erfindungsgemäße Nukleinsauresequenz oder eine funktionelle oder nicht funktionelle erfindungsgemäße Expressionskassette enthalten. Unter nicht f unktionell ist zu verstehen, dass kein enzymatisch aktives Protein mehr synthetisiert wird. Außerdem ist unter nicht funktio- nellen Nukleinsäuren oder Nukleinsäurekonstrukten auch eine sogenannte Antisense- DNA zu verstehen, die zu transgenen Rianzen führt, die eine Reduktion der enzymati- schen Aktivität oder keine enzymatischen Aktivität aufweisen. Mit Hilfe der Antisense- Technik, speziell wenn die erfindungsgemäße Nukleinsauresequenz mit anderen
Fettsäuresynthesegene in der Antisense-DNA kombiniert wird, ist es möglich Triglyceride mit einem erhöhten Gehalt an gesättigten Fettsäuren bzw. gesättigte Fettsäuren zu synthetisieren. Unter transgenen Rianzen sind einzelne Pflanzenzellen und deren Kulturen auf Festmedien oder in Flüssigkultur, Pflanzenteile und ganze Pflanzen zu verstehen.
Weitere Gegenstände der Erfindung sind:
Verfahren zur Transformation einer Pflanze dadurch gekennzeichnet, dass man erfindungsgemäße Expressionskassetten enthaltend eine Δ-4- Desaturase-Gensequenz aus Primulaceen oder mit dieser hybridisierende DNA'-Sequenzen in eine Rlanzenzelle, in Kallusgewebe, eine ganze Pflanze oder Protoplasten von Pflanzen einbringt.
Verwendung einer Δ-4-Desaturase-DNA-Gensequenz oder mit dieser hybridisierende DNA-Sequenzen zur Herstellung von Rianzen mit erhöhtem Gehalt an Fettsäuren, Ölen oder Lipiden mit Δ-4-Doppelbindungen durch Expression dieser Δ-4-Desaturase DNA-Sequenz in Pflanzen.
- Proteine enthaltend die in SEQ ID NO: 2 dargestellten Aminosäuresequenzen.
- Verwendung der Proteine mit den Sequenzen SEQ ID NO: 2 zur Herstellung von ungesättigten Fettsäuren. Ein weiterer erfindungsgemäßer Gegenstand ist ein Verfahren zur Herstellung von ungesättigten Fettsäuren, dadurch gekennzeichnet, dass man mindestens eine oben beschriebene erfindungsgemäße Nukleinsauresequenz oder mindestens ein erfindungsgemäßes Nukleinsäurekonstrukt in einen bevorzugt Öl produzierenden Organis- mus bringt, diesen Organismus anzieht und dass in dem Organismus enthaltene Öl isoliert und die im Öl enthaltenden Fettsäuren freisetzt. Diese ungesättigten Fettsäuren enthalten vorteilhaft Δ-4-Doppelbindungen. Die Fettsäuren können aus den Ölen bzw. Lipiden beispielsweise über eine basische Hydrolyse z.B. mit NaOH oder KOH freigesetzt werden. Auch ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, dadurch gekennzeichnet, dass man mindestens eine oben beschriebene erfindungsgemäße Nukleinsauresequenz oder mindestens eine erfindungsgemäße Expressionskassette in einen Öl produzierenden Organismus bringt, diesen Organismus anzieht und dass in dem Organismus enthaltene Öl isoliert, gehört zu den Erfindungsgegenständen.
Ein weiterer erfindungsgemäßer Gegenstand ist ein Verfahren zur Herstellung von Triglyceriden mit einem erhöhten Gehalt an ungesättigten Fettsäuren, indem man Triglyceride mit gesättigten oder ungesättigten oder gesättigten und ungesättigten Fettsäuren mit mindestens dem Protein, das durch die Sequenz SEQ ID NO: 1 kodiert wird, inkubiert. Vorteilhaft wird das Verfahren in Gegenwart von Verbindungen durchgeführt, die Reduktionsäquivalente aufnehmen oder abgeben können. Anschließend können die Fettsäuren aus den Triglyceriden freigesetzt werden.
Vorteilhaft werden im erfindungsgemäßen Verfahren transgene Rianzen als Organismen verwendet. Diese Rianzen enthalten die im erfindungsgemäßen Verfahren synthetisierten mehrfach ungesättigten Fettsäuren und können vorteilhaft direkt vermarktet werden ohne dass, die synthetisierten Öle, Lipide oder Fettsäuren isoliert werden müssen. Unter Pflanzen im erfindungsgemäßen Verfahren sind ganze Pflanzen sowie alle Pflanzenteile, Pflanzenorgane oder Rlanzenteile wie Blatt, Stiel, Samen, Wurzel, Knollen, Antheren, Fasern, Wurzelhaare, Stängel, Embryos, Kalli, Kotelydonen, Petiolen, Erntematerial, pflanzliches Gewebe, reproduktives Gewebe, Zellkulturen, die sich von der transgenen Rlanze abgeleiten und/oder dazu verwendet werden können, die transgene Pflanze hervorzubringen. Der Samen umfasst dabei alle Samenteile wie die Samenhüllen, Epidermis- und Samenzellen, Endosperm oder Embyrogewebe. Die im erfindungsgemäßen Verfahren hergestellten Verbindungen können aber auch aus den Organismen vorteilhaft Pflanzen in Form ihrer Öle, Fett, Lipide und/oder freien Fettsäuren isoliert werden. Durch dieses Verfahren hergestellte mehrfach ungesättigten Fettsäuren lassen sich durch Ernten der Organismen entweder aus der Kultur, in der sie wachsen, oder vom Feld ernten. Dies kann über Pressen oder Extraktion der Rlanzenteile bevorzugt der Rlanzensamen erfolgen. Dabei können die Öle, Fette, Lipide und/oder freien Fettsäuren durch sogenanntes kalt schlagen oder kalt pressen ohne Zuführung von Wärme durch Pressen gewonnen werden. Damit sich die Rlanzenteile speziell die Samen leichter aufschließen lassen, werden sie vorher zerkleinert, gedämpft oder geröstet. Die so vorbehandelten Samen können anschließend gepresst werden oder mit Lösungsmittel wie warmen Hexan extrahiert werden. Anschließend wird das Lösungsmittel wieder entfernt. Im Falle von Mikroorganismen werden diese nach Ernte beispielsweise direkt ohne weitere Arbeitsschritte extrahiert oder aber nach Aufschluss über verschiedene dem Fachmann bekannte Methoden extrahiert. Auf diese Weise können mehr als 96 % der im Verfahren hergestellten Verbindungen isoliert werden. Anschließend werden die so erhaltenen Produkte weiter bearbeitet, das heißt raffiniert. Dabei werden zunächst beispielsweise die Pflanzenschleime und Trübstoffe entfernt. Die sogenannte Entschleimung kann enzymatisch oder beispielsweise chemisch/physikalisch durch Zugabe von Säure wie Phosphorsäure erfolgen. Anschließend werden die freien Fettsäuren durch Behandlung mit einer Base beispielsweise Natronlauge entfernt. Das erhaltene Produkt wird zur Entfernung der im Produkt verbliebenen Lauge mit Wasser gründlich gewaschen und getrocknet. Um die noch im Produkt enthaltenen Farbstoffe zu entfernen werden die Produkte einer Bleichung mit beispielsweise Bleicherde oder Aktivkohle unterzogen. Zum Schluss wird das Produkt noch beispielsweise mit Wasserdampf noch desodoriert.
Die im Verfahren hergestellten PUFAs fallen in den Organismen vorteilhaft in Form ihrer Öle, Lipide oder Fettsäuren oder Fraktionen davon an.
Eine weitere erfindungsgemäße Ausführungsform ist die Verwendung des Öls, Lipids, der Fettsäuren und/oder der Fettsäurezusammensetzung in Futtermitteln, Nahrungsmitteln, Kosmetika oder Pharmazeutika.
Unter dem Begriff "Öl", "Lipid" oder "Fett" wird ein Fettsäuregemisch verstanden, das ungesättigte, gesättigte, vorzugsweise veresterte Fettsäure(n) enthält. Bevorzugt ist, dass das Öl, Lipid oder Fett einen hohen Anteil an mehrfach ungesättigten freien oder vorteilhaft veresterten Fettsäure(n), insbesondere Linolsäure, γ-ünolensäure, Dihomo- y-linolensäure, Arachidonsäure, α-Linolensäure, Stearidonsäure, Eicosatetraensäure, Eicosapentaensäure, Docosapentaensäure oder Docosahexaensäure hat. Vorzugsweise ist der Anteil an ungesättigten veresterten Fettsäuren ungefähr 30 %, mehr bevorzugt ist ein Anteil von 50 %, noch mehr bevorzugt ist ein Anteil von 60 %, 70 %, 80 % oder mehr. Zur Bestimmung kann z.B. der Anteil an Fettsäure nach Überführung der Fettsäuren in die Methylestern durch Umesterung gaschromatographisch bestimmt werden. Das Öl, Lipid oder Fett kann verschiedene andere gesättigte oder ungesättigte Fettsäuren, z.B. Calendulasäure, Paimitin-, Palmitolein-, Stearin-, Ölsäure etc., enthalten. Insbesondere kann je nach Ausgangsorganismus der Anteil der verschiede- nen Fettsäuren in dem Öl oder Fett schwanken.
Bei den im Verfahren hergestellten mehrfach ungesättigte Fettsäuren, handelt es sich beispielsweise um Sphingolipide, Phosphoglyceride, Lipide, Glycolipide, Phospholipi- de, Monoacylglycerin, Diacylglycerin, Triacylglycerin oder sonstige Fettsäureester.
Aus den so im erfindungsgemäßen Verfahren hergestellten mehrfach ungesättigte Fettsäuren mit vorteilhaft mindestens zwei Doppelbindungen lassen sich die enthaltenden mehrfach ungesättigten Fettsäuren wie oben beschrieben beispielsweise über eine Alkalibehandlung beispielsweise wässrige KOH oder NaOH oder saure Hydrolyse vorteilhaft in Gegenwart eines Alkohols wie Methanol oder Ethanol oder über eine enzymatische Abspaltung freisetzen und isolieren über beispielsweise Phasentrennung und anschließender Ansäuerung über z.B. H2S04. Die Freisetzung der Fettsäuren kann auch direkt ohne die vorhergehend beschriebene Aufarbeitung erfolgen.
Die oben genannten Verfahren ermöglichen vorteilhaft die Synthese von Fettsäuren oder Triglyceriden mit einem erhöhten Gehalt an Fettsäuren mit Δ-4-Doppelbindungen.
Die oben genannten Verfahren ermöglichen vorteilhaft die Synthese von Fettsäuren oder Triglyceriden mit einem erhöhten Gehalt an Fettsäuren mit Δ-4-Doppelbindungen, wobei als Substrat für die Reaktion der Δ4-Desaturase bevorzugt Docosapentaen- säure verwendet wird. Damit ermöglicht das oben genannte Verfahren vorteilhaft besonders die Synthese von Fettsäuren, wie zum Beispiel Docosahexaensäure.
Mit Hilfe der sogenannten Antisense-Technologie können in einem Verfahren auch Fettsäuren oder Triglyceride mit einem erhöhten Gehalt an gesättigten Fettsäuren hergestellt werden.
Als Organismen für die genannten Verfahren seien beispielhaft Rianzen wie Arabidopsis, Primulaceen, Borage, Gerste, Weizen, Roggen, Hafer, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Raps und Canola, Sonnenblume, Flachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Tapioka, Maniok, Reilwurz, Alfalfa, Erdnuss, Rizinus, Kokos- nuss, Ölpalme, Färbersaflor (Carthamus tinctorius) oder Kakaobohne, Mikroorganismen wie Pilze Mortierella, Saprolegnia oder Pythium, Bakterien wie die Gattung Escherichia, Cyanobakterien, Hefen wie die Gattung Saccharomyces, Algen oder Protozoen wie Dinoflagellaten wie Crypthecodinium genannt. Bevorzugt werden Organismen, die natürlicherweise Öle in größeren Mengen synthetisieren können wie Mikroorganismen wie Pilze wie Mortierella alpina, Pythium insidiosum oder Pflanzen wie Soja, Raps, Kokosnuss, Ölpalme, Färbersaflor, Rizinus, Calendula, Erdnuss, Kakaobohne oder Sonnenblume oder Hefen wie Saccharomyces cerevisiae, besonders bevorzugt werden Soja, Raps, Sonnenblume, Carthamus oder Saccharomyces cerevisiae. Die in den Verfahren verwendeten Organismen werden je nach Wirtsorganismus in dem Fachmann bekannter Weise angezogen bzw. gezüchtet. Mikroorganismen werden in der Regel in einem flüssigen Medium, das eine Kohlenstoffquelle meist in Form von Zuckern, eine Stickstoffquelle meist in Form von organischen Stickstoffquellen wie Hefeextrakt oder Salzen wie Ammoniumsulfat, Spurenelemente wie Eisen-, Mangan-, Magnesiumsalze und gegebenenfalls Vitamine enthält, bei Temperaturen zwischen 0°C und 100°C, bevorzugt zwischen 10°C bis 60°C unter Sauerstoffbegasung angezogen. Dabei kann der pH der Nährflüssigkeit auf einen festen Wert gehalten werden, das heißt während der Anzucht reguliert werden oder nicht. Die Anzucht kann batch weise, semi batch weise oder kontinuierlich erfolgen. Nährstoffe können zu Beginn der Fermentation vorgelegt oder semikontinuierlich oder kontinuierlich nach gefüttert werden. Pflanzen werden nach Transformation zunächst wie oben beschrieben regeneriert und anschließend wie üblich angezüchtet bzw. angebaut.
Aus den Organismen werden nach Anzucht die Lipide in üblicherweise gewonnen. Hierzu können die Organismen nach Ernte zunächst aufgeschlossen werden oder direkt verwendet werden. Die Lipide werden vorteilhaft mit geeigneten Lösungsmitteln wie apolare Lösungsmittel wie Hexan oder Ethanol, Isopropanol oder Gemischen wie Hexan/Isopropanol, Phenol/Chloroform/Isoamylalkohol bei Temperaturen zwischen 0°C bis 80°C, bevorzugt zwischen 20°C bis 50°C extrahiert. Die Biomasse wird in der Regel mit einem Uberschuss an Lösungsmittel extrahiert beispielsweise einem Uberschuss von Lösungsmittel zu Biomasse von 1 :4. Das Lösungsmittel wird anschließend beispielsweise über eine Destillation entfernt. Die Extraktion kann auch mit superkritischem C02 erfolgen. Nach Extraktion kann die restliche Biomasse beispielsweise über Filtration entfernt werden.
Das so gewonnene Rohöl kann anschließend weiter aufgereinigt werden, beispiels- weise in dem Trübungen über das Versetzen mit polaren Lösungsmittel wie Aceton oder Chloroform und anschließender Filtration oder Zentrifugation entfernt werden. Auch eine weitere Reinigung über Säulen ist möglich.
Zur Gewinnung der freien Fettsäuren aus den Triglyceriden werden diese in üblicherweise verseift. Ein weiterer Gegenstand der Erfindung sind ungesättigte Fettsäuren sowie Trigylceride mit einem erhöhten Gehalt an ungesättigten Fettsäuren, die nach den oben genannten Verfahren hergestellt wurden, sowie deren Verwendung zur Hersteilung von Nahrungsmitteln, Tierfutter, Kosmetika oder Pharmazeutika. Hierzu werden diese den Nahrungsmitteln, dem Tierfutter, den Kosmetika oder Pharmazeutika in üblichen Mengen zugesetzt.
Die Erfindung wird durch die folgenden Beispiele näher erläutert:
Beispiele
Beispiel 1 : Allgemeine Klonierungsverfahren:
Die Klonierungsverfahren wie z.B. Restriktionsspaltungen, Agarose-Gelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylon Membranen, Verknüpfen von DNA-Fragmenten, Transformation von Escherichia coli Zellen, Anzucht von Bakterien und die Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0- 87969-309-6) beschrieben durchgeführt. Beispiel 2: Sequenzanalyse rekombinanter DNA:
Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz- DNA-Sequenzierer der Firma ABI nach der Methode von Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sei. USA74, 5463-5467). Fragmente resultierend aus einer Polyme- rase Kettenreaktion wurden zur Vermeidung von Polymerasefehlern in zu exprimieren- den Konstrukten sequenziert und überprüft.
Beispiel 3: Klonierung der Δ-4-Desaturase aus Euglena gracilis Euglena gracilis Stamm 1224-5/25 wurde erhalten von der Sammlung für Algenkulturen Göttingen (SAG). Zur Isolierung wurde der Stamm in Medium II (Calvayrac R and Douce R, FEBS Letters 7:259-262, 1970) für 4 Tage bei 23 °C unter einem Licht-/ Dunkelintervall von 8 h / 16 h (35 mol s-1 m-2 Lichtstärke) angezogen.
Gesamt-RNA von einer viertägigen Euglena Kultur wurde mit Hilfe des RNAeasy Kits der Firma Qiagen (Valencia, CA, US) isoliert. Aus der Gesamt-RNA wurde mit Hilfe von oligo-dT-Cellulose poly-A+ RNA (mRNA) isoliert (Sambrook et al., 1989). Die RNA wurde mit dem Reverse Transcription System Kit von Promega revers transcribiert und die synthetisierte cDNA in den lambda ZAP Vektor (lambda ZAP Gold, Stratagene) Moniert. Entsprechend Herstellerangaben wurde die cDNA zur Plasmid-DNA entpackt und Klone wurden zur Zufallssequenzierung ansequenziert. Eine Sequenz zeigte Ähnlichkeit zu Δ-4-Desaturasen. Die gefundene Sequenz wurde als Sonde für das Screening der Phagen-cDNA (2*105 Plaques) verwendet. Nach zwei Screening- Runden konnte eine cDNA mit Vollänge-Sequenz identifiziert werden.
Beispiel 4: Klonierung von Expressionsplasmiden zur heterologen Expression in Hefen Die klonierte cDNA enthält zwei putative Startkodons, die in zwei offenen Leserahmen mit 9 Basen Unterschied resultieren. Nur der kürzere Leserahmen (SEQ ID NO: 1 zeigte später Aktivität. Folgendes Primerpaar wurde verwendet, um diesen Leserahmen in den Vektor pYES2 (Invitrogen) zu Monieren:
Forward: 5'-GGTACCATGTTGGTGCTGTTTGGCAA Reverse: 5'-CTCGAGTTATGACTTTTTGTCCCCG
Zusammensetzung des PCR-Ansatzes (50 μL):
5,00 μL Template cDNA
5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCI2
5,00 μL 2mM dNTP 1 ,25 μL je Primer (10 pmol/μL)
0,50 μL Advantage-Polymerase
Die Advantage-Polymerase von Clontech wurden eingesetzt. Reaktionsbedingungen der PCR:
Anlagerungstemperatur: 1 min 55eC
Denaturierungstemperatur: 1 min 94SC Elongationstemperatur: 2 min 72SC
Anzahl der Zyklen: 35
Das PCR Produkt wurde für 2 h bei 37 °C mit den Restriktionsenzymen Kpnl und Xhol inkubiert. Der Hefe-Expressionsvektor pYES2 wurde in gleicherweise inkubiert. Anschließend wurde das 1638 bp große PCR Produkt sowie der Vektor durch Agaro- se-Gelelektrophorese aufgetrennt und die entsprechenden DNA-Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und Δ-4-Desaturase cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Röche verwendet. Das entstandene Plasmid pYES2-EGD4-2 wurde durch Sequenzierung verifiziert und in den Saccharomyces Stamm SC334 durch EleMroporation (1500 V) transformiert. Anschließend wurden die Hefen auf Minimalmedium ohne Uracil ausplattiert. Zellen, die auf Minimalmedium ohne Uracil wachstumsfähig waren, enthalten damit das Plasmid pYES2-EGD4-2.
Beispiel 5: Klonierung von Expressionsplasmiden zur Samen-spezifischen - Expression in Pflanzen Für die Transformation von Pflanzen wurde ein weiterer Transformationsvektor auf Basis von pSUN-USP erzeugt. Dazu wurde mit folgendem Primerpaar Notl- Schnittstellen am 5' und 3'-Ende des kodierenden Sequenz eingefügt:.
Forward^'-GCGGCCGCATGTTGGTGCTGTTTGGCAA
Reverse: 5'-GCGGCCGCATGACTTTTTGTCCCCG Zusammensetzung des PCR-Ansatzes (50 μL):
5,00 μL Template cDNA
5,00 μL 10x Puffer (Advantage-Polymerase)+ 25mM MgCI2
5,00 μL2mM dNTP
1 ,25 μL je Primer (10 pmol/μL) 0,50 μL Advantage-Polymerase
Die Advantage-Polymerase von Clontech wurden eingesetzt. Reaktionsbedingungen der PCR:
Anlagerungstemperatur: 1 min 559C
Denaturierungstemperatur: 1 min 94SC
Elongationstemperatur: 2 min 72δC Anzahl der Zyklen: 35
Das PCR ProduM wurde für 16 h bei 37 °C mit den Restriktionsenzym Notl inkubiert. Der Rlanzen-ExpressionsveMor pSUN300-USP wurde in gleicherweise inkubiert. Anschließend wurde das 1642 bp grosse PCR ProduM sowie der 7624 bp große VeMor durch Agarose-GeleleMrophorese aufgetrennt und die entsprechenden DNA- Fragmente ausgeschnitten. Die Aufreinigung der DNA erfolge mittels Qiagen Gel purification Kit gemäß Herstellerangaben. Anschließend wurden Vektor und Δ-4- Desaturase cDNA ligiert. Dazu wurde das Rapid Ligation Kit von Röche verwendet. Das entstandene Plasmid pSUN-EGD4-2 wurde durch Sequenzierung verifiziert. pSUN300 ist ein Derivat des Plasmides pPZP (Hajdukiewicz,P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors forplant transformation. Plant Mol Biol 25:989-994). pSUN-USP entstand aus pSUN300, indem in pSUN300 ein USP-Promotor als EcoRI- Fragment inseriert wurde. Das Poly- adenylierungssignal ist das des Octopinsynthase-Gens aus dem A. tumefaciens Ti- Plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve.H., Dhaese,P Seurinck,J., Lemmers.M., Van Montagu.M. and Schell,J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982) Der USP-Promotor entspricht den Nukleotiden 1-684 (Genbank Accession X56240), wobei ein Teil der nichtcodierenden Region des USP-Gens im Promotor enthalten ist. Das 684 Basenpaar große Promotorfragment wurde mittels käuflichen T7-Standardprimer (Stratagene) und mit Hilfe eines synthetisierten Primers über eine PCR-ReaMion nach Standardmethoden amplifiziert. (Primersequenz: 5'-
GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGATCC GGATCTGCTGGCTATGAA-3'). Das PCR-Fragment wurde mit EcoRI/Sall nachge- schnitten und in den Vektor pSUN300 mit OCS Terminator eingesetzt. Es entstand das Plasmid mit der Bezeichnung pSUN-USP. Das KonstruM wurde zur Transformation von Arabidopsis thaliana, Raps, Tabak und Leinsamen verwendet.
Beispiel 6: Erzeugung von transgenen Rianzen a) Erzeugung transgener Rapspflanzen (verändert nach Moloney et al., 1992, Plant Cell Reports, 8:238-242)
Zur Erzeugung transgener Rapspflanzen wurden binäre VeMoren in Agrobacterium tumefaciens C58C1 :pGV2260 oder Escherichia coli genutzt (Deblaere et al, 1984, Nucl. Acids. Res. 13, 4777-4788). Zur Transformation von Rapspflanzen (Var. Drakkar, NPZ Norddeutsche Rlanzenzucht, Hohenlieth, Deutschland), wurde eine 1 :50 Verdünnung einer Übernachtkultur einer positiv transformierten AgrobaMe- rienkolonie in Murashige-Skoog Medium (Murashige und Skoog 1962 Physiol. Plant. 15, 473) mit 3 % Saccharose (3MS-Medium) benutzt. Petiolen oder Hypoko- tyledonen frisch gekeimter steriler Rapspflanzen (zu je ca. 1 cm2) wurden in einer Petrischale mit einer 1:50 AgrobaMerienverdünnung für 5-10 Minuten inkubiert. Es folgt eine 3-tägige Colnkubation in Dunkelheit bei 25°C auf 3MS-Medium mit 0,8 % Bacto-Agar. Die Kultivierung wurde nach 3 Tagen mit 16 Stunden Licht / 8 Stunden Dunkelheit weitergeführt und in wöchentlichem Rhythmus auf MS-Medium mit 500 mg/l Claforan (Cefotaxime-Natrium), 50 mg/l Kana ycin, 20 mikroM Benzylamino- purin (BAP) und 1 ,6 g/l Glukose weitergeführt. Wachsende Sprosse wurden auf MS-Medium mit 2 % Saccharose, 250 mg/l Claforan und 0,8 % Bacto-Agar überführt. Bildeten sich nach drei Wochen keine Wurzeln, so wurde als Wachstums- hormon 2-lndolbuttersäure zum Bewurzeln zum Medium gegeben.
Regenerierte Sprosse werden auf 2MS-Medium mit Kanamycin und Claforan erhalten, nach Bewurzelung in Erde überführt und nach Kultivierung für zwei Wochen in einer Klimakammer oder im Gewächshaus angezogen, zur Blüte gebracht, reife Samen geerntet und auf Δ-4--Desaturase -Expression mittels Lipidanalysen untersucht. Linien mit erhöhten Gehalten an oder Doppelbindungen an der Δ-4-position werden identifiziert. Es lässt sich in den stabil transformierten transgenen Linien, die das Transgen funktionell exprimieren, ein erhöhter Gehalt von Doppelbindungen an der Δ-4-position im Vergleich zu untransformierten Kontrollpflanzen feststellen. b) Die Herstellung von transgenen Leinpflanzen können zum Beispiel nach der
Methode von Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 mittels particle bombartment erzeugt werden. AgrobaMerien-vermittelte Transformationen können zum Beispiel nach Mlynarova et al. (1994), Plant Cell Report 13: 282-285 hergestellt werden. Beispiel 7: LipidextraMion aus Hefen:
Hefen, die wie unter Beispiel 4 mit dem Plasmid pYES-EGD4-2 transformiert wurden, wurden folgendermaßen analysiert:
Die Hefezellen wurden für zwei Tage in 1 ml Minimalmedium mit 0,2 % Raffinose angezogen und dann in 5 ml desselben Mediums überführt. Diese Kultur wurde bis zu einer OD600 von 0,05 für 6 h bei 30 °C angezogen. Es wurden dann 100 μM der Fettsäure-Substrate (67 μM für 16:1 Δ7) zugegeben und die Expression der Δ-4- Desaturase durch Zugabe von 2 % Galaktose induziert. Die Zellen wurden dann 4 Tage bei 15 °C inkubiert, geerntet, gewaschen mit 100 mM NaHC03 und für die Fettsäureanalyse mittels GC eingesetzt. Fig.4 zeigt das Ergebnis der Fettsäureanalyse. Dabei konnte gezeigt werden, dass im Vergleich zum Kontroll-Hefestamm, der nicht über das Δ-4-Desaturasegen verfügt, in dem Hefestamm mit dem pYES-EGD4-2 KonstruM die gefütterte Fettsäure DPA (Docosapentaensäure) zu DHA (Docosahexaensäure) desaturiert wurde. Die Substrat Spezifitäten wurden durch Fütterung der transformierten Hefestämme mit den unterschiedlichen Fettsäuren ermittelt (Tab. 1). Bestimmt wurde dann die Umsetzung der gefütterten Fettsäuren zu ihren Δ4 desaturierten Produkten.
Die Methodik ist beschrieben zum Beispiel in Napier and Michaelson, 2001 ,Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581- 1585, Speriing et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 und Michaelson et al., 1998, FEBS Letters. 439(3):215-218.
Die Analyse der Substratspezifität zeigte, dass die C7-C8 Doppelbindung notwendig ist für die Substraterkennung.
Tabelle 1 : Substratspezifität der Euglena gracilis Δ4-Desaturase
Figure imgf000034_0001
Beispiel 8: Positionsanalyse der Δ4-desaturierten Fettsäuren Neben der Substratspezifität wurde auch die Position der Δ-4-desaturierten Fettsäuren analysiert. Die Position von mehrfach ungesättigten Fettsäuren im Triacylglycerid ist von ernährungsphysiologischen GesichtspunMen wichtig. Es wurde beschrieben, dass ungesättigte Fettsäuren besonders in der sn-2 Position von Triacylglyceriden schnell im Darm von Säugetieren aufgenommen werden. Um die Positionsspezifität der Δ-4- Desaturase aus Euglena gracilis zu untersuchen, wurde folgendermaßen vorgegangen:
Gemäß der Beschreibung in Beispiel 4 wurden 100 ml Hefekultur, die die Δ-4- Desaturase aus Hefe exprimieren, mit 16:1 Δ7 bzw. mit 22:4 Δ7,10,13, 16 gefüttert und dann inkubiert. Die Gesamtlipide wurden aus den Hefen mittels Chloro- form/Methanol/Wasser ExtraMion isoliert (Bligh, E.G. and Dyer, W.J. Can J Biochem Physiol 37:911-917, 1959) und über Dünnschicht-Chromatographie aufgetrennt (Chloroform/Methanol/Essigsäure 65:25:8). Phosphatidylcholin wurden von den Dünnschichtplatten abgekratzt und mit 2 ml Chloroform/ Methanol (2/1) extrahiert. Das extrahiert Phosphatidylchoiin wurde getrocknet und in 50 μL 100 % Trition-100 resuspendiert. Zu der Lösung wurde 1 ml 50 mM HEPES, 2 mM CaCI2 und 10000 Einheiten Lipase (Rhizopus arrhizus delemar, Sigma) zugegeben. Nach 2 Stunden Inkubation bei 37 °C wurde die Lösung mit Essigsäure (100 %) acidifiziert und die Lipide und freie Fettsäuren mit Chloroform/ Methanol extrahiert. Die freien Fettsäuren sowie das entstandene Lysophosphatidylcholin wurden durch Dünnschichtchromatographie getrennt, von der Platte gekratzt und durch GC analysiert.
Die Ergebnisse sind in Fig. 5 dargestellt. Daraus geht hervor, das die sn-2 Position um den FaMor 20 gegenüber der sn-1 Position bevorzugt wird. Damit konnte gezeigt werden, dass die Desaturierung der Position C4-C5 zum größten Teil an Fettsäuren in der sn-2 Position erfolgt.
Beispiel 9: LipidextraMion aus Hefen und Samen:
Die Auswirkung der genetischen Modifikation in Pflanzen, Pilzen, Algen, Ciliaten oder auf die Produktion einer gewünschten Verbindung (wie einer Fettsäure) kann bestimmt werden, indem die modifizierten Mikroorganismen oder die modifizierte Rlanze unter geeigneten Bedingungen (wie den vorstehend beschriebenen) gezüchtet werden und das Medium und/oder die zellulären Komponenten auf die erhöhte ProduMion des gewünschten ProduMes (d.h. von Lipiden oder einer Fettsäure) untersucht wird. Diese Analysetechniken sind dem Fachmann bekannt und umfassen SpeMroskopie, Dünn- Schichtchromatographie, Färbeverfahren verschiedener Art, enzymatische und mikrobiologische Verfahren sowie analytische Chromatographie, wie Hochleistungs- Flüssigkeitschromatographie (siehe beispielsweise Ullman, Encyclopedia of Industrial Chemistry, Bd. A2, S. 89-90 und S.443-613, VCH: Weinheim (1985); Fallon, A., et al.,
(1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemis- try and Molecular Biology, Bd. 17; Rehm et al. (1993) Biotechnology, Bd. 3, Kapitel III:
"Product recovery and purification", S. 469-714, VCH: Weinheim; Belter, P.A., et al.
(1988) Bioseparations: downstream processing for Biotechnology, John Wiley and Sons; Kennedy, J.F., und Cabrai, J.M.S. (1992) Recovery processes for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., und Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Bd. B3; Kapitel 11 , S. 1-27, VCH: Weinheim; und Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications).
Neben den oben erwähnten Verfahren werden Rlanzenlipide aus Pflanzenmaterial wie von Cahoon et al. (1999) Proc. Natl. Acad. Sei. USA 96 (22):12935-12940, und Browse et al. (1986) Analytic Biochemistry 152:141 -145, beschrieben extrahiert. Die qualitative und quantitative Lipid- oder Fettsäureanalyse ist beschrieben bei Christie, William W., Advances in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromafography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 S. (Oily Press Lipid Library; 1); "Progress in Lipid Research, Oxford: Pergamon Press, 1 (1952) - 16 (1977) u.d.T.: Progress in the Chemistry of Fats and Other Lipids CODEN. Zusätzlich zur Messung des EndproduMes der Fermentation ist es auch möglich, andere Komponenten der Stoffwechselwege zu analysieren, die zur ProduMion der gewünschten Verbindung verwendet werden, wie Zwischen- und NebenproduMe, um die Gesamteffizienz der Produktion der Verbindung zu bestimmen. Die Analyseverfahren umfassen Messungen der Nährstoffmengen im Medium (z.B. Zucker, Kohlenwasserstoffe, Stickstoffquellen, Phosphat und andere Ionen), Messungen der Biomassezusammensetzung und des Wachstums, Analyse der ProduMion üblicher Metabolite von Biosynthesewegen und Messungen von Gasen, die während der Fermentation erzeugt werden. Standardverfahren für diese Messungen sind in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes und P.F. Stanbury, Hrsgb., IRL Press, S. 103-129; 131-163 und 165-192 (ISBN: 0199635773) und darin angegebenen Literaturstellen beschrieben.
Ein Beispiel ist die Analyse von Fettsäuren (Abkürzungen: FAME, Fettsäuremethylester; GC-MS, Gas-Flüssigkeitschromatographie-MassenspeMrometrie; TAG, Triacylgly- cerin; TLC, Dünnschichtchromatographie).
Der unzweideutige Nachweis für das Vorliegen von FettsäureproduMen kann mittels Analyse rekombinanter Organismen nach Standard-Analyseverfahren erhalten werden: GC, GC-MS oder TLC, wie verschiedentlich beschrieben von Christie und den Literaturstellen darin (1997, in: Advances on Lipid Methodology, Vierte Aufl.: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-MassenspeMrometrie- Verfahren, Lipide 33:343-353).
Das zu analysierende Material kann durch Ultraschallbehandlung, Mahlen in der Glasmühle, flüssigen Stickstoff und Mahlen oder über andere anwendbare Verfahren aufgebrochen werden. Das Material muss nach dem Aufbrechen zentrifugiert werden. Das Sediment wird in Aqua dest. resuspendiert, 10 min bei 100°C erhitzt, auf Eis abgekühlt und erneut zentrifugiert, gefolgt von ExtraMion in 0,5 M Schwefelsäure in Methanol mit 2 % Dimethoxypropan für 1 Std. bei 90°C, was zu hydrolysierten Öl- und Lipidverbindungen führt, die transmethylierte Lipide ergeben. Diese Fettsäuremethylester werden in Petrolether extrahiert und schließlich einer GC-Analyse unter Verwen- düng einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 mikrom, 0,32 mm) bei einem Temperaturgradienten zwischen 170°C und 240°C für 20 min und 5 min bei 240°C unterworfen. Die Identität der erhaltenen Fettsäuremethylester muss unter Verwendung von Standards, die aus kommerziellen Quellen erhältlich sind (d.h. Sigma), definiert werden. Pflanzenmaterial wird zunächst mechanisch durch Mörsern homogenisiert, um es einer ExtraMion zugänglicher zu machen.
Dann wird 10 min auf 100°C erhitzt und nach dem Abkühlen auf Eis erneut sedimen- tiert. Das Zellsediment wird mit 1 M methanolischer Schwefelsäure und 2 % Dimethoxypropan 1 h bei 90°C hydrolysiert und die Lipide transmethyliert. Die resultierenden Fettsäuremethylester (FAME) werden in Petrolether extrahiert. Die extrahierten FAME werden durch Gasflüssigkeitschromatographie mit einer Kapillarsäule (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 m, 0,32 mm) und einem Temperaturgradienten von 170°C auf 240°C in 20 min und 5 min bei 240°C analysiert. Die Identität der Fettsäuremethylester wird durch Vergleich mit entsprechenden FAME-Standards (Sigma) bestätigt. Die Identität und die Position der Doppelbindung kann durch geeignete chemische Derivatisierung der FAME-Gemische z.B. zu 4,4-Dimethoxy- oxazolin-Derivaten (Christie, 1998) mittels GC-MS weiter analysiert werden.

Claims

Patentansprüche
1. Isolierte Nukleinsäuresequenzen, die für Polypeptide mit Δ-4- DesaturaseaMivität codieren, ausgewählt aus der Gruppe: a) einer Nukleinsauresequenz mit der in SEQ ID NO: 1 dargestellten - Sequenz, b) Nukleinsäuresequenzen, die sich als Ergebnis des degenerierten - genetischen Codes von der in SEQ ID NO: 1 enthaltenden codierenden Sequenz ableiten lassen, oder c) Derivate der in SEQ ID NO: 1 dargestellten Nukleinsauresequenz, die für Polypeptide mit der in SEQ ID NO: 2 dargestellten Aminosäuresequenzen codieren und mindestens 40 % Homologie auf Aminosäureebene mit SEQ ID NO: 2 aufweisen und eine Δ-4-Desaturase- Mivität aufweisen.
2. Isolierte Nukleinsauresequenz nach Anspruch 1 , wobei die Sequenz von einer Rlanze stammt.
3. Isolierte Nukleinsauresequenz nach Anspruch 1 oder 2, wobei die Sequenz aus der Klasse der Euglenophyceae stammt.
4. Aminosäuresequenz, die von einer isolierten Nukleinsauresequenz nach einem der Ansprüche 1 bis 3 codiert wird.
5. GenkonstruM, enthaltend eine isolierte Nukleinsäure nach einem der Ansprüche 1 bis 3, wobei die Nukleinsäure funMionsfähig mit einem oder mehreren Regulationssignalen verbunden ist.
6. GenkonstruM nach Anspruch 5, dadurch gekennzeichnet, dass das Nuklein- säurekonstruM zusätzliche Biosynthesegene des Fettsäure- oder Lipidstoff- wechseis enthält ausgewählt aus der Gruppe Acyl-CoA-Dehydrogenase(n),
Acyl-ACP[= acyl carrier protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäure-Acyl-Transferase(n), Acyl-CoA:Lysophospholipid- Acyltransferase(n), Fettsäure-Synthase(n), Fettsäure-Hydroxylase(n), Acetyl- Coenzym A-Carboxylase(n), Acyl-Coenzym A-Oxidase(n), Fettsäure- Desaturase(n), Fettsäure-Acetylenasen, Lipoxygenasen, Triacylglycerol-
Lipasen, Allenoxid-Synthasen, Hydroperoxid-Lyasen oder Fettsäure- Elongase(n).
7. GenkonstruM nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das NukleinsäurekonstruM zusätzliche Biosynthesegene des Fettsäure- oder - Lipidstoffwechsels enthält ausgewählt aus der Gruppe der Δ-4-Desaturase-, Δ-5-Desaturase-, Δ-6-Desaturase-, Δ-8-Desatuase-, Δ-9-Desaturase-, Δ-12- Desaturase-, Δ-5-Elongase-, Δ-6-Elongase- oder Δ-9-Elongase.
8. VeMor, enthaltend eine Nukleinsäure nach den Ansprüchen 1 bis 3 oder ein GenkonstruM nach Anspruch 5.
9. Transgener nicht-humaner Organismus, enthaltend mindestens eine Nukleinsäure nach den Ansprüchen 1 bis 3, ein GenkonstruM nach Anspruch 5 oder einen VeMor nach Anspruch 8.
10. Transgener nicht-humaner Organismus nach Anspruch 8, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Pflanze ist.
11. Transgener nicht-humaner Organismus nach Anspruch 9 oder 10, wobei der Organismus eine Rlanze ist. 12. Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren, wobei das Verfahren das Züchten eines transgenen Organismus umfasst, der eine - Nukleinsäure nach den Ansprüchen 1 bis 3, ein GenkonstruM nach Anspruch 5 oder einen VeMor nach Anspruch 8 umfasst, kodierend eine Δ-4- Desaturase, die spezifisch ω-3-Fettsäuren desaturiert, und wobei durch die AMivität der Δ-4-Desaturase mehrfach ungesättigte Fettsäuren in dem Organismus gebildet werden, die einen erhöhten Gehalt an ω-3-Fettsäuren aufweisen.
13. Verfahren nach Anspruch 12, wobei im Verfahren Docosahexaensäure hergestellten wird. 14. Verfahren nach Anspruch 12 oder 13, wobei die mehrfach ungesättigten
Fettsäuremoleküle aus dem Organismus in Form eines Öls, Lipids oder einer freien Fettsäure isoliert werden.
15. Verfahren nach einem der Ansprüche 12 bis 14, wobei der Organismus ein Mikroorganismus, ein nicht-humanes Tier oder eine Rlanze ist. 16. Verfahren nach einem der Ansprüche 12 bis 15, wobei der Organismus eine transgene Rlanze ist.
17. Öl, Lipide oder Fettsäuren oder eine FraMion davon, hergestellt durch das Verfahren nach einem der Ansprüche 12 bis 16.
18. Öl-, Lipid- oder Fettsäurezusammensetzung, die PUFAs hergestellt nach einem Verfahren nach einem der Ansprüche 12 bis 16 umfasst und von transgenen Pflanzen stammt.
9. Verwendung von Öl, Lipide oder Fettsäuren gemäß Anspruch 17 oder Öl-, Lipid- oder Fettsäurezusammensetzung gemäß Anspruch 18 in Futter, - Nahrungsmitteln, Kosmetika oder Pharmazeutika.
PCT/EP2004/003628 2003-04-08 2004-04-06 Δ-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle WO2004090123A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/552,127 US7629503B2 (en) 2003-04-08 2004-04-06 Δ-4 desaturases from Euglena gracilis, expressing plants, and oils containing PUFA
JP2006505010A JP4732333B2 (ja) 2003-04-08 2004-04-06 ミドリムシ(Euglenagracilis)由来のΔ−4−デサチュラーゼを発現する植物およびPUFA含有油
EP04725899.1A EP1613744B1 (de) 2003-04-08 2004-04-06 Delta-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle
AU2004227075A AU2004227075B8 (en) 2003-04-08 2004-04-06 Delta-4 Desaturases from Euglena gracilis, expressing plants, and oils containing PUFA
CA2521378A CA2521378C (en) 2003-04-08 2004-04-06 .delta.-4 desaturases from euglena gracilis, expressing plants, and oils containing pufa
BRPI0409209-0A BRPI0409209A (pt) 2003-04-08 2004-04-06 seqüência de ácido nucleico isolado, construto de gene, vetor, organismo não-humano transgênico, processo para produzir ácidos graxos poliinsaturados, óleo, lipìdeos ou ácidos graxos ou uma fração dos mesmos, composição de óleo, de lipìdeo ou de ácido graxo, e, uso de óleo, de lipìdeos ou de ácidos graxos ou de composição de óleo, de lipìdeo ou de ácido graxo
MXPA05010571A MXPA05010571A (es) 2003-04-08 2004-04-06 Delta-4-desaturasas a partir de euglena gracilis, que expresan plantas y aceites que comprenden pufa
NO20054372A NO20054372L (no) 2003-04-08 2005-09-21 Del-4desaturaser fra Euglena gracilis, uttrykkende planter og oljer som inneholder PUFA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10316267.4 2003-04-08
DE10316267 2003-04-08

Publications (2)

Publication Number Publication Date
WO2004090123A2 true WO2004090123A2 (de) 2004-10-21
WO2004090123A3 WO2004090123A3 (de) 2004-12-29

Family

ID=33154135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/003628 WO2004090123A2 (de) 2003-04-08 2004-04-06 Δ-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle

Country Status (9)

Country Link
US (1) US7629503B2 (de)
EP (1) EP1613744B1 (de)
JP (1) JP4732333B2 (de)
AU (1) AU2004227075B8 (de)
BR (1) BRPI0409209A (de)
CA (1) CA2521378C (de)
MX (1) MXPA05010571A (de)
NO (1) NO20054372L (de)
WO (1) WO2004090123A2 (de)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007061845A2 (en) * 2005-11-23 2007-05-31 E. I. Du Pont De Nemours And Company Delta-9 elongases and their use in making polyunsaturated fatty acids
WO2008124048A2 (en) * 2007-04-03 2008-10-16 E. I. Du Pont De Nemours And Company Multizymes and their use in making polyunsaturated fatty acids
WO2009124101A1 (en) * 2008-04-02 2009-10-08 E. I. Du Pont De Nemours And Company Δ4 desaturase and its use in making polyunsaturated fatty acids
US7671252B2 (en) 2000-09-28 2010-03-02 Bioriginal Food & Science Corp. Fad4, Fad5, Fad5-2, and Fad6, novel fatty acid desaturase family members and uses thereof
WO2010142522A2 (en) 2009-06-08 2010-12-16 Basf Plant Science Company Gmbh Novel fatty acid elongation components and uses thereof
WO2011006948A1 (en) 2009-07-17 2011-01-20 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
WO2011023800A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
WO2011064181A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid desaturase and uses thereof
WO2011064183A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid elongase and uses thereof
WO2011161093A1 (en) 2010-06-25 2011-12-29 Basf Plant Science Company Gmbh Acyltransferases and uses therof in fatty acid production
WO2012052468A2 (en) 2010-10-21 2012-04-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases, elongases, elongation components and uses therof
WO2014020533A2 (en) 2012-08-03 2014-02-06 Basf Plant Science Company Gmbh Novel enzymes, enzyme components and uses thereof
US8685679B2 (en) 2004-11-04 2014-04-01 E I Du Pont De Nemours And Company Acyltransferase regulation to increase the percent of polyunsaturated fatty acids in total lipids and oils of oleaginous organisms
EP2821492A2 (de) 2009-05-13 2015-01-07 BASF Plant Science Company GmbH Acyltransferasen und Verwendungen davon zur Fettsäureherstellung
WO2015092709A1 (en) 2013-12-17 2015-06-25 Basf Plant Science Company Gmbh Methods for conversion of the substrate specificity of desaturases
WO2016075327A2 (en) 2014-11-14 2016-05-19 Basf Plant Science Company Gmbh Production of pufas in plants
EP2623584B1 (de) 2004-02-27 2019-04-10 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Pflanzen
WO2020168277A1 (en) 2019-02-14 2020-08-20 Cargill, Incorporated Brassica plants producing elevated levels of polyunsaturated fatty acids
WO2022098631A1 (en) 2020-11-04 2022-05-12 Cargill, Incorporated Harvest management
WO2022204454A1 (en) 2021-03-25 2022-09-29 Cargill, Incorporated Fertilizer management

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX347962B (es) 2003-08-01 2017-05-19 Basf Plant Science Gmbh * Metodo para la produccion de acidos grasos poli-insaturados en organismos transgenicos.
US11952581B2 (en) 2003-08-01 2024-04-09 Basf Plant Science Gmbh Process for the production of polyunsaturated fatty acids in transgenic organisms
AU2005217080B2 (en) 2004-02-27 2011-02-24 Basf Plant Science Gmbh Method for producing unsaturated omega-3 fatty acids in transgenic organisms
CA2563875C (en) 2004-04-22 2015-06-30 Commonwealth Scientific And Industrial Research Organisation Synthesis of long-chain polyunsaturated fatty acids by recombinant cells
ES2529572T3 (es) 2004-04-22 2015-02-23 Commonwealth Scientific And Industrial Research Organisation Síntesis de ácidos grasos poliinsaturados de cadena larga por células recombinantes
AR059376A1 (es) 2006-02-21 2008-03-26 Basf Plant Science Gmbh Procedimiento para la produccion de acidos grasos poliinsaturados
CN101578363A (zh) 2006-08-29 2009-11-11 联邦科学技术研究组织 脂肪酸的合成
US8809559B2 (en) 2008-11-18 2014-08-19 Commonwelath Scientific And Industrial Research Organisation Enzymes and methods for producing omega-3 fatty acids
US20110054199A1 (en) * 2009-08-31 2011-03-03 Certo Labs, Inc. Methods for extracting nutrients, drugs and toxins from a sample, and apparati for same
PL2861059T3 (pl) 2012-06-15 2017-10-31 Commw Scient Ind Res Org Wytwarzanie długołańcuchowych wielonienasyconych kwasów tłuszczowych w komórkach roślinnych
KR102535223B1 (ko) 2013-12-18 2023-05-30 커먼웰쓰 사이언티픽 앤 인더스트리알 리서치 오거니제이션 장쇄 다중불포화 지방산을 포함하는 지질
CN105219789B (zh) 2014-06-27 2023-04-07 联邦科学技术研究组织 包含二十二碳五烯酸的提取的植物脂质
JP7360154B2 (ja) * 2019-11-15 2023-10-12 株式会社ファイトリピッド・テクノロジーズ Δ4デサチュレースによるドコサヘキサエン酸合成

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026946A2 (en) * 2000-09-28 2002-04-04 Bioriginal Food & Science Corporation Fad4, fad5, fad5-2, and fad6, fatty acid desaturase family members and uses thereof
WO2002090493A2 (en) * 2001-05-04 2002-11-14 Abbott Laboratories Δ4-desaturase genes and uses thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE241007T1 (de) 1990-03-16 2003-06-15 Calgene Llc Dnas, die für pflanzliche desaturasen kodieren und deren anwendungen
US5614393A (en) * 1991-10-10 1997-03-25 Rhone-Poulenc Agrochimie Production of γ-linolenic acid by a Δ6-desaturase
PH31293A (en) 1991-10-10 1998-07-06 Rhone Poulenc Agrochimie Production of y-linolenic acid by a delta6-desaturage.
AU675923B2 (en) 1991-12-04 1997-02-27 E.I. Du Pont De Nemours And Company Fatty acid desaturase genes from plants
CA2084348A1 (en) 1991-12-31 1993-07-01 David F. Hildebrand Fatty acid alteration by a d9 desaturase in transgenic plant tissue
WO1994011516A1 (en) 1992-11-17 1994-05-26 E.I. Du Pont De Nemours And Company Genes for microsomal delta-12 fatty acid desaturases and related enzymes from plants
US7205457B1 (en) 1993-02-05 2007-04-17 Monsanto Technology Llc Altered linolenic and linoleic acid content in plants
ES2222462T3 (es) 1993-12-28 2005-02-01 Kirin Beer Kabushiki Kaisha Gen que codifica acido graso-desaturasa, vector que contiene dicho gen, planta que contiene dicho gen transferido a ella y procedimiento para crear dicha planta.
US6310194B1 (en) 1994-09-26 2001-10-30 Carnegie Institution Of Washington Plant fatty acid hydroxylases
ATE520302T1 (de) 1995-12-14 2011-09-15 Cargill Inc Pflanzen mit mutierten sequenzen, welche einen veränderten fettsäuregehalt vermitteln
EP0794250A1 (de) 1996-03-04 1997-09-10 Soremartec S.A. Isolierung und Sequenzierung des FAd2-N Gens der Haselnuss
NZ337459A (en) 1997-04-11 2000-07-28 Abbott Lab Nucleic acid construct in plants and dietary supplement
US5968809A (en) 1997-04-11 1999-10-19 Abbot Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
US5972664A (en) 1997-04-11 1999-10-26 Abbott Laboratories Methods and compositions for synthesis of long chain poly-unsaturated fatty acids
AR013633A1 (es) 1997-04-11 2001-01-10 Calgene Llc METODO PARA LA ALTERACIoN DE LA COMPOSICIoN DE ÁCIDOS GRASOS DE CADENA MEDIA EN SEMILLAS VEGETALES QUE EXPRESAN UNA TIOESTERASA QUE PREFIERE CADENA MEDIA VEGETAL HETERoLOGA.
GB9724783D0 (en) 1997-11-24 1998-01-21 Inst Arable Crops Research Novel polypeptides
AU4564399A (en) 1998-06-12 1999-12-30 Abbott Laboratories Polyunsaturated fatty acids in plants
EP1121150A4 (de) 1998-10-09 2003-06-04 Merck & Co Inc Delta-6 fettsäure desaturase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026946A2 (en) * 2000-09-28 2002-04-04 Bioriginal Food & Science Corporation Fad4, fad5, fad5-2, and fad6, fatty acid desaturase family members and uses thereof
WO2002090493A2 (en) * 2001-05-04 2002-11-14 Abbott Laboratories Δ4-desaturase genes and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BARSANTI LAURA ET AL: "Fatty acid content in wild type and WZSL mutant of Euglena gracilis: Effects of carbon source and growth conditions" JOURNAL OF APPLIED PHYCOLOGY, Bd. 12, Nr. 3-5, Oktober 2000 (2000-10), Seiten 515-520, XP002298343 ISSN: 0921-8971 *
LOPEZ ALONSO D ET AL: "Plants as 'chemical factories' for the production of polyunsaturated fatty acids" BIOTECHNOLOGY ADVANCES, ELSEVIER PUBLISHING, BARKING, GB, Bd. 18, Nr. 6, Oktober 2000 (2000-10), Seiten 481-497, XP004218725 ISSN: 0734-9750 *
MEYER ASTRID ET AL: "Biosynthesis of docosahexaenoic acid in Euglena gracilis: Biochemical and molecular evidence for the involvement of a DELTA4-fatty acyl group desaturase." BIOCHEMISTRY, Bd. 42, Nr. 32, 19. August 2003 (2003-08-19), Seiten 9779-9788, XP002298344 ISSN: 0006-2960 *
PEREIRA SUZETTE L ET AL: "Recent advances in the study of fatty acid desaturases from animals and lower eukaryotes." PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS, Bd. 68, Nr. 2, Februar 2003 (2003-02), Seiten 97-106, XP002298342 ISSN: 0952-3278 *
WALLIS J G ET AL: "The DELTA8-desaturase of Euglena gracilis: An alternate pathway for synthesis of 20-carbon polyunsaturated fatty acids" ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, NEW YORK, US, US, Bd. 365, Nr. 2, 15. Mai 1999 (1999-05-15), Seiten 307-316, XP002291433 ISSN: 0003-9861 *

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088906B2 (en) 2000-09-28 2012-01-03 Bioriginal Food & Science Corp. FAD4, FAD5, FAD5-2, and FAD6, novel fatty acid desaturase family members and uses thereof
US7977469B2 (en) 2000-09-28 2011-07-12 Bioriginal Food & Science Corp. Fad4, fad5, fad5-2, and fad6, novel fatty acid desaturase family members and uses thereof
US9359597B2 (en) 2000-09-28 2016-06-07 Bioriginal Food & Science Corp. Fad4, Fad5, Fad5-2, and Fad6, novel fatty acid desaturase family members and uses thereof
US7671252B2 (en) 2000-09-28 2010-03-02 Bioriginal Food & Science Corp. Fad4, Fad5, Fad5-2, and Fad6, novel fatty acid desaturase family members and uses thereof
EP2623584B1 (de) 2004-02-27 2019-04-10 BASF Plant Science GmbH Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Pflanzen
US8685679B2 (en) 2004-11-04 2014-04-01 E I Du Pont De Nemours And Company Acyltransferase regulation to increase the percent of polyunsaturated fatty acids in total lipids and oils of oleaginous organisms
WO2007061845A2 (en) * 2005-11-23 2007-05-31 E. I. Du Pont De Nemours And Company Delta-9 elongases and their use in making polyunsaturated fatty acids
US9150874B2 (en) 2005-11-23 2015-10-06 E I Du Pont De Nemours And Company Delta-9 elongases and their use in making polyunsaturated fatty acids
US8049062B2 (en) 2005-11-23 2011-11-01 E.I. Du Pont De Nemours And Company Delta-9-elongases and their use in making polyunsaturated fatty acids
US8420892B2 (en) 2005-11-23 2013-04-16 E. I. Du Pont De Nemours And Company Delta-9 elongases and their use in making polyunsaturated fatty acids
WO2007061845A3 (en) * 2005-11-23 2007-08-02 Du Pont Delta-9 elongases and their use in making polyunsaturated fatty acids
WO2008124048A3 (en) * 2007-04-03 2009-02-05 Du Pont Multizymes and their use in making polyunsaturated fatty acids
WO2008124048A2 (en) * 2007-04-03 2008-10-16 E. I. Du Pont De Nemours And Company Multizymes and their use in making polyunsaturated fatty acids
WO2009124101A1 (en) * 2008-04-02 2009-10-08 E. I. Du Pont De Nemours And Company Δ4 desaturase and its use in making polyunsaturated fatty acids
US8119784B2 (en) 2008-04-02 2012-02-21 E. I. Du Pont De Nemours And Company Delta-4 desaturase and its use in making polyunsaturated fatty acids
EP2821492A2 (de) 2009-05-13 2015-01-07 BASF Plant Science Company GmbH Acyltransferasen und Verwendungen davon zur Fettsäureherstellung
US8993841B2 (en) 2009-06-08 2015-03-31 Basf Plant Science Company Gmbh Fatty acid elongation components and uses thereof
DE112010002353T5 (de) 2009-06-08 2012-08-09 Basf Plant Science Company Gmbh Neue fettsäure-elongations-komponenten und anwenduingen davon
WO2010142522A2 (en) 2009-06-08 2010-12-16 Basf Plant Science Company Gmbh Novel fatty acid elongation components and uses thereof
DE112010002967T5 (de) 2009-07-17 2012-10-11 Basf Plant Science Company Gmbh Neue Fettsäuredesaturasen und -elongasen und Anwendungen davon
WO2011006948A1 (en) 2009-07-17 2011-01-20 Basf Plant Science Company Gmbh Novel fatty acid desaturases and elongases and uses thereof
EP3418387A1 (de) 2009-08-31 2018-12-26 Basf Plant Science Company GmbH Regulatorische nukleinsäuremoleküle zur erhöhung der samenspezifischen genexpression in pflanzen zur förderung der erhöhten synthese von mehrfach ungesättigten fettsäuren
EP3178937A1 (de) 2009-08-31 2017-06-14 BASF Plant Science Company GmbH Regulatorische nukleinsäuremoleküle zur erhöhung der samenspezifischen genexpression bei pflanzen,welche die synthese von mehrfach ungesättigten fettsäuren begünstigen
EP3121283A1 (de) 2009-08-31 2017-01-25 BASF Plant Science Company GmbH Regulatorische nukleinsäuremoleküle für erhöhte samenspezifische genexpression bei pflanzen, welche die erhöhte synthese von mehrfach ungesättigten fettsäuren unterstützen
WO2011023800A1 (en) 2009-08-31 2011-03-03 Basf Plant Science Company Gmbh Regulatory nucleic acid molecules for enhancing seed-specific gene expression in plants promoting enhanced polyunsaturated fatty acid synthesis
WO2011064181A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid desaturase and uses thereof
WO2011064183A1 (en) 2009-11-24 2011-06-03 Basf Plant Science Company Gmbh Novel fatty acid elongase and uses thereof
WO2011161093A1 (en) 2010-06-25 2011-12-29 Basf Plant Science Company Gmbh Acyltransferases and uses therof in fatty acid production
WO2012052468A2 (en) 2010-10-21 2012-04-26 Basf Plant Science Company Gmbh Novel fatty acid desaturases, elongases, elongation components and uses therof
US9458477B2 (en) 2010-10-21 2016-10-04 Basf Plant Science Company Gmbh Fatty acid desaturases, elongases, elongation components and uses thereof
EP2695936A1 (de) 2010-10-21 2014-02-12 BASF Plant Science Company GmbH Neue Fettsäuredesaturasen und Verwendungen davon
DE112011103527T5 (de) 2010-10-21 2013-10-17 Basf Plant Science Company Gmbh Neue Fettsäure-Desaturasen, -Elongasen, -Elongations-Komponenten und Anwendungen davon
WO2014020533A2 (en) 2012-08-03 2014-02-06 Basf Plant Science Company Gmbh Novel enzymes, enzyme components and uses thereof
US11046937B2 (en) 2013-12-17 2021-06-29 Basf Plant Science Company Gmbh Methods for conversion of the substrate specificity of desaturases
WO2015092709A1 (en) 2013-12-17 2015-06-25 Basf Plant Science Company Gmbh Methods for conversion of the substrate specificity of desaturases
US10329541B2 (en) 2013-12-17 2019-06-25 Basf Plant Science Company Gmbh Methods for conversion of the substrate specificity of desaturases
US11260095B2 (en) 2014-11-14 2022-03-01 Basf Plant Science Company Gmbh Modification of plant lipids containing PUFAs
US10760089B2 (en) 2014-11-14 2020-09-01 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
US10829775B2 (en) 2014-11-14 2020-11-10 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
US11033593B2 (en) 2014-11-14 2021-06-15 Basf Plant Science Company Gmbh Brassica events LBFLFK and LBFDAU and methods for detection thereof
WO2016075327A2 (en) 2014-11-14 2016-05-19 Basf Plant Science Company Gmbh Production of pufas in plants
US11484560B2 (en) 2014-11-14 2022-11-01 Basf Plant Science Company Gmbh Stabilising fatty acid compositions
US11613761B1 (en) 2014-11-14 2023-03-28 Bioriginal Food & Science Corporation Materials and methods for PUFA production, and PUFA-containing compositions
US11771728B2 (en) 2014-11-14 2023-10-03 Basf Plant Science Company Gmbh Materials and methods for increasing the tocopherol content in seed oil
US11813302B2 (en) 2014-11-14 2023-11-14 Basf Plant Science Company Gmbh Brassica events LBFLFK and LBFDAU and methods for detection thereof
WO2020168277A1 (en) 2019-02-14 2020-08-20 Cargill, Incorporated Brassica plants producing elevated levels of polyunsaturated fatty acids
WO2022098631A1 (en) 2020-11-04 2022-05-12 Cargill, Incorporated Harvest management
WO2022204454A1 (en) 2021-03-25 2022-09-29 Cargill, Incorporated Fertilizer management

Also Published As

Publication number Publication date
MXPA05010571A (es) 2005-11-23
EP1613744A2 (de) 2006-01-11
EP1613744B1 (de) 2015-09-09
CA2521378A1 (en) 2004-10-21
NO20054372D0 (no) 2005-09-21
BRPI0409209A (pt) 2006-03-28
JP4732333B2 (ja) 2011-07-27
AU2004227075B2 (en) 2009-06-18
AU2004227075B8 (en) 2009-07-16
WO2004090123A3 (de) 2004-12-29
US7629503B2 (en) 2009-12-08
CA2521378C (en) 2020-01-07
NO20054372L (no) 2005-12-19
AU2004227075A1 (en) 2004-10-21
JP2006522592A (ja) 2006-10-05
US20060218668A1 (en) 2006-09-28

Similar Documents

Publication Publication Date Title
EP1613744B1 (de) Delta-4-desaturasen aus euglena gracilis, exprimierende pflanzen und pufa enthaltende öle
DE60309136T2 (de) Delta 6-desaturase aus primulacaea, pflanzen, exprimierende pflanzen, und öle, welche mehrfach ungesättigte fettsäuren enthalten
EP2180046B1 (de) Verfahren zur Herstellung von mehrfach ungesättigten langkettigen Fettsäuren in transgenen Organismen
EP1599582B1 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren
EP2623584B1 (de) Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Pflanzen
EP1181373B1 (de) Delta6-acetylenase und delta6-desaturase aus ceratodon purpureus
EP1945775B1 (de) Verfahren zur herstellung von gamma-linolensäure und/oder stearidonsäure in transgenen brassicaceae und linaceae
DE10219203A1 (de) Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in Pflanzen
WO2008009600A1 (de) Verfahren zur herstellung von arachidonsäure und/oder eicosapentaensäure in pflanzen
EP4219670A2 (de) Verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen pflanzen
CN101146911A (zh) 用于在转基因生物中产生具有至少四个双键的多不饱和c20-和c22-脂肪酸的方法
WO2001002591A1 (de) Δ6-desaturasegene exprimierende pflanzen und pufas enthaltende öle aus diesen pflanzen und ein verfahren zur herstellung ungesättigter fettsäuren
DE10102338A1 (de) Verfahren zur Expression von Biosynthesegenen in pflanzlichen Samen unter Verwendung von neuen multiplen Expressionskonstrukten
EP2176433A2 (de) Desaturasen und verfahren zur herstellung mehrfach ungesättigter fettsäuren in transgenen organismen
DE10030976A1 (de) DELTA6-Desaturasegene exprimierende Pflanzen und PUFAS enthaltende Öle aus diesen Pflanzen und ein Verfahren zur Herstellung ungesättigter Fettsäuren
DE102004017518A1 (de) Verfahren zur Herstellung von mehrfach ungesättigten Fettsäuren
DE19962409A1 (de) DELTA6-Acetylenase und DELTA6-Desaturase aus Ceratodon purpureus
WO2004007732A1 (de) Klonierung und charakterisierung einer lipoxygenase aus phaeodactylum tricornutum

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 170560

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2004725899

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2005/010571

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2521378

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006218668

Country of ref document: US

Ref document number: 10552127

Country of ref document: US

Ref document number: 2004227075

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006505010

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2004227075

Country of ref document: AU

Date of ref document: 20040406

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004227075

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004725899

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0409209

Country of ref document: BR

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWP Wipo information: published in national office

Ref document number: 10552127

Country of ref document: US