JPWO2004088893A1 - Optical branching device - Google Patents

Optical branching device Download PDF

Info

Publication number
JPWO2004088893A1
JPWO2004088893A1 JP2004570146A JP2004570146A JPWO2004088893A1 JP WO2004088893 A1 JPWO2004088893 A1 JP WO2004088893A1 JP 2004570146 A JP2004570146 A JP 2004570146A JP 2004570146 A JP2004570146 A JP 2004570146A JP WO2004088893 A1 JPWO2004088893 A1 JP WO2004088893A1
Authority
JP
Japan
Prior art keywords
signal light
optical
branching device
input signal
optical branching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004570146A
Other languages
Japanese (ja)
Inventor
泉 横田
泉 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Publication of JPWO2004088893A1 publication Critical patent/JPWO2004088893A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0205Select and combine arrangements, e.g. with an optical combiner at the output after adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0206Express channels arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/028WDM bus architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0289Optical multiplex section protection
    • H04J14/0291Shared protection at the optical multiplex section (1:1, n:m)

Abstract

本発明は、波長多重信号光通信システムのトランク回線を波長多重信号光単位でブランチ回線に分岐する光分岐装置において、トランク回線からの入力信号光とブランチ回線からの入力信号光を合わせた信号光のパワーをモニタするモニタ手段と、モニタ手段で得た信号光パワーが閾値を上回ったときトランク回線からの入力信号光を減衰してブランチ回線からの入力信号光を出力し、モニタ手段で得た信号光パワーが閾値を下回ったときトランク回線からの入力信号光の減衰を解除して出力する切り替え手段を有するよう構成することにより、ガードバンドが不要で波長多重数を減少することなく、かつ、任意のブランチ回線の障害時に障害のない他のブランチ回線で通信を行うことができる。The present invention relates to an optical branching device that branches a trunk line of a wavelength division multiplexing optical signal communication system into a branch line in units of wavelength division multiplexed signal light, and combines the signal light from the trunk line and the input signal light from the branch line. A monitoring means for monitoring the power of the signal, and when the signal light power obtained by the monitoring means exceeds a threshold value, the input signal light from the trunk line is attenuated and the input signal light from the branch line is output and obtained by the monitoring means By configuring so as to have a switching means for releasing the attenuation of the input signal light from the trunk line and outputting it when the signal light power falls below the threshold, a guard band is unnecessary and the number of wavelength multiplexing is not reduced, and Communication can be performed on another branch line that does not have a failure when an arbitrary branch line fails.

Description

本発明は、光分岐装置に関し、特に、波長多重信号光通信システムで使用される光分岐装置に関する。  The present invention relates to an optical branching device, and more particularly to an optical branching device used in a wavelength division multiplexing optical communication system.

インターネットの普及などにより、ネットワークを介して伝送される情報の量が急激に増加してきており、伝送システムのさらなる大容量化が求められており、伝送システムの大容量化を実現する技術の1つとして、波長多重(WDM:Wavelength Division Multiplex)光通信システムが実用化されている。波長多重信号光通信システムでは、光伝送路と光分岐装置と光中継器により複数の端局を結んでいる。
端局が少なくとも3つ以上ある波長多重信号光通信システムにおいて適用される光分岐装置の働きは、大きく2つに分けられる。一つは、中継器(光アンプ)への給電経路を切り替える働きであり、もう一つは信号光が伝送する経路を分ける働きである。後者の信号光の伝送経路を分ける構成として、二つが考えられる。一つは、信号光の伝送路である光ファイバ毎に経路を分ける構成(以降、「ファイバ分岐」と呼ぶ)であり、もう一つは、信号光波長毎にブランチ回線に伝送するかトランク回線に伝送するかを選択する波長選択分岐の構成(以降、「アッド/ドロップ分岐」と呼ぶ)である。
図1は、ファイバ分岐構成の一例の構成図を示す。同図中、端局10はトランク回線の光ファイバペア11,12で光分岐装置13に接続されている。光分岐装置13では光ファイバペア11で伝送される全ての信号光波長をトランク回線の光ファイバペア14で光分岐装置15に伝送し、光ファイバペア12で伝送される全ての信号光波長をブランチ回線の光ファイバペア16で端局17に伝送する。また、端局17からブランチ回線の光ファイバペア18で伝送される全ての信号光波長は、光分岐装置13を通してトランク回線の光ファイバペア20から光分岐装置15に伝送される。
光分岐装置15ではトランク回線の光ファイバペア14で伝送される全ての信号光波長をトランク回線の光ファイバペア21で端局22に伝送し、トランク回線の光ファイバペア20で伝送される全ての信号光波長をブランチ回線の光ファイバペア23で端局24に伝送する。また、端局24からブランチ回線の光ファイバペア25で伝送される全ての信号光波長は、光分岐装置15を通してトランク回線の光ファイバペア26から端局22に伝送される。上記の各トランク回線及びブランチ回線それぞれには中継器(光アンプ)が挿入接続されている。
図2は、アッド/ドロップ分岐構成の一例の構成図を示す。同図中、端局30はトランク回線の光ファイバペア31,32で光分岐装置33に接続されている。光分岐装置33はファイバグレーティング(FBG)及び光サーキュレータを有しており、光ファイバペア32で伝送されている信号光波長のうち特定波長Bを分岐してブランチ回線の光ファイバペア34で端局35に伝送し、また、端局35からブランチ回線の光ファイバペア36で伝送される特定波長Bを上記特定波長以外の波長と合波してトランク回線37で光分岐装置38に伝送する。
また、光分岐装置38も同様にファイバグレーティング及び光サーキュレータを有しており、トランク回線37で伝送されている信号光波長のうち特定波長Aを分岐してブランチ回線の光ファイバペア39で端局40に伝送し、また、端局40からブランチ回線の光ファイバペア41で伝送される特定波長Aを上記特定波長以外の波長と合波してトランク回線の光ファイバペア42,43で端局44に伝送する。上記の各トランク回線及びブランチ回線それぞれには中継器(光アンプ)が挿入接続されている。
なお、障害発生時に分岐すべき信号光の漏洩を防止する従来の光分岐挿入ノード装置として、特許文献1に記載のものがある。
特開2000−354006号公報
With the spread of the Internet and the like, the amount of information transmitted over a network has increased rapidly, and there is a demand for further increase in the capacity of the transmission system, which is one of the technologies for realizing an increase in capacity of the transmission system. A wavelength division multiplexing (WDM) optical communication system has been put into practical use. In a wavelength division multiplexing optical communication system, a plurality of terminal stations are connected by an optical transmission line, an optical branching device, and an optical repeater.
The function of the optical branching device applied in the wavelength division multiplexing optical communication system having at least three terminal stations is roughly divided into two. One is a function of switching a power feeding path to a repeater (optical amplifier), and the other is a function of dividing a path through which signal light is transmitted. There are two possible configurations for dividing the latter signal light transmission path. One is a configuration (hereinafter referred to as “fiber branching”) that divides the path for each optical fiber that is a transmission path for signal light, and the other is a trunk line that transmits to a branch line for each signal light wavelength. This is a configuration of wavelength selective branching (hereinafter referred to as “add / drop branching”) for selecting whether or not to transmit data.
FIG. 1 shows a configuration diagram of an example of a fiber branching configuration. In the figure, a terminal station 10 is connected to an optical branching device 13 through trunk line optical fiber pairs 11 and 12. The optical branching device 13 transmits all the signal light wavelengths transmitted by the optical fiber pair 11 to the optical branching device 15 by the optical fiber pair 14 of the trunk line, and branches all the signal light wavelengths transmitted by the optical fiber pair 12. The data is transmitted to the terminal station 17 through the optical fiber pair 16 of the line. All signal light wavelengths transmitted from the terminal station 17 through the branch line optical fiber pair 18 are transmitted from the trunk line optical fiber pair 20 to the optical branch device 15 through the optical branch device 13.
In the optical branching device 15, all signal light wavelengths transmitted through the trunk line optical fiber pair 14 are transmitted to the terminal station 22 through the trunk line optical fiber pair 21, and all signals transmitted through the trunk line optical fiber pair 20 are transmitted. The signal light wavelength is transmitted to the terminal station 24 via the branch line optical fiber pair 23. All signal light wavelengths transmitted from the terminal station 24 through the branch line optical fiber pair 25 are transmitted from the trunk line optical fiber pair 26 to the terminal station 22 through the optical branching device 15. A repeater (optical amplifier) is inserted and connected to each of the trunk lines and branch lines.
FIG. 2 shows a configuration diagram of an example of an add / drop branch configuration. In the figure, the terminal station 30 is connected to an optical branching device 33 by optical fiber pairs 31 and 32 of trunk lines. The optical branching device 33 has a fiber grating (FBG) and an optical circulator, branches a specific wavelength B out of the signal light wavelengths transmitted by the optical fiber pair 32, and is terminated by an optical fiber pair 34 of a branch line. The specific wavelength B transmitted from the terminal station 35 via the branch line optical fiber pair 36 is combined with a wavelength other than the specific wavelength and transmitted to the optical branching device 38 via the trunk line 37.
Similarly, the optical branching device 38 also has a fiber grating and an optical circulator, branches a specific wavelength A out of the signal light wavelength transmitted through the trunk line 37, and terminates at the branch line optical fiber pair 39. The specific wavelength A transmitted from the terminal station 40 through the branch line optical fiber pair 41 is combined with a wavelength other than the specific wavelength, and the trunk line optical fiber pairs 42 and 43 are used as the terminal station 44. Transmit to. A repeater (optical amplifier) is inserted and connected to each of the trunk lines and branch lines.
As a conventional optical add / drop node device for preventing leakage of signal light to be branched when a failure occurs, there is one described in Patent Document 1.
JP 2000-354006 A

図1に示すファイバ分岐構成において、2つのトランク回線の端局10,22と2つ以上のブランチ回線の端局17,24が存在する場合、通常は、少なくとも一つの光ファイバペア11,21はブランチ回線の端局17,24を介すことなく、二つのトランク回線の端局10,22を結ぶ構成をとる。それ以外の光ファイバペア12は光分岐装置13,15毎にブランチ回線に分岐されてブランチ回線の端局17,24を結ぶ構成となる。また、ブランチ回線の端局17,24で、光ファイバペア内の一部の信号光波長A,Bは通信せず、そのまま光分岐装置13,15に折り返す構成を考える。
この場合、ブランチ回線の光ファイバペア内の信号光波長Aは、端局10と端局17、及び端局17と端局22を結び、信号光波長Bは端局10と端局24、及び端局24と端局22を結ぶ。
ここで、端局17につながるブランチ回線の光ファイバペア16,18において障害が生じた場合、ブランチ回線16,18の光ファイバペアで伝送している全ての信号光がストップしてしまう。ブランチ回線の光ファイバペア16,18で伝送されている信号光波長Aは端局17との通信に関係しないのにもかかわらず、信号光波長Aによる端局10と端局24間の伝送ができなくなるという問題があった。
図2に示すアッド/ドロップ分岐構成では、光分岐装置33,38内で端局35,40に必要な波長のみを選択して、ブランチ回線の光ファイバペア34,39に伝送する。このような構成により前述のファイバ分岐構成における問題は解決される。端局35につながるブランチ回線の光ファイバペア34,36で障害が生じたときでも信号光波長Aは端局35につながるブランチ回線の光ファイバペア34,36を通らないため、上記障害に影響されずに端局30と端局35の通信は確保される。
近年、波長多重信号光通信システムでは、波長多重数を増やすために信号光波長間隔が狭めることが行われている。光分岐装置33,38内の波長選択を行っている図3に示すファイバグレーティング(FBG)50は、かなり急峻な光透過特性を有しており、例えば信号光波長間隔が1.0nm程度あれば十分に波長選択を行なえる。しかし、信号光波長間隔が0.4nm以下に狭まると、ファイバグレーティング50で隣り合う信号光波長を充分に選択できなくなる。そのため、隣り合う信号光波長間にガードバンドGBを設ける必要が生じる。図2の例では、信号光波長AとB間にガードバンドGBが必要であり、決められた信号帯域内で波長多重数が少なくなるという問題が生じる。
In the fiber branching configuration shown in FIG. 1, when there are two trunk line end stations 10 and 22 and two or more branch line end stations 17 and 24, normally, at least one optical fiber pair 11 and 21 is A configuration is adopted in which the terminal stations 10 and 22 of the two trunk lines are connected without passing through the terminal stations 17 and 24 of the branch line. The other optical fiber pairs 12 are branched into branch lines for each of the optical branching devices 13 and 15 to connect the branch stations 17 and 24. In addition, a configuration is considered in which branch signal terminals 17 and 24 do not communicate part of the signal light wavelengths A and B in the optical fiber pair and return them to the optical branching devices 13 and 15 as they are.
In this case, the signal light wavelength A in the branch line optical fiber pair connects the terminal station 10 and the terminal station 17, and the terminal station 17 and the terminal station 22, and the signal light wavelength B is in the terminal station 10 and the terminal station 24. The terminal station 24 and the terminal station 22 are connected.
Here, when a failure occurs in the branch line optical fiber pair 16, 18 connected to the terminal station 17, all signal light transmitted through the branch line 16, 18 optical fiber pair stops. Although the signal light wavelength A transmitted through the branch line optical fiber pairs 16 and 18 is not related to the communication with the terminal station 17, the signal light wavelength A can be transmitted between the terminal station 10 and the terminal station 24. There was a problem that it was impossible.
In the add / drop branching configuration shown in FIG. 2, only wavelengths necessary for the terminal stations 35 and 40 are selected in the optical branching devices 33 and 38 and transmitted to the optical fiber pairs 34 and 39 of the branch line. Such a configuration solves the above-described problems in the fiber branch configuration. Even when a failure occurs in the branch line optical fiber pair 34, 36 connected to the terminal station 35, the signal light wavelength A does not pass through the branch line optical fiber pair 34, 36 connected to the terminal station 35. Therefore, communication between the terminal station 30 and the terminal station 35 is ensured.
In recent years, in a wavelength division multiplexing optical signal communication system, in order to increase the number of wavelength multiplexing, the signal light wavelength interval is reduced. The fiber grating (FBG) 50 shown in FIG. 3 that performs wavelength selection in the optical branching devices 33 and 38 has a rather steep light transmission characteristic. For example, if the signal light wavelength interval is about 1.0 nm. The wavelength can be selected sufficiently. However, if the signal light wavelength interval is narrowed to 0.4 nm or less, the adjacent signal light wavelengths cannot be sufficiently selected by the fiber grating 50. Therefore, it is necessary to provide a guard band GB between adjacent signal light wavelengths. In the example of FIG. 2, a guard band GB is required between the signal light wavelengths A and B, which causes a problem that the number of wavelength multiplexing is reduced within a determined signal band.

本発明は、波長多重数を減少することなく、かつ、任意のブランチ回線の障害時に障害のない他のブランチ回線で通信を行うことができる光分岐装置を提供することを総括的な目的とする。
この目的を達成するため、本発明は、波長多重信号光通信システムのトランク回線を波長多重信号光単位でブランチ回線に分岐する光分岐装置において、前記トランク回線からの入力信号光と前記ブランチ回線からの入力信号光を合わせた信号光のパワーをモニタするモニタ手段と、前記モニタ手段で得た信号光パワーが閾値を上回ったとき前記トランク回線からの入力信号光を減衰して前記ブランチ回線からの入力信号光を出力し、前記モニタ手段で得た信号光パワーが閾値を下回ったとき前記トランク回線からの入力信号光の減衰を解除して出力する切り替え手段を有するよう構成される。
このような光分岐装置によれば、ガードバンドが不要で波長多重数を減少することなく、かつ、任意のブランチ回線の障害時に障害のない他のブランチ回線で通信を行うことができる。
SUMMARY OF THE INVENTION It is a general object of the present invention to provide an optical branching device that can perform communication on another branch line that does not have a failure at the time of failure of an arbitrary branch line without reducing the number of wavelength multiplexing. .
In order to achieve this object, the present invention provides an optical branching device for branching a trunk line of a wavelength division multiplexing optical signal communication system into a branch line in units of wavelength division multiplexed signal light, from the input signal light from the trunk line and the branch line. Monitoring means for monitoring the power of the signal light combined with the input signal light, and when the signal light power obtained by the monitoring means exceeds a threshold value, the input signal light from the trunk line is attenuated to There is provided switching means for outputting the input signal light and releasing the attenuation of the input signal light from the trunk line when the signal light power obtained by the monitoring means falls below a threshold value.
According to such an optical branching device, a guard band is not required, and the number of wavelength multiplexing can be reduced, and communication can be performed on another branch line that does not have a failure when an arbitrary branch line fails.

図1は、ファイバ分岐構成の一例の構成図である。
図2は、アッド/ドロップ分岐構成の一例の構成図である。
図3は、アッド/ドロップ分岐構成の問題点を説明するための図である。
図4は、本発明の光分岐装置の第1実施例のブロック構成図である。
図5は、本発明の光分岐装置の変形例のブロック構成図である。
図6は、立上げ時の動作のフローチャートである。
図7は、立上げ時の動作を説明するためのヒステリシスコンパレータの特性図である。
図8は、ブランチ回線障害時の動作のフローチャートである。
図9は、ブランチ回線障害復旧時の動作のフローチャートである。
図10は、ブランチ回線障害とブランチ回線障害復旧時の動作を説明するためのヒステリシスコンパレータの特性図である。
図11は、本発明の光分岐装置での信号光波長数が40波から1波に減設した時の出力波形図である。
図12は、本発明の光分岐装置の他の変形例のブロック構成図である。
図13は、コンパレータの特性図である。
FIG. 1 is a configuration diagram of an example of a fiber branch configuration.
FIG. 2 is a configuration diagram of an example of an add / drop branch configuration.
FIG. 3 is a diagram for explaining a problem of the add / drop branch configuration.
FIG. 4 is a block diagram of the first embodiment of the optical branching device of the present invention.
FIG. 5 is a block diagram of a modification of the optical branching device of the present invention.
FIG. 6 is a flowchart of the operation at startup.
FIG. 7 is a characteristic diagram of a hysteresis comparator for explaining the operation at startup.
FIG. 8 is a flowchart of the operation when a branch line failure occurs.
FIG. 9 is a flowchart of the operation at the time of branch line failure recovery.
FIG. 10 is a characteristic diagram of a hysteresis comparator for explaining operations at the time of branch line failure and branch line failure recovery.
FIG. 11 is an output waveform diagram when the number of signal light wavelengths in the optical branching device of the present invention is reduced from 40 waves to one wave.
FIG. 12 is a block diagram of another modification of the optical branching device of the present invention.
FIG. 13 is a characteristic diagram of the comparator.

以下、本発明の実施例を図面に基づいて説明する。
図4は、本発明の光分岐装置の第1実施例のブロック構成図を示す。この光分岐装置60は、光経路切換えを波長多重信号光単位で行うファイバ分岐構成である。
同図中、光分岐装置60内にはトランク回線61からの入力信号光(波長多重信号光)を2つに分岐する光分岐器62が設けられている。その光分岐器62の一方の出力は光パワー制御器63に供給され、他方の出力はブランチ回線64に伝送される。また、ブランチ回線65からの入力信号光と先の光パワー制御器63の出力は光分岐器66に供給され、光分岐器66の一方の出力はトランク回線67に出力され、他方の出力はモニタ用の光−電気変換器68に供給される。
光−電気変換器68で光電変換された信号は増幅器69で増幅されてヒステリシスコンパレータ70に供給される。ヒステリシスコンパレータ70には端子71,72から閾値a,bが供給されており、ヒステリシスコンパレータ70は光電変換信号を上記閾値a,bと比較して制御信号を生成し、この制御信号で前述の光パワー制御器63を制御する。
図5は、本発明の光分岐装置の変形例のブロック構成図を示す。図5に示す光分岐装置74で、図4と異なる部分は、光分岐器62,66として光カプラ75,76を用い、光パワー制御器63として光スイッチ77を用い、光−電気変換器68としてモニタPD(フォトダイオード)78を用い、光カプラ76とフォトダイオード78との間に光透過器79を設けた点である。光透過器79は、光分岐装置74にブランチ回線64,65で接続される端局80で折り返される信号光波長λa帯域のみを透過する。これにより、モニタPD78に供給される信号光は端局80で折り返す信号のみになる。
図5の光分岐装置74における立上げ時の動作を図6のフローチャートを用いて説明する。また、図7に増幅器69からヒステリシスコンパレータ70に供給される信号レベルを示し、フローチャートのステップ番号を丸付き数字で示す。
給電立上げ時には、光スイッチ77はオンとなっており(ステップS1)、トランク回線61から入力された信号光は、光スイッチ77を通りモニタPD78に供給され、また、ブランチ回線65からの信号光もモニタPD78に供給される(ステップS2,S3)。これにより、増幅器69からヒステリシスコンパレータ70に供給される信号レベルは図7に示すように増大する。
増幅器69からヒステリシスコンパレータ70に供給される信号レベルが閾値aを超えると、光スイッチ77はオフに制御され(ステップS5)、モニタPD78にはブランチ回線65からの信号光のみが供給されることになる。この状態が定常状態となる(ステップS6)。
次に、図5の光分岐装置74におけるブランチ回線障害時とブランチ回線障害復旧時の動作を図8,図9のフローチャートを用いて説明する。また、図10に増幅器69からヒステリシスコンパレータ70に供給される信号レベルを示し、フローチャートのステップ番号を丸付き数字で示す。
ブランチ回線64,65で障害が生じると、ブランチ回線65からの信号光がなくなり(ステップS11)、増幅器69からヒステリシスコンパレータ70に供給される信号レベルがヒステリシスコンパレータ70の閾値bを超えて下がると(ステップS12)、光スイッチ77をONに制御する(ステップS13)。するとトランク回線61から光スイッチ77を通り、モニタPD78に信号光が入力され、定常状態になる(ステップS14)。ブランチ回線64に分岐されていた信号光がブランチ回線の障害により、ブランチ回線64,65の端局80を経由せず、光分岐装置をスルーでトランク回線67に伝送されるため、他の局へ影響を与えることはない。
ブランチ回線64,65における障害が復旧すると、ブランチ回線65からの信号光が増加し(ステップS15)、増幅器69からヒステリシスコンパレータ70に供給される信号レベルがヒステリシスコンパレータ70の閾値aを超えて上がると(ステップS16)、光スイッチ77をOFFに制御する(ステップS17)。するとブランチ回線65から光スイッチ77を通り、モニタPD78に信号光が入力され、定常状態になる(ステップS18)。
このように、本発明の光分岐装置の基本的な構成は、光経路切換えを波長多重信号光単位で行うファイバ分岐構成であるため、アッド/ドロップ構成で問題となっていたガードバンドを設けるために波長多重数が減少することを解決できる。また、ブランチ回線64,65の障害時に他の回線への影響をなくすために、分岐装置60内で信号光パワーをモニタすることでブランチ回線64,65の障害の有無を判別する。そして、ブランチ回線64,65の障害があれば信号光をブランチ回線からトランク回線に切り替えて出力し、ブランチ回線の障害がなければその逆の光経路切換えを自動的に行なう。波長多重信号光通信システムに、上記のような光分岐装置を適用することにより、波長多重数を減らすことなく、またブランチ回線の障害時に他の回線への影響をなくすことができる。
なお、図5の光分岐装置74では光パワー制御器63として光スイッチ77を使用しているが、光減衰器を使用しても良い。また、モニタPD78の直前の光透過器79は、ファイバグレーティング(FBG)または光学膜でも良い。
図11は、本発明の光分岐装置の他の変形例のブロック構成図を示す。図11に示す光分岐装置82で、図5と異なる部分は、トランク回線61から供給される波長多重信号光のうち端局80で折り返される信号光波長λaだけに周波数fa(数kHz〜数中kHz)の微小信号を重畳(例えば振幅変調)しておき、モニタPD78の出力信号を周波数faのみ通過させる帯域フィルタ(BPF)83を通して増幅器69に供給する点である。この場合、光透過器79は不要である。
図12は、本発明の光分岐装置の第2実施例のブロック構成図を示す。この光分岐装置85は、光経路切換えを波長多重信号光単位で行うファイバ分岐構成である。
同図中、図5と同一部分には同一符号を付す。図12中、光分岐装置85内ではトランク回線61からの入力信号光(波長多重信号光)が光カプラ75で2分岐され、一方の出力は光スイッチ77に供給され、他方の出力はブランチ回線64に伝送される。
また、ブランチ回線65からの入力信号光は光カプラ86で2分岐され、一方の出力は光スイッチ87に供給され、他方の出力は光透過器79に供給される。光透過器79は、光分岐装置74にブランチ回線64,65で接続される端局80で折り返される信号光波長λa帯域のみを透過し、モニタPD78では端局80で折り返された信号のみを光電変換し増幅器69を通してコンパレータ88に供給する。
コンパレータ88には端子89から閾値cが供給されている。コンパレータ88は図13に示すように、光電変換信号を上記閾値cと比較して2値の制御信号を生成し、この制御信号で前述の光スイッチ77,87を制御する。光スイッチ77は制御信号がローレベルでオン、ハイレベルでオフとなり、光スイッチ87は制御信号がローレベルでオフ、ハイレベルでオンとなる。光スイッチ77,87それぞれの出力する信号光は光合成器90で合成されてトランク回線67に出力される。
この実施例では、ブランチ回線64,65の障害時に、光スイッチ87がオフとなることで、ブランチ回線65に中継器として設けられている光アンプ91の発生ノイズがトランク回線67に送出されることを防止できる。
なお、この実施例においても、トランク回線61から供給される波長多重信号光のうち端局80で折り返される信号光波長λaだけに周波数fa(数kHz〜数中kHz)の微小信号を重畳(例えば振幅変調)しておき、モニタPD78の出力信号を周波数faのみ通過させる帯域フィルタ83を通して増幅器69に供給し、光透過器79を除去した構成とすることもできる。
このようにして、本発明の光分岐装置を波長多重信号光通信システムに適用することにより、波長多重数を減らすことなく、かつ、任意のブランチ回線の障害時に他の回線への影響をなくすことができる。
なお、光−電気変換器68が請求項記載のモニタ手段に対応し、光パワー制御器63,ヒステリシスコンパレータ70が切り替え手段及び第1切り替え手段に対応し、光透過器79がフィルタ手段に対応し、帯域フィルタ83が周波数抽出手段に対応し、コンパレータ88,光スイッチ77が第1切り替え手段及び第1切り替え手段に対応し、コンパレータ88,光スイッチ87が第2切り替え手段に対応し、光スイッチ77が第1光スイッチに対応し、光スイッチ87が第2光スイッチに対応する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 4 is a block diagram of the first embodiment of the optical branching device of the present invention. This optical branching device 60 has a fiber branching configuration in which optical path switching is performed in units of wavelength multiplexed signal light.
In the figure, an optical branching device 62 for branching the input signal light (wavelength multiplexed signal light) from the trunk line 61 into two is provided in the optical branching device 60. One output of the optical branching device 62 is supplied to the optical power controller 63, and the other output is transmitted to the branch line 64. Also, the input signal light from the branch line 65 and the output of the optical power controller 63 are supplied to the optical branching unit 66, one output of the optical branching unit 66 is output to the trunk line 67, and the other output is monitored. Is supplied to an optical / electrical converter 68.
The signal photoelectrically converted by the photoelectric converter 68 is amplified by the amplifier 69 and supplied to the hysteresis comparator 70. The hysteresis comparator 70 is supplied with threshold values a and b from terminals 71 and 72, and the hysteresis comparator 70 compares the photoelectric conversion signal with the threshold values a and b to generate a control signal. The power controller 63 is controlled.
FIG. 5 shows a block diagram of a modification of the optical branching device of the present invention. The optical branching device 74 shown in FIG. 5 differs from FIG. 4 in that optical couplers 75 and 76 are used as the optical branching devices 62 and 66, an optical switch 77 is used as the optical power controller 63, and an optical-electrical converter 68. The monitor PD (photodiode) 78 is used, and a light transmitter 79 is provided between the optical coupler 76 and the photodiode 78. The optical transmitter 79 transmits only the signal light wavelength λa band that is turned back at the terminal station 80 connected to the optical branching device 74 through the branch lines 64 and 65. As a result, the signal light supplied to the monitor PD 78 is only the signal that returns at the terminal station 80.
The operation at startup in the optical branching device 74 of FIG. 5 will be described with reference to the flowchart of FIG. FIG. 7 shows the signal level supplied from the amplifier 69 to the hysteresis comparator 70, and step numbers in the flowchart are indicated by circled numbers.
At the start of power supply, the optical switch 77 is turned on (step S1), and the signal light input from the trunk line 61 is supplied to the monitor PD 78 through the optical switch 77, and the signal light from the branch line 65 is supplied. Is also supplied to the monitor PD 78 (steps S2 and S3). As a result, the signal level supplied from the amplifier 69 to the hysteresis comparator 70 increases as shown in FIG.
When the signal level supplied from the amplifier 69 to the hysteresis comparator 70 exceeds the threshold value a, the optical switch 77 is controlled to be turned off (step S5), and only the signal light from the branch line 65 is supplied to the monitor PD 78. Become. This state becomes a steady state (step S6).
Next, operations at the time of branch line failure and branch line failure recovery in the optical branching device 74 of FIG. 5 will be described with reference to the flowcharts of FIGS. FIG. 10 shows a signal level supplied from the amplifier 69 to the hysteresis comparator 70, and step numbers in the flowchart are indicated by circled numbers.
When a failure occurs in the branch lines 64 and 65, the signal light from the branch line 65 disappears (step S11), and the signal level supplied from the amplifier 69 to the hysteresis comparator 70 falls below the threshold value b of the hysteresis comparator 70 ( In step S12), the optical switch 77 is controlled to be ON (step S13). Then, the signal light is input from the trunk line 61 through the optical switch 77 to the monitor PD 78, and a steady state is obtained (step S14). Since the signal light branched to the branch line 64 is transmitted through the optical branching device through the trunk line 67 without passing through the terminal station 80 of the branch lines 64 and 65 due to the failure of the branch line, it is transmitted to other stations. There is no impact.
When the failure in the branch lines 64 and 65 is recovered, the signal light from the branch line 65 increases (step S15), and when the signal level supplied from the amplifier 69 to the hysteresis comparator 70 exceeds the threshold value a of the hysteresis comparator 70. (Step S16), the optical switch 77 is controlled to be OFF (Step S17). Then, signal light is input from the branch line 65 through the optical switch 77 to the monitor PD 78, and a steady state is reached (step S18).
As described above, since the basic configuration of the optical branching device of the present invention is a fiber branching configuration in which optical path switching is performed in units of wavelength multiplexed signal light, a guard band that has been a problem in the add / drop configuration is provided. It is possible to solve the problem that the wavelength multiplexing number decreases. Further, in order to eliminate the influence on the other lines when the branch lines 64 and 65 fail, the presence or absence of the failure of the branch lines 64 and 65 is determined by monitoring the signal light power in the branch device 60. If there is a failure in the branch lines 64 and 65, the signal light is switched from the branch line to the trunk line and output. If there is no failure in the branch line, the reverse optical path switching is automatically performed. By applying the optical branching device as described above to the wavelength division multiplexing optical communication system, it is possible to reduce the number of wavelength multiplexing and to eliminate the influence on other lines when a branch line fails.
5 uses the optical switch 77 as the optical power controller 63, but an optical attenuator may be used. Further, the light transmitter 79 immediately before the monitor PD 78 may be a fiber grating (FBG) or an optical film.
FIG. 11 shows a block diagram of another modification of the optical branching device of the present invention. The optical branching device 82 shown in FIG. 11 is different from FIG. 5 in that the frequency fa (several kHz to several) is included only in the signal light wavelength λa returned from the terminal station 80 among the wavelength multiplexed signal light supplied from the trunk line 61. (kHz) is superposed (for example, amplitude modulated) and supplied to the amplifier 69 through a band-pass filter (BPF) 83 that allows the output signal of the monitor PD 78 to pass only the frequency fa. In this case, the light transmitter 79 is unnecessary.
FIG. 12 shows a block diagram of a second embodiment of the optical branching apparatus of the present invention. This optical branching device 85 has a fiber branching configuration in which optical path switching is performed in units of wavelength multiplexed signal light.
In the figure, the same parts as those in FIG. In FIG. 12, in the optical branching device 85, the input signal light (wavelength multiplexed signal light) from the trunk line 61 is branched into two by the optical coupler 75, one output is supplied to the optical switch 77, and the other output is the branch line. 64.
Further, the input signal light from the branch line 65 is branched into two by the optical coupler 86, one output is supplied to the optical switch 87, and the other output is supplied to the light transmitter 79. The optical transmitter 79 transmits only the signal light wavelength λa band returned by the terminal station 80 connected to the optical branching device 74 through the branch lines 64 and 65, and the monitor PD 78 photoelectrically transmits only the signal returned by the terminal station 80. The signal is converted and supplied to the comparator 88 through the amplifier 69.
The threshold value c is supplied from the terminal 89 to the comparator 88. As shown in FIG. 13, the comparator 88 compares the photoelectric conversion signal with the threshold value c to generate a binary control signal, and controls the optical switches 77 and 87 with this control signal. The optical switch 77 is turned on when the control signal is at a low level and turned off when the control signal is at a high level. The optical switch 87 is turned off when the control signal is at a low level and turned on when the control signal is at a high level. The signal lights output from the optical switches 77 and 87 are combined by the optical combiner 90 and output to the trunk line 67.
In this embodiment, when the branch lines 64 and 65 fail, the optical switch 87 is turned off, so that the noise generated by the optical amplifier 91 provided as a repeater in the branch line 65 is sent to the trunk line 67. Can be prevented.
In this embodiment as well, a minute signal having a frequency fa (several kHz to several kHz) is superimposed only on the signal light wavelength λa returned from the terminal station 80 among the wavelength multiplexed signal light supplied from the trunk line 61 (for example, (Amplitude modulation), and the output signal of the monitor PD 78 is supplied to the amplifier 69 through the band-pass filter 83 that passes only the frequency fa, and the light transmitter 79 is removed.
In this way, by applying the optical branching apparatus of the present invention to a wavelength division multiplexing optical communication system, the number of wavelength multiplexing is not reduced, and the influence on other lines is eliminated when an arbitrary branch line fails. Can do.
The photoelectric converter 68 corresponds to the monitoring means described in the claims, the optical power controller 63 and the hysteresis comparator 70 correspond to the switching means and the first switching means, and the light transmitter 79 corresponds to the filter means. The band filter 83 corresponds to the frequency extraction means, the comparator 88 and the optical switch 77 correspond to the first switching means and the first switching means, the comparator 88 and the optical switch 87 correspond to the second switching means, and the optical switch 77. Corresponds to the first optical switch, and the optical switch 87 corresponds to the second optical switch.

Claims (9)

波長多重信号光通信システムのトランク回線を波長多重信号光単位でブランチ回線に分岐する光分岐装置において、
前記トランク回線からの入力信号光と前記ブランチ回線からの入力信号光を合わせた信号光のパワーをモニタするモニタ手段と、
前記モニタ手段で得た信号光パワーが閾値を上回ったとき前記トランク回線からの入力信号光を減衰して前記ブランチ回線からの入力信号光を出力し、前記モニタ手段で得た信号光パワーが閾値を下回ったとき前記トランク回線からの入力信号光の減衰を解除して出力する切り替え手段を有する光分岐装置。
In an optical branching device that branches a trunk line of a wavelength division multiplexing optical communication system into branch lines in units of wavelength division multiplexing optical signals,
Monitoring means for monitoring the power of the signal light combining the input signal light from the trunk line and the input signal light from the branch line;
When the signal light power obtained by the monitoring means exceeds a threshold value, the input signal light from the trunk line is attenuated to output the input signal light from the branch line, and the signal light power obtained by the monitoring means is a threshold value An optical branching device having switching means for canceling the attenuation of the input signal light from the trunk line and outputting the signal when it falls below
請求項1記載の光分岐装置において、
前記トランク回線からの入力信号光と前記ブランチ回線からの入力信号光を合わせた信号光から、前記ブランチ回線に接続された端局で折り返す信号光波長を通過して前記モニタ手段に供給するフィルタ手段を有する光分岐装置。
The optical branching device according to claim 1,
Filter means for supplying to the monitoring means a signal light wavelength that is turned back at a terminal connected to the branch line from a signal light obtained by combining the input signal light from the trunk line and the input signal light from the branch line An optical branching device.
請求項1または2記載の光分岐装置において、
前記切り替え手段は、前記モニタ手段で得た信号光パワーを第1閾値及び前記第1閾値より小さい第2閾値それぞれと比較して制御信号を生成するヒステリシス特性を持ったコンパレータと、
前記トランク回線からの入力信号光を供給されており、前記制御信号に従って導通/遮断し、前記導通時に前記トランク回線からの入力信号光を出力する光スイッチを有する光分岐装置。
The optical branching device according to claim 1 or 2,
The switching means comprises a comparator having a hysteresis characteristic for generating a control signal by comparing the signal light power obtained by the monitoring means with a first threshold and a second threshold smaller than the first threshold;
An optical branching device having an optical switch which is supplied with input signal light from the trunk line, is turned on / off in accordance with the control signal, and outputs the input signal light from the trunk line when turned on.
請求項3記載の光分岐装置において、
前記光スイッチの代りに、前記制御信号に従って前記トランク回線からの入力信号光に対する減衰/減衰解除を行って出力する光減衰器を有する光分岐装置。
The optical branching device according to claim 3, wherein
An optical branching device having an optical attenuator for outputting after performing attenuation / attenuation cancellation on input signal light from the trunk line in accordance with the control signal, instead of the optical switch.
請求項1記載の光分岐装置において、
前記トランク回線からの入力信号光のうち前記ブランチ回線に接続された端局で折り返す信号光波長にのみ所定周波数の信号が重畳されており、
前記モニタ手段の出力信号から前記所定周波数の成分を抽出して前記切り替え手段に供給する周波数抽出手段を有する光分岐装置。
The optical branching device according to claim 1,
A signal having a predetermined frequency is superimposed only on the signal light wavelength that is turned back at the terminal station connected to the branch line among the input signal light from the trunk line,
An optical branching device comprising frequency extracting means for extracting the component of the predetermined frequency from the output signal of the monitoring means and supplying the extracted component to the switching means.
波長多重信号光通信システムのトランク回線を波長多重信号光単位でブランチ回線に分岐する光分岐装置において、
前記ブランチ回線からの入力信号光のパワーをモニタするモニタ手段と、
前記モニタ手段で得た信号光パワーが閾値を上回ったとき前記トランク回線からの入力信号光を減衰し、前記モニタ手段で得た信号光パワーが閾値を下回ったとき前記トランク回線からの入力信号光の減衰を解除する第1切り替え手段と、
前記モニタ手段で得た信号光パワーが閾値を上回ったとき前記ブランチ回線からの入力信号光の減衰を解除し、前記モニタ手段で得た信号光パワーが閾値を下回ったとき前記ブランチ回線からの入力信号光を減衰する第2切り替え手段と、
前記第1切り替え手段の出力する信号光と第2切り替え手段の出力する信号光を合波して出力する合波手段を有する光分岐装置。
In an optical branching device that branches a trunk line of a wavelength division multiplexing optical communication system into branch lines in units of wavelength division multiplexing optical signals,
Monitoring means for monitoring the power of the input signal light from the branch line;
When the signal light power obtained by the monitoring means exceeds a threshold value, the input signal light from the trunk line is attenuated, and when the signal light power obtained by the monitoring means falls below a threshold value, the input signal light from the trunk line First switching means for canceling the attenuation of
When the signal light power obtained by the monitoring means exceeds a threshold, the attenuation of the input signal light from the branch line is canceled, and when the signal light power obtained by the monitoring means falls below the threshold, the input from the branch line A second switching means for attenuating the signal light;
An optical branching device having a multiplexing unit that combines the signal light output from the first switching unit and the signal light output from the second switching unit and outputs the combined signal light.
請求項6記載の光分岐装置において、
前記ブランチ回線からの入力信号光から、前記ブランチ回線に接続された端局で折り返す信号光波長を通過して前記モニタ手段に供給するフィルタ手段を有する光分岐装置。
The optical branching device according to claim 6, wherein
An optical branching device having filter means for supplying to the monitoring means through signal light wavelength that is turned back at a terminal connected to the branch line from input signal light from the branch line.
請求項6または7記載の光分岐装置において、
前記第1,第2切り替え手段は、前記モニタ手段で得た信号光パワーを閾値と比較して制御信号を生成するコンパレータと、
前記トランク回線からの入力信号光を供給されており、前記制御信号に従って導通/遮断し、前記導通時に前記トランク回線からの入力信号光を前記合波手段に供給する第1光スイッチと、
前記トランク回線からの入力信号光を供給されており、前記制御信号に従って前記第1光スイッチの遮断時に導通して前記トランク回線からの入力信号光を前記合波手段に供給する出力する第2光スイッチを有する光分岐装置。
The optical branching device according to claim 6 or 7,
The first and second switching means compare the signal light power obtained by the monitoring means with a threshold value to generate a control signal;
A first optical switch that is supplied with the input signal light from the trunk line, conducts / cuts off according to the control signal, and supplies the input signal light from the trunk line to the multiplexing means at the conduction time;
Second light that is supplied with the input signal light from the trunk line and that conducts when the first optical switch is shut off according to the control signal and supplies the input signal light from the trunk line to the multiplexing means An optical branching device having a switch.
請求項6記載の光分岐装置において、
前記トランク回線からの入力信号光のうち前記ブランチ回線に接続された端局で折り返す信号光波長にのみ所定周波数の信号が重畳されており、
前記モニタ手段の出力信号から前記所定周波数の成分を抽出して前記第1,第2切り替え手段に供給する周波数抽出手段を有する光分岐装置。
The optical branching device according to claim 6, wherein
A signal having a predetermined frequency is superimposed only on the signal light wavelength that is turned back at the terminal station connected to the branch line among the input signal light from the trunk line,
An optical branching device comprising frequency extracting means for extracting the component of the predetermined frequency from the output signal of the monitoring means and supplying the extracted component to the first and second switching means.
JP2004570146A 2003-03-28 2003-03-28 Optical branching device Pending JPWO2004088893A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004035 WO2004088893A1 (en) 2003-03-28 2003-03-28 Optical branching device

Publications (1)

Publication Number Publication Date
JPWO2004088893A1 true JPWO2004088893A1 (en) 2006-07-06

Family

ID=33105328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004570146A Pending JPWO2004088893A1 (en) 2003-03-28 2003-03-28 Optical branching device

Country Status (2)

Country Link
JP (1) JPWO2004088893A1 (en)
WO (1) WO2004088893A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5910089B2 (en) * 2012-01-05 2016-04-27 日本電気株式会社 WDM optical transmission system
EP2950466B1 (en) 2013-01-23 2021-04-07 Nec Corporation Optical branching/insertion device and corresponding optical branching/insertion method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2787820B2 (en) * 1990-07-20 1998-08-20 キヤノン株式会社 WDM optical communication system and optical amplifier used therein
JPH1032546A (en) * 1996-07-18 1998-02-03 K D D Kaitei Cable Syst Kk Optical transmission system and optical distributer
JP3571184B2 (en) * 1997-06-16 2004-09-29 松下電器産業株式会社 Fault monitoring device
JP3438765B2 (en) * 1997-07-18 2003-08-18 Kddi株式会社 Optical transmission system and optical branching unit
JP3259767B2 (en) * 1998-09-08 2002-02-25 日本電気株式会社 Disconnection detection circuit of digital optical receiver
JP2002221741A (en) * 2001-01-29 2002-08-09 Hitachi Cable Ltd Optical switch

Also Published As

Publication number Publication date
WO2004088893A1 (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US6452701B1 (en) Wavelength division multiplexing communications network supervisory system
US20200228197A1 (en) Optical switch with path continuity monitoring for optical protection switching
JP3060994B2 (en) Output port switching device in N-WDM system
CN108683460B (en) Optical module, optical communication system, and optical communication method
JP3729951B2 (en) Optical network system
US8218964B2 (en) All optical 1+1 protection unit using sub-carrier modulation protocol
JPH10173598A (en) Optical multiplexing and demultiplexing device and optical transmission system using the device
JPH09116504A (en) Optical transmission line characteristics measurement method and its device and light wavelength multiplex transmission method and its device
EP2727271B1 (en) Optical communication system, device and method for data processing in an optical network
US20030081295A1 (en) Transmission device and repeater
JP2020120355A (en) Wavelength converter and wavelength method
JPWO2009060522A1 (en) Optical transmission / reception module, management and control method thereof, optical transmission / reception apparatus, and wavelength division multiplexing optical transmission / reception apparatus
US7430373B2 (en) Optical node processor, optical network system and its control method
JP3790455B2 (en) Optical repeater supervisory control method and supervisory control system
JP4111163B2 (en) Abnormal light detection and blocking device
US20220060261A1 (en) Optical transmission device and optical transmission method
JPWO2004088893A1 (en) Optical branching device
US20010022684A1 (en) Optical amplifier and wavelength multiplexing optical transmission system
JPH11243374A (en) Optical signal transmission system and optical signal transmitting device used therein
JP2004297790A (en) Optical node apparatus, optical network system, and its control method
JP2000312185A (en) Optical repeating amplifier for wavelength multiplex optical transmission, and wavelength multiplex optical transmission device using the same
WO2021229744A1 (en) Failure detection device, failure detection method, and failure-detection-program recording medium
JP4029661B2 (en) Optical multiplexing / demultiplexing method and apparatus
JP2004320483A (en) Wavelength multiplex optical transmission device and wavelength multiplex optical communication system
JPH10256990A (en) Redundant constitution standby system monitor method and redundant constitution optical transmission-reception equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017