WO2004088893A1 - Optical branching device - Google Patents

Optical branching device Download PDF

Info

Publication number
WO2004088893A1
WO2004088893A1 PCT/JP2003/004035 JP0304035W WO2004088893A1 WO 2004088893 A1 WO2004088893 A1 WO 2004088893A1 JP 0304035 W JP0304035 W JP 0304035W WO 2004088893 A1 WO2004088893 A1 WO 2004088893A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal light
optical
branching device
input signal
optical branching
Prior art date
Application number
PCT/JP2003/004035
Other languages
French (fr)
Japanese (ja)
Inventor
Izumi Yokota
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2004570146A priority Critical patent/JPWO2004088893A1/en
Priority to PCT/JP2003/004035 priority patent/WO2004088893A1/en
Publication of WO2004088893A1 publication Critical patent/WO2004088893A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/028WDM bus architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)

Definitions

  • the present invention relates to an optical branching device, and more particularly to an optical branching device used in a wavelength division multiplexed signal optical communication system.
  • Wavelength division multiplexing has been put into practical use.
  • a wavelength multiplexed signal optical communication system a plurality of terminal stations are connected by an optical transmission line, an optical branching device, and an optical repeater.
  • optical branching device applied to a wavelength division multiplexed signal optical communication system having at least three terminal stations can be roughly divided into two.
  • One is to switch the power supply path to the repeater (optical amplifier), and the other is to separate the path through which the signal light is transmitted.
  • One is a configuration in which a path is divided for each optical fiber, which is a transmission path of signal light (hereinafter, referred to as “fibre branching”).
  • the other is a transmission path for transmitting to a branch line for each signal light wavelength.
  • This is the configuration of the wavelength selective branch that selects the power to be transmitted to the rank line (hereinafter referred to as “ad-drop drop”).
  • FIG. 1 shows a configuration diagram of an example of a fiber branch configuration.
  • a terminal station 10 is connected to an optical branching device 13 by optical fiber pairs 11 and 12 of a trunk line.
  • the optical branching device 13 transmits all signal light wavelengths transmitted on the optical fiber pair 11 to the optical branching device 15 on the optical fiber pair 14 of the traffic line, and branches all signal light wavelengths transmitted on the optical fiber pair 12.
  • the signal is transmitted to the terminal 17 via the optical fiber pair 16 of the line.
  • all the signals transmitted from the terminal station 17 through the optical fiber pair 18 of the plantch line are The signal light wavelength is transmitted from the optical fiber pair 20 of the trunk line to the optical branching device 15 through the optical branching device 13.
  • all signal light wavelengths transmitted on the trunk line optical fiber pair 14 are transmitted to the terminal station 22 via the trunk line optical fiber pair 21, and the trunk line optical fiber pair 2 is transmitted. All the signal light wavelengths transmitted at 0 are transmitted to the terminal station 24 over the optical fiber pair 23 of the branch line. In addition, all signal light wavelengths transmitted from the terminal station 24 to the branch line optical fiber pair 25 are transmitted from the trunk line optical fiber pair 26 to the terminal station 22 through the optical branching device 15. .
  • a repeater optical amplifier
  • FIG. 2 shows a configuration diagram of an example of a done-drop branch configuration.
  • a terminal station 30 is connected to an optical branching device 33 by an optical fiber pair 31 and 32 of a trunk line.
  • the optical branching device 33 has a fiber grating (FBG) and an optical circuit, and branches the specific wavelength B of the signal light wavelengths transmitted by the optical fiber pair 32 to form a branch line optical fiber pair.
  • 3 4 transmits to the terminal station 3 5, and the specific wavelength B transmitted from the terminal station 3 5 through the optical fiber pair 36 of the branch line is multiplexed with a wavelength other than the above-mentioned specific wavelength to form a trunk line 3 7 Is transmitted to the optical branching device 38.
  • FBG fiber grating
  • the optical branching device 38 also has a fiber grating and an optical circulator, and branches a specific wavelength A among the signal light wavelengths transmitted through the trunk line 37 to form an optical fiber pair 39 9 of the branch line.
  • the specific wavelength A transmitted from the terminal station 40 to the branch line optical fiber pair 41 through the branch line optical fiber pair 41 is combined with a wavelength other than the above specific wavelength to transmit the trunk line optical fiber pair 4 to the terminal line 40. Transmit to terminal station 4 4 in 2, 4 3.
  • a repeater optical amplifier is inserted and connected to each of the above trunk lines and branch lines.
  • Patent Document 1 discloses a conventional light splitter / input node device for preventing leakage of signal light to be branched when a failure occurs.
  • Patent Document 1
  • One optical fiber pair 11 and 21 connects two terminal stations 10 and 22 of the trunk line without passing through terminal stations 17 and 24 of the branch line.
  • the other optical fiber pairs 12 are branched into branch lines for each of the optical branching devices 13 and 15, and are configured to connect terminal stations 17 and 24 of the branch lines. Also, consider a configuration in which some of the signal light wavelengths A and B in the optical fiber pair are not communicated at the terminal stations 17 and 24 of the branch line, and are returned to the optical branching devices 13 and 15 as they are.
  • the signal light wavelength A within the optical fiber pair of the branch line connects the terminal station 10 to the terminal station 17 and the terminal station 17 to the terminal station 22 and the signal light wavelength B corresponds to the terminal station 10 Terminal station 24 and terminal station 24 are connected to terminal station 2 2.
  • the signal light wavelength interval has been narrowed in order to reduce the number of wavelength multiplexing.
  • a guard pan KGB is required between the signal light wavelengths A and B, and if the number of multiplexed wavelengths is reduced within a predetermined signal band, a problem occurs. Disclosure of the invention
  • the present invention provides an optical branching device for branching a trunk line of a wavelength division multiplexed signal optical communication system into branch lines in units of wavelength division multiplexed signal light, wherein the input signal light from the trunk line and the branch line Monitoring means for monitoring the power of the signal light combined with the input signal light, and when the signal light power obtained by the monitoring means exceeds a threshold value, the input signal light from the trunk spring is attenuated and the branch line is attenuated. And switching means for outputting the input signal light from the trunk line and releasing the attenuation of the input signal light from the trunk line when the signal light power obtained by the monitor means falls below a threshold value and outputting the signal light.
  • a guard band is not required, and communication can be performed at another branch line without failure in the event of a failure in any branch line without reducing the number of wavelength multiplexing. it can.
  • FIG. 1 is a configuration diagram of an example of a fiber branch configuration.
  • FIG. 2 is a configuration diagram of an example of an add-drop branch configuration.
  • FIG. 3 is a diagram for explaining a problem of the ad Z-drop branch configuration.
  • FIG. 4 is a block diagram of a first embodiment of the optical branching device of the present invention.
  • FIG. 5 is a block diagram of a modification of the optical branching device of the present invention.
  • FIG. 6 is a flowchart of the operation at startup.
  • FIG. 7 is a characteristic diagram of a hysteresis comparator for explaining an operation at the time of startup.
  • Figure 8 is a flowchart of the operation when a branch line failure occurs.
  • Figure 9 is a flowchart of the operation at the time of branch line failure recovery.
  • FIG. 10 is a characteristic diagram of the hysteresis comparator for explaining the operation at the time of branch line failure and recovery from the branch line failure.
  • FIG. 11 is an output waveform diagram when the number of signal light wavelengths in the optical branching device of the present invention is reduced from 40 waves to one wave.
  • FIG. 12 is a block diagram of another modification of the optical branching device of the present invention.
  • FIG. 13 is a characteristic diagram of the comparator. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 4 shows a block diagram of a first embodiment of the optical branching device of the present invention.
  • the optical branching device 60 has a fiber branch configuration in which optical path switching is performed in units of wavelength multiplexed signal light.
  • an optical splitter 62 for splitting an input signal light (wavelength multiplexed signal light) from a trunk line 61 into two is provided in an optical splitter 60.
  • One output of the optical splitter 62 is supplied to the optical power controller 63, and the other output is transmitted to the branch line 64.
  • the input signal light from the branch line 65 and the output of the optical power controller 63 are supplied to the optical branch device 66, and one output of the optical branch device 66 is connected to the trunk line.
  • the other output is supplied to a monitor photoelectric converter 68.
  • the signal photoelectrically converted by the photoelectric conversion 68 is amplified by the amplifier 69 and supplied to the hysteresis comparator 70.
  • Hysteresis comparator 70 is supplied with terminals 71 and 72 and thresholds a and b.
  • Hysteresis comparator 70 compares the photoelectric conversion signal with thresholds a and b to generate a control signal.
  • the control signal controls the optical power controller 63 described above.
  • FIG. 5 is a block diagram showing a modification of the optical branching device of the present invention.
  • the optical branching device 74 shown in FIG. 5 differs from the optical branching device shown in FIG.
  • an optical switch 77 as an optical power controller 63
  • a monitor PD (photodiode) 78 as an optical-electrical converter 68, between the optical power plug 76 and the photodiode 78.
  • the point is that a light transmitter 79 is provided.
  • the light transmitter 79 Only the signal light wavelength La band returned at the terminal station 80 connected to the branching device 74 via the branch lines 64 and 65 is transmitted.
  • the signal light supplied to the monitor PD 78 is only a signal turned back at the terminal station 80.
  • FIG. 7 shows the signal levels supplied from the amplifier 69 to the hysteresis comparator 70, and the step numbers in the rough chart are indicated by circled numbers.
  • the optical switch 77 is on (step S l), and the signal light input from the trunk line 61 is supplied to the monitor PD 78 through the optical switch 77.
  • the signal light from the branch line 65 is also supplied to the monitor PD 78 (steps S2 and S3).
  • the signal level supplied from the amplifier 69 to the hysteresis comparator 70 increases as shown in FIG.
  • step S5 When the signal level supplied from the amplifier 69 to the hysteresis comparator 70 exceeds the threshold value a, the optical switch 77 is controlled to be turned off (step S5), and the monitor PD 78 receives the signal light from the branch line 65. Only will be supplied. This state becomes a steady state (step S6).
  • FIG. 10 shows the signal levels supplied from the amplifier 69 to the hysteresis comparator 70, and the step numbers of the flowchart are indicated by circled numbers.
  • step S11 If a failure occurs in the branch lines 64 and 65, the signal light from the branch line 65 disappears (step S11), and the signal level supplied from the amplifier 69 to the hysteresis comparator 70 is reduced.
  • step S1 2 the optical switch 77 is controlled to be ON (step S1 3). Then, the signal light is input to the monitor PD 78 through the trunk line 61 and the optical switch 77 to be in a steady state (step S 14).
  • the signal light branched to the branch line 64 is transmitted to the trunk line 67 through the optical branching device without passing through the terminal station 80 of the branch lines 64 and 65 due to the failure of the branch line. Therefore, it does not affect other stations.
  • step S16 When the failure in the branch lines 64 and 65 is restored, When the signal light supplied from the amplifier 69 to the hysteresis comparator 70 rises above the threshold a of the hysteresis comparator 70 (step S16), the optical switch 77 is turned off. (Step S17). Then, the signal light is input from the branch line 65 to the monitor PD 78 through the optical switch 77, and a steady state is set (step S18).
  • the basic configuration of the optical branching device of the present invention is a fiber branching configuration in which optical path switching is performed in units of wavelength multiplexed signal light, it is necessary to provide a guard band which has been a problem in an add-drop configuration. It can be solved that the number of multiplexed wavelengths is reduced (and the branch line 64, in order to eliminate the influence of the 65 other lines at the time of failure of the branch line 64 by monitoring the signal light power in branch unit within 60, It determines whether there is a failure in 65. If there is a failure in the branch lines 64 and 65, the signal light is switched from the planned line to the trunk line and output, and if there is no failure in the branch line, the reverse optical path switching is performed.
  • the above-mentioned optical branching device to a wavelength division multiplexed signal optical communication system, it is possible to reduce the number of wavelength division multiplexing and to reduce branch line failures. The effect on other lines can be eliminated.
  • the optical switch 77 is used as the optical power controller 63 in the optical branching device 74 of FIG. 5, an optical attenuator may be used.
  • the light transmitter 79 immediately before the monitor PD 78 may be a fiber grating (FBG) or an optical film.
  • FIG. 11 is a block diagram showing another modification of the optical branching device of the present invention.
  • the optical branching device 82 shown in FIG. 11 differs from FIG. 5 in that the wavelength division multiplexed signal light supplied from the trunk line 61 is the signal light wavelength that is looped back at the terminal 80; This is a point that a small signal (of several kHz) is frozen (for example, amplitude modulation), and is supplied to the amplifier 69 through a band-pass filter (BPF) 83 that allows the output signal of the monitor PD 78 to pass only the frequency fa. In this case, the light transmitter 79 is unnecessary.
  • BPF band-pass filter
  • FIG. 12 shows a block diagram of a second embodiment of the optical branching device of the present invention.
  • the optical branching device 85 has a fiber branching configuration that performs optical path switching in units of wavelength multiplexed signal light.
  • optical branching device 85 Inside the optical branching device 85 The input signal light (wavelength multiplexed signal light) from trunk line 61 is split into two by optical power plug 75, one output is supplied to optical switch 77, and the other output is transmitted to branch line 64. Is done.
  • the input signal light from the branch line 65 is split into two by an optical power switch 86, one output is supplied to an optical switch 87, and the other output is supplied to a light transmitter 79.
  • the optical transmitter 79 transmits only the signal light wavelength ⁇ a band returned at the terminal station 80 connected to the optical branching device 74 by the branch lines 64 and 65, and the monitor PD 78 transmits the terminal station 8. Only the signal turned back at 0 is photoelectrically converted and supplied to the comparator 88 through the amplifier 69.
  • the threshold value c is supplied to the comparator 88 from the terminal 89.
  • the comparator 88 compares the photoelectric conversion signal with the threshold value c to generate a binary control signal, and controls the optical switches 77 and 87 with the control signal.
  • the optical switch 77 is turned on when the control signal is at the mouth level and turned off when the control signal is at the high level, and the optical switch 87 is turned off when the control signal is at the low level and turned on when the control signal is at the high level.
  • the signal lights output from the optical switches 77 and 87 are combined by the optical combiner 90 and output to the trunk line 67.
  • the optical switch 87 when a failure occurs in the branch lines 64 and 65, the optical switch 87 is turned off, so that the noise generated by the optical amplifier 91 provided as a middle or a relay in the branch line 65 becomes a trunk. It can be prevented from being sent to the line 67.
  • the output signal of the monitor PD 78 is supplied to the amplifier 69 through a bandpass filter 83 that passes only the frequency fa, and the optical transmitter 79 is removed. It can also be.
  • optical branching device of the present invention to a wavelength-division multiplexed signal optical communication system, it is possible to reduce the number of wavelength multiplexes and reduce the influence on other lines in the event of a failure in any branch line. Can be eliminated.
  • the optical-electrical converter 68 corresponds to the monitor means described in the claims
  • the optical power controller 63 and the hysteresis comparator 70 correspond to the switching means and the first switching means.
  • the light transmitting device 79 corresponds to the filter means
  • the bandpass filter 83 corresponds to the frequency extracting means
  • the comparator 88 and the optical switch 77 correspond to the first switching means and the first switching means
  • the comparator 88 and the optical switch 87 correspond to the second switching means
  • the optical switch 77 corresponds to the first optical switch
  • the optical switch 87 corresponds to the second optical switch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

An optical branching device for branching a trunk line of a wavelength multiplex signal optical communication system on wavelength multiplex signal light basis to branch lines. The device includes monitor means for monitoring power of signal light as a sum of input signal light from the trunk line and input signal light from the branch line and switching means for attenuating the input signal light from the trunk line and outputting the input signal light from the branch line when the signal light power obtained by the monitor means is above a threshold value and for releasing the attenuation of the input signal light from the trunk line and outputting it when the signal light power obtained by the monitor means is below the threshold value. Thus, it is possible to perform communication without requiring a guard band and reducing the number of wavelength multiplexes. When a branch line has failed, it is possible to use another branch line having no failure.

Description

明細書 光分岐装置 技術分野  Description Optical branching device Technical field
本発明は、 光分岐装置に関し、 特に、 波長多重信号光通信システムで使用され る光分岐装置に関する。 背景技術  The present invention relates to an optical branching device, and more particularly to an optical branching device used in a wavelength division multiplexed signal optical communication system. Background art
インターネットの普及などにより、 ネットワークを介して伝送される情報の量 が急激に増加してきており、伝送システムのさらなる大容量化が求められており、 伝送システムの大容量化を実現する技術の 1つとして、 波長多重 (WDM :Wa v e l e n g t h D i v i s i o n Mu l t i p l e x) 光通信システム力 S 実用化されている。 波長多重信号光通信システムでは、 光伝送路と光分岐装置と 光中継器により複数の端局を結んでいる。  Due to the spread of the Internet and other factors, the amount of information transmitted via networks has been rapidly increasing, and there is a need for a further increase in the capacity of transmission systems. Wavelength division multiplexing (WDM) has been put into practical use. In a wavelength multiplexed signal optical communication system, a plurality of terminal stations are connected by an optical transmission line, an optical branching device, and an optical repeater.
端局が少なくとも 3つ以上ある波長多重信号光通信システムにおいて適用され る光分岐装置の働きは、 大きく 2つに分けられる。 一つは、 中継器 (光アンプ) への給電経路を切り替える働きであり、 もう一つは信号光が伝送する経路を分け る働きである。後者の信号光の伝送経路を分ける構成として、二つが考えられる。 一つは、信号光の伝送路である光ファイバ毎に経路を分ける構成(以降、 「フアイ パ分岐」 と呼ぶ) であり、 もう一つは、 信号光波長毎にブランチ回線に伝送する カ讣ランク回線に伝送する力を選択する波長選択分岐の構成(以降、「アツドブド ロップ分岐」 と呼ぶ) である。  The function of an optical branching device applied to a wavelength division multiplexed signal optical communication system having at least three terminal stations can be roughly divided into two. One is to switch the power supply path to the repeater (optical amplifier), and the other is to separate the path through which the signal light is transmitted. There are two possible configurations for dividing the latter signal light transmission path. One is a configuration in which a path is divided for each optical fiber, which is a transmission path of signal light (hereinafter, referred to as “fibre branching”). The other is a transmission path for transmitting to a branch line for each signal light wavelength. This is the configuration of the wavelength selective branch that selects the power to be transmitted to the rank line (hereinafter referred to as “ad-drop drop”).
図 1は、 ファイバ分岐構成の一例の構成図を示す。 同図中、 端局 10はトラン ク回線の光ファイバペア 11, 12で光分岐装置 13に接続されている。 光分岐 装置 13では光ファイバペア 11で伝送される全ての信号光波長をトラシク回線 の光ファイバペア 14で光分岐装置 15に伝送し、 光ファイバペア 12で伝送さ れる全ての信号光波長をブランチ回線の光ファイバペア 16で端局 17に伝送す る。 また、 端局 17からプランチ回線の光ファイバペア 18で伝送される全ての 信号光波長は、 光分岐装置 1 3を通してトランク回線の光ファイバペア 2 0から 光分岐装置 1 5に伝送される。 FIG. 1 shows a configuration diagram of an example of a fiber branch configuration. In the figure, a terminal station 10 is connected to an optical branching device 13 by optical fiber pairs 11 and 12 of a trunk line. The optical branching device 13 transmits all signal light wavelengths transmitted on the optical fiber pair 11 to the optical branching device 15 on the optical fiber pair 14 of the traffic line, and branches all signal light wavelengths transmitted on the optical fiber pair 12. The signal is transmitted to the terminal 17 via the optical fiber pair 16 of the line. In addition, all the signals transmitted from the terminal station 17 through the optical fiber pair 18 of the plantch line are The signal light wavelength is transmitted from the optical fiber pair 20 of the trunk line to the optical branching device 15 through the optical branching device 13.
光分岐装置 1 5ではトランク回線の光ファイバペア 1 4で伝送される全ての信 号光波長をトランク回線の光ファイバペア 2 1で端局 2 2に伝送し、 トランク回 線の光ファイバペア 2 0で伝送される全ての信号光波長をブランチ回線の光ファ ィバペア 2 3で端局 2 4に伝送する。 また、 端局 2 4からブランチ回線の光ファ ィパペア 2 5で伝送される全ての信号光波長は、 光分岐装置 1 5を通してトラン ク回線の光ファイバペア 2 6から端局 2 2に伝送される。 上記の各トランク回線 及びブランチ回線それぞれには中継器 (光アンプ) が挿入接続されている。  In the optical branching device 15, all signal light wavelengths transmitted on the trunk line optical fiber pair 14 are transmitted to the terminal station 22 via the trunk line optical fiber pair 21, and the trunk line optical fiber pair 2 is transmitted. All the signal light wavelengths transmitted at 0 are transmitted to the terminal station 24 over the optical fiber pair 23 of the branch line. In addition, all signal light wavelengths transmitted from the terminal station 24 to the branch line optical fiber pair 25 are transmitted from the trunk line optical fiber pair 26 to the terminal station 22 through the optical branching device 15. . A repeater (optical amplifier) is inserted and connected to each of the above trunk lines and branch lines.
図 2は、 了ッドンドロップ分岐構成の一例の構成図を示す。 同図中、 端局 3 0 はトランク回線の光ファイバペア 3 1, 3 2で光分岐装置 3 3に接続されている。 光分岐装置 3 3はファイバグレーティング (F B G) 及び光サーキユレ一タを有 しており、 光ファイバペア 3 2で伝送されている信号光波長のうち特定波長 Bを 分岐してブランチ回線の光ファイバペア 3 4で端局 3 5に伝送し、 また、 端局 3 5からブランチ回線の光ファイバペア 3 6で伝送される特定波長 Bを上記特定波 長以外の波長と合波してトランク回線 3 7で光分岐装置 3 8に伝送する。  FIG. 2 shows a configuration diagram of an example of a done-drop branch configuration. In the figure, a terminal station 30 is connected to an optical branching device 33 by an optical fiber pair 31 and 32 of a trunk line. The optical branching device 33 has a fiber grating (FBG) and an optical circuit, and branches the specific wavelength B of the signal light wavelengths transmitted by the optical fiber pair 32 to form a branch line optical fiber pair. 3 4 transmits to the terminal station 3 5, and the specific wavelength B transmitted from the terminal station 3 5 through the optical fiber pair 36 of the branch line is multiplexed with a wavelength other than the above-mentioned specific wavelength to form a trunk line 3 7 Is transmitted to the optical branching device 38.
また; 光分岐装置 3 8も同様にファイバグレーティング及び光サーキユレータ を有しており、 トランク回線 3 7で伝送されている信号光波長のうち特定波長 A を分岐してブランチ回線の光ファイバペア 3 9で端局 4 0に伝送し、 また、 端局 4 0からブランチ回線の光ファイバペア 4 1で伝送される特定波長 Aを上記特定 波長以外の波長と合波してトランク回線の光ファイバペア 4 2 , 4 3で端局 4 4 に伝送する。 上記の各トランク回線及ぴブランチ回線それぞれには中継器 (光ァ ンプ) が挿入接続されている。  Similarly, the optical branching device 38 also has a fiber grating and an optical circulator, and branches a specific wavelength A among the signal light wavelengths transmitted through the trunk line 37 to form an optical fiber pair 39 9 of the branch line. The specific wavelength A transmitted from the terminal station 40 to the branch line optical fiber pair 41 through the branch line optical fiber pair 41 is combined with a wavelength other than the above specific wavelength to transmit the trunk line optical fiber pair 4 to the terminal line 40. Transmit to terminal station 4 4 in 2, 4 3. A repeater (optical amplifier) is inserted and connected to each of the above trunk lines and branch lines.
なお、 障害発生時に分岐すべき信号光の漏洩を防止する従来の光分 ,入ノー ド装置として、 特許文献 1に記載のものがある。  Patent Document 1 discloses a conventional light splitter / input node device for preventing leakage of signal light to be branched when a failure occurs.
特許文献 1  Patent Document 1
特開 2 0 0 0— 3 5 4 0 0 6号公報  Unexamined Japanese Patent Publication No. 2000-3504 06
図 1に示すファイバ分岐構成において、 2つのトランク回線の端局 1 0, 2 2 と 2つ以上のブランチ回線の端局 1 7 , 2 4が する場合、 通常は、 少なくと も一つの光ファイバペア 1 1, 2 1はブランチ回線の端局 1 7, 2 4を介すこと なく、 二つのトランク回線の端局 1 0, 2 2を結ぶ構成をとる。 それ以外の光フ アイパペア 1 2は光分岐装置 1 3, 1 5毎にブランチ回線に分岐されてブランチ 回線の端局 1 7, 2 4を結ぶ構成となる。 また、 ブランチ回線の端局 1 7, 2 4 で、 光ファイバペア内の一部の信号光波長 A, Bは通信せず、 そのまま光分岐装 置 1 3, 1 5に折り返す構成を考える。 In the fiber branch configuration shown in Fig. 1, when the terminal stations 10 and 22 of two trunk lines and the terminal stations 17 and 24 of two or more branch lines are connected, One optical fiber pair 11 and 21 connects two terminal stations 10 and 22 of the trunk line without passing through terminal stations 17 and 24 of the branch line. The other optical fiber pairs 12 are branched into branch lines for each of the optical branching devices 13 and 15, and are configured to connect terminal stations 17 and 24 of the branch lines. Also, consider a configuration in which some of the signal light wavelengths A and B in the optical fiber pair are not communicated at the terminal stations 17 and 24 of the branch line, and are returned to the optical branching devices 13 and 15 as they are.
この場合、 ブランチ回線の光ファイバペア内の信号光波長 Aは、 端局 1 0と端 局 1 7、 及び端局 1 7と端局 2 2を結び、 信号光波長 Bは端局 1 0と端局 2 4、 及び端局 2 4と端局 2 2 ·を結ぶ。  In this case, the signal light wavelength A within the optical fiber pair of the branch line connects the terminal station 10 to the terminal station 17 and the terminal station 17 to the terminal station 22 and the signal light wavelength B corresponds to the terminal station 10 Terminal station 24 and terminal station 24 are connected to terminal station 2 2.
ここで、 端局 1 7につながるブランチ回線の光ファイバペア 1 6, 1 8におい て障害が生じた場合、 ブランチ回線 1 6, 1 8の光ファイバペアで伝送している 全ての信号光がストップしてしまう。 ブランチ回線の光ファイバペア 1 6, 1 8 で伝送されている信号光波長 Aは端局 1 7との通信に関係しないのにもかかわら ず、 信号光波長 Aによる端局 1 0と端局 2 4間の伝送ができなくなるという問題 があった。  Here, if a failure occurs in the optical fiber pair 16 and 18 of the branch line connected to the terminal station 17, all signal light transmitted on the optical fiber pair of the branch lines 16 and 18 stops. Resulting in. Although the signal light wavelength A transmitted on the optical fiber pair 16 and 18 of the branch line is not related to the communication with the terminal station 17, the terminal station 10 and the terminal station 2 based on the signal light wavelength A are used. There was a problem that transmission between 4 became impossible.
図 2に示すァッド /ド口ップ分岐構成では、 光分岐装置 3 3, 3 8内で端局 3 5, 4 0に必要な波長のみを選択して、 ブランチ回線の光ファイノペア 3 4, 3 9に伝送する。 このような構成により前述のファイバ分岐構成における問題は解 決される。 端局 3 5につながるブランチ回線の光ファイバペア 3 4, 3 6で障害 が生じたときでも信号光波長 Aは端局 3 5につながるブランチ回線の光ファイバ ペア 3 4, 3 6を通らないため、 上記障害に影響されずに端局 3 0と端局 3 5の 通信は確保される。  In the add / drop branch configuration shown in FIG. 2, only the wavelengths necessary for the terminal stations 35 and 40 in the optical branching devices 33 and 38 are selected, and the optical finopairs 34 and 3 of the branch line are selected. Transmit to 9. Such a configuration solves the above-described problem in the fiber branch configuration. Even if a failure occurs in the optical fiber pair 34, 36 of the branch line connected to the terminal station 35, the signal light wavelength A does not pass through the optical fiber pair 34, 36 of the branch line connected to the terminal station 35. However, communication between the terminal stations 30 and 35 is secured without being affected by the above-mentioned failure.
近年、 波長多重信号光通信システムでは、 波長多重数を增やすために信号光波 長間隔が狭めることが行われている。 光分岐装置 3 3 , 3 8内の波長選択を行つ ている図 3に示すファイバグレーティング (F B G) 5 0は、 かなり急峻な光透 過特性を有しており、 例えば信号光波長間隔が 1 . 0 n m程度あれば十分に波長 選択を行なえる。 しかし、 信号光波長間隔が 0. 4 n m以下に狭まると、 フアイ バグレーティング 5 0で隣り合う信号光波長を充分に選択できなくなる。 そのた め、 隣り合う信号光波長間にガードパンド G Bを設ける必要が生じる。 図 2の例 では、 ·信号光波長 Aと B間にガードパン KGBが必要であり、 決められた信号帯 域内で波長多重数が少なくなるとレヽう.問題が生じる。 発明の開示 In recent years, in a wavelength division multiplexed signal optical communication system, the signal light wavelength interval has been narrowed in order to reduce the number of wavelength multiplexing. The fiber grating (FBG) 50 shown in Fig. 3, which performs wavelength selection in the optical branching devices 33 and 38, has a very steep light transmission characteristic. If the wavelength is about 0 nm, the wavelength can be selected sufficiently. However, if the wavelength interval of the signal light is reduced to 0.4 nm or less, it is not possible to sufficiently select adjacent signal light wavelengths by means of the fifty bug rating 50. Therefore, it is necessary to provide a guard band GB between adjacent signal light wavelengths. Figure 2 example In such a case, a guard pan KGB is required between the signal light wavelengths A and B, and if the number of multiplexed wavelengths is reduced within a predetermined signal band, a problem occurs. Disclosure of the invention
本発明は、 波長多重数を減少することなく、 カゝつ、 任意のブランチ回線の障害 時に障害のない他のブランチ回線で通信を行うことができる光分岐装置を す ることを総括的な目的とする。  It is a general object of the present invention to provide an optical branching device capable of performing communication on another branch line having no failure at the time of failure of any branch line without reducing the number of wavelength multiplexing. And
この目的を達成するため、 本発明は、 波長多重信号光通信システムのトランク 回線を波長多重信号光単位でブランチ回線に分岐する光分岐装置において、 前記 トランク回線からの入力信号光と前記ブランチ回線からの入力信号光を合わせた 信号光のパワーをモニタするモニタ手段と、 前記モニタ手段で得た信号光パワー が閾値を上回ったとき前記トランク回泉からの入力信号光を減衰して前記ブラン チ回線からの入力信号光を出力し、 前記モニタ手段で得た信号光パワーが閾値を 下回ったとき前記トランク回線からの入力信号光の減衰を解除して出力する切り 替え手段を有するよう構成される。  In order to achieve this object, the present invention provides an optical branching device for branching a trunk line of a wavelength division multiplexed signal optical communication system into branch lines in units of wavelength division multiplexed signal light, wherein the input signal light from the trunk line and the branch line Monitoring means for monitoring the power of the signal light combined with the input signal light, and when the signal light power obtained by the monitoring means exceeds a threshold value, the input signal light from the trunk spring is attenuated and the branch line is attenuated. And switching means for outputting the input signal light from the trunk line and releasing the attenuation of the input signal light from the trunk line when the signal light power obtained by the monitor means falls below a threshold value and outputting the signal light.
このような光分岐装置によれば、 ガードバンドが不要で波長多重数を減少する ことなく、 力、つ、 任意のブランチ回線の障害時に障害のない他のブランチ回茅泉で 通信を行うことができる。 図面の簡単な説明  According to such an optical branching device, a guard band is not required, and communication can be performed at another branch line without failure in the event of a failure in any branch line without reducing the number of wavelength multiplexing. it can. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ファイバ分岐構成の一例の構成図である。  FIG. 1 is a configuration diagram of an example of a fiber branch configuration.
図 2は、 ァッド ドロップ分岐構成の一例の構成図である。  FIG. 2 is a configuration diagram of an example of an add-drop branch configuration.
図 3は、 ァッド Zドロップ分岐構成の問題点を説明するための図である。 図 4は、 本発明の光分岐装置の第 1実施例のプロック構成図である。  FIG. 3 is a diagram for explaining a problem of the ad Z-drop branch configuration. FIG. 4 is a block diagram of a first embodiment of the optical branching device of the present invention.
図 5は、 本発明の光分岐装置の変形例のプロック構成図である。  FIG. 5 is a block diagram of a modification of the optical branching device of the present invention.
図 6は、 立上げ時の動作のフローチャートである。  FIG. 6 is a flowchart of the operation at startup.
図 7は、 立上げ時の動作を説明するためのヒステリシスコンパレータの特性図 である。  FIG. 7 is a characteristic diagram of a hysteresis comparator for explaining an operation at the time of startup.
図 8は、 ブランチ回線障害時の動作のフ口 チャートである。 図 9は、 ブランチ回線障害復旧時の動作のフローチヤ一トである。 Figure 8 is a flowchart of the operation when a branch line failure occurs. Figure 9 is a flowchart of the operation at the time of branch line failure recovery.
図 1 0は、 ブランチ回線障害とブランチ回線障害復旧時の動作を説明するため のヒステリシスコンパレータの特性図である。  FIG. 10 is a characteristic diagram of the hysteresis comparator for explaining the operation at the time of branch line failure and recovery from the branch line failure.
図 1 1は、 本発明の光分岐装置での信号光波長数が 4 0波から 1波に減設した 時の出力波形図である。  FIG. 11 is an output waveform diagram when the number of signal light wavelengths in the optical branching device of the present invention is reduced from 40 waves to one wave.
図 1 2は、 本発明の光分岐装置の他の変形例のブロック構成図である。  FIG. 12 is a block diagram of another modification of the optical branching device of the present invention.
図 1 3は、 コンパレータの特性図である。 発明を実施するための最良の形態  FIG. 13 is a characteristic diagram of the comparator. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 4は、 本発明の光分岐装置の第 1実施例のブロック構成図を示す。 この光分 岐装置 6 0は、 光経路切換えを波長多重信号光単位で行ぅフアイバ分岐構成であ る。  FIG. 4 shows a block diagram of a first embodiment of the optical branching device of the present invention. The optical branching device 60 has a fiber branch configuration in which optical path switching is performed in units of wavelength multiplexed signal light.
同図中、 光分岐装置 6 0内にはトランク回線 6 1からの入力信号光 (波長多重 信号光) を 2つに分岐する光分岐器 6 2が設けられている。 その光分岐器 6 2の 一方の出力は光パワー制御器 6 3に供給され、 他方の出力はブランチ回線 6 4に 伝送される。 また、 ブランチ回線 6 5からの入力信号光と先の光パワー制御器 6 3の出力は光分岐器 6 6に供給され、 光分岐器 6 6の一方の出力はトランク回線 In the figure, an optical splitter 62 for splitting an input signal light (wavelength multiplexed signal light) from a trunk line 61 into two is provided in an optical splitter 60. One output of the optical splitter 62 is supplied to the optical power controller 63, and the other output is transmitted to the branch line 64. Also, the input signal light from the branch line 65 and the output of the optical power controller 63 are supplied to the optical branch device 66, and one output of the optical branch device 66 is connected to the trunk line.
6 7に出力され、 他方の出力はモニタ用の光一電気変 6 8に供給される。 光一電気変 6 8で光電変換された信号は増幅器 6 9で増幅されてヒステリ シスコンパレータ 7 0に供給される。 ヒステリシスコンパレータ 7 0には端子 7 1, 7 2力、ら閾値 a , bが供給されており、 ヒステリシスコンパレータ 7 0は光 電変換信号を上記閾値 a, bと比較して制御信号を生成し、 この制御信号で前述 の光パワー制御器 6 3を制御する。 The other output is supplied to a monitor photoelectric converter 68. The signal photoelectrically converted by the photoelectric conversion 68 is amplified by the amplifier 69 and supplied to the hysteresis comparator 70. Hysteresis comparator 70 is supplied with terminals 71 and 72 and thresholds a and b. Hysteresis comparator 70 compares the photoelectric conversion signal with thresholds a and b to generate a control signal. The control signal controls the optical power controller 63 described above.
図 5は、 本発明の光分岐装置の変形例のブロック構成図を示す。 図 5に示す光 分岐装置 7 4で、図 4と異なる部分は、光分岐器 6 2, 6 6として光力ブラ 7 5, FIG. 5 is a block diagram showing a modification of the optical branching device of the present invention. The optical branching device 74 shown in FIG. 5 differs from the optical branching device shown in FIG.
7 6を用い、 光パワー制御器 6 3として光スィツチ 7 7を用い、 光一電気変 6 8としてモニタ P D (フォトダイオード) 7 8を用い、 光力プラ 7 6とフォト ダイオード 7 8との間に光透過器 7 9を設けた点である。 光透過器 7 9は、 光分 岐装置 7 4にブランチ回線 6 4, 6 5で接続される端局 8 0で折り返される信号 光波長 L a帯域のみを透過する。 これにより、 モニタ P D 7 8に供給される信号 光は端局 8 0で折り返す信号のみになる。 76, an optical switch 77 as an optical power controller 63, and a monitor PD (photodiode) 78 as an optical-electrical converter 68, between the optical power plug 76 and the photodiode 78. The point is that a light transmitter 79 is provided. The light transmitter 79 Only the signal light wavelength La band returned at the terminal station 80 connected to the branching device 74 via the branch lines 64 and 65 is transmitted. As a result, the signal light supplied to the monitor PD 78 is only a signal turned back at the terminal station 80.
図 5の光分岐装置 7 4における立上げ時の動作を図 6のフローチャートを用い て説明する。 また、 図 7に増幅器 6 9からヒステリシスコンパレータ 7 0に供給 される信号レベルを示し、 ラローチャートのステップ番号を丸付き数字で示す。 糸合電立上げ時には、光スィッチ 7 7はオンとなっており (ステップ S l )、 トラ ンク回線 6 1から入力された信号光は、 光スィッチ 7 7を通りモニタ P D 7 8に 供給され、 また、 ブランチ回線 6 5からの信号光もモニタ P D 7 8に供給される (ステップ S 2, S 3 )。 これにより、増幅器 6 9からヒステリシスコンパレータ 7 0に供給される信号レベルは図 7に示すように增大する。  The startup operation of the optical branching device 74 of FIG. 5 will be described with reference to the flowchart of FIG. FIG. 7 shows the signal levels supplied from the amplifier 69 to the hysteresis comparator 70, and the step numbers in the rough chart are indicated by circled numbers. At the time of starting the thread combination, the optical switch 77 is on (step S l), and the signal light input from the trunk line 61 is supplied to the monitor PD 78 through the optical switch 77. The signal light from the branch line 65 is also supplied to the monitor PD 78 (steps S2 and S3). As a result, the signal level supplied from the amplifier 69 to the hysteresis comparator 70 increases as shown in FIG.
増幅器 6 9からヒステリシスコンパレータ 7 0に供給される信号レベルが閾値 aを超えると、光スィッチ 7 7はオフに制御され(ステップ S 5 )、モニタ P D 7 8にはブランチ回線 6 5からの信号光のみが供給されることになる。 この状態が 定常状態となる (ステップ S 6 )。  When the signal level supplied from the amplifier 69 to the hysteresis comparator 70 exceeds the threshold value a, the optical switch 77 is controlled to be turned off (step S5), and the monitor PD 78 receives the signal light from the branch line 65. Only will be supplied. This state becomes a steady state (step S6).
次に、 図 5の光分岐装置 7 4におけるブランチ回線障害時とブランチ回線障害 復旧時の動作を図 8, 図 9のフローチャートを用いて説明する。 また、 図 1 0に 増幅器 6 9からヒステリシスコンパレータ 7 0に供給される信号レベルを示し、 フローチヤ一トのステップ番号を丸付き数字で示す。  Next, the operation of the optical branching device 74 in FIG. 5 when a branch line failure occurs and when the branch line failure is recovered will be described with reference to the flowcharts in FIGS. FIG. 10 shows the signal levels supplied from the amplifier 69 to the hysteresis comparator 70, and the step numbers of the flowchart are indicated by circled numbers.
ブランチ回線 6 4, 6 5で障害が生じると、 ブランチ回線 6 5力らの信号光が なくなり (ステップ S 1 1 )、増幅器 6 9からヒステリシスコンパレータ 7 0に供 給される信号レベルがヒステリシスコンパレータ 7 0の閾値 bを超えて下がると (ステップ S 1 2)、 光スィッチ 7 7を ONに制御する (ステップ S 1 3 )。 する とトランク回線 6 1力ら光スィッチ 7 7を通り、 モニタ P D 7 8に信号光が入力 され、定常状態になる (ステップ S 1 4 )。 ブランチ回線 6 4に分岐されていた信 号光がブランチ回線の障害により、 ブランチ回線 6 4, 6 5の端局 8 0を経由せ ず、 光分岐装置をスルーでトランク回線 6 7に伝送されるため、 他の局へ影響を 与えることはない。  If a failure occurs in the branch lines 64 and 65, the signal light from the branch line 65 disappears (step S11), and the signal level supplied from the amplifier 69 to the hysteresis comparator 70 is reduced. When it falls below the threshold value b of 0 (step S1 2), the optical switch 77 is controlled to be ON (step S1 3). Then, the signal light is input to the monitor PD 78 through the trunk line 61 and the optical switch 77 to be in a steady state (step S 14). The signal light branched to the branch line 64 is transmitted to the trunk line 67 through the optical branching device without passing through the terminal station 80 of the branch lines 64 and 65 due to the failure of the branch line. Therefore, it does not affect other stations.
ブランチ回線 6 4, 6 5における障害が復旧すると、 ブランチ回線 6 5から の信号光が增加し(ステップ S 15)、増幅器 69からヒステリシスコンパレータ 70に供給される信号レベルがヒステリシスコンパレータ 70の閾値 aを超えて 上がると (ステップ S 16)、光スィッチ 77を OFFに制御する (ステップ S 1 7)。するとブランチ回線 65から光スィッチ 77を通り、モニタ PD 78に信号 光が入力され、 定常状態になる (ステップ S 18)。 When the failure in the branch lines 64 and 65 is restored, When the signal light supplied from the amplifier 69 to the hysteresis comparator 70 rises above the threshold a of the hysteresis comparator 70 (step S16), the optical switch 77 is turned off. (Step S17). Then, the signal light is input from the branch line 65 to the monitor PD 78 through the optical switch 77, and a steady state is set (step S18).
このように、 本発明の光分岐装置の基本的な構成は、 光経路切換えを波長多重 信号光単位で行うファイバ分岐構成であるため、 アツド ドロップ構成で問題と なっていたガードバンドを設けるために波長多重数が減少することを解決できる ( また、 ブランチ回線 64, 65の障害時に他の回線への影響をなくすために、 分 岐装置 60内で信号光パワーをモニタすることでブランチ回線 64, 65の障害 の有無を判別する。 そして、 ブランチ回線 64, 65の障害があれば信号光をプ ランチ回線からトランク回線に切り替えて出力し、 ブランチ回線の障害がなけれ ばその逆の光経路切換えを自動的に行なう。 波長多重信号光通信システムに、 上 記のような光分岐装置を適用することにより、 波長多重数を減らすことなく、 ま たブランチ回線の障害時に他の回線への影響をなくすことができる。 As described above, since the basic configuration of the optical branching device of the present invention is a fiber branching configuration in which optical path switching is performed in units of wavelength multiplexed signal light, it is necessary to provide a guard band which has been a problem in an add-drop configuration. It can be solved that the number of multiplexed wavelengths is reduced (and the branch line 64, in order to eliminate the influence of the 65 other lines at the time of failure of the branch line 64 by monitoring the signal light power in branch unit within 60, It determines whether there is a failure in 65. If there is a failure in the branch lines 64 and 65, the signal light is switched from the planned line to the trunk line and output, and if there is no failure in the branch line, the reverse optical path switching is performed. By applying the above-mentioned optical branching device to a wavelength division multiplexed signal optical communication system, it is possible to reduce the number of wavelength division multiplexing and to reduce branch line failures. The effect on other lines can be eliminated.
なお、 図 5の光分岐装置 74では光パワー制御器 63として光スィツチ 77を 使用しているが、 光減衰器を使用しても良い。 また、 モニタ PD 78の直前の光 透過器 79は、 ファイバグレーティング (FBG) または光学膜でも良い。  Although the optical switch 77 is used as the optical power controller 63 in the optical branching device 74 of FIG. 5, an optical attenuator may be used. Further, the light transmitter 79 immediately before the monitor PD 78 may be a fiber grating (FBG) or an optical film.
図 11は、 本発明の光分岐装置の他の変形例のブロック構成図を示す。 図 11 に示す光分岐装置 82で、 図 5と異なる部分は、 トランク回線 61から供給され る波長多重信号光のうち端局 80で折り返される信号光波長; L aだけに周波数 f a (数 kHz〜数中 kHz) の微小信号を熏畳 (例えば振幅変調) しておき、 モ ユタ PD 78の出力信号を周波数 f aのみ通過させる帯域フィルタ (BPF) 8 3を通して増幅器 69に供給する点である。 この場合、 光透過器 79は不要であ る。  FIG. 11 is a block diagram showing another modification of the optical branching device of the present invention. The optical branching device 82 shown in FIG. 11 differs from FIG. 5 in that the wavelength division multiplexed signal light supplied from the trunk line 61 is the signal light wavelength that is looped back at the terminal 80; This is a point that a small signal (of several kHz) is frozen (for example, amplitude modulation), and is supplied to the amplifier 69 through a band-pass filter (BPF) 83 that allows the output signal of the monitor PD 78 to pass only the frequency fa. In this case, the light transmitter 79 is unnecessary.
図 12は、 本発明の光分岐装置の第 2実施例のブロック構成図を示す。 この光 分岐装置 85は、 光経路切換えを波長多重信号光単位で行うファイバ分岐構成で あ 。  FIG. 12 shows a block diagram of a second embodiment of the optical branching device of the present invention. The optical branching device 85 has a fiber branching configuration that performs optical path switching in units of wavelength multiplexed signal light.
同図中、 図 5と同一部分には同一符号を付す。 図 12中、 光分岐装置 85内で はトランク回線 6 1からの入力信号光 (波長多重信号光) が光力プラ 7 5で 2分 岐され、 一方の出力は光スィッチ 7 7に供給され、 他方の出力はブランチ回線 6 4に伝送される。 In the figure, the same parts as those in FIG. In Fig. 12, inside the optical branching device 85 The input signal light (wavelength multiplexed signal light) from trunk line 61 is split into two by optical power plug 75, one output is supplied to optical switch 77, and the other output is transmitted to branch line 64. Is done.
また、 ブランチ回線 6 5からの入力信号光は光力ブラ 8 6で 2分岐され、 一方 の出力は光スィツチ 8 7に供給され、 他方の出力は光透過器 7 9に供給される。 光透過器 7 9は、 光分岐装置 7 4にブランチ回線 6 4, 6 5で接続される端局 8 0で折り返される信号光波長 λ a帯域のみを透過し、 モニタ P D 7 8では端局 8 0で折り返された信号のみを光電変換し増幅器 6 9を通してコンパレータ 8 8に 供給する。  The input signal light from the branch line 65 is split into two by an optical power switch 86, one output is supplied to an optical switch 87, and the other output is supplied to a light transmitter 79. The optical transmitter 79 transmits only the signal light wavelength λa band returned at the terminal station 80 connected to the optical branching device 74 by the branch lines 64 and 65, and the monitor PD 78 transmits the terminal station 8. Only the signal turned back at 0 is photoelectrically converted and supplied to the comparator 88 through the amplifier 69.
コンパレータ 8 8には端子 8 9から閾値 cが供給されている。 コンパレータ 8 8は図 1 3に示すように、 光電変換信号を上記閾値 cと比較して 2値の制御信号 を生成し、 この制御信号で前述の光スィッチ 7 7, 8 7を制御する。 光スィッチ 7 7は制御信号が口一レベルでオン、 ハイレベルでオフとなり、 光スィッチ 8 7 は制御信号がローレべノレでオフ、 ハイレベルでオンとなる。 光スィッチ 7 7, 8 7それぞれの出力する信号光は光合成器 9 0で合成されてトランク回線 6 7に出 力される。  The threshold value c is supplied to the comparator 88 from the terminal 89. As shown in FIG. 13, the comparator 88 compares the photoelectric conversion signal with the threshold value c to generate a binary control signal, and controls the optical switches 77 and 87 with the control signal. The optical switch 77 is turned on when the control signal is at the mouth level and turned off when the control signal is at the high level, and the optical switch 87 is turned off when the control signal is at the low level and turned on when the control signal is at the high level. The signal lights output from the optical switches 77 and 87 are combined by the optical combiner 90 and output to the trunk line 67.
この実施例では、 ブランチ回線 6 4, 6 5の障害時に、 光スィッチ 8 7がオフ となることで、 ブランチ回線 6 5に中,継器として設けられている光アンプ 9 1の 発生ノィズがトランク回線 6 7に送出されることを防止できる。  In this embodiment, when a failure occurs in the branch lines 64 and 65, the optical switch 87 is turned off, so that the noise generated by the optical amplifier 91 provided as a middle or a relay in the branch line 65 becomes a trunk. It can be prevented from being sent to the line 67.
なお、 この実施例においても、 トランク回線 6 1力 ら供給される波長多重信号 光のうち端局 8 0で折り返される信号光波長 λ aだけに周波数 f a (数 k H z〜 数中 k H z ) の微小信号を重畳 (例えば振幅変調) しておき、 モニタ P D 7 8の 出力信号を周波数 f aのみ通過させる帯域フィルタ 8 3を通して増幅器 6 9に供 給し、 光透過器 7 9を除去した構成とすることもできる。  Also in this embodiment, of the wavelength multiplexed signal light supplied from the trunk line 61, only the signal light wavelength λa returned by the terminal station 80 has the frequency fa (several kHz to kHz ) Is superimposed (for example, amplitude modulation), the output signal of the monitor PD 78 is supplied to the amplifier 69 through a bandpass filter 83 that passes only the frequency fa, and the optical transmitter 79 is removed. It can also be.
このようにして、 本発明の光分岐装置を波長多重信号光通信システムに適用す ることにより、 波長多重数を減らすことなく、 カゝつ、 任意のブランチ回線の障害 時に他の回線への影響をなくすことができる。  In this way, by applying the optical branching device of the present invention to a wavelength-division multiplexed signal optical communication system, it is possible to reduce the number of wavelength multiplexes and reduce the influence on other lines in the event of a failure in any branch line. Can be eliminated.
なお、 光一電気変 « 6 8が請求項記載のモニタ手段に対応し、 光パワー制御 器 6 3, ヒステリシスコンパレータ 7 0が切り替え手段及び第 1切り替え手段に 対応し、 光透過器 7 9がフィルタ手段に対応し、 帯域フィルタ 8 3が周波数抽出 手段に対応し、 コンパレータ 8 8, 光スィッチ 7 7が第 1切り替え手段及ぴ第 1 切り替え手段に対応し、 コンパレータ 8 8, 光スィッチ 8 7が第 2切り替え手段 に対応し、 光スィッチ 7 7が第 1光スィッチに対応し、 光スィッチ 8 7が第 2光 スィッチに対応する。 Incidentally, the optical-electrical converter 68 corresponds to the monitor means described in the claims, and the optical power controller 63 and the hysteresis comparator 70 correspond to the switching means and the first switching means. The light transmitting device 79 corresponds to the filter means, the bandpass filter 83 corresponds to the frequency extracting means, the comparator 88 and the optical switch 77 correspond to the first switching means and the first switching means, The comparator 88 and the optical switch 87 correspond to the second switching means, the optical switch 77 corresponds to the first optical switch, and the optical switch 87 corresponds to the second optical switch.

Claims

請求の範囲 The scope of the claims
1 . 波長多重信号光通信システムのトランク回線を波長多重信号光単位でブ ランチ回線に分岐する光分岐装置において、 1. In an optical branching device that branches a trunk line of a wavelength division multiplexed signal optical communication system into branch lines in units of wavelength division multiplexed signal light,
前記トランク回線からの入力信号光と前記ブランチ回線からの入力信号光を合 わせた信号光のパワーをモニタするモニタ手段と、  Monitoring means for monitoring the power of the signal light obtained by combining the input signal light from the trunk line and the input signal light from the branch line;
前記モニタ手段で得た信号光パワーが閾値を上回ったとき前記トランク回 #泉か らの入力信号光を減衰して前記ブランチ回線からの入力信号光を出力し、 前記モ ニタ手段で得た信号光パワーが閾値を下回ったとき前記トランク回線からの入力 信号光の減衰を解除して出力する切り替え手段を有する光分岐装置。  When the signal light power obtained by the monitoring means exceeds a threshold value, the input signal light from the trunk circuit is attenuated to output the input signal light from the branch line, and the signal obtained by the monitoring means is output. An optical branching device having switching means for releasing attenuation of an input signal light from the trunk line and outputting the signal light when the optical power falls below a threshold value.
2 . 請求項 1記載の光分岐装置において、 2. The optical branching device according to claim 1,
前記トランク回線からの入力信号光と前記ブランチ回線からの入力信号光を合 わせた信号光から、 前記ブランチ回線に接続された端局で折り返す信号光波長を 通過して前記モニタ手段に供給するフィルタ手段を有する光分岐装置。  A filter that supplies a signal supplied to the monitor unit from a signal light obtained by combining the input signal light from the trunk line and the input signal light from the branch line, passing the signal light wavelength turned back at the terminal station connected to the branch line. An optical branching device having means.
3 . 請求項 1または 2記載の光分岐装置において、 3. The optical branching device according to claim 1 or 2,
前記切り替え手段は、 前記モニタ手段で得た信号光パワーを第 1閾値及び前記 第 1閾値より小さい第 2閾値それぞれと比較して制御信号を生成するヒステリシ ス特性を持ったコンパレータと、  A comparator having a hysteresis characteristic for generating a control signal by comparing the signal light power obtained by the monitor with a first threshold and a second threshold smaller than the first threshold,
前記トランク回線からの入力信号光を供給されており、 前記制御信号に従って 導通/遮断し、 前記導通時に前記トランク回線からの入力信号光を出力する光ス イッチを有する光分岐装置。  An optical branching device that is supplied with an input signal light from the trunk line, has an optical switch that conducts / blocks according to the control signal, and outputs the input signal light from the trunk line when the conduction occurs.
4. 請求項 3記載の光分岐装置において、 4. The optical branching device according to claim 3,
前記光スィツチの代りに、 前記制御信号に従って前記トランク回線からの入力 信号光に対する減衰/減衰解除を行って出力する光減衰器を有する光分岐装置。  An optical branching device having an optical attenuator that attenuates / releases an input signal light from the trunk line according to the control signal and outputs the signal instead of the optical switch.
5 . 請求項 1記載の光分岐装置において、 前記トランク回線からの入力信号光のうち前記ブランチ回線に接続された端局 で折り返す信号光波長にのみ所定周波数の信号が重畳されており、 5. The optical branching device according to claim 1, A signal of a predetermined frequency is superimposed only on a signal light wavelength that is turned back at a terminal station connected to the branch line in the input signal light from the trunk line,
前記モニタ手段の出力信号から前記所定周波数の成分を抽出して前記切り替え 手段に供給する周波数抽出手段を有する光分岐装置。  An optical branching device having a frequency extracting unit that extracts the component of the predetermined frequency from the output signal of the monitoring unit and supplies the component to the switching unit.
6 , 波長多重信号光通信システムのトランク回線を波長多重信号光単位でブ ランチ回線に分岐する光分岐装置において、 ' 前記ブランチ回線からの入力信号光のパヮーをモニタするモニタ手段と、 前記モニタ手段で得た信号光パワーが閾値を上回ったとき前記トランク回線か らの入力信号光を減衰し、 前記モニタ手段で得た信号光パワーが閾値を下回った とき前記トランク回線からの入力信号光の減衰を解除する第 1切り替え手段と、 前記モニタ手段で得た信号光パワーが閾値を上回ったとき前記ブランチ回線か らの入力信号光の減衰を解除し、 前記モニタ手段で得た信号光パワーが閾値を下 回ったとき前記ブランチ回線からの入力信号光を減衰する第 2切り替え手段と、 ' 前記第 1切り替え手段の出力する信号光と第 2切り替え手段の出力する信号光 を合波して出力する合波手段を有する光分岐装置。 6. An optical branching device for branching a trunk line of a wavelength division multiplexed signal optical communication system into branch lines in units of wavelength division multiplexed signal light, comprising: a monitoring unit for monitoring the power of the input signal light from the branch line; Attenuates the input signal light from the trunk line when the signal light power obtained in step 2 exceeds a threshold, and attenuates the input signal light from the trunk line when the signal light power obtained by the monitor means falls below the threshold. First switching means for canceling, and when the signal light power obtained by the monitoring means exceeds a threshold, cancels the attenuation of the input signal light from the branch line, and the signal light power obtained by the monitoring means becomes a threshold. A second switching means for attenuating the input signal light from the branch line when the signal light falls below the threshold value, the signal light output from the first switching means and the output from the second switching means. Optical branching device having a multiplexing means for a signal light multiplexed by output.
7. 請求項 6記載の光分岐装置において、 7. The optical branching device according to claim 6,
前記ブランチ回線からの入力信号光から、 前記ブランチ回線に接続された端局 で折り返す信号光波長を通過して前記モニタ手段に供給するフィルタ手段を有す る光分岐装置。  An optical branching device having a filter means for supplying, from input signal light from the branch line, a signal light wavelength turned back at a terminal station connected to the branch line to the monitor means.
8 . 請求項 6または 7記載の光分岐装置において、 8. The optical branching device according to claim 6 or 7,
前記第 1, 第 2切り替え手段は、 前記モニタ手段で得た信号光パワーを閾値と 比較して制御信号を生成するコンパレータと、  A comparator for generating a control signal by comparing the signal light power obtained by the monitoring means with a threshold;
前記トランク回線からの入力信号光を供給されており、 前記制御信号に従って 導通/遮断し、 前記導通時に前記トランク回線からの入力信号光を前記合波手段 に供給する第 1光スィッチと、  A first optical switch that is supplied with an input signal light from the trunk line, conducts / blocks according to the control signal, and supplies the input signal light from the trunk line to the multiplexing unit during the conduction.
前記トランク回線からの入力信号光を供給されており、 前記制御信号に従って 前記第 1光スィツチの遮断時に導通して前記トランク回線からの入力信号光を前 記合波手段に供給する出力する第 2光スィツチを有する光分岐装置。 An input signal light is supplied from the trunk line, and according to the control signal An optical branching device having a second optical switch which conducts when the first optical switch is cut off and outputs the input signal light from the trunk line to the multiplexing means.
9 . 請求項 6記載の光分岐装置において、 9. The optical branching device according to claim 6,
前記トランク回線からの入力信号光のうち前記ブランチ回線に接続された端局 で折り返す信号光波長にのみ所定周波数の信号が重畳されており、  A signal of a predetermined frequency is superimposed only on a signal light wavelength that is turned back at a terminal station connected to the branch line in the input signal light from the trunk line,
前記モニタ手段の出力信号から前記所定周波数の成分を抽出して前記第 1, 第 2切り替え手段に供給する周波数抽出手段を有する光分岐装置。  An optical branching device having frequency extracting means for extracting the component of the predetermined frequency from the output signal of the monitoring means and supplying the component to the first and second switching means.
PCT/JP2003/004035 2003-03-28 2003-03-28 Optical branching device WO2004088893A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004570146A JPWO2004088893A1 (en) 2003-03-28 2003-03-28 Optical branching device
PCT/JP2003/004035 WO2004088893A1 (en) 2003-03-28 2003-03-28 Optical branching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004035 WO2004088893A1 (en) 2003-03-28 2003-03-28 Optical branching device

Publications (1)

Publication Number Publication Date
WO2004088893A1 true WO2004088893A1 (en) 2004-10-14

Family

ID=33105328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004035 WO2004088893A1 (en) 2003-03-28 2003-03-28 Optical branching device

Country Status (2)

Country Link
JP (1) JPWO2004088893A1 (en)
WO (1) WO2004088893A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141159A (en) * 2012-01-05 2013-07-18 Nec Corp Wavelength multiplexed optical transmission system
WO2014115517A1 (en) 2013-01-23 2014-07-31 日本電気株式会社 Optical splitting/insertion device, optical splitting/insertion method, and recording medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478827A (en) * 1990-07-20 1992-03-12 Canon Inc Wavelength multiplex optical communication system and optical amplifier device using in system
JPH1032546A (en) * 1996-07-18 1998-02-03 K D D Kaitei Cable Syst Kk Optical transmission system and optical distributer
JPH118589A (en) * 1997-06-16 1999-01-12 Matsushita Electric Ind Co Ltd Fault-monitoring device
JPH1141174A (en) * 1997-07-18 1999-02-12 Kokusai Denshin Denwa Co Ltd <Kdd> Optical transmission system
JP2000092136A (en) * 1998-09-08 2000-03-31 Nec Corp Interrupt detection circuit for digital optical receiver
JP2002221741A (en) * 2001-01-29 2002-08-09 Hitachi Cable Ltd Optical switch

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0478827A (en) * 1990-07-20 1992-03-12 Canon Inc Wavelength multiplex optical communication system and optical amplifier device using in system
JPH1032546A (en) * 1996-07-18 1998-02-03 K D D Kaitei Cable Syst Kk Optical transmission system and optical distributer
JPH118589A (en) * 1997-06-16 1999-01-12 Matsushita Electric Ind Co Ltd Fault-monitoring device
JPH1141174A (en) * 1997-07-18 1999-02-12 Kokusai Denshin Denwa Co Ltd <Kdd> Optical transmission system
JP2000092136A (en) * 1998-09-08 2000-03-31 Nec Corp Interrupt detection circuit for digital optical receiver
JP2002221741A (en) * 2001-01-29 2002-08-09 Hitachi Cable Ltd Optical switch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141159A (en) * 2012-01-05 2013-07-18 Nec Corp Wavelength multiplexed optical transmission system
WO2014115517A1 (en) 2013-01-23 2014-07-31 日本電気株式会社 Optical splitting/insertion device, optical splitting/insertion method, and recording medium
US9735915B2 (en) 2013-01-23 2017-08-15 Nec Corporation Optical branching/insertion device, optical branching/insertion method and recording medium

Also Published As

Publication number Publication date
JPWO2004088893A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US10826601B2 (en) Optical switch with path continuity monitoring for optical protection switching
JP3060994B2 (en) Output port switching device in N-WDM system
JP4806437B2 (en) Method for selectively terminating or forwarding traffic in an optical ring network
CN108683460B (en) Optical module, optical communication system, and optical communication method
JP3729951B2 (en) Optical network system
US6452701B1 (en) Wavelength division multiplexing communications network supervisory system
JP4043048B2 (en) Optical multichannel system
JP3995781B2 (en) Optical branching / inserting device and optical branching device using wavelength selective filter
EP0835567B1 (en) Add/drop multiplexer node
JPH10173598A (en) Optical multiplexing and demultiplexing device and optical transmission system using the device
JPH10209964A (en) Wavelength multiplex transmission/reception equipment, optical transmission system and redundant system switching method for the same
WO2011103239A1 (en) Flexible branching unit and system including the same
JP2005531948A (en) Optical add / drop node and method
US8396362B2 (en) Light transmitting and receiving module, method for managing the same, light transmitting and receiving apparatus, and wavelength-multiplexing light transmitting and receiving apparatus
JPH11225116A (en) Monitor system and loopback circuit used for it
US7430373B2 (en) Optical node processor, optical network system and its control method
JP4111163B2 (en) Abnormal light detection and blocking device
WO2004088893A1 (en) Optical branching device
WO2021229744A1 (en) Failure detection device, failure detection method, and failure-detection-program recording medium
JPH11243374A (en) Optical signal transmission system and optical signal transmitting device used therein
JP2000312185A (en) Optical repeating amplifier for wavelength multiplex optical transmission, and wavelength multiplex optical transmission device using the same
JP4029661B2 (en) Optical multiplexing / demultiplexing method and apparatus
JPH10256990A (en) Redundant constitution standby system monitor method and redundant constitution optical transmission-reception equipment
JP2004040241A (en) Optical transmitter and optical signal path connection monitoring method
WO2004077701A1 (en) Method and device for switching between active and auxiliary circuits for optical transmission

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004570146

Country of ref document: JP

122 Ep: pct application non-entry in european phase