WO2004088881A1 - Optical transmission path failure detection system - Google Patents

Optical transmission path failure detection system Download PDF

Info

Publication number
WO2004088881A1
WO2004088881A1 PCT/JP2003/004034 JP0304034W WO2004088881A1 WO 2004088881 A1 WO2004088881 A1 WO 2004088881A1 JP 0304034 W JP0304034 W JP 0304034W WO 2004088881 A1 WO2004088881 A1 WO 2004088881A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical transmission
transmission line
failure
Prior art date
Application number
PCT/JP2003/004034
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Miyazaki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2003/004034 priority Critical patent/WO2004088881A1/en
Priority to JP2004570145A priority patent/JP4044560B2/en
Priority to EP03816543A priority patent/EP1610475B1/en
Publication of WO2004088881A1 publication Critical patent/WO2004088881A1/en
Priority to US11/080,554 priority patent/US7428354B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0771Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power

Definitions

  • the present invention relates to an optical transmission line failure detection system that detects a failure in an optical transmission line that connects an optical communication device and an optical amplifier corresponding to the communication device.
  • a repeaterless system that does not have a repeater that requires power supply on the way may be employed.
  • an optical amplifier having an erbium-doped fiber hereinafter referred to as “EDF” is installed in the middle of the transmission line, and the terminal station (communication device on the transmission side and the reception side) is installed. (Communication equipment on the side) There is a method to excite this EDF with light sent from it.
  • Non-Patent Document 1 PB Hansen, L. Eskilden, SG Grubb, AM Vengsarkar, SK Korotky, TA Strasser, JEJ Alphonsus, JJ Veselka, DJ DiGiovanni, DW Peckham, EC Beck, D. Truxal, WY Cheung, SG Kosinski, D.
  • the transmission power of the signal light and the pumping light in the communication device on the transmission side may each be 1 W or more.
  • the transmitting communication device sends such high output power light when the optical fiber is cut, the light irradiated from the cut surface may pose a danger to the human body. is there. Also, a phenomenon called a fiber fuse occurs, and there is a risk that the optical fiber will burn. this Therefore, from the viewpoint of ensuring safety, if the optical fiber that connects the terminal amplifier that is often laid on land and the optical amplifier is cut, the reflected light generated at the cut surface is detected, and the terminal station (For example, refer to Patent Document 1: Japanese Patent Application Laid-Open No. H8-293835), and a monitoring control signal of a low transmission power before both end stations transmit signal light and pumping light.
  • Non-Patent Document 2 Toshihiro Otani, Yotenoku, Hiroyuki Deguchi, Hiroyuki Irie, Tsukasa Takahashi, Eiji Ishikawa, Adult Ikeda, Harazawa Shinichiro, "10 GX 3 2 wave 250 km no middle
  • the reflected light may not be detected because the reflection is small depending on the shape of the cut surface. is there. Also, when the cut surface is immersed in a liquid such as water, which has a small relative refractive index to glass, the reflection is small and reflected light may not be detected. Also, in the method in which both end stations send monitoring and control signals of low transmission power to each other before sending signal light and pumping light and confirm continuity, and then send signal light and pumping light, the distance between the terminal stations is long. In this case, the transmission control signal of the supervisory control signal sent from one terminal station is low, so that the other terminal station may not be able to receive the supervisory control signal due to attenuation during transmission. Disclosure of the invention
  • an optical transmission line fault detection system includes an optical transmission line fault detection system for detecting a fault in an optical transmission line connecting an optical communication device and an optical amplifier corresponding to the optical communication device.
  • a first light source connected to the optical amplifier by a first optical transmission line and transmitting light to the first optical transmission line; a first light source transmitted from the first light source; First light detecting means for detecting light transmitted through the optical amplifier and the second optical transmission path; and the level of light detected by the first light detecting means is less than a predetermined level.
  • any one of the first and second optical transmission lines A first failure determination unit that determines that a failure has occurred in the force, and determines that the first and second optical transmission paths are normal when the force is equal to or higher than a predetermined level.
  • the optical transmission line fault detection system includes an optical transmission line connecting a communication device, which is a terminal station, and an optical transmission line between a communication device and an optical amplifier corresponding to the communication device, for example, on land. And the optical transmission line power between the optical amplifiers.
  • the optical transmission line is installed on the sea floor, light leaking from the optical transmission line between the communication device and the optical amplifier corresponding to the communication device is dangerous to the human body. Considering that it is highly possible to cause a failure, an optical transmission path failure between the communication device and an optical amplifier corresponding to the communication device is detected.
  • a communication device and an optical amplifier corresponding to the communication device are connected by a first optical transmission line, and the first light source and the optical amplifier are connected by a second optical transmission line.
  • the level of the light that is connected and transmitted from the first light source and incident through the second optical transmission path, the optical amplifier, and the first optical transmission path is equal to or lower than a predetermined level, It is determined that a failure has occurred in the first optical transmission line.
  • the reflected light may not be detected because the reflection is small depending on the shape of the cut surface.
  • the level of the light transmitted and incident through the optical transmission line is surely reduced.
  • the reliability of failure detection can be improved.
  • the communication device and the communication device can be used. The reliability of detection of a fault that has occurred in an optical transmission path between the optical amplifier and the optical amplifier can be improved.
  • FIG. 1 is a diagram illustrating a first configuration example of the optical transmission system.
  • FIG. 2 is a diagram illustrating a second configuration example of the optical transmission system.
  • FIG. 3 is a diagram illustrating a third configuration example of the optical transmission system.
  • FIG. 4 is a diagram illustrating a first configuration example of the excitation light detection unit.
  • FIG. 5 is a diagram illustrating a second configuration example of the excitation light detection unit.
  • FIG. 6 is a diagram illustrating a third configuration example of the excitation light detection unit. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a first configuration example of an optical transmission system having the optical transmission line fault detection system of the present invention.
  • the optical transmission system shown in the figure includes an excitation light source 102, an excitation light detection unit 104, a failure determination unit 106, a signal light transmission unit 120, and an excitation light source 102, which are configured in a communication device on the transmitting station side.
  • the optical amplifier 160 includes an erbium-doped fiber (EDF) 162 and an optical power coupler 164. Further, the optical power amplifier 140 in the communication device on the transmitting station side and the EDF 162 in the optical amplifier 160 are connected by an optical fiber 150, and the excitation light source 1 in the communication device on the transmitting station side is connected. The optical power blur 16 in the optical amplifier 16 is connected to the optical fiber 16 in the optical amplifier 16.
  • the optical amplifier 260 includes an EDF 262 and an optical power plug 2 264. Further, the optical power plug 240 in the communication device on the receiving station side and the EDF 262 in the optical amplifier 260 are connected by an optical fiber 250, and the pumping in the communication device on the receiving station side is performed. The light source 202 and the optical power plug 264 in the optical amplifier 260 are connected by an optical fiber 252.
  • signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side. This signal light is transmitted through the optical fibers 150, 350 and 250.
  • the pump light source 102, pump light detector 104, and fault determiner 106 in the communication equipment on the transmitting station side are optical transmission line faults that detect faults in the optical fibers 150 and 152.
  • a detection system (hereinafter referred to as “transmission side optical transmission line fault detection system”) is configured.
  • the excitation light source 202, the excitation light detection unit 204, and the failure determination unit 206 in the communication device on the receiving station side are optical transmission lines that detect failures of the optical fibers 250 and 250. Constructs a failure detection system (hereinafter referred to as "the receiver optical transmission line failure detection system”) I do.
  • the operation of the optical transmission system shown in FIG. 1 is performed before the signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side.
  • the optical fibers 150, 15 2, and 2 A description will be given of a second embodiment for detecting 50 and 25 failures.
  • the pumping light source 102 constituting the transmission-side optical transmission path fault detection system in the transmission-side communication device transmits light with a predetermined low transmission power.
  • the pump light source 102 transmits light at 1 OmW, which is a transmission power of class 1 or less.
  • Light from the excitation light source 102 is transmitted through the optical fiber 152 and is incident on the optical power blur 1664 in the optical amplifier 160.
  • the optical power bra 1 64 is, for example, a wavelength-multiplexed power bra with low loss, and can change the light transmission destination for each wavelength.
  • This optical power plug 16 4 makes the light from the optical fiber 15 2 incident on the EDF 16 2.
  • the light incident on the EDF 162 is attenuated, passes through the EDF 162, is further transmitted through the optical fiber 150, and is incident on the optical power plug 140.
  • the optical power bra 140 is, for example, a wavelength-division multiplex coupler having a small loss, similarly to the optical power plug 164.
  • the optical power plug 140 causes the light from the optical fiber 150 to enter the excitation light detection unit 104.
  • the excitation light detector 104 detects the incident light. Further, the excitation light detector 104 compares the level of the detected light with a first predetermined level. The comparison result is sent to failure determination unit 106.
  • the failure determination unit 1 • 6 determines whether or not the optical fibers 150 and 152 have a failure, based on the comparison result from the excitation light detection unit 104. Specifically, when the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is equal to or higher than a first predetermined level. think of. In this case, since the loss of light from the excitation light source 102 to the excitation light detection unit 104 is small, the failure determination unit 106 includes the optical fibers 150 and 1502. Is determined to be normal. On the other hand, the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is lower than the first predetermined level.
  • the failure determining unit 106 includes the optical fibers 150 and 1502. Is determined to have failed.
  • the chapter P damage determining unit 106 instructs the signal light transmitting unit 120 to start transmitting signal light. At the same time, it instructs the excitation light source 102 to increase the light transmission power to a level at which the EDF 162 is appropriately excited.
  • the signal light transmission section 120 starts transmission of signal light in response to an instruction from the failure determination section 106.
  • the excitation light source 102 increases the transmission power of optical excitation to a level at which the EDF 162 is appropriately excited in accordance with an instruction from the failure determination unit 106.
  • the signal light from the signal light transmitting unit 120 is amplified by the EDF 162 and sent to the communication device on the receiving side.
  • the failure determination unit 106 instructs the pump light source 102 to stop transmitting light.
  • the excitation light source 102 stops transmitting light according to this instruction.
  • the pumping light source 202 constituting the receiving side optical transmission line fault detection system in the receiving side communication device has a predetermined low transmission power (for example, a transmission power of less than class 1) like the excitation light source 102. Transmit light at 1 O mW).
  • the light from the excitation light source 202 is transmitted through the optical fiber 252 and is incident on the optical power plug 264 in the optical amplifier 260.
  • the optical power bra 2 64 is, for example, a low-loss wavelength multiplex power bra, and makes light from the optical fiber 25 2 incident on the EDF 26 2.
  • the light incident on the EDF 262 passes through the EDF 262 while attenuating, is further transmitted through the optical fiber 250, and is incident on the optical power blur 240.
  • the optical power bra 240 is, for example, a wavelength multiplex power bra with a small loss, similar to the optical power bra 264, and makes the light from the optical fiber 250 incident on the excitation light detecting section 204.
  • the excitation light detector 204 detects the incident light, similarly to the excitation light detector 104. Further, the excitation light detector 204 compares the detected light level with a second predetermined level. The comparison result is sent to the failure determination unit 206.
  • the failure determination unit 206 is, like the failure determination unit 106, a ratio of the excitation light detection unit 204 Based on the comparison result, it is determined whether or not the optical fibers 250 and 250 have a failure. Specifically, the comparison result from the excitation light detection unit 204 is
  • the damage determination unit 206 in Chapter P determines that the optical fibers 250 and 252 are normal. It is determined that.
  • the comparison result from the excitation light detection unit 204 is
  • the fault determination unit 206 determines that the fault has occurred in one of the optical fibers 250 and 252. Is determined to have occurred.
  • the failure determination unit 206 determines the level at which the EDF 262 is appropriately excited with respect to the excitation light source 202. It is instructed to make the pumping path of the light excitation go up. In response to this indication, the pump light source 202 increases the output power of the optical pump to a level at which the EDF 262 is properly pumped. As a result, the signal light passing through the EDF 262 is amplified and sent to the communication device on the receiving side.
  • the failure determination unit 206 determines that a failure has occurred in any of the optical fibers 250 and 250, the failure determination unit 206 instructs the pump light source 202 to stop transmitting light. .
  • the excitation light source 202 stops transmitting light according to this instruction.
  • the excitation light source 102 constituting the transmission-side optical transmission line fault detection system in the transmission-side communication device appropriately excites the EDF 162 and receives the signal light from the signal light section 120.
  • the pump light is transmitted at a predetermined high transmission power in order to transmit it to the communication device on the side.
  • the pump light has a wavelength different from that of the signal light transmitted from the signal light transmitting unit 120.
  • the pumping light from the pumping light source 102 is transmitted through the optical fiber 152 and is incident on the optical power plug 164 in the optical amplifier 160.
  • the optical power plug 16 4 is transmitted from the signal light transmitting unit 12 0, and the signal light transmitted through the optical power bra 1 40, the optical fiber 1 50 and the EDF 16 2 Send to.
  • the optical power plug 16 4 enters the EDF 16 2 with respect to the excitation light from the optical fiber 15 2.
  • the excitation light incident on the EDF 16 2 passes through the EDF 16 2 while being attenuated, and is further transmitted through the optical fiber 150 so that the optical power It is incident on 0.
  • the optical power blur 140 enters the optical fiber 150 for the signal light transmitted from the signal light transmitting unit 120, and the excitation light detecting unit 104 for the excitation light from the optical fiber 150. Incident on.
  • the excitation light detector 104 detects the incident excitation light. Further, the excitation light detector 104 compares the detected level of the excitation light with a third predetermined level. The comparison result is sent to the failure determination unit 106.
  • the failure determination unit 106 determines whether or not a failure has occurred in the optical fibers 150 and 152 based on the comparison result from the excitation light detection unit 104. Specifically, similarly to the first embodiment, the comparison result from the excitation light detection unit 104 indicates that the level of the excitation light incident on the excitation light detection unit 104 is equal to or higher than the third predetermined level. If this is the case, the failure determination unit 106 determines that the optical fibers 150 and 152 are normal.
  • the chapter damage determining unit 106 determines that a failure has occurred in any of the optical fibers 150 and 152.
  • the chapter P harm determination unit 106 transmits the signal light to the signal light unit 120.
  • the pump light source 102 is instructed to stop the transmission of the pump light.
  • the signal light transmitting unit 120 stops transmitting the signal light in response to an instruction from the failure determining unit 106.
  • the pumping light source 102 stops transmitting the pumping light in response to an instruction from the failure determination unit 106.
  • the failure determination unit 106 determines that the optical fibers 150 and 152 are normal, the failure determination unit 106 does not issue an instruction to the signal light transmission unit 120 and the pump light source 102. ,. For this reason, the signal light transmitting unit 120 continues transmitting the signal light, and the pumping light source 102 continues transmitting the exciting light.
  • the pumping light source 202 constituting the optical transmission line fault detection system on the receiving side excites the EDF 262 appropriately, similarly to the pumping light source 102.
  • the pumping light is transmitted at a predetermined high transmission power. The pump light is transmitted to the signal light transmitter 1 It has a different wavelength from the signal light transmitted from 20. Excitation light from the excitation light source 202 is transmitted through the optical fiber 252 and is incident on the optical power blur 2664 in the optical amplifier 260.
  • the optical power plastic 2 64 is transmitted from the signal light transmitting unit 120, and the optical power plastic 140, the optical fiber 150, the EDF 16 2, the optical plastic 16 4 and the optical fiber 3 5 0
  • the signal light and the pump light incident on the EDF 262 pass through the EDF 262, are further transmitted through the optical fiber 250, and are incident on the optical power plug 240.
  • the optical power plug 240 altates signal light to the signal light receiving section 220 and enters excitation light to the excitation light detecting section 204.
  • the excitation light detector 204 detects the incident excitation light, similarly to the excitation light detector 104. Further, the excitation light detector 204 compares the detected level of the excitation light with a fourth predetermined level. The comparison result is sent to the failure determination unit 206.
  • the failure determination unit 206 has a failure in the optical fibers 250 and 250 based on the comparison result from the excitation light detection unit 204. Determine whether it is strong or not. Specifically, as in the first embodiment, the comparison result from the excitation light detection unit 204 indicates that the level of the excitation light incident on the excitation light detection unit 204 is equal to or higher than the fourth predetermined level. In this case, the failure determination unit 206 determines that the optical fibers 250 and 250 are normal.
  • the failure determination unit 206 determines that a failure has occurred in any of the optical fibers 250 and 250.
  • the failure determination unit 206 instructs the pump light source 202 to stop transmitting the pump light. .
  • the pumping light source 202 stops transmitting the pumping light in response to the instruction from the chapter P damage determining unit 206. Therefore, the pump light is not transmitted through the optical fibers 250 and 252. Also, even if the signal light is transmitted from the signal light transmitting section 120, the EDF 262 is not excited, and therefore the signal light cannot be transmitted through the optical fiber 250.
  • the failure determination unit 206 determines that the optical fibers 250 and 250 are normal. In this case, no instruction is given to the excitation light source 202. Therefore, the excitation light source 202 continues transmitting the excitation light.
  • FIG. 2 is a diagram showing a second configuration example of the optical transmission system having the optical transmission line fault detection system of the present invention.
  • the optical transmission system shown in FIG. 2 is different from the optical transmission system shown in FIG. 1 in that an optical amplifier 1660 is provided between the optical fiber 150 and the EDF 162 in the optical amplifier 160.
  • the optical power bra 16 and the excitation light source 170 included in the communication device on the transmitting station side are connected via the optical fiber 154 and the excitation light source 1 in the communication device on the transmitting station side.
  • An optical power bra 180 is provided between the optical power bra 2 and the optical power bra 16 in the optical amplifier 16 0, and the excitation light detecting unit 17 2 is connected to the optical power bra 180. .
  • an optical power plug 266 is provided between the optical fiber 250 and the EDF 262, and the optical power plug 266 and the receiving station side are connected via the optical fiber 254.
  • the excitation light source 270 and the optical power plug 264 in the optical amplifier 260 are connected to the excitation light source 270 in the communication device.
  • the optical power plug 280 is provided, and the excitation light detecting section 272 is connected to the optical power plug 280.
  • signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side. This signal light is transmitted through the optical filters 150, 350 and 250.
  • the excitation light source 102, the excitation light detection unit 104, the failure determination unit 106, the excitation light source 170, and the excitation light detection unit 172 in the communication device on the transmitting station side are optical fiber 150,
  • An optical transmission line fault detection system transmission side optical transmission line fault detection system that detects 15 2 and 15 4 faults is configured.
  • the excitation light source 202, the excitation light detection unit 204, the failure determination unit 206, the excitation light source 270 and the excitation light detection unit 272 in the communication equipment on the receiving station side are connected to the optical fiber 2
  • An optical transmission line fault detection system (receiving side optical transmission line fault detection system) that detects 50, 25, and 25 4 faults is configured.
  • the optical fibers 150, 152, 154 In the third embodiment for detecting the faults of 250, 255, and 254, and when the signal light is being transmitted from the communication device on the transmitting station side to the communication device on the receiving station side, the optical fiber 1 5 0, 1 A description will be given of a fourth embodiment for detecting a failure of 52, 154, 250, 250 and 254.
  • the pumping light source 102 constituting the transmission-side optical transmission path fault detection system in the transmission-side communication device transmits light with a predetermined low transmission power.
  • Light from the excitation light source 102 is incident on the optical power blur 180.
  • the optical power blur 180 is, for example, a wavelength-division multiplexing coupler having a small loss, and transmits light from the excitation light source 102 to the optical power blur 16 4 in the optical amplifier 160 via the optical fiber 152.
  • the optical power plug 1 6 4 is, for example, a wavelength-division multiplex power bra with low loss.
  • Light from 52 is incident on the EDF 16 2.
  • the light incident on the EDF 162 passes through the EDF 162 while being attenuated, and is incident on the optical power plug 166.
  • Light power plastic 1
  • Reference numeral 66 denotes, for example, a wavelength-division multiplexing coupler having a small loss, and the light from the EDF 162 is incident on the optical fiber 150.
  • the optical power blur 140 is, for example, a wavelength-multiplexed power blur with a small loss, and makes the light from the optical fiber 150 incident on the excitation light detector 104.
  • the excitation light detector 104 detects the incident light. Further, the excitation light detector 104 compares the detected light level with a fifth predetermined level. The comparison result is sent to failure determination unit 106.
  • the failure determination unit 106 indicates that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is equal to or higher than a fifth predetermined level. If there is, the optical fibers 150 and 152 are determined to be normal. On the other hand, the failure determination unit 106 determines that the comparison result of the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is less than the fifth predetermined level. If it indicates that a failure has occurred, it is determined that a failure has occurred in one of the optical fibers 150 and 152.
  • the excitation light source 170 transmits light at a predetermined low transmission power.
  • the light transmitted from the excitation light source 170 has a different wavelength from the light transmitted from the excitation light source 102.
  • Light from the excitation light source 170 enters the optical power blur 1666.
  • the optical power blur 1666 enters the light from the excitation light source 170 into the EDF 162.
  • the light incident on the EDF 162 passes through the EDF 162 while attenuating, and is incident on the optical power plug 164.
  • the optical power plug 16 4 is transmitted from the excitation light source 17 0, passes through the optical fiber 15 4, the optical power plug 16 6 and the EDF 16 2, and enters the optical fiber 15 2 .
  • light The force brush 180 makes the light from the optical fiber 152 incident on the excitation light detecting section 1702.
  • the excitation light detecting section 172 detects the incident light. Further, the excitation light detecting section 172 compares the level of the detected light with a sixth predetermined level. The comparison result is sent to failure determination unit 106.
  • the failure determination unit 106 indicates that the comparison result from the excitation light detection unit 172 indicates that the level of light incident on the excitation light detection unit 172 is equal to or higher than the sixth predetermined level. If they are present, it is determined that the optical fibers 152 and 154 are normal. On the other hand, the fault determination unit 106 determines that the comparison result from the excitation light detection unit 172 indicates that the level of light incident on the excitation light detection unit 172 is lower than the sixth predetermined level. If it indicates, it is determined that a failure has occurred in one of the optical fibers 152 and 154. When the failure determiner 106 determines that the optical fibers 150, 152 and 154 are normal, it starts transmitting the signal light to the signal light transmitter 120.
  • the signal light transmission unit 120 starts transmission of the signal light in response to an instruction from the failure determination unit 106.
  • the excitation light sources 102 and 170 increase the transmission power of the optical excitation to a level at which the EDF 162 is appropriately excited according to the instruction from the failure determination unit 106.
  • the signal light from the signal light transmitting unit 120 is amplified by the EDF 162 and transmitted to the communication device on the receiving side.
  • the failure determination unit 106 determines that a failure has occurred in any of the optical fibers 150, 152, and 154, the failure determination unit 106 responds to the pump light sources 102 and 170. Instructs to stop transmitting light.
  • the excitation light sources 102 and 170 stop transmitting light according to this instruction.
  • the pumping light source 202 constituting the receiving side optical transmission line fault detection system in the receiving side communication device transmits light at a predetermined low transmission power, similarly to the pumping light source 102.
  • Light from the excitation light source 202 is incident on the optical power plug 280.
  • the optical power plug 280 is, for example, a low-loss wavelength multiplexing power bra.
  • the optical power plug 280 in the optical amplifier 260 receives the light from the excitation light source 202 via the optical filter 255. It is incident on 4.
  • the optical power bra 2 6 4 is, for example, a wavelength-multiplexed power bra with a small loss.
  • the light from 52 enters the EDF 26 2.
  • the light incident on the EDF 262 passes through the EDF 262 while being attenuated, and is incident on the optical power plug 266.
  • Light Bra 2
  • Reference numeral 66 denotes, for example, a wavelength-division multiplexing coupler having a small loss, and the light from the EDF 262 is incident on the optical fiber 250.
  • the optical power blur 240 is, for example, a wavelength-multiplexed power blur with a small loss, and makes light from the optical fiber 250 incident on the excitation light detector 204.
  • the excitation light detector 204 detects the incident light. Further, the excitation light detector 204 compares the detected light level with a seventh predetermined level. The comparison result is sent to the failure determination unit 206.
  • the failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is equal to or higher than a seventh predetermined level. If there is, the optical fibers 250 and 250 are determined to be normal. On the other hand, the failure determination unit 206 determines that the comparison result of the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is lower than the seventh predetermined level. If this indicates that a failure has occurred in any of the optical fibers 250 and 252.
  • the excitation light source 270 transmits light at a predetermined low transmission power. The light transmitted from the excitation light source 270 has a different wavelength from the light transmitted from the excitation light source 202.
  • the optical power plug 266 inputs the light from the excitation light source 270 to the EDF 262.
  • the light incident on the EDF 262 passes through the EDF 262 and is incident on the optical power plug 264.
  • the optical power plug 264 is transmitted from the excitation light source 270 and passes through the optical fiber 254, the optical power plug 266, and the EDF 262 to direct the light to the optical fiber 252.
  • the optical power plug 280 inputs the light from the optical fiber 252 to the excitation light detector 272.
  • the excitation light detector 272 detects the incident light. Further, the excitation light detector 272 compares the level of the detected light with an eighth predetermined level. The comparison result is sent to the failure determination unit 206.
  • the failure determination unit 206 shows that the comparison result from the excitation light detection unit 272 indicates that the level of light incident on the excitation light detection unit 272 is equal to or higher than the eighth predetermined level. If they are present, it is determined that the optical fibers 255 and 254 are normal. On the other hand, the fault determination unit 206 determines that the comparison result from the excitation light detection unit 272 is If it indicates that the level of light incident on 72 is less than the eighth predetermined level, it is determined that a failure has occurred in one of optical fibers 252 and 254.
  • the failure determination unit 206 increases the transmission power of the optical pump to the level at which the EDF 262 is appropriately pumped to the pump light sources 202 and 270. Instruct them to do so.
  • Pump light sources 202 and 270 increase the power of the light pump to the level at which EDF 262 is properly pumped in response to this indication. As a result, the signal light passing through the EDF 262 is amplified and sent to the communication device on the receiving side.
  • the failure determining unit 206 instructs the pump light sources 202 and 270 to stop transmitting light.
  • the excitation light sources 202 and 270 stop transmitting light in response to this instruction.
  • the pumping light source 102 constituting the transmission side optical transmission line fault detection system in the transmission side communication device appropriately excites the EDF 162 and transmits the signal light from the signal light transmission unit 120 to the reception side communication device.
  • the pump light is transmitted at a predetermined high transmission power.
  • the pump light has a different wavelength from the signal light transmitted from the signal light transmitting unit 120.
  • the excitation light from the excitation light source 102 is transmitted through the optical fiber 152 via the optical power bra 180 and is incident on the optical power plug 164 in the optical amplifier 160.
  • the optical power bra 164 is transmitted from the signal light transmitting unit 120, and the signal light transmitted through the optical power bra 140, the optical fiber 150, the optical power plug 166, and the EDF 162 is transmitted to the communication device on the receiving side. . Further, the optical power bra 164 enters the EDF 162 with respect to the excitation light from the optical fiber 152. The excitation light that has entered the EDF 162 passes through the EDF 162 and enters the optical power plug 166. The optical power plug 166 enters the EDF 162 for the signal light transmitted from the signal light transmission unit 120, and enters the optical fiber 150 for the excitation light from the EDF 162.
  • the optical power plug 140 enters the optical fiber 150 with respect to the signal light transmitted from the signal light transmitting unit 120, and enters the excitation light detection unit 104 with respect to the excitation light from the optical fiber 150.
  • the excitation light detector 104 detects the incident light. Further, the excitation light detector 104 compares the detected light level with a ninth predetermined level. The comparison result is sent to failure determination unit 106.
  • the failure determination unit 106 indicates that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is equal to or higher than a ninth predetermined level. If there is, the optical fibers 150 and 152 are determined to be normal. On the other hand, the failure determination unit 106 determines that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is less than the ninth predetermined level. If it indicates, it is determined that a failure has occurred in one of the optical fibers 150 and 152.
  • the light transmitted from the pump light source 170 has a different wavelength from the light transmitted from the pump light source 102 and the signal light transmitter 120.
  • the light from the excitation light source 170 enters the optical power blur 1666 through the optical fiber 154.
  • the optical power blur 1666 makes the light from the excitation light source 170 enter the EDF162.
  • the light incident on the ED 162 passes through the ED 162 and is incident on the optical power plug 164.
  • the optical power plug 16 4 is transmitted from the excitation light source 17 0, passes through the optical fiber 15 4, the optical power plug 16 6 and the EDF 16 2, and enters the optical fiber 15 2.
  • the optical power plug 180 makes the light from the optical fiber 152 incident on the excitation light detection unit 1702.
  • the excitation light detecting section 172 detects the incident light. Further, the excitation light detecting section 172 compares the detected light level with the 10th predetermined level. The comparison result is sent to the failure determination unit 106.
  • the failure determination unit 106 shows that the comparison result from the excitation light detection unit 172 indicates that the level of the light incident on the excitation light detection unit 172 is equal to or higher than the 10th predetermined level. If it is, it is determined that the optical fibers 152 and 154 are normal. On the other hand, the failure determination unit 106 determines that the comparison result from the excitation light detection unit 172 indicates that the level of the light Alt to the excitation light detection unit 172 is lower than the predetermined level of 10th.
  • the failure determination unit 106 determines that the optical fibers 150, 152 and 154 If it is determined that a failure has occurred in any of them, the signal light transmitting unit 120 is instructed to stop transmitting the signal light. And instruct the excitation light sources 102 and 170 to stop transmitting the excitation light. The signal light transmitting unit 120 stops transmitting the signal light in response to an instruction from the chapter P damage determining unit 106. On the other hand, the excitation light sources 102 and 170 stop transmitting the excitation light in response to an instruction from the failure determination unit 106.
  • the failure determining unit 106 determines that the optical fibers 150, 152, and 154 are normal, the signal light transmitting unit 120, the pump light sources 102, and 1 Do not give instructions to 70. For this reason, the signal light transmitting unit 120 continues transmitting the signal light, and the excitation light sources 102 and 170 continue transmitting the excitation light.
  • the pumping light source 202 constituting the optical transmission line fault detection system on the receiving side in the communication device on the receiving side appropriately excites the EDF 262 to generate a signal from the signal light transmitting section 120.
  • the excitation light is transmitted at a predetermined high transmission power.
  • the pump light has a wavelength different from that of the signal light transmitted from the signal light transmitter 120.
  • Excitation light from the excitation light source 202 is transmitted through the optical fiber 252 via the optical power plug 280 and is incident on the optical power bra 264 in the optical amplifier 260.
  • the optical power bra 2 6 4 is transmitted from the signal light transmitting unit 120 power, the optical power bra 1 40, the optical fiber 150, the optical power bra 1 66, the EDF 1 62, the optical power bra 1
  • the signal light passing through the optical fiber 350 and the pump light transmitted from the pumping light source 202 and passing through the optical fiber 250 enter the EDF 262.
  • the signal light and the pump light incident on the EDF 262 pass through the EDF 262, are further transmitted through the optical fiber 250, and are incident on the optical power plug 266.
  • the optical power bra 2 66 causes the signal light and the excitation light to enter the optical power bra 2 40.
  • the optical power plug 240 receives the signal light transmitted from the signal light transmitting unit 120 into the signal light receiving unit 220, and receives the pump light from the pump light source 202 into the pump light detecting unit 2 Inject into 0 4.
  • the excitation light detector 204 detects the incident light. Further, the excitation light detector 204 ′ compares the detected light level with a first predetermined level. The comparison result is sent to failure determination unit 206.
  • the failure determination unit 206 determines whether the comparison result from the excitation light detection unit 204 is If the level of light incident on the section 204 is equal to or higher than the first predetermined level, it is determined that the optical fibers 250 and 250 are normal. On the other hand, the failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is less than the first predetermined level. Indicates that a failure has occurred in any of the optical fibers 250 and 250.
  • the pumping light source 270 transmits light at a predetermined low transmission power. Note that the light transmitted from the excitation light source 270 has a different wavelength from the light transmitted from the excitation light source 202 and the signal light transmission unit 120.
  • the light from the excitation light source 270 enters the optical power plug 266 via the optical fiber 254.
  • the optical power plug 266 inputs the light from the excitation light source 270 to the EDF 262.
  • the light incident on the EDF 262 passes through the EDF 262 and enters the optical power plug 264.
  • the optical power plug 264 is transmitted from the excitation light source 170 and passes through the optical fiber 254, the optical power plug 266 and the EDF 262, and enters the optical fiber 252.
  • the optical power plug 280 makes the light from the optical fiber 252 incident on the excitation light detector 272.
  • the excitation light detector 272 detects the incident light. Further, the excitation light detector 272 compares the level of the detected light with a predetermined second level. The comparison result is sent to the chapter P damage determination unit 206.
  • the failure determination unit 206 shows that the comparison result from the excitation light detection unit 272 indicates that the level of light incident on the excitation light detection unit 272 is equal to or higher than the first predetermined level. If it is, it is determined that the optical fibers 255 and 254 are normal. On the other hand, the failure determination unit 206 determines that the comparison result from the excitation light detection unit 272 indicates that the level of the light incident on the excitation light detection unit 272 is less than the first predetermined level. Indicates that a failure has occurred in one of the optical fibers 252 and 2554. The failure determination unit 206 determines that the optical fibers 250, 252 and 254 If it is determined to be normal, no instructions are given to the excitation light sources 202 and 270. Therefore, the pump light, the sources 202 and 270 continue transmitting the pump light.
  • the failure determination unit 206 is connected to one of the optical fibers 250, 250 and 250. If it is determined that chapter P damage has occurred, an instruction is issued to the excitation light sources 202 and 270 to stop transmitting light. The excitation light sources 202 and 270 stop transmitting light according to this instruction. For this reason, the pump light is not transmitted through the optical fibers 250, 250, and 254. Further, even if the signal light is transmitted from the signal light transmitting unit 120, the EDF 262 is not excited, and thus the signal light is not transmitted through the optical fiber 250.
  • FIG. 3 is a diagram showing a third configuration example of the optical transmission system having the optical transmission line fault detection system of the present invention.
  • the optical transmission system shown in FIG. 3 is different from the optical transmission system shown in FIG. 1 in that the excitation light source 102 is connected to the optical power blur 140 and the excitation light detector 104 is connected to the optical fiber 18 2 through the optical power bra 18.
  • An excitation light source 174 is connected to the optical power plug 182.
  • the excitation light source 202 is connected to the optical power plug 240, and the excitation light detection unit 204 is connected to the optical fiber 282 via the optical power blur 282. It is connected to the.
  • An excitation light source 274 is connected to the optical power plug 282.
  • signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side. This signal light is transmitted through the optical fibers 150 and 250.
  • Excitation light source 102, excitation light detector 104, and failure determiner 106 in the communication equipment on the transmitting station side are optical transmission line failures that detect failures of optical fibers 150 and 152. Configure the detection system (transmission side optical transmission line fault detection system).
  • the excitation light source 202, the excitation light detection unit 204, and the failure determination unit 206 in the communication device on the receiving station side are optical transmission lines that detect failures in the optical fibers 250 and 252. Construct a failure detection system (optical transmission line failure detection system on the receiving side).
  • the optical fibers 150, 152, 250 and 250 are transmitted before the signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side.
  • the optical fibers 150, 152, 2 A description will be given of a sixth embodiment for detecting 50 and 25 failures.
  • the pumping light source 102 constituting the transmission-side optical transmission path fault detection system in the transmission-side communication device transmits light with a predetermined low transmission power.
  • the optical power bra 140 is, for example, a low-loss wavelength multiplexing coupler, and the light from the pump light source 102 is incident on the EDF 16 2 in the optical amplifier 160 via the optical fiber 150. .
  • the light incident on the EDF 162 passes through the EDF 162 while being attenuated, and is incident on the optical power coupler 164.
  • the optical power bra 16 4 is, for example, a low-loss wavelength multiplexing coupler, and the light from the EDF 16 2 is incident on the optical fiber 15 2.
  • the optical power plug 182 is, for example, a wavelength-division multiplex coupler with a small loss, and makes the light from the optical fiber 152 incident on the excitation light detecting unit 104.
  • the excitation light detector 104 detects the incident light. Further, the excitation light detector 104 compares the detected light level with a first predetermined third level. The comparison result is sent to the failure determination unit 106.
  • the P-part damage determination unit 106 determines that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is equal to or higher than the predetermined third level. If it indicates, it is determined that the optical fibers 150 and 152 are normal. On the other hand, the P-part damage determination unit 106 determines that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is less than the first predetermined level. If it indicates that one of the optical fibers 150 and 152 has failed, the failure determiner 106 determines that the optical fibers 150 and 152 are normal.
  • the signal light transmission unit 120 is instructed to start transmitting the signal light, and the EDF 162 is appropriately transmitted to the excitation light sources 102 and 174. It instructs to start transmitting the pump light by increasing the light transmission power to the level to be pumped.
  • the signal light transmitting unit 120 starts transmission of the signal light in response to an instruction from the failure determining unit 106.
  • the pumping light sources 102 and 174 increase the pumping power of the optical pumping to a level at which the EDF 162 is appropriately pumped according to the instruction from the failure determination unit 106, and Start sending.
  • the light transmitted from the excitation light source 174 has a different wavelength from the light transmitted from the excitation light source 102 and the signal light transmission unit 120.
  • Excitation light source 1 7 The light from 4 passes through the optical power plug 18 2, the optical fiber 15 2 and the optical power plug 16 4 to excite the EDF 16 2. As a result, the signal light from the signal light transmission unit 120 is amplified and sent to the communication device on the receiving side.
  • the failure determination unit 106 instructs the pump light source 102 to stop transmitting light.
  • the excitation light source 102 stops transmitting light according to this instruction.
  • the excitation light source 202 constituting the optical transmission line fault detection system on the receiving side transmits light with a predetermined low transmission power.
  • Light from the excitation light source 202 is incident on the optical power blur 240.
  • the optical power blur 240 is, for example, a wavelength-division multiplexing coupler having a small loss.
  • the light from the pump light source 202 is incident on the EDF 262 in the optical amplifier 260 through the optical fiber 250. .
  • the light incident on the EDF 262 passes through the EDF 262 while being attenuated, and is incident on the optical power plug 264.
  • the optical power puller 264 is, for example, a wavelength multiplex power puller with a small loss, and makes the light from the EDF 262 incident on the optical fiber 255.
  • the optical power plug 282 is, for example, a wavelength loss multi-gravity bra with a small loss, and makes the light from the optical fiber 252 incident on the excitation light detector 204.
  • the excitation light detector 204 detects the incident light. Further, the excitation light detector 204 compares the detected light level with a first predetermined level. The comparison result is sent to failure determination unit 206.
  • the failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is equal to or higher than the first predetermined level.
  • the failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is lower than the first predetermined level. Indicates that a failure has occurred in one of the optical fibers 250 and 252. The failure determination unit 206 determines that the optical fibers 250 and 252 are normal. If it is determined, increase the light transmission power to the level at which the EDF 262 is appropriately pumped with respect to the pump light sources, 202 and 274, and start transmitting the pump light. Instruct. The excitation light sources 202 and 274 are controlled by the EDF 26 2.
  • the transmission of the pump light is started by increasing the transmission power of the optical pump to a level at which 2 is appropriately pumped.
  • the light transmitted from the excitation light source 274 has a different wavelength from the light transmitted from the excitation light source 202 and the signal light transmission unit 120.
  • the excitation light, light from the source 274, passes through the optical power plug 282, the optical fiber 252 and the optical power plug 264 to excite the EDF 262.
  • the signal is amplified by the DF 262 and transmitted to the communication device on the receiving side via the optical fiber 250.
  • the failure determination unit 206 instructs the pump light source 202 to stop transmitting light.
  • the excitation light source 202 stops transmitting light according to this instruction.
  • the excitation light source 102 constituting the transmission-side optical transmission line fault detection system in the transmission-side communication device appropriately excites the EDF 162 to receive the signal light from the signal light transmission unit 120 on the reception side.
  • the pumping light is transmitted at a predetermined high transmission power in order to transmit the communication light to the communication device.
  • the pump light has a different wavelength from the signal light transmitted from the signal light transmitter 120.
  • the excitation light from the excitation light source 102 is transmitted through the optical fiber 150 through the optical power plug 140 and is transmitted to the EDF 162.
  • the excitation light incident on the EDF 162 is , Passing through the relevant EDF 16 2
  • the optical power bra 16 4 is transmitted from the signal light transmitting unit 12 0, and the signal light passing through the optical power bra 1 40, the optical fiber 150 5 and the EDF 16 2 is transmitted to the communication device on the receiving side.
  • the optical power bra 16 4 is transmitted from the excitation light source 102, and the optical fiber 150 5 is used for the excitation light passing through the optical power bra 140, the optical fiber 150 and the EDF 16 2.
  • Light is incident on 2.
  • the light enters the excitation light detection unit 104 via 2. .
  • the excitation light detector 104 detects the incident excitation light. Furthermore, the excitation light detector 1
  • step 04 the level of the detected excitation light is compared with a fifteenth predetermined level.
  • the comparison result is sent to the failure determination unit 106.
  • the failure determination unit 106 determines that the comparison result from the excitation light detection unit 104 indicates that the level of the excitation light to be applied to the excitation light detection unit 104 is equal to or higher than the 15th predetermined level. In this case, the chapter P damage determination unit 106 determines that the optical fibers 150 and 152 are normal. On the other hand, when the comparison result from the excitation light detection unit 104 indicates that the level of the excitation light incident on the excitation light detection unit 104 is lower than the 15th predetermined level. The failure determination unit 106 determines that a failure has occurred in any of the optical fibers 150 and 152.
  • the failure determiner 106 determines that a failure has occurred in any of the optical fibers 150 and 152, it instructs the signal light transmitter 120 to stop transmitting signal light. Both of them instruct the excitation light sources 102 and 174 to stop transmitting the excitation light.
  • the signal light transmitting unit 120 stops transmission of the signal light in response to an instruction from the failure determination unit 106.
  • the excitation light sources 102 and 174 stop transmitting the excitation light in response to the instruction from the failure determination unit 106.
  • the fault determiner 106 issues an instruction to the signal light transmitter 120 and the pump light sources 102 and 174. Do not do. For this reason, the signal light transmitting unit 120 continues transmitting the signal light, and the pump light sources 102 and 174 continue transmitting the pump light.
  • the excitation light sources 202 and 274 constituting the optical transmission line fault detection system on the reception side are the same as the excitation light sources 102 and 174, and the EDF 266
  • the pumping light is transmitted at a predetermined high transmission rate.
  • the pump light has a wavelength different from that of the signal light transmitted from the signal light transmitter 120.
  • Excitation light from the excitation light source 202 is transmitted through the optical fiber 250 through the optical power plug 240 and is incident on the EDF 262.
  • the excitation light incident on the EDF 262 is further incident on the optical power blur 264.
  • the optical power bra 2 64 is transmitted from the signal light transmitting unit 120, the optical power bra 140, the optical fiber 150, the EDF 16 2, the optical power 16 4 and the optical fiber 3
  • the signal light passing through 50 enters the EDF 262.
  • the optical power plug 264 is transmitted from the excitation light source 202, and the excitation light transmitted through the optical power plug 240, the optical fiber 250, and the EDF 262 is transmitted through the optical fiber 250.
  • the excitation light incident on the optical fiber 252 is incident on the excitation light detection unit 204 via the optical power blur 282.
  • the excitation light detector 204 detects the incident excitation light. Further, the excitation light detector 204 compares the detected level of the excitation light with a 16th predetermined level. The comparison result is sent to the Chapter P damage determination unit 206.
  • the failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of the excitation light incident on the excitation light detection unit 204 is equal to or higher than the 16th predetermined level. In this case, the failure determination unit 206 determines that the optical fibers 250 and 250 are normal. On the other hand, when the comparison result from the excitation light detection unit 204 indicates that the level of the excitation light incident on the excitation light detection unit 204 is less than the 16th predetermined level. The failure determination unit 206 determines that a failure has occurred in any of the optical fibers 250 and 250.
  • the failure determination unit 206 instructs the excitation light sources 202 and 274 to stop transmitting the excitation light. I do.
  • the excitation light sources 202 and 274 stop transmitting the excitation light in response to an instruction from the failure determination unit 206.
  • the pump light is not transmitted through the optical fibers 250 and 250.
  • the EDF 262 is not excited, so that the signal light is not transmitted through the optical fiber 250.
  • the failure determiner 206 determines that the optical fibers 250 and 250 are normal, the failure determiner 206 does not issue an instruction to the pump light sources 202 and 274. Therefore, the excitation light sources 202 and 274 continue transmitting the excitation light.
  • FIG. 4 to FIG. 6 are diagrams illustrating a configuration example of the excitation light detection unit 104.
  • the excitation light detector 104 shown in FIG. 4 includes a photodiode 108, an amplifier 110, and a comparator 112.
  • the photodiode 108 converts input light into an electric signal and outputs the electric signal.
  • the amplifier 110 amplifies this electric signal and outputs it to the comparator 112.
  • the comparator 112 compares the level (voltage) of the input electric signal with a predetermined identification level (W), which is a predetermined level, and compares the comparison result with the fault determination unit 106.
  • W predetermined identification level
  • the excitation light detector 104 shown in FIG. 5 is different from the one shown in FIG. It has a configuration provided with an optical filter 114 before.
  • the optical filter 114 outputs only light of a predetermined wavelength out of the input light.
  • the excitation light detection unit 104 can extract only the excitation light even when the incident light contains both the signal light and the excitation light. Become.
  • the excitation light detector 104 shown in FIG. 6 is different from that shown in FIG. 5 in that the comparator 112 is able to determine the level (m ⁇ ) of the input electric signal and the light transmission power of the excitation light source 102 and the like. Compares with proportionate Australia.
  • the pump light source 102 and the like emit low light to detect a failure in the optical fiber 150 and the like.
  • the transmitter transmits light, but when the transmission of signal light from the communication device on the transmitting station side to the communication device on the receiving station starts, the EDF 162 in the optical amplifier 160 is excited.
  • the optical transmission power is very large, reaching 1 W or more.
  • the communication device can be disconnected to any one of the optical fibers 150 and the like that connect the optical amplifier 160 and the like corresponding to the communication device.
  • the level of the light that is transmitted and transmitted through the optical fiber 150 or the like in which the failure has occurred is reliably reduced, so that the excitation light 104 or the like detects the level of the light.
  • the certainty of fault detection It is possible to above.
  • the communication device and the communication device can be used. It is possible to improve the reliability of detecting a failure that has occurred in the optical fiber 150 or the like between the optical amplifier 160 and the like.
  • the transmission of light by the signal light transmitting unit 120, the excitation light source 102, etc. is stopped, so that the optical fiber 150, etc.
  • the optical power S leaks from the optical fiber 150 etc., causing a danger to the human body. Can be prevented.
  • the optical fibers 15 2 and 25 2 correspond to the first optical transmission line described in the claims
  • the excitation light sources 102 and 202 correspond to the first light source
  • the optical fibers 150 and The reference numeral 250 corresponds to the second optical transmission line
  • the excitation light detection units 104 and 204 correspond to the first light detection means
  • the failure determination units 106 and 206 correspond to the first optical transmission line.
  • the first start instruction means, the first increase instruction means, the first and second stop instruction means correspond to the optical transmission line.
  • the optical fibers 154 and 254 correspond to the third optical transmission line described in the claims
  • the pumping light sources 170 and 270 correspond to the second light source
  • the pumping light detecting section 170. 2 and 272 correspond to the second light detection means
  • the Chapter P damage determination units 106 and 206 correspond to the second failure determination means, the second start instruction means, the second increase instruction means, Corresponds to the third and fourth stop instruction means

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

An optical transmission path failure detection system for detecting failure of an optical transmission path connecting an optical communication device to an optical amplifier corresponding to the communication device. Light emitted from a first light source and incident via a first optical transmission path, an optical amplifier, and a second optical transmission path is detected. When the detected light has a level below a predetermined level, it is judged that the first or the second optical transmission path has failed. When the detected light has a level equal to or above the predetermined level, it is judged that the first and the second optical transmission path are both normal. This can assure detection of failure of an optical transmission path connecting an optical communication device to an optical amplifier.

Description

光伝送路障害検出システム 技術分野  Optical transmission line failure detection system
本発明は、 光通信装置と該通信装置に対応する光増幅器とを接続する光伝送路 の障害を検出する光伝送路障害検出システムに関する。 背景技術  The present invention relates to an optical transmission line failure detection system that detects a failure in an optical transmission line that connects an optical communication device and an optical amplifier corresponding to the communication device. Background art
光伝送路、 具体的には光ファイバを用いた通信においては、 途中に給電を必要 とする中継器を有しない無中継システムが採用されることがある。 この無中継シ ステムにおいて、 伝送距離を長くする方法として、 伝送路の途中にエルビューム ドープファイバ(以下「E D F」 と称する) を有する光増幅器を設置し、端局(送 信側の通信装置及び受信側の通信装置) 力ら送る光によって、 この E D Fを励起 する方法がある。 特に伝送距離を長くしたい場合には、信号光用の光ファイバと は別の励起光専用の光ファイバによって、 端局から光増幅器内の E D Fへ光が送 られる (例えば、 非特許文献 1 : P. B. Hansen, L. Eskilden, S. G. Grubb, A. M. Vengsarkar, S. K. Korotky, T. A. Strasser, J. E. J. Alphonsus, J. J. Veselka, D. J. DiGiovanni, D. W. Peckham, E. C. Beck, D. Truxal, W. Y. Cheung, S. G. Kosinski, D. Gasper, P. F. Wysocki, V. L. da Silva and J. R. Simpson 著、 「 529km unrepeatered transmission at 2. 88Gb it/s using dispersion compensation, forward error correction, and remote post and pre— amplifies pumped by diode pumped Raman lasers」、 Electronics Letters vol. 31 1 9 9 5年、 1 4 6 0 — 1 4 6 1、 及ぴ、 http: //www. alcatel, com/ submarine/products/ur/を参照)。 このような無中,継システムでは、 送信側の通信装置における信号光と励起光の 送出パワーがそれぞれ 1 W以上にもなる場合がある。 従って、 万一、 光ファイバ が切断されている場合に、 送信側の通信装置がこのような高出力パワーの光を送 ると、 その切断面から照射された光が人体に危険を及ぼす場合がある。 また、 フ アイパヒューズと言われる現象が生じ、 光ファイバが燃焼する危険がある。 この ため、 安全性確保の観点から、 陸上に敷設されることの多い端局と光増幅器とを 接続する光ファイバが切断されている場合に、 その切断面で生じる反射光を検出 し、 端局からの光出力を停止する方法 (例えば、 特許文献 1 :特開平 8— 2 9 3 8 3 5号公報参照) や、 両端局が信号光と励起光を送出する前に低い送出パワー の監視制御信号を互いに送り、導通を確認してから信号光と励起光を送る方法 (例 えば、 非特許文献 2 :大谷俊博、 酵徳、 出口博之、 入江博之、 高橋司、 石川英 治、 池田大人、 原沢伸一朗著、 「1 0 G X 3 2波 2 5 0 k m無中 |1伝送システム の開発」、電子情報通信学会 2 0 0 3年総合大会講演論文集、 P . 4 7 4、 B . 1 0 · 4 4参照) がある。 In communication using an optical transmission line, specifically, an optical fiber, a repeaterless system that does not have a repeater that requires power supply on the way may be employed. In this repeaterless system, as a method of extending the transmission distance, an optical amplifier having an erbium-doped fiber (hereinafter referred to as “EDF”) is installed in the middle of the transmission line, and the terminal station (communication device on the transmission side and the reception side) is installed. (Communication equipment on the side) There is a method to excite this EDF with light sent from it. In particular, when the transmission distance is desired to be long, light is transmitted from the terminal station to the EDF in the optical amplifier using an optical fiber dedicated to the pumping light, which is different from the optical fiber for the signal light (for example, Non-Patent Document 1: PB Hansen, L. Eskilden, SG Grubb, AM Vengsarkar, SK Korotky, TA Strasser, JEJ Alphonsus, JJ Veselka, DJ DiGiovanni, DW Peckham, EC Beck, D. Truxal, WY Cheung, SG Kosinski, D. Gasper, PF Wysocki, VL da Silva and JR Simpson, 529km unrepeatered transmission at 2.88Gb it / s using dispersion compensation, forward error correction, and remote post and pre—amplifies pumped by diode pumped Raman lasers, Electronics Letters vol. 31 1 9 9 5 years, 146 0 — 1 461, see http: //www.alcatel, com / submarine / products / ur /). In such an intermediate and relay system, the transmission power of the signal light and the pumping light in the communication device on the transmission side may each be 1 W or more. Therefore, if the transmitting communication device sends such high output power light when the optical fiber is cut, the light irradiated from the cut surface may pose a danger to the human body. is there. Also, a phenomenon called a fiber fuse occurs, and there is a risk that the optical fiber will burn. this Therefore, from the viewpoint of ensuring safety, if the optical fiber that connects the terminal amplifier that is often laid on land and the optical amplifier is cut, the reflected light generated at the cut surface is detected, and the terminal station (For example, refer to Patent Document 1: Japanese Patent Application Laid-Open No. H8-293835), and a monitoring control signal of a low transmission power before both end stations transmit signal light and pumping light. To send signal light and pump light after confirming continuity (for example, Non-Patent Document 2: Toshihiro Otani, Yotenoku, Hiroyuki Deguchi, Hiroyuki Irie, Tsukasa Takahashi, Eiji Ishikawa, Adult Ikeda, Harazawa Shinichiro, "10 GX 3 2 wave 250 km no middle | Development of 1 transmission system", Proc. Of the IEICE 2003 General Conference, P. 474, B. 10 See 4 4).
しかしながら、 光ファイバの切断面で生じる反射光を検出し、 端局からの光出 力を停止する方法では、 その切断面の形状によっては、 反射が小さいため、 反射 光が検出されなレヽ場合がある。 また、 切断面が水などガラスとの比屈折率が小さ い液体に浸かっている場合も反射が小さく、 反射光が検出されない場合がある。 また、 両端局が信号光と励起光を送出する前に低い送出パワーの監視制御信号 を互いに送り、 導通を確認してから信号光と励起光を送る方法では、 端局間の距 離が長 ヽ場合、 一方の端局から送られる監視制御信号の送出パヮ一が低いため、 伝送中の減衰により、 他方の端局がこの監視制御信号を受信することができない 場合がある。 発明の開示  However, in the method of detecting the reflected light generated at the cut surface of the optical fiber and stopping the light output from the terminal, the reflected light may not be detected because the reflection is small depending on the shape of the cut surface. is there. Also, when the cut surface is immersed in a liquid such as water, which has a small relative refractive index to glass, the reflection is small and reflected light may not be detected. Also, in the method in which both end stations send monitoring and control signals of low transmission power to each other before sending signal light and pumping light and confirm continuity, and then send signal light and pumping light, the distance between the terminal stations is long. In this case, the transmission control signal of the supervisory control signal sent from one terminal station is low, so that the other terminal station may not be able to receive the supervisory control signal due to attenuation during transmission. Disclosure of the invention
本発明は、 上述した従来技術の問題点を解決する、 光伝送路の障害検出の確実 性を向上させた光伝送路障害検出システムを提供することを目的としている。 この目的を達成するため、 本発明に係る光伝送路障害検出システムは、 光通信 装置と該光通信装置に対応する光増幅器とを接続する光伝送路の障害を検出する 光伝送路障害検出システムにおいて、 第 1の光伝送路によって前記光増幅器と接 続され、 前記第 1の光伝送路へ光を送信する第 1の光源と、 前記第 1の光源から 送信され、 前記第 1の光伝送路、 前 |ξ光増幅器及び第 2の光伝送路を介して される光を検出する第 1の光検出手段と、 前記第 1の光検出手段により検出され た光のレベルが所定レベル未満である場合に前記第 1及び第 2の光伝送路の何れ 力に障害が生じたと判定し、 所定レベル以上である場合に前記第 1及び第 2の光 伝送路が正常であると判定する第 1の障害判定手段とを備える。 SUMMARY OF THE INVENTION An object of the present invention is to provide an optical transmission line fault detection system which solves the above-mentioned problems of the prior art and improves the reliability of optical transmission line fault detection. In order to achieve this object, an optical transmission line fault detection system according to the present invention includes an optical transmission line fault detection system for detecting a fault in an optical transmission line connecting an optical communication device and an optical amplifier corresponding to the optical communication device. A first light source connected to the optical amplifier by a first optical transmission line and transmitting light to the first optical transmission line; a first light source transmitted from the first light source; First light detecting means for detecting light transmitted through the optical amplifier and the second optical transmission path; and the level of light detected by the first light detecting means is less than a predetermined level. In some cases, any one of the first and second optical transmission lines A first failure determination unit that determines that a failure has occurred in the force, and determines that the first and second optical transmission paths are normal when the force is equal to or higher than a predetermined level.
本発明の光伝送路障害検出システムは、 端局である通信装置間を接続する光伝 送路のうち、 通信装置と該通信装置に対応する光増幅器との間の光伝送路が例え ば陸上に敷設され、 光増幅器間の光伝送路力 S海底に敷設されているような場合に 、 通信装置と該通信装置に対応する光増幅器との間の光伝送路から漏洩する光が 人体に危険を及ぼす可能性が高いことを考慮し、 その通信装置と該通信装置に対 応する光増幅器との間の光伝送路の障害検出を行うものである。 この光伝送路障 害検出システムでは、 通信装置と当該通信装置に対応する光増幅器とが第 1の光 伝送路によつて接続され、 第 1の光源と光増幅器とが第 2の光伝送路によって接 続されており、 第 1の光源から送信され、 当該第第 2の光伝送路、 光増幅器及び 第 1の光伝送路を介して入射される光のレベルが所定レベル以下である場合に、 第 1の光伝送路に障害が生じたと判定される。 従来の光伝送路の切断面で生じる 反射光を検出する手法では、 その切断面の形状によっては、 反射が小さいため、 反射光を検出されない場合がある。 しカゝし、 本発明では、 光伝送路に切断等の障 害が生じた場合には、 その光伝送路を伝送されて入射される光のレベルが確実に 低下するため、 当該光のレベルを検出することにより、 障害検出の確実性を向上 させることができる。 また、 端局である通信装置間で低い送出パワーの信号を互 いに送ることによって障害を検出するのではないため、 通信装置間の距離が長い 場合にも、 通信装置と当該通信装置に対応する光増幅器との間の光伝送路に生じ た障害の検出の確実性を向上させることができる。 図面の簡単な説明  The optical transmission line fault detection system according to the present invention includes an optical transmission line connecting a communication device, which is a terminal station, and an optical transmission line between a communication device and an optical amplifier corresponding to the communication device, for example, on land. And the optical transmission line power between the optical amplifiers. When the optical transmission line is installed on the sea floor, light leaking from the optical transmission line between the communication device and the optical amplifier corresponding to the communication device is dangerous to the human body. Considering that it is highly possible to cause a failure, an optical transmission path failure between the communication device and an optical amplifier corresponding to the communication device is detected. In this optical transmission line failure detection system, a communication device and an optical amplifier corresponding to the communication device are connected by a first optical transmission line, and the first light source and the optical amplifier are connected by a second optical transmission line. When the level of the light that is connected and transmitted from the first light source and incident through the second optical transmission path, the optical amplifier, and the first optical transmission path is equal to or lower than a predetermined level, It is determined that a failure has occurred in the first optical transmission line. In the conventional method of detecting the reflected light generated on the cut surface of the optical transmission line, the reflected light may not be detected because the reflection is small depending on the shape of the cut surface. However, according to the present invention, when a failure such as disconnection occurs in the optical transmission line, the level of the light transmitted and incident through the optical transmission line is surely reduced. By detecting the failure, the reliability of failure detection can be improved. In addition, since faults are not detected by sending low transmission power signals between the communication devices that are terminal stations, even if the distance between the communication devices is long, the communication device and the communication device can be used. The reliability of detection of a fault that has occurred in an optical transmission path between the optical amplifier and the optical amplifier can be improved. BRIEF DESCRIPTION OF THE FIGURES
本発明の他の目的、 特徴及ひ利点は添付の図面を参照しながら以下の詳細な説 明を読むことにより一層明瞭となるであろう。  Other objects, features and advantages of the present invention will become more apparent from the following detailed description when read in conjunction with the accompanying drawings.
図 1は、 光伝送システムの第 1の構成例を示す図である。  FIG. 1 is a diagram illustrating a first configuration example of the optical transmission system.
図 2は、 光伝送システムの第 2の構成例を示す図である。  FIG. 2 is a diagram illustrating a second configuration example of the optical transmission system.
図 3は、 光伝送システムの第 3の構成例を示す図である。  FIG. 3 is a diagram illustrating a third configuration example of the optical transmission system.
図 4は、 励起光検出部の第 1の構成例を示す図である。 図 5は、 励起光検出部の第 2の構成例を示す図である。 FIG. 4 is a diagram illustrating a first configuration example of the excitation light detection unit. FIG. 5 is a diagram illustrating a second configuration example of the excitation light detection unit.
図 6は、 励起光検出部の第 3の構成例を示す図である。 発明を実施するための最良の形態  FIG. 6 is a diagram illustrating a third configuration example of the excitation light detection unit. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図面に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、 本発明の光伝送路障害検出システムを有する光伝送システムの第 1の 構成例を示す図である。 同図に示す光伝送システムは、 送信局側の通信装置内に 構成される励起光源 1 0 2、 励起光検出部 1 0 4、 障害判定部 1 0 6、 信号光送 信部 1 2 0及び光力ブラ 1 4 0と、 送信局側の通信装置に対応する光増幅器 1 6 0と、 受信局側の通信装置内に構成される励起光源 2 0 2、 励起光検出部 2 0 4 、 障害判定部 2 0 6、 信号光受信部 2 2 0及び光力ブラ 2 4 0と、 受信局側の通 信装置に対応する光増幅器 2 6 0とを備える。  FIG. 1 is a diagram showing a first configuration example of an optical transmission system having the optical transmission line fault detection system of the present invention. The optical transmission system shown in the figure includes an excitation light source 102, an excitation light detection unit 104, a failure determination unit 106, a signal light transmission unit 120, and an excitation light source 102, which are configured in a communication device on the transmitting station side. Optical power amplifier 140, optical amplifier 160 corresponding to the communication device on the transmitting station side, excitation light source 202 included in the communication device on the receiving station side, excitation light detecting section 204, failure It comprises a determining unit 206, a signal light receiving unit 220, an optical power blur 240, and an optical amplifier 260 corresponding to a communication device on the receiving station side.
光増幅器 1 6 0は、 エルビュームドープファイバ (E D F) 1 6 2及び光力プ ラ 1 6 4を備える。 更に、 送信局側の通信装置内の光力ブラ 1 4 0と光増幅器 1 6 0内の E D F 1 6 2は、 光ファイバ 1 5 0によって接続され、 送信局側の通信 装置内の励起光源 1 0 2と光増幅器 1 6 0内の光力ブラ 1 6 4は、 光ファイバ 1 5 2によって接続される。 また、 光増幅器 2 6 0は、 E D F 2 6 2及ぴ光力プラ ■ 2 6 4を備える。 更に、 受信局側の通信装置内の光力プラ 2 4 0と光増幅器 2 6 0内の ED F 2 6 2は、 光ファイバ 2 5 0によって接続され、 受信局側の通信装 置内の励起光源 2 0 2と光増幅器 2 6 0内の光力プラ 2 6 4は、 光ファイバ 2 5 2によって接続される。  The optical amplifier 160 includes an erbium-doped fiber (EDF) 162 and an optical power coupler 164. Further, the optical power amplifier 140 in the communication device on the transmitting station side and the EDF 162 in the optical amplifier 160 are connected by an optical fiber 150, and the excitation light source 1 in the communication device on the transmitting station side is connected. The optical power blur 16 in the optical amplifier 16 is connected to the optical fiber 16 in the optical amplifier 16. The optical amplifier 260 includes an EDF 262 and an optical power plug 2 264. Further, the optical power plug 240 in the communication device on the receiving station side and the EDF 262 in the optical amplifier 260 are connected by an optical fiber 250, and the pumping in the communication device on the receiving station side is performed. The light source 202 and the optical power plug 264 in the optical amplifier 260 are connected by an optical fiber 252.
この光伝送システムでは、 送信局側の通信装置から受信局側の通信装置へ信号 光が伝送される。 この信号光は、 光ファイバ 1 5 0 , 3 5 0及ぴ 2 5 0を伝送さ れることになる。 送信局側の通信装置内の励起光源 1 0 2、 励起光検出部 1 0 4 及ぴ障害判定部 1 0 6は、 光ファイバ 1 5 0及ぴ 1 5 2の障害を検出する光伝送 路障害検出システム(以下、 「送信側光伝送路障害検出システム」 と称する) を構 成する。 一方、 受信局側の通信装置内の励起光源 2 0 2、 励起光検出部 2 0 4及 ぴ障害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2の障害を検出する光伝送路 障害検出システム (以下、 「受信側光伝送路障害検出システム」 と称する) を構成 する。 In this optical transmission system, signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side. This signal light is transmitted through the optical fibers 150, 350 and 250. The pump light source 102, pump light detector 104, and fault determiner 106 in the communication equipment on the transmitting station side are optical transmission line faults that detect faults in the optical fibers 150 and 152. A detection system (hereinafter referred to as “transmission side optical transmission line fault detection system”) is configured. On the other hand, the excitation light source 202, the excitation light detection unit 204, and the failure determination unit 206 in the communication device on the receiving station side are optical transmission lines that detect failures of the optical fibers 250 and 250. Constructs a failure detection system (hereinafter referred to as "the receiver optical transmission line failure detection system") I do.
以下、 図 1に示す光伝送システムの動作を、 送信局側の通信装置から受信局側 の通信装置へ信号光が伝送される前に、 光ファイバ 1 5 0、 1 5 2、 2 5 0及び 2 5 2の障害を検出する第 1実施例と、 送信局側の通信装置から受信局側の通信 装置へ信号光が伝送されている最中に、 光ファイバ 1 5 0、 1 5 2、 2 5 0及び 2 5 2の障害を検出する第 2実施例とについて説明する。  Hereinafter, the operation of the optical transmission system shown in FIG. 1 is performed before the signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side. In the first embodiment for detecting the failure of the 25 2, and while the signal light is being transmitted from the communication device on the transmitting station side to the communication device on the receiving station side, the optical fibers 150, 15 2, and 2 A description will be given of a second embodiment for detecting 50 and 25 failures.
まず、 第 1実施例について説明する。 送信側の通信装置内において送信側光伝 送路障害検出システムを構成する励起光源 1 0 2は、 所定の低送出パワーで光を 送信する。 例えば、 励起光源 1 0 2は、 クラス 1以下の送出パワーである 1 O m Wで光を送信する。 励起光源 1 0 2からの光は、 光ファイバ 1 5 2を伝送され、 光増幅器 1 6 0内の光力ブラ 1 6 4へ入射される。  First, a first embodiment will be described. The pumping light source 102 constituting the transmission-side optical transmission path fault detection system in the transmission-side communication device transmits light with a predetermined low transmission power. For example, the pump light source 102 transmits light at 1 OmW, which is a transmission power of class 1 or less. Light from the excitation light source 102 is transmitted through the optical fiber 152 and is incident on the optical power blur 1664 in the optical amplifier 160.
光力ブラ 1 6 4は、 例えば損失の小さい波長多重力ブラであり、 波長毎に光の 送出先を変えることができる。 この光力プラ 1 6 4は、 光ファイバ 1 5 2からの 光を E D F 1 6 2へ入射する。 E D F 1 6 2に入射された光は、 減衰しながら当 該 ED F 1 6 2を通過し、 更に光ファイバ 1 5 0を伝送されて、 光力プラ 1 4 0 へ入射される。 光力ブラ 1 4 0は、 光力プラ 1 6 4と同様、 例えば損失の小さい 波長多重カプラである。 この光力プラ 1 4 0は、 光ファイバ 1 5 0からの光を励 起光検出部 1 0 4へ入射する。  The optical power bra 1 64 is, for example, a wavelength-multiplexed power bra with low loss, and can change the light transmission destination for each wavelength. This optical power plug 16 4 makes the light from the optical fiber 15 2 incident on the EDF 16 2. The light incident on the EDF 162 is attenuated, passes through the EDF 162, is further transmitted through the optical fiber 150, and is incident on the optical power plug 140. The optical power bra 140 is, for example, a wavelength-division multiplex coupler having a small loss, similarly to the optical power plug 164. The optical power plug 140 causes the light from the optical fiber 150 to enter the excitation light detection unit 104.
励起光検出部 1 0 4は、 入射される光を検出する。 更に、 励起光検出部 1 0 4 は、 その検出した光のレべノレと第 1の所定のレベルとを比較する。 比較結果は、 障害判定部 1 0 6へ送られる。  The excitation light detector 104 detects the incident light. Further, the excitation light detector 104 compares the level of the detected light with a first predetermined level. The comparison result is sent to failure determination unit 106.
障害判定部 1◦ 6は、 励起光検出部 1 0 4からの比較結果に基づいて、 光ファ ィバ 1 5 0及び 1 5 2に障害が生じている力、否かを判定する。 具体的には、 励起 光検出部 1 0 4からの比較結果が、 当該励起光検出部 1 0 4へ入射される光のレ ベルが第 1の所定のレベル以上であることを示している場合を考える。 この場合 には、 励起光源 1 0 2から励起光検出部 1 0 4までの光の損失が小さいことを示 しているため、 障害判定部 1 0 6は、 光ファイバ 1 5 0及び 1 5 2が正常である と判定する。 一方、 励起光検出部 1 0 4からの比較結果が、 当該励起光検出部 1 0 4へ入射される光のレベルが第 1の所定のレベル未満であることを示している 場合を考える。 この場合には、 励起光源 1 0 2から励起光検出部 1 0 4までの光 の損失が大きいことを示しているため、 障害判定部 1 0 6は、 光ファイバ 1 5 0 及ぴ 1 5 2の何れかに障害が生じたと判定する。 The failure determination unit 1 • 6 determines whether or not the optical fibers 150 and 152 have a failure, based on the comparison result from the excitation light detection unit 104. Specifically, when the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is equal to or higher than a first predetermined level. think of. In this case, since the loss of light from the excitation light source 102 to the excitation light detection unit 104 is small, the failure determination unit 106 includes the optical fibers 150 and 1502. Is determined to be normal. On the other hand, the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is lower than the first predetermined level. Consider the case. In this case, since the loss of light from the pumping light source 102 to the pumping light detecting unit 104 is large, the failure determining unit 106 includes the optical fibers 150 and 1502. Is determined to have failed.
P章害判定部 1 0 6は、 光ファイバ 1 5 0及ぴ 1 5 2が正常であると判定した場 合には、 信号光送信部 1 2 0に対して信号光の送信開始を指示するとともに、 励 起光源 1 0 2に対して ED F 1 6 2が適切に励起されるレベルまで光の送出パヮ 一を増加させるように指示する。 信号光送信部 1 2 0は、 障害判定部 1 0 6から の指示に応じて信号光の送信を開始する。 一方、 励起光源 1 0 2は、 障害判定部 1 0 6からの指示に応じて E D F 1 6 2が適切に励起されるレベルまで光励起の 送出パワーを増加させる。 これにより、 信号光送信部 1 2 0からの信号光は、 E D F 1 6 2によって増幅されて受信側の通信装置へ向けて送られることになる。 また、 障害判定部 1 0 6は、 光ファイバ 1 5 0及び 1 5 2の何れかに障害が生 じたと判定した場合には、 励起光源 1 0 2に対して光の送信停止を指示する。 励 起光源 1 0 2は、 この指示に応じて光の送信を停止する。  When the optical fiber 150 and 152 are determined to be normal, the chapter P damage determining unit 106 instructs the signal light transmitting unit 120 to start transmitting signal light. At the same time, it instructs the excitation light source 102 to increase the light transmission power to a level at which the EDF 162 is appropriately excited. The signal light transmission section 120 starts transmission of signal light in response to an instruction from the failure determination section 106. On the other hand, the excitation light source 102 increases the transmission power of optical excitation to a level at which the EDF 162 is appropriately excited in accordance with an instruction from the failure determination unit 106. As a result, the signal light from the signal light transmitting unit 120 is amplified by the EDF 162 and sent to the communication device on the receiving side. When determining that a failure has occurred in one of the optical fibers 150 and 152, the failure determination unit 106 instructs the pump light source 102 to stop transmitting light. The excitation light source 102 stops transmitting light according to this instruction.
一方、 受信側の通信装置内において受信側光伝送路障害検出システムを構成す る励起光源 2 0 2は、 励起光源 1 0 2と同様、 所定の低送出パワー (例えばクラ ス 1以下の送出パワーである 1 O mW) で光を送信する。 励起光源 2 0 2からの 光は、 光ファイバ 2 5 2を伝送され、 光増幅器 2 6 0内の光力プラ 2 6 4へ入射 される。  On the other hand, the pumping light source 202 constituting the receiving side optical transmission line fault detection system in the receiving side communication device has a predetermined low transmission power (for example, a transmission power of less than class 1) like the excitation light source 102. Transmit light at 1 O mW). The light from the excitation light source 202 is transmitted through the optical fiber 252 and is incident on the optical power plug 264 in the optical amplifier 260.
光力ブラ 2 6 4は、 例えば損失の小さい波長多重力ブラであり、 光ファイバ 2 5 2からの光を E D F 2 6 2へ入射する。 E D F 2 6 2に入射された光は、 減衰 しながら当該 E D F 2 6 2を通過し、 更に光ファイバ 2 5 0を伝送されて、 光力 ブラ 2 4 0へ入射される。 光力ブラ 2 4 0は、 光力ブラ 2 6 4と同様、 例えば損 失の小さい波長多重力ブラであり、 光ファイバ 2 5 0からの光を励起光検出部 2 0 4へ入射する。  The optical power bra 2 64 is, for example, a low-loss wavelength multiplex power bra, and makes light from the optical fiber 25 2 incident on the EDF 26 2. The light incident on the EDF 262 passes through the EDF 262 while attenuating, is further transmitted through the optical fiber 250, and is incident on the optical power blur 240. The optical power bra 240 is, for example, a wavelength multiplex power bra with a small loss, similar to the optical power bra 264, and makes the light from the optical fiber 250 incident on the excitation light detecting section 204.
励起光検出部 2 0 4は、 励起光検出部 1 0 4と同様、 入射される光を検出する 。 更に、 励起光検出部 2 0 4は、 その検出した光のレベルと第 2の所定のレベル とを比較する。 比較結果は、 障害判定部 2 0 6へ送られる。  The excitation light detector 204 detects the incident light, similarly to the excitation light detector 104. Further, the excitation light detector 204 compares the detected light level with a second predetermined level. The comparison result is sent to the failure determination unit 206.
障害判定部 2 0 6は、 障害判定部 1 0 6と同様、 励起光検出部 2 0 4力 らの比 較結果に基づいて、 光ファイバ 2 5 0及ぴ 2 5 2に障害が生じている力否かを判 定する。 具体的には、 励起光検出部 2 0 4からの比較結果が、 当該励起光検出部The failure determination unit 206 is, like the failure determination unit 106, a ratio of the excitation light detection unit 204 Based on the comparison result, it is determined whether or not the optical fibers 250 and 250 have a failure. Specifically, the comparison result from the excitation light detection unit 204 is
2 0 4へ入射される光のレベルが第 2の所定のレベル以上であることを示してい る場合には、 P章害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2が正常であると 判定する。 一方、 励起光検出部 2 0 4からの比較結果が、 当該励起光検出部 2 0If the level of light incident on 204 is equal to or higher than the second predetermined level, the damage determination unit 206 in Chapter P determines that the optical fibers 250 and 252 are normal. It is determined that. On the other hand, the comparison result from the excitation light detection unit 204 is
4へ入射される光のレベルが第 2の所定のレベル未満であることを示している場 合には、 障害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2の何れかに障害が生 じたと判定する。 If the level of the light incident on 4 is less than the second predetermined level, the fault determination unit 206 determines that the fault has occurred in one of the optical fibers 250 and 252. Is determined to have occurred.
障害判定部 2 0 6は、 光ファイバ 2 5 0及ぴ 2 5 2が正常であると判定した場 合には、 励起光源 2 0 2に対して E D F 2 6 2が適切に励起されるレべノレまで光 励起の送出パヮ一を增カ卩させるように指示する。 励起光源 2 0 2は、 この指示に 応じて E D F 2 6 2が適切に励起されるレベルまで光励起の送出パワーを増加さ せる。 これにより、 E D F 2 6 2を通過する信号光は増幅されて、 受信側の通信 装置へ送られることになる。  If the failure determination unit 206 determines that the optical fibers 250 and 250 are normal, the failure determination unit 206 determines the level at which the EDF 262 is appropriately excited with respect to the excitation light source 202. It is instructed to make the pumping path of the light excitation go up. In response to this indication, the pump light source 202 increases the output power of the optical pump to a level at which the EDF 262 is properly pumped. As a result, the signal light passing through the EDF 262 is amplified and sent to the communication device on the receiving side.
また、 障害判定部 2 0 6は、 光ファイバ 2 5 0及ぴ 2 5 2の何れかに障害が生 じたと判定した場合には、 励起光源 2 0 2に対して光の送信停止を指示する。 励 起光源 2 0 2は、 この指示に応じて光の送信を停止する。  In addition, when the failure determination unit 206 determines that a failure has occurred in any of the optical fibers 250 and 250, the failure determination unit 206 instructs the pump light source 202 to stop transmitting light. . The excitation light source 202 stops transmitting light according to this instruction.
次に、 第 2実施例について説明する。 送信側の通信装置内において送信側光伝 送路障害検出システムを構成する励起光源 1 0 2は、 E D F 1 6 2を適切に励起 させて、 信号光 言部 1 2 0からの信号光を受信側の通信装置まで伝送させるた めに、 所定の高送出パワーで励起光を送信する。 なお、 この励起光は、 信号光送 信部 1 2 0から送信される信号光とは異なる波長を有する。 励起光源 1 0 2から の励起光は、 光ファイバ 1 5 2を伝送され、 光増幅器 1 6 0内の光力プラ 1 6 4 へ入射される。  Next, a second embodiment will be described. The excitation light source 102 constituting the transmission-side optical transmission line fault detection system in the transmission-side communication device appropriately excites the EDF 162 and receives the signal light from the signal light section 120. The pump light is transmitted at a predetermined high transmission power in order to transmit it to the communication device on the side. The pump light has a wavelength different from that of the signal light transmitted from the signal light transmitting unit 120. The pumping light from the pumping light source 102 is transmitted through the optical fiber 152 and is incident on the optical power plug 164 in the optical amplifier 160.
光力プラ 1 6 4は、 信号光送信部 1 2 0から送信され、 光力ブラ 1 4 0、 光フ アイバ 1 5 0及ぴ E D F 1 6 2を通過した信号光については受信側の通信装置へ 向けて送る。 また、 光力プラ 1 6 4は、 光ファイバ 1 5 2からの励起光について は E D F 1 6 2へ入射する。 E D F 1 6 2に入射された励起光は、 減衰しながら 当該 E D F 1 6 2を通過し、 更に光ファイバ 1 5 0を伝送されて、 光力プラ 1 4 0へ入射される。 光力ブラ 1 4 0は、 信号光送信部 1 2 0から送信される信号光 については光ファイバ 1 5 0へ入射し、 光ファイバ 1 5 0からの励起光について は励起光検出部 1 0 4へ入射する。 The optical power plug 16 4 is transmitted from the signal light transmitting unit 12 0, and the signal light transmitted through the optical power bra 1 40, the optical fiber 1 50 and the EDF 16 2 Send to. The optical power plug 16 4 enters the EDF 16 2 with respect to the excitation light from the optical fiber 15 2. The excitation light incident on the EDF 16 2 passes through the EDF 16 2 while being attenuated, and is further transmitted through the optical fiber 150 so that the optical power It is incident on 0. The optical power blur 140 enters the optical fiber 150 for the signal light transmitted from the signal light transmitting unit 120, and the excitation light detecting unit 104 for the excitation light from the optical fiber 150. Incident on.
励起光検出部 1 0 4は、 入射される励起光を検出する。 更に、 励起光検出部 1 0 4は、 その検出した励起光のレべノレと第 3の所定のレベルとを比較する。 比較 結果は、 障害判定部 1 0 6へ送られる。  The excitation light detector 104 detects the incident excitation light. Further, the excitation light detector 104 compares the detected level of the excitation light with a third predetermined level. The comparison result is sent to the failure determination unit 106.
障害判定部 1 0 6は、 励起光検出部 1 0 4からの比較結果に基づいて、 光ファ ィバ 1 5 0及び 1 5 2に障害が生じている力否かを判定する。 具体的には、 第 1 実施例と同様、 励起光検出部 1 0 4からの比較結果が、 当該励起光検出部 1 0 4 へ入射される励起光のレベルが第 3の所定のレベル以上であることを示している 場合には、 障害判定部 1 0 6は、 光ファイバ 1 5 0及び 1 5 2が正常であると判 定する。 一方、 励起光検出部 1 0 4からの比較結果力 当該励起光検出部 1 0 4 へ入射される励起光のレベルが第 3の所定のレベル未満であることを示している 場合には、 P章害判定部 1 0 6は、 光ファイバ 1 5 0及ぴ 1 5 2の何れかに障害が 生じたと判定する。  The failure determination unit 106 determines whether or not a failure has occurred in the optical fibers 150 and 152 based on the comparison result from the excitation light detection unit 104. Specifically, similarly to the first embodiment, the comparison result from the excitation light detection unit 104 indicates that the level of the excitation light incident on the excitation light detection unit 104 is equal to or higher than the third predetermined level. If this is the case, the failure determination unit 106 determines that the optical fibers 150 and 152 are normal. On the other hand, if the level of the comparison light from the excitation light detection unit 104 indicates that the level of the excitation light incident on the excitation light detection unit 104 is less than the third predetermined level, P The chapter damage determining unit 106 determines that a failure has occurred in any of the optical fibers 150 and 152.
また、 P章害判定部 1 0 6は、 光ファイバ 1 5 0及び 1 5 2の何れかに障害が生 じたと判定した場合には、 信号光 言部 1 2 0に対して信号光の送信停止を指示 するとともに、 励起光源 1 0 2に対して励起光の送信停止を指示する。 信号光送 信部 1 2 0は、 障害判定部 1 0 6からの指示に応じて信号光の送信を停止する。 —方、 励起光源 1 0 2は、 障害判定部 1 0 6からの指示に応じて励起光の送信を 停止する。  When determining that a failure has occurred in any of the optical fibers 150 and 152, the chapter P harm determination unit 106 transmits the signal light to the signal light unit 120. In addition to instructing the stop, the pump light source 102 is instructed to stop the transmission of the pump light. The signal light transmitting unit 120 stops transmitting the signal light in response to an instruction from the failure determining unit 106. On the other hand, the pumping light source 102 stops transmitting the pumping light in response to an instruction from the failure determination unit 106.
—方、 障害判定部 1 0 6は、 光ファイバ 1 5 0及び 1 5 2が正常であると判定 した場合には、 信号光送信部 1 2 0及び励起光源 1 0 2に対する指示を行わなレ、 。 このため、 信号光送信部 1 2 0は信号光の送信を継続し、 励起光源 1 0 2は励 起光の送信を継続する。 ■ 一方、 受信側の通信装置内にお 、て受信側光伝送路障害検出システムを構成す る励起光源 2 0 2は、 励起光源 1 0 2と同様、 E D F 2 6 2を適切に励起させて 、 信号光送信部 1 2 0からの信号光を受信側の通信装置まで伝送させるために、 所定の高送出パワーで励起光を送信する。 なお、 この励起光は、 信号光送信部 1 2 0から送信される信号光とは異なる波長を有する。 励起光源 2 0 2からの励起 光は、 光ファイバ 2 5 2を伝送され、 光増幅器 2 6 0内の光力ブラ 2 6 4へ入射 される。 On the other hand, when the failure determination unit 106 determines that the optical fibers 150 and 152 are normal, the failure determination unit 106 does not issue an instruction to the signal light transmission unit 120 and the pump light source 102. ,. For this reason, the signal light transmitting unit 120 continues transmitting the signal light, and the pumping light source 102 continues transmitting the exciting light. ■ On the other hand, in the communication equipment on the receiving side, the pumping light source 202 constituting the optical transmission line fault detection system on the receiving side excites the EDF 262 appropriately, similarly to the pumping light source 102. In order to transmit the signal light from the signal light transmitting unit 120 to the communication device on the receiving side, the pumping light is transmitted at a predetermined high transmission power. The pump light is transmitted to the signal light transmitter 1 It has a different wavelength from the signal light transmitted from 20. Excitation light from the excitation light source 202 is transmitted through the optical fiber 252 and is incident on the optical power blur 2664 in the optical amplifier 260.
光力プラ 2 6 4は、 信号光送信部 1 2 0から送信され、 光力プラ 1 4 0、 光フ アイパ 1 5 0、 E D F 1 6 2、 光力プラ 1 6 4及び光ファイバ 3 5 0を通過した 信号光と、 励起光源 2 0 2から送信され、 光ファイバ 2 5 2を通過した励起光と を、 E D F 2 6 2へ入射する。 E D F 2 6 2に入射された信号光と励起光は、 当 該 E D F 2 6 2を通過し、 更に光ファイバ 2 5 0を伝送されて、 光力プラ 2 4 0 へ入射される。 光力プラ 2 4 0は、 信号光については信号光受信部 2 2 0へ Alt し、 励起光については励起光検出部 2 0 4へ入射する。  The optical power plastic 2 64 is transmitted from the signal light transmitting unit 120, and the optical power plastic 140, the optical fiber 150, the EDF 16 2, the optical plastic 16 4 and the optical fiber 3 5 0 The signal light that has passed through and the pump light that has been transmitted from the pump light source 202 and has passed through the optical fiber 25 2 enter the EDF 26 2. The signal light and the pump light incident on the EDF 262 pass through the EDF 262, are further transmitted through the optical fiber 250, and are incident on the optical power plug 240. The optical power plug 240 altates signal light to the signal light receiving section 220 and enters excitation light to the excitation light detecting section 204.
励起光検出部 2 0 4は、 励起光検出部 1 0 4と同様、 入射される励起光を検出 する。 更に、 励起光検出部 2 0 4は、 その検出した励起光のレベルと第 4の所定 のレベルとを比較する。 比較結果は、 障害判定部 2 0 6へ送られる。  The excitation light detector 204 detects the incident excitation light, similarly to the excitation light detector 104. Further, the excitation light detector 204 compares the detected level of the excitation light with a fourth predetermined level. The comparison result is sent to the failure determination unit 206.
障害判定部 2 0 6は、 障害判定部 1 0 6と同様、 励起光検出部 2 0 4力 らの比 較結果に基づいて、 光ファイバ 2 5 0及ぴ 2 5 2に障害が生じている力否かを判 定する。 具体的には、 第 1実施例と同様、 励起光検出部 2 0 4からの比較結果が 、 当該励起光検出部 2 0 4へ入射される励起光のレベルが第 4の所定のレベル以 上であることを示している場合には、 障害判定部 2 0 6は、 光ファイバ 2 5 0及 ぴ 2 5 2が正常であると判定する。 一方、 励起光検出部 2 0 4からの比較結果が 、 当該励起光検出部 2 0 4へ される励起光のレベルが第 4の所定のレベル未 満であることを示している場合には、 障害判定部 2 0 6は、 光ファイバ 2 5 0及 び 2 5 2の何れかに障害が生じたと判定する。  Like the failure determination unit 106, the failure determination unit 206 has a failure in the optical fibers 250 and 250 based on the comparison result from the excitation light detection unit 204. Determine whether it is strong or not. Specifically, as in the first embodiment, the comparison result from the excitation light detection unit 204 indicates that the level of the excitation light incident on the excitation light detection unit 204 is equal to or higher than the fourth predetermined level. In this case, the failure determination unit 206 determines that the optical fibers 250 and 250 are normal. On the other hand, when the comparison result from the excitation light detection unit 204 indicates that the level of the excitation light to be supplied to the excitation light detection unit 204 is less than the fourth predetermined level, The failure determination unit 206 determines that a failure has occurred in any of the optical fibers 250 and 250.
また、 障害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2の何れかに障害が生 じたと判定した場合には、 励起光源 2 0 2に対して励起光の送信停止を指示する 。 励起光源 2 0 2は、 P章害判定部 2 0 6カ らの指示に応じて励起光の送信を停止 する。 このため、 励起光が光ファイバ 2 5 0及び 2 5 2を伝送されることはない 。 また、 信号光送信部 1 2 0から信号光が送信されたとしても、 E D F 2 6 2は 励起されないため、 当該信号光が光ファイバ 2 5 0を伝送されることはなレ、。 一方、 障害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2が正常であると判定 した場合には、 励起光源 2 0 2に対する指示を行わない。 このため、 励起光源 2 0 2は励起光の送信を継続する。 Further, when it is determined that a failure has occurred in any of the optical fibers 250 and 252, the failure determination unit 206 instructs the pump light source 202 to stop transmitting the pump light. . The pumping light source 202 stops transmitting the pumping light in response to the instruction from the chapter P damage determining unit 206. Therefore, the pump light is not transmitted through the optical fibers 250 and 252. Also, even if the signal light is transmitted from the signal light transmitting section 120, the EDF 262 is not excited, and therefore the signal light cannot be transmitted through the optical fiber 250. On the other hand, the failure determination unit 206 determines that the optical fibers 250 and 250 are normal. In this case, no instruction is given to the excitation light source 202. Therefore, the excitation light source 202 continues transmitting the excitation light.
• 図 2は、 本発明の光伝送路障害検出システムを有する光伝送システムの第 2の 構成例を示す図である。 図 2に示す光伝送システムは、 図 1に示す光伝送システ ムと比較すると、 光増幅器 1 6 0において光ファイバ 1 5 0と E D F 1 6 2との 間に光力ブラ 1 6 6が備えられ、 光ファイバ 1 5 4を介して光力ブラ 1 6 6と送 信局側の通信装置に構成される励起光源 1 7 0とが接続されるとともに、 送信局 側の通信装置において、 励起光源 1 0 2と光増幅器 1 6 0内の光力ブラ 1 6 4と の間に光力ブラ 1 8 0が備えられ、 この光力ブラ 1 8 0に励起光検出部 1 7 2が 接続されている。 また、 光増幅器 2 6 0において光ファイバ 2 5 0と E D F 2 6 2との間に光力プラ 2 6 6が備えられ、 光ファイバ 2 5 4を介して光力プラ 2 6 6と受信局側の通信装置に構成される励起光源 2 7 0と力 S接続されるとともに、 受信局側の通信装置において、 励起光源 2 0 2と光増幅器 2 6 0内の光力プラ 2 6 4との間に光力プラ 2 8 0が備えられ、 この光力プラ 2 8 0に励起光検出部 2 7 2が接続されている。 FIG. 2 is a diagram showing a second configuration example of the optical transmission system having the optical transmission line fault detection system of the present invention. The optical transmission system shown in FIG. 2 is different from the optical transmission system shown in FIG. 1 in that an optical amplifier 1660 is provided between the optical fiber 150 and the EDF 162 in the optical amplifier 160. The optical power bra 16 and the excitation light source 170 included in the communication device on the transmitting station side are connected via the optical fiber 154 and the excitation light source 1 in the communication device on the transmitting station side. An optical power bra 180 is provided between the optical power bra 2 and the optical power bra 16 in the optical amplifier 16 0, and the excitation light detecting unit 17 2 is connected to the optical power bra 180. . In the optical amplifier 260, an optical power plug 266 is provided between the optical fiber 250 and the EDF 262, and the optical power plug 266 and the receiving station side are connected via the optical fiber 254. In the communication device on the receiving station side, the excitation light source 270 and the optical power plug 264 in the optical amplifier 260 are connected to the excitation light source 270 in the communication device. The optical power plug 280 is provided, and the excitation light detecting section 272 is connected to the optical power plug 280.
図 2に示す光伝送システムでは、 図 1に示す光伝送システムと同様、 送信局側 の通信装置から受信局側の通信装置へ信号光が伝送される。 この信号光は、 光フ アイパ 1 5 0、 3 5 0及び 2 5 0を伝送されることになる。 送信局側の通信装置 内の励起光源 1 0 2、 励起光検出部 1 0 4、 障害判定部 1 0 6、 励起光源 1 7 0 及び励起光検出部 1 7 2は、 光ファイバ 1 5 0、 1 5 2及ぴ 1 5 4の障害を検出 する光伝送路障害検出システム (送信側光伝送路障害検出システム) を構成する 。 一方、 受信局側の通信装置内の励起光源 2 0 2、 励起光検出部 2 0 4、 障害判 定部 2 0 6、 励起光源 2 7 0及び励起光検出部 2 7 2は、 光ファイバ 2 5 0、 2 5 2及び 2 5 4の障害を検出する光伝送路障害検出システム (受信側光伝送路障 害検出システム) を構成する。  In the optical transmission system shown in FIG. 2, similarly to the optical transmission system shown in FIG. 1, signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side. This signal light is transmitted through the optical filters 150, 350 and 250. The excitation light source 102, the excitation light detection unit 104, the failure determination unit 106, the excitation light source 170, and the excitation light detection unit 172 in the communication device on the transmitting station side are optical fiber 150, An optical transmission line fault detection system (transmission side optical transmission line fault detection system) that detects 15 2 and 15 4 faults is configured. On the other hand, the excitation light source 202, the excitation light detection unit 204, the failure determination unit 206, the excitation light source 270 and the excitation light detection unit 272 in the communication equipment on the receiving station side are connected to the optical fiber 2 An optical transmission line fault detection system (receiving side optical transmission line fault detection system) that detects 50, 25, and 25 4 faults is configured.
以下、 図 2に示す光伝送システムの動作を、 送信局側の通信装置から受信局側 の通信装置へ信号光が伝送される前に、 光ファイバ 1 5 0、 1 5 2、 1 5 4、 2 5 0、 2 5 2及び 2 5 4の障害を検出する第 3実施例と、 送信局側の通信装置か ら受信局側の通信装置へ信号光が伝送されている最中に、 光ファイバ 1 5 0、 1 5 2、 1 5 4、 2 5 0、 2 5 2及ぴ 2 5 4の障害を検出する第 4実施例とについ て説明する。 Hereinafter, the operation of the optical transmission system shown in FIG. 2 will be described before the optical fibers 150, 152, 154, In the third embodiment for detecting the faults of 250, 255, and 254, and when the signal light is being transmitted from the communication device on the transmitting station side to the communication device on the receiving station side, the optical fiber 1 5 0, 1 A description will be given of a fourth embodiment for detecting a failure of 52, 154, 250, 250 and 254.
まず、 第 3実施例について説明する。 送信側の通信装置内において送信側光伝 送路障害検出システムを構成する励起光源 1 0 2は、 所定の低送出パワーで光を 送信する。 励起光源 1 0 2からの光は、 光力ブラ 1 8 0へ入射される。 光力ブラ 1 8 0は、 例えば損失の小さい波長多重カプラであり、 励起光源 1 0 2からの光 を光ファイバ 1 5 2を介して、 光増幅器 1 6 0内の光力ブラ 1 6 4へ入射する。 光力プラ 1 6 4は、 例えば損失の小さい波長多重力ブラであり、 光ファイバ 1 First, a third embodiment will be described. The pumping light source 102 constituting the transmission-side optical transmission path fault detection system in the transmission-side communication device transmits light with a predetermined low transmission power. Light from the excitation light source 102 is incident on the optical power blur 180. The optical power blur 180 is, for example, a wavelength-division multiplexing coupler having a small loss, and transmits light from the excitation light source 102 to the optical power blur 16 4 in the optical amplifier 160 via the optical fiber 152. Incident. The optical power plug 1 6 4 is, for example, a wavelength-division multiplex power bra with low loss.
5 2からの光を ED F 1 6 2へ入射する。 E D F 1 6 2に入射された光は、 減衰 しながら当該 ED F 1 6 2を通過し、 光力プラ 1 6 6へ入射される。 光力プラ 1Light from 52 is incident on the EDF 16 2. The light incident on the EDF 162 passes through the EDF 162 while being attenuated, and is incident on the optical power plug 166. Light power plastic 1
6 6は、 例えば損失の小さい波長多重カプラであり、 E D F 1 6 2からの光を光 ファイバ 1 5 0へ入射する。 光力ブラ 1 4 0は、 例えば損失の小さい波長多重力 ブラであり、 光ファイバ 1 5 0からの光を励起光検出部 1 0 4へ入射する。 励起光検出部 1 0 4は、 入射される光を検出する。 更に、 励起光検出部 1 0 4 は、 その検出した光のレベルと第 5の所定のレベルとを比較する。 比較結果は、 障害判定部 1 0 6へ送られる。 Reference numeral 66 denotes, for example, a wavelength-division multiplexing coupler having a small loss, and the light from the EDF 162 is incident on the optical fiber 150. The optical power blur 140 is, for example, a wavelength-multiplexed power blur with a small loss, and makes the light from the optical fiber 150 incident on the excitation light detector 104. The excitation light detector 104 detects the incident light. Further, the excitation light detector 104 compares the detected light level with a fifth predetermined level. The comparison result is sent to failure determination unit 106.
障害判定部 1 0 6は、 励起光検出部 1 0 4からの比較結果が、 当該励起光検出 部 1 0 4へ入射される光のレベルが第 5の所定のレベル以上であることを示して いる場合には、 光ファイバ 1 5 0及び 1 5 2が正常であると判定する。 一方、 障 害判定部 1 0 6は、 励起光検出部 1 0 4カゝらの比較結果が、 当該励起光検出部 1 0 4へ入射される光のレベルが第 5の所定のレベル未満であることを示している 場合には、 光ファイバ 1 5 0及ぴ 1 5 2の何れかに障害が生じたと判定する。 励起光源 1 7 0は、 所定の低送出パワーで光を送信する。 なお、 励起光源 1 7 0から送信される光は、 励起光源 1 0 2から送信される光とは異なる波長を有す る。 励起光源 1 7 0からの光は、 光力ブラ 1 6 6へ入射される。 光力ブラ 1 6 6 は、 励起光源 1 7 0からの光を E D F 1 6 2へ入射する。 E D F 1 6 2へ入射さ れた光は、 減衰しながら当該 ED F 1 6 2を通過し、 光力プラ 1 6 4へ入射され る。 光力プラ 1 6 4は、 励起光源 1 7 0から送信され、 光ファイバ 1 5 4、 光力 プラ 1 6 6及ぴ ED F 1 6 2を通過した光を、 光ファイバ 1 5 2へ入射する。 光 力ブラ 1 8 0は、 光ファイバ 1 5 2からの光を励起光検出部 1 7 2へ入射する。 励起光検出部 1 7 2は、 入射される光を検出する。 更に、 励起光検出部 1 7 2 は、 その検出した光のレベルと第 6の所定のレベルとを比較する。 比較結果は、 障害判定部 1 0 6へ送られる。 The failure determination unit 106 indicates that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is equal to or higher than a fifth predetermined level. If there is, the optical fibers 150 and 152 are determined to be normal. On the other hand, the failure determination unit 106 determines that the comparison result of the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is less than the fifth predetermined level. If it indicates that a failure has occurred, it is determined that a failure has occurred in one of the optical fibers 150 and 152. The excitation light source 170 transmits light at a predetermined low transmission power. The light transmitted from the excitation light source 170 has a different wavelength from the light transmitted from the excitation light source 102. Light from the excitation light source 170 enters the optical power blur 1666. The optical power blur 1666 enters the light from the excitation light source 170 into the EDF 162. The light incident on the EDF 162 passes through the EDF 162 while attenuating, and is incident on the optical power plug 164. The optical power plug 16 4 is transmitted from the excitation light source 17 0, passes through the optical fiber 15 4, the optical power plug 16 6 and the EDF 16 2, and enters the optical fiber 15 2 . light The force brush 180 makes the light from the optical fiber 152 incident on the excitation light detecting section 1702. The excitation light detecting section 172 detects the incident light. Further, the excitation light detecting section 172 compares the level of the detected light with a sixth predetermined level. The comparison result is sent to failure determination unit 106.
障害判定部 1 0 6は、 励起光検出部 1 7 2からの比較結果が、 当該励起光検出 部 1 7 2へ入射される光のレベルが第 6の所定のレベル以上であることを示して いる場合には、 光ファイバ 1 5 2及び 1 5 4が正常であると判定する。 一方、 障 害判定部 1 0 6は、 励起光検出部 1 7 2からの比較結果が、 当該励起光検出部 1 7 2へ入射される光のレベルが第 6の所定のレベル未満であることを示している 場合には、 光ファイバ 1 5 2及び 1 5 4の何れかに障害が生じたと判定する。 障害判定部 1 0 6は、 光ファイバ 1 5 0 , 1 5 2及ぴ 1 5 4が正常であると判 定した場合には、 信号光送信部 1 2 0に対して信号光の送信開始を指示するとと もに、 励起光源 1 0 2及ぴ 1 7 0に対して E D F 1 6 2が適切に励起されるレべ ルまで光の送出パワーを増加させるように指示する。 信号光送信部 1 2 0は、 障 害判定部 1 0 6力らの指示に応じて信号光の送信を開始する。 一方、 励起光源 1 0 2及ぴ 1 7 0は、 障害判定部 1 0 6からの指示に応じて E D F 1 6 2が適切に 励起されるレベルまで光励起の送出パヮ一を増加させる。 これにより、 信号光送 信部 1 2 0からの信号光は、 E D F 1 6 2によって増幅されて受信側の通信装置 へ向けて送られることになる。  The failure determination unit 106 indicates that the comparison result from the excitation light detection unit 172 indicates that the level of light incident on the excitation light detection unit 172 is equal to or higher than the sixth predetermined level. If they are present, it is determined that the optical fibers 152 and 154 are normal. On the other hand, the fault determination unit 106 determines that the comparison result from the excitation light detection unit 172 indicates that the level of light incident on the excitation light detection unit 172 is lower than the sixth predetermined level. If it indicates, it is determined that a failure has occurred in one of the optical fibers 152 and 154. When the failure determiner 106 determines that the optical fibers 150, 152 and 154 are normal, it starts transmitting the signal light to the signal light transmitter 120. At the same time, it instructs the pump light sources 102 and 170 to increase the light transmission power to a level at which the EDF 162 is appropriately pumped. The signal light transmission unit 120 starts transmission of the signal light in response to an instruction from the failure determination unit 106. On the other hand, the excitation light sources 102 and 170 increase the transmission power of the optical excitation to a level at which the EDF 162 is appropriately excited according to the instruction from the failure determination unit 106. As a result, the signal light from the signal light transmitting unit 120 is amplified by the EDF 162 and transmitted to the communication device on the receiving side.
また、 障害判定部 1 0 6は、 光ファイバ 1 5 0、 1 5 2及ぴ 1 5 4の何れかに 障害が生じたと判定した場合には、 励起光源 1 0 2及び 1 7 0に対して光の送信 停止を指示する。 励起光源 1 0 2及び 1 7 0は、 この指示に応じて光の送信を停 止する。  In addition, when the failure determination unit 106 determines that a failure has occurred in any of the optical fibers 150, 152, and 154, the failure determination unit 106 responds to the pump light sources 102 and 170. Instructs to stop transmitting light. The excitation light sources 102 and 170 stop transmitting light according to this instruction.
一方、 受信側の通信装置内において受信側光伝送路障害検出システムを構成す る励起光源 2 0 2は、 励起光源 1 0 2と同様、 所定の低送出パワーで光を送信す る。 励起光源 2 0 2からの光は、 光力プラ 2 8 0へ入射される。 光力プラ 2 8 0 は、 例えば損失の小さい波長多重力ブラであり、 励起光源 2 0 2からの光を光フ アイパ 2 5 2を介して、 光増幅器 2 6 0内の光力プラ 2 6 4へ入射する。  On the other hand, the pumping light source 202 constituting the receiving side optical transmission line fault detection system in the receiving side communication device transmits light at a predetermined low transmission power, similarly to the pumping light source 102. Light from the excitation light source 202 is incident on the optical power plug 280. The optical power plug 280 is, for example, a low-loss wavelength multiplexing power bra. The optical power plug 280 in the optical amplifier 260 receives the light from the excitation light source 202 via the optical filter 255. It is incident on 4.
光力ブラ 2 6 4は、 例えば損失の小さい波長多重力ブラであり、 光ファイバ 2 5 2からの光を E D F 2 6 2へ入射する。 E D F 2 6 2に入射された光は、 減衰 しながら当該 E D F 2 6 2を通過し、 光力プラ 2 6 6へ入射される。 光力ブラ 2The optical power bra 2 6 4 is, for example, a wavelength-multiplexed power bra with a small loss. The light from 52 enters the EDF 26 2. The light incident on the EDF 262 passes through the EDF 262 while being attenuated, and is incident on the optical power plug 266. Light Bra 2
6 6は、 例えば損失の小さい波長多重カプラであり、 E D F 2 6 2からの光を光 ファイバ 2 5 0へ入射する。 光力ブラ 2 4 0は、 例えば損失の小さい波長多重力 ブラであり、 光ファイバ 2 5 0からの光を励起光検出部 2 0 4へ入射する。 励起光検出部 2 0 4は、 入射される光を検出する。 更に、 励起光検出部 2 0 4 は、 その検出した光のレベルと第 7の所定のレベルとを比較する。 比較結果は、 障害判定部 2 0 6へ送られる。 Reference numeral 66 denotes, for example, a wavelength-division multiplexing coupler having a small loss, and the light from the EDF 262 is incident on the optical fiber 250. The optical power blur 240 is, for example, a wavelength-multiplexed power blur with a small loss, and makes light from the optical fiber 250 incident on the excitation light detector 204. The excitation light detector 204 detects the incident light. Further, the excitation light detector 204 compares the detected light level with a seventh predetermined level. The comparison result is sent to the failure determination unit 206.
障害判定部 2 0 6は、 励起光検出部 2 0 4からの比較結果が、 当該励起光検出 部 2 0 4へ入射される光のレベルが第 7の所定のレベル以上であることを示して いる場合には、 光ファイバ 2 5 0及ぴ 2 5 2が正常であると判定する。 一方、 障 害判定部 2 0 6は、 励起光検出部 2 0 4力らの比較結果が、 当該励起光検出部 2 0 4へ入射される光のレベルが第 7の所定のレベル未満であることを示している 場合には、 光ファイバ 2 5 0及び 2 5 2の何れかに障害が生じたと判定する。 励起光源 2 7 0は、 所定の低送出パワーで光を送信する。 なお、 励起光源 2 7 0カゝら送信される光は、 励起光源 2 0 2から送信される光とは異なる波長を有す る。 励起光源 2 7 0からの光は、 光力プラ 2 6 6へ入射される。 光力プラ 2 6 6 は、 励起光源 2 7 0からの光を E D F 2 6 2へ入射する。 E D F 2 6 2へ入射さ れた光は、 当該 E D F 2 6 2を通過し、 光力プラ 2 6 4へ入射される。 光力プラ 2 6 4は、 励起光源 2 7 0から送信され、 光ファイバ 2 5 4、 光力プラ 2 6 6及 ぴ E D F 2 6 2を通過した光を、 光ファイバ 2 5 2へ人射する。 光力プラ 2 8 0 は、 光ファイバ 2 5 2からの光を励起光検出部 2 7 2へ入射する。  The failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is equal to or higher than a seventh predetermined level. If there is, the optical fibers 250 and 250 are determined to be normal. On the other hand, the failure determination unit 206 determines that the comparison result of the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is lower than the seventh predetermined level. If this indicates that a failure has occurred in any of the optical fibers 250 and 252. The excitation light source 270 transmits light at a predetermined low transmission power. The light transmitted from the excitation light source 270 has a different wavelength from the light transmitted from the excitation light source 202. Light from the excitation light source 270 is incident on the optical power plug 266. The optical power plug 266 inputs the light from the excitation light source 270 to the EDF 262. The light incident on the EDF 262 passes through the EDF 262 and is incident on the optical power plug 264. The optical power plug 264 is transmitted from the excitation light source 270 and passes through the optical fiber 254, the optical power plug 266, and the EDF 262 to direct the light to the optical fiber 252. . The optical power plug 280 inputs the light from the optical fiber 252 to the excitation light detector 272.
励起光検出部 2 7 2は、 入射される光を検出する。 更に、 励起光検出部 2 7 2 は、 その検出した光のレベルと第 8の所定のレベルとを比較する。 比較結果は、 障害判定部 2 0 6へ送られる。  The excitation light detector 272 detects the incident light. Further, the excitation light detector 272 compares the level of the detected light with an eighth predetermined level. The comparison result is sent to the failure determination unit 206.
障害判定部 2 0 6は、 励起光検出部 2 7 2からの比較結果が、 当該励起光検出 部 2 7 2へ入射される光のレベルが第 8の所定のレベル以上であることを示して いる場合には、 光ファイバ 2 5 2及び 2 5 4が正常であると判定する。 一方、 障 害判定部 2 0 6は、 励起光検出部 2 7 2からの比較結果が、 当該励起光検出部 2 72へ入射される光のレベルが第 8の所定のレベル未満であることを示して!/ヽる 場合には、 光ファイバ 252及び 254の何れかに障害が生じたと判定する。 障害判定部 206は、 光ファイバ 250, 252及ぴ 254が正常であると判 定した場合には、 励起光源 202及び 270に対して EDF 262が適切に励起 されるレベルまで光励起の送出パワーを增加させるように指示する。 励起光源 2 02及び 270は、 この指示に応じて EDF 262が適切に励起されるレベルま で光励起の送出パワーを増加させる。 これにより、 EDF262を通過する信号 光は増幅されて、 受信側の通信装置へ送られることになる。 The failure determination unit 206 shows that the comparison result from the excitation light detection unit 272 indicates that the level of light incident on the excitation light detection unit 272 is equal to or higher than the eighth predetermined level. If they are present, it is determined that the optical fibers 255 and 254 are normal. On the other hand, the fault determination unit 206 determines that the comparison result from the excitation light detection unit 272 is If it indicates that the level of light incident on 72 is less than the eighth predetermined level, it is determined that a failure has occurred in one of optical fibers 252 and 254. If it is determined that the optical fibers 250, 252, and 254 are normal, the failure determination unit 206 increases the transmission power of the optical pump to the level at which the EDF 262 is appropriately pumped to the pump light sources 202 and 270. Instruct them to do so. Pump light sources 202 and 270 increase the power of the light pump to the level at which EDF 262 is properly pumped in response to this indication. As a result, the signal light passing through the EDF 262 is amplified and sent to the communication device on the receiving side.
また、 障害判定部 206は、 光ファイバ 250、 252及ぴ 254の何れかに 障害が生じたと判定した場合には、 励起光源 202及び 270に対して光の送信 停止を指示する。 励起光源 202及び 270は、 この指示に応じて光の送信を停 止する。  When determining that any of the optical fibers 250, 252, and 254 has failed, the failure determining unit 206 instructs the pump light sources 202 and 270 to stop transmitting light. The excitation light sources 202 and 270 stop transmitting light in response to this instruction.
次に、 第 4実施例について説明する。 送信側の通信装置内において送信側光伝 送路障害検出システムを構成する励起光源 102は、 EDF 162を適切に励起 させて、 信号光送信部 120からの信号光を受信側の通信装置まで伝送させるた めに、 所定の高送出パワーで励起光を送信する。 なお、 この励起光は、 信号光送 信部 120から送信される信号光とは異なる波長を有する。 励起光源 102から の励起光は、 光力ブラ 180を介して光ファイバ 152を伝送され、 光増幅器 1 60内の光力プラ 164へ入射される。  Next, a fourth embodiment will be described. The pumping light source 102 constituting the transmission side optical transmission line fault detection system in the transmission side communication device appropriately excites the EDF 162 and transmits the signal light from the signal light transmission unit 120 to the reception side communication device. For this purpose, the pump light is transmitted at a predetermined high transmission power. Note that the pump light has a different wavelength from the signal light transmitted from the signal light transmitting unit 120. The excitation light from the excitation light source 102 is transmitted through the optical fiber 152 via the optical power bra 180 and is incident on the optical power plug 164 in the optical amplifier 160.
光力ブラ 164は、 信号光送信部 120力ら送信され、 光力ブラ 140、 光フ アイバ 150、 光力プラ 166及び EDF 162を通過した信号光については受 信側の通信装置へ向けて送る。 また、 光力ブラ 164は、 光ファイバ 152から の励起光については EDF 162へ入射する。 EDF 162に入射された励起光 は、 当該 EDF 162を通過し、 光力プラ 166へ入射される。 光力プラ 166 は、 信号光送信部 120から送信される信号光については ED F 162へ入射し 、 EDF 162からの励起光については光ファイバ 150へ入射する。 光力プラ 140は、 信号光送信部 120から送信される信号光については光ファイバ 15 0へ入射し、 光ファイバ 150からの励起光については励起光検出部 104へ入 射する。 励起光検出部 1 0 4は、 入射される光を検出する。 更に、 励起光検出部 1 0 4 は、 その検出した光のレベルと第 9の所定のレベルとを比較する。 比較結果は、 障害判定部 1 0 6へ送られる。 The optical power bra 164 is transmitted from the signal light transmitting unit 120, and the signal light transmitted through the optical power bra 140, the optical fiber 150, the optical power plug 166, and the EDF 162 is transmitted to the communication device on the receiving side. . Further, the optical power bra 164 enters the EDF 162 with respect to the excitation light from the optical fiber 152. The excitation light that has entered the EDF 162 passes through the EDF 162 and enters the optical power plug 166. The optical power plug 166 enters the EDF 162 for the signal light transmitted from the signal light transmission unit 120, and enters the optical fiber 150 for the excitation light from the EDF 162. The optical power plug 140 enters the optical fiber 150 with respect to the signal light transmitted from the signal light transmitting unit 120, and enters the excitation light detection unit 104 with respect to the excitation light from the optical fiber 150. The excitation light detector 104 detects the incident light. Further, the excitation light detector 104 compares the detected light level with a ninth predetermined level. The comparison result is sent to failure determination unit 106.
障害判定部 1 0 6は、 励起光検出部 1 0 4からの比較結果が、 当該励起光検出 部 1 0 4へ入射される光のレベルが第 9の所定のレベル以上であることを示して いる場合には、 光ファイバ 1 5 0及び 1 5 2が正常であると判定する。 一方、 障 害判定部 1 0 6は、 励起光検出部 1 0 4からの比較結果が、 当該励起光検出部 1 0 4へ入射される光のレベルが第 9の所定のレベル未満であることを示している 場合には、 光ファイバ 1 5 0及ぴ 1 5 2の何れかに障害が生じたと判定する。 励起光源 1 7 0から送信される光は、 励起光源 1 0 2及び信号光送信部 1 2 0 力 ら送信される光とは異なる波長を有する。 この励起光源 1 7 0からの光は、 光 ファイバ 1 5 4を介して光力ブラ 1 6 6へ入射される。 光力ブラ 1 6 6は、 励起 光源 1 7 0からの光を E D F 1 6 2へ入射する。 E D F 1 6 2へ入射された光は 、 当該 E D F 1 6 2を通過し、 光力プラ 1 6 4へ入射される。 光力プラ 1 6 4は 、 励起光源 1 7 0から送信され、 光ファイバ 1 5 4、 光力プラ 1 6 6及ぴ E D F 1 6 2を通過した光を、 光ファイバ 1 5 2へ入射する。 光力プラ 1 8 0は、 光フ アイバ 1 5 2からの光を励起光検出部 1 7 2へ入射する。  The failure determination unit 106 indicates that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is equal to or higher than a ninth predetermined level. If there is, the optical fibers 150 and 152 are determined to be normal. On the other hand, the failure determination unit 106 determines that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is less than the ninth predetermined level. If it indicates, it is determined that a failure has occurred in one of the optical fibers 150 and 152. The light transmitted from the pump light source 170 has a different wavelength from the light transmitted from the pump light source 102 and the signal light transmitter 120. The light from the excitation light source 170 enters the optical power blur 1666 through the optical fiber 154. The optical power blur 1666 makes the light from the excitation light source 170 enter the EDF162. The light incident on the ED 162 passes through the ED 162 and is incident on the optical power plug 164. The optical power plug 16 4 is transmitted from the excitation light source 17 0, passes through the optical fiber 15 4, the optical power plug 16 6 and the EDF 16 2, and enters the optical fiber 15 2. The optical power plug 180 makes the light from the optical fiber 152 incident on the excitation light detection unit 1702.
励起光検出部 1 7 2は、 入射される光を検出する。 更に、 励起光検出部 1 7 2 は、 その検出した光のレベルと第 1 0の所定のレベルとを比較する。 比較結果は 、 障害判定部 1 0 6へ送られる。  The excitation light detecting section 172 detects the incident light. Further, the excitation light detecting section 172 compares the detected light level with the 10th predetermined level. The comparison result is sent to the failure determination unit 106.
障害判定部 1 0 6は、 励起光検出部 1 7 2からの比較結果が、 当該励起光検出 部 1 7 2へ入射される光のレベルが第 1 0の所定のレベル以上であることを示し ている場合には、 光ファイバ 1 5 2及び 1 5 4が正常であると判定する。 一方、 障害判定部 1 0 6は、 励起光検出部 1 7 2からの比較結果が、 当該励起光検出部 1 7 2へ Altされる光のレベルが第 1 0の所定のレベル未満であることを示して いる場合には、 光ファイバ 1 5 2及び 1 5 4の何れかに障害が生じたと判定する 障害判定部 1 0 6は、 光ファイバ 1 5 0、 1 5 2及ぴ 1 5 4の何れかに障害が 生じたと判定した場合には、 信号光送信部 1 2 0に対して信号光の送信停止を指 示するとともに、 励起光源 1 0 2及び 1 7 0に対して励起光の送信停止を指示す る。 信号光送信部 1 2 0は、 P章害判定部 1 0 6からの指示に応じて信号光の送信 を停止する。 一方、 励起光源 1 0 2及び 1 7 0は、 障害判定部 1 0 6からの指示 に応じて励起光の送信を停止する。 The failure determination unit 106 shows that the comparison result from the excitation light detection unit 172 indicates that the level of the light incident on the excitation light detection unit 172 is equal to or higher than the 10th predetermined level. If it is, it is determined that the optical fibers 152 and 154 are normal. On the other hand, the failure determination unit 106 determines that the comparison result from the excitation light detection unit 172 indicates that the level of the light Alt to the excitation light detection unit 172 is lower than the predetermined level of 10th. Indicates that a failure has occurred in one of the optical fibers 152 and 154.The failure determination unit 106 determines that the optical fibers 150, 152 and 154 If it is determined that a failure has occurred in any of them, the signal light transmitting unit 120 is instructed to stop transmitting the signal light. And instruct the excitation light sources 102 and 170 to stop transmitting the excitation light. The signal light transmitting unit 120 stops transmitting the signal light in response to an instruction from the chapter P damage determining unit 106. On the other hand, the excitation light sources 102 and 170 stop transmitting the excitation light in response to an instruction from the failure determination unit 106.
また、 障害判定部 1 0 6は、 光ファイバ 1 5 0、 1 5 2及び 1 5 4が正常であ ると判定した場合には、 信号光送信部 1 2 0、 励起光源 1 0 2及び 1 7 0に対す る指示を行わない。 このため、 信号光送信部 1 2 0は信号光の送信を継続し、 励 起光源 1 0 2及ぴ 1 7 0は励起光の送信を継続する。  Further, when the failure determining unit 106 determines that the optical fibers 150, 152, and 154 are normal, the signal light transmitting unit 120, the pump light sources 102, and 1 Do not give instructions to 70. For this reason, the signal light transmitting unit 120 continues transmitting the signal light, and the excitation light sources 102 and 170 continue transmitting the excitation light.
一方、 受信側の通信装置内において受信側光伝送路障害検出システムを構成す る励起光源 2 0 2は、 E D F 2 6 2を適切に励起させて、 信号光送信部 1 2 0か らの信号光を受信側の通信装置まで伝送させるために、 所定の高送出パワーで励 起光を送信する。 なお、 この励起光は、 信号光送信部 1 2 0から送信される信号 光とは異なる波長を有する。 励起光源 2 0 2からの励起光は、 光力プラ 2 8 0を 介して光ファイバ 2 5 2を伝送され、 光増幅器 2 6 0内の光力ブラ 2 6 4へ入射 される。  On the other hand, the pumping light source 202 constituting the optical transmission line fault detection system on the receiving side in the communication device on the receiving side appropriately excites the EDF 262 to generate a signal from the signal light transmitting section 120. In order to transmit the light to the communication device on the receiving side, the excitation light is transmitted at a predetermined high transmission power. The pump light has a wavelength different from that of the signal light transmitted from the signal light transmitter 120. Excitation light from the excitation light source 202 is transmitted through the optical fiber 252 via the optical power plug 280 and is incident on the optical power bra 264 in the optical amplifier 260.
光力ブラ 2 6 4は、 信号光送信部 1 2 0力 ら送信され、 光力ブラ 1 4 0、 光フ アイパ 1 5 0、 光力ブラ 1 6 6、 E D F 1 6 2、 光力ブラ 1 6 4及ぴ光ファイバ 3 5 0を通過した信号光と、 励起光源 2 0 2から送信され、 光ファイバ 2 5 2を 通過した励起光とを、 E D F 2 6 2へ入射する。 E D F 2 6 2に入射された信号 光と励起光は、 当該 E D F 2 6 2を通過し、 更に光ファイバ 2 5 0を伝送されて 、 光力プラ 2 6 6へ入射される。  The optical power bra 2 6 4 is transmitted from the signal light transmitting unit 120 power, the optical power bra 1 40, the optical fiber 150, the optical power bra 1 66, the EDF 1 62, the optical power bra 1 The signal light passing through the optical fiber 350 and the pump light transmitted from the pumping light source 202 and passing through the optical fiber 250 enter the EDF 262. The signal light and the pump light incident on the EDF 262 pass through the EDF 262, are further transmitted through the optical fiber 250, and are incident on the optical power plug 266.
光力ブラ 2 6 6は、 信号光及び励起光を光力ブラ 2 4 0へ入射する。 光力プラ 2 4 0は、 信号光送信部 1 2 0から送信される信号光については信号光受信部 2 2 0へ入射し、 励起光源 2 0 2からの励起光については励起光検出部 2 0 4へ入 射する。  The optical power bra 2 66 causes the signal light and the excitation light to enter the optical power bra 2 40. The optical power plug 240 receives the signal light transmitted from the signal light transmitting unit 120 into the signal light receiving unit 220, and receives the pump light from the pump light source 202 into the pump light detecting unit 2 Inject into 0 4.
励起光検出部 2 0 4は、 入射される光を検出する。 更に、 励起光検出部 2 0 4 ' は、 その検出した光のレベルと第 1 1の所定のレベルとを比較する。 比較結果は 、 障害判定部 2 0 6へ送られる。  The excitation light detector 204 detects the incident light. Further, the excitation light detector 204 ′ compares the detected light level with a first predetermined level. The comparison result is sent to failure determination unit 206.
障害判定部 2 0 6は、 励起光検出部 2 0 4からの比較結果が、 当該励起光検出 部 2 0 4へ入射される光のレベルが第 1 1の所定のレベル以上であることを示し ている場合には、 光ファイバ 2 5 0及ぴ 2 5 2が正常であると判定する。 一方、 障害判定部 2 0 6は、 励起光検出部 2 0 4からの比較結果が、 当該励起光検出部 2 0 4へ入射される光のレベルが第 1 1の所定のレベル未満であることを示して いる場合には、 光ファイバ 2 5 0及び 2 5 2の何れかに障害が生じたと判定する 励起光源、 2 7 0は、 所定の低送出パワーで光を送信する。 なお、 励起光源 2 7 0力ら送信される光は、 励起光源 2 0 2及び信号光送信部 1 2 0力ら送信される 光とは異なる波長を有する。 励起光源 2 7 0からの光は、 光ファイバ 2 5 4を介 して光力プラ 2 6 6へ入射される。 光力プラ 2 6 6は、 励起光源 2 7 0からの光 を E D F 2 6 2へ入射する。 E D F 2 6 2へ入射された光は、 当該 E D F 2 6 2 を通過し、 光力プラ 2 6 4へ入射される。 光力プラ 2 6 4は、 励起光源 1 7 0か ら送信され、 光ファイバ 2 5 4、 光力プラ 2 6 6及ぴ E D F 2 6 2を通過した光 を、 光ファイバ 2 5 2へ入射する。 光力プラ 2 8 0は、 光ファイバ 2 5 2からの 光を励起光検出部 2 7 2へ入射する。 The failure determination unit 206 determines whether the comparison result from the excitation light detection unit 204 is If the level of light incident on the section 204 is equal to or higher than the first predetermined level, it is determined that the optical fibers 250 and 250 are normal. On the other hand, the failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is less than the first predetermined level. Indicates that a failure has occurred in any of the optical fibers 250 and 250. The pumping light source 270 transmits light at a predetermined low transmission power. Note that the light transmitted from the excitation light source 270 has a different wavelength from the light transmitted from the excitation light source 202 and the signal light transmission unit 120. The light from the excitation light source 270 enters the optical power plug 266 via the optical fiber 254. The optical power plug 266 inputs the light from the excitation light source 270 to the EDF 262. The light incident on the EDF 262 passes through the EDF 262 and enters the optical power plug 264. The optical power plug 264 is transmitted from the excitation light source 170 and passes through the optical fiber 254, the optical power plug 266 and the EDF 262, and enters the optical fiber 252. . The optical power plug 280 makes the light from the optical fiber 252 incident on the excitation light detector 272.
励起光検出部 2 7 2は、 入射される光を検出する。 更に、 励起光検出部 2 7 2 は、 その検出した光のレべノレと第 1 2の所定のレベルとを比較する。 比較結果は 、 P章害判定部 2 0 6へ送られる。  The excitation light detector 272 detects the incident light. Further, the excitation light detector 272 compares the level of the detected light with a predetermined second level. The comparison result is sent to the chapter P damage determination unit 206.
障害判定部 2 0 6は、 励起光検出部 2 7 2からの比較結果が、 当該励起光検出 部 2 7 2へ入射される光のレベルが第 1 2の所定のレベル以上であることを示し ている場合には、 光ファイバ 2 5 2及ぴ 2 5 4が正常であると判定する。 一方、 障害判定部 2 0 6は、 励起光検出部 2 7 2からの比較結果が、 当該励起光検出部 2 7 2へ入射される光のレベルが第 1 2の所定のレベル未満であることを示して いる場合には、 光ファイバ 2 5 2及ぴ 2 5 4の何れかに障害が生じたと判定する 障害判定部 2 0 6は、 光ファイバ 2 5 0 , 2 5 2及び 2 5 4が正常であると判 定した場合には、 励起光源 2 0 2及び 2 7 0に対する指示を行わない。 このため 、 励起光、源 2 0 2及び 2 7 0は、 励起光の送信を継続する。  The failure determination unit 206 shows that the comparison result from the excitation light detection unit 272 indicates that the level of light incident on the excitation light detection unit 272 is equal to or higher than the first predetermined level. If it is, it is determined that the optical fibers 255 and 254 are normal. On the other hand, the failure determination unit 206 determines that the comparison result from the excitation light detection unit 272 indicates that the level of the light incident on the excitation light detection unit 272 is less than the first predetermined level. Indicates that a failure has occurred in one of the optical fibers 252 and 2554.The failure determination unit 206 determines that the optical fibers 250, 252 and 254 If it is determined to be normal, no instructions are given to the excitation light sources 202 and 270. Therefore, the pump light, the sources 202 and 270 continue transmitting the pump light.
また、 障害判定部 2 0 6は、 光ファイバ 2 5 0、 2 5 2及ぴ 2 5 4の何れかに P章害が生じたと判定した場合には、 励起光源 2 0 2及ぴ 2 7 0に対して光の送信 停止を指示する。 励起光源 2 0 2及び 2 7 0は、 この指示に応じて光の送信を停 止する。 このため、 励起光が光ファイバ 2 5 0、 2 5 2及ぴ 2 5 4及ぴを伝送さ れることはない。 また、 信号光送信部 1 2 0から信号光が送信されたとしても、 E D F 2 6 2は励起されないため、 当該信号光が光ファイバ 2 5 0を伝送される ことはない。 In addition, the failure determination unit 206 is connected to one of the optical fibers 250, 250 and 250. If it is determined that chapter P damage has occurred, an instruction is issued to the excitation light sources 202 and 270 to stop transmitting light. The excitation light sources 202 and 270 stop transmitting light according to this instruction. For this reason, the pump light is not transmitted through the optical fibers 250, 250, and 254. Further, even if the signal light is transmitted from the signal light transmitting unit 120, the EDF 262 is not excited, and thus the signal light is not transmitted through the optical fiber 250.
図 3は、 本発明の光伝送路障害検出システムを有する光伝送システムの第 3の 構成例を示す図である。 図 3に示す光伝送システムは、 図 1に示す光伝送システ ムと比較すると、 送信側の通信装置において、 励起光源 1 0 2が光力ブラ 1 4 0 に接続されるとともに、 励起光検出部 1 0 4が光力ブラ 1 8 2を介して光フアイ バ 1 8 2に接続されている。 また、 光力プラ 1 8 2には励起光源 1 7 4が接続さ れている。 一方、 受信側の通信装置において、 励起光源 2 0 2が光力プラ 2 4 0 に接続されるとともに、 励起光検出部 2 0 4が光力ブラ 2 8 2を介して光フアイ バ 2 8 2に接続されている。 また、 光力プラ 2 8 2には励起光源 2 7 4が接続さ ている。  FIG. 3 is a diagram showing a third configuration example of the optical transmission system having the optical transmission line fault detection system of the present invention. The optical transmission system shown in FIG. 3 is different from the optical transmission system shown in FIG. 1 in that the excitation light source 102 is connected to the optical power blur 140 and the excitation light detector 104 is connected to the optical fiber 18 2 through the optical power bra 18. An excitation light source 174 is connected to the optical power plug 182. On the other hand, in the communication device on the receiving side, the excitation light source 202 is connected to the optical power plug 240, and the excitation light detection unit 204 is connected to the optical fiber 282 via the optical power blur 282. It is connected to the. An excitation light source 274 is connected to the optical power plug 282.
図 3に示す光伝送システムでは、 図 1に示す光伝送システムと同様、 送信局側 の通信装置から受信局側の通信装置へ信号光が伝送される。 この信号光は、 光フ アイバ 1 5 0及び 2 5 0を伝送されることになる。 送信局側の通信装置内の励起 光源 1 0 2、 励起光検出部 1 0 4及ぴ障害判定部 1 0 6は、 光ファイバ 1 5 0及 び 1 5 2の障害を検出する光伝送路障害検出システム (送信側光伝送路障害検出 システム) を構成する。 一方、 受信局側の通信装置内の励起光源 2 0 2、 励起光 検出部 2 0 4及び障害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2の障害を検 出する光伝送路障害検出システム (受信側光伝送路障害検出システム) を構成す る。  In the optical transmission system shown in FIG. 3, as in the optical transmission system shown in FIG. 1, signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side. This signal light is transmitted through the optical fibers 150 and 250. Excitation light source 102, excitation light detector 104, and failure determiner 106 in the communication equipment on the transmitting station side are optical transmission line failures that detect failures of optical fibers 150 and 152. Configure the detection system (transmission side optical transmission line fault detection system). On the other hand, the excitation light source 202, the excitation light detection unit 204, and the failure determination unit 206 in the communication device on the receiving station side are optical transmission lines that detect failures in the optical fibers 250 and 252. Construct a failure detection system (optical transmission line failure detection system on the receiving side).
以下、 図 3に示す光伝送システムの動作を、 送信局側の通信装置から受信局側 の通信装置へ信号光が伝送される前に、 光ファイバ 1 5 0、 1 5 2、 2 5 0及び 2 5 2の障害を検出する第 5実施例と、 送信局側の通信装置から受信局側の通信 装置へ信号光が伝送されている最中に、 光ファイバ 1 5 0、 1 5 2、 2 5 0及ぴ 2 5 2の障害を検出する第 6実施例とについて説明する。 まず、 第 5実施例について説明する。 送信側の通信装置内において送信側光伝 送路障害検出システムを構成する励起光源 1 0 2は、 所定の低送出パワーで光を 送信する。 励起光源 1 0 2からの光は、 光力ブラ 1 4 0へ入射される。 光力ブラ 1 4 0は、 例えば損失の小さい波長多重カプラであり、 励起光源 1 0 2からの光 を光ファイバ 1 5 0を介して、 光増幅器 1 6 0内の E D F 1 6 2へ入射する。 E D F 1 6 2に入射された光は、 減衰しながら当該 E D F 1 6 2を通過し、 光力プ ラ 1 6 4へ入射される。 光力ブラ 1 6 4は、 例えば損失の小さい波長多重カプラ であり、 E D F 1 6 2からの光を光ファイバ 1 5 2へ入射する。 光力プラ 1 8 2 は、 例えば損失の小さい波長多重カプラであり、 光ファイバ 1 5 2からの光を励 起光検出部 1 0 4へ入射する。 Hereinafter, the operation of the optical transmission system shown in FIG. 3 will be described before the optical fibers 150, 152, 250 and 250 are transmitted before the signal light is transmitted from the communication device on the transmitting station side to the communication device on the receiving station side. In the fifth embodiment for detecting the failure of the second and fifth optical fibers, and while the signal light is being transmitted from the communication device on the transmitting station side to the communication device on the receiving station side, the optical fibers 150, 152, 2 A description will be given of a sixth embodiment for detecting 50 and 25 failures. First, a fifth embodiment will be described. The pumping light source 102 constituting the transmission-side optical transmission path fault detection system in the transmission-side communication device transmits light with a predetermined low transmission power. Light from the excitation light source 102 is incident on the optical power bra 140. The optical power bra 140 is, for example, a low-loss wavelength multiplexing coupler, and the light from the pump light source 102 is incident on the EDF 16 2 in the optical amplifier 160 via the optical fiber 150. . The light incident on the EDF 162 passes through the EDF 162 while being attenuated, and is incident on the optical power coupler 164. The optical power bra 16 4 is, for example, a low-loss wavelength multiplexing coupler, and the light from the EDF 16 2 is incident on the optical fiber 15 2. The optical power plug 182 is, for example, a wavelength-division multiplex coupler with a small loss, and makes the light from the optical fiber 152 incident on the excitation light detecting unit 104.
励起光検出部 1 0 4は、 入射される光を検出する。 更に、 励起光検出部 1 0 4 は、 その検出した光のレベルと第 1 3の所定のレベルとを比較する。 比較結果は 、 障害判定部 1 0 6へ送られる。  The excitation light detector 104 detects the incident light. Further, the excitation light detector 104 compares the detected light level with a first predetermined third level. The comparison result is sent to the failure determination unit 106.
P章害判定部 1 0 6は、 励起光検出部 1 0 4からの比較結果が、 当該励起光検出 部 1 0 4へ入射される光のレベルが第 1 3の所定のレベル以上であることを示し ている場合には、 光ファイバ 1 5 0及び 1 5 2が正常であると判定する。 一方、 P章害判定部 1 0 6は、 励起光検出部 1 0 4からの比較結果が、 当該励起光検出部 1 0 4へ入射される光のレベルが第 1 3の所定のレベル未満であることを示して いる場合には、 光ファイバ 1 5 0及び 1 5 2の何れかに障害が生じたと判定する 障害判定部 1 0 6は、 光ファイバ 1 5 0及ぴ 1 5 2が正常であると判定した場 合には、 信号光送信部 1 2 0に対して信号光の送信開始を指示するとともに、 励 起光源 1 0 2及ぴ 1 7 4に対して E D F 1 6 2が適切に励起されるレベルまで光 の送出パワーを増加させて励起光の送信を開始するように指示する。 信号光送信 部 1 2 0は、 障害判定部 1 0 6からの指示に応じて信号光の送信を開始する。 一 方、 励起光源 1 0 2及び 1 7 4は、 障害判定部 1 0 6からの指示に応じて E D F 1 6 2が適切に励起されるレベルまで光励起の送出パワーを増カ卩させて励起光の 送信を開始する。 なお、 励起光源 1 7 4力 ら送信される光は、 励起光源 1 0 2及 び信号光送信部 1 2 0から送信される光とは異なる波長を有する。 励起光源 1 7 4からの光は、 光力プラ 1 8 2、 光ファイバ 1 5 2及び光力プラ 1 6 4を通過し て、 E D F 1 6 2を励起する。 これにより、 信号光送信部 1 2 0からの信号光は 増幅されて受信側の通信装置へ向けて送られることになる。 The P-part damage determination unit 106 determines that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is equal to or higher than the predetermined third level. If it indicates, it is determined that the optical fibers 150 and 152 are normal. On the other hand, the P-part damage determination unit 106 determines that the comparison result from the excitation light detection unit 104 indicates that the level of light incident on the excitation light detection unit 104 is less than the first predetermined level. If it indicates that one of the optical fibers 150 and 152 has failed, the failure determiner 106 determines that the optical fibers 150 and 152 are normal. If it is determined that there is, the signal light transmission unit 120 is instructed to start transmitting the signal light, and the EDF 162 is appropriately transmitted to the excitation light sources 102 and 174. It instructs to start transmitting the pump light by increasing the light transmission power to the level to be pumped. The signal light transmitting unit 120 starts transmission of the signal light in response to an instruction from the failure determining unit 106. On the other hand, the pumping light sources 102 and 174 increase the pumping power of the optical pumping to a level at which the EDF 162 is appropriately pumped according to the instruction from the failure determination unit 106, and Start sending. The light transmitted from the excitation light source 174 has a different wavelength from the light transmitted from the excitation light source 102 and the signal light transmission unit 120. Excitation light source 1 7 The light from 4 passes through the optical power plug 18 2, the optical fiber 15 2 and the optical power plug 16 4 to excite the EDF 16 2. As a result, the signal light from the signal light transmission unit 120 is amplified and sent to the communication device on the receiving side.
また、 障害判定部 1 0 6は、 光ファイバ 1 5 0及び 1 5 2の何れかに障害が生 じたと判定した場合には、 励起光源 1 0 2に対して光の送信停止を指示する。 励 起光源 1 0 2は、 この指示に応じて光の送信を停止する。  When determining that a failure has occurred in one of the optical fibers 150 and 152, the failure determination unit 106 instructs the pump light source 102 to stop transmitting light. The excitation light source 102 stops transmitting light according to this instruction.
一方、 受信側の通信装置内におレ、て受信側光伝送路障害検出システムを構成す る励起光源 2 0 2は、 所定の低送出パワーで光を送信する。 励起光源 2 0 2から の光は、 光力ブラ 2 4 0へ入射される。 光力ブラ 2 4 0は、 例えば損失の小さい 波長多重カプラであり、 励起光源 2 0 2からの光を光ファイバ 2 5 0を介して、 光増幅器 2 6 0内の E D F 2 6 2へ入射する。 E D F 2 6 2に入射された光は、 減衰しながら当該 E D F 2 6 2を通過し、 光力プラ 2 6 4へ入射される。 光力プ ラ 2 6 4は、 例えば損失の小さレ、波長多重力プラであり、 E D F 2 6 2からの光 を光ファイバ 2 5 2へ入射する。 光力プラ 2 8 2は、 例えば損失の小さい波長多 重力ブラであり、 光ファイバ 2 5 2からの光を励起光検出部 2 0 4へ入射する。 励起光検出部 2 0 4は、 入射される光を検出する。 更に、 励起光検出部 2 0 4 は、 その検出した光のレべノレと第 1 4の所定のレベルとを比較する。 比較結果は 、 障害判定部 2 0 6へ送られる。 . 障害判定部 2 0 6は、 励起光検出部 2 0 4からの比較結果が、 当該励起光検出 部 2 0 4へ入射される光のレベルが第 1 4の所定のレベル以上であることを示し ている場合には、 光ファイバ 2 5 0及び 2 5 2が正常であると判定する。 一方、 障害判定部 2 0 6は、 励起光検出部 2 0 4からの比較結果が、 当該励起光検出部 2 0 4へ入射される光のレベルが第 1 4の所定のレベル未満であることを示して いる場合には、 光ファイバ 2 5 0及び 2 5 2の何れかに障害が生じたと判定する 障害判定部 2 0 6は、 光ファイバ 2 5 0及ぴ 2 5 2が正常であると判定した場 合には、 励起光源、 2 0 2及び 2 7 4に対して E D F 2 6 2が適切に励起されるレ ベルまで光の送出パワーを増加させて励起光の送信を開始するように指示する。 励起光源 2 0 2及び 2 7 4は、 障害判定部 2 0 6からの指示に応じて E D F 2 6 2が適切に励起されるレベルまで光励起の送出パワーを増加させて励起光の送信 を開始する。 なお、 励起光源 2 7 4カゝら送信される光は、 励起光源 2 0 2及び信 号光送信部 1 2 0から送信される光とは異なる波長を有する。 励起光、源 2 7 4か らの光は、 光力プラ 2 8 2、 光ファイバ 2 5 2及ぴ光力プラ 2 6 4を通過して、 E D F 2 6 2を励起する。 これにより、 信号光送信部 2 2 0力 らの信号光は、 EOn the other hand, in the communication device on the receiving side, the excitation light source 202 constituting the optical transmission line fault detection system on the receiving side transmits light with a predetermined low transmission power. Light from the excitation light source 202 is incident on the optical power blur 240. The optical power blur 240 is, for example, a wavelength-division multiplexing coupler having a small loss. The light from the pump light source 202 is incident on the EDF 262 in the optical amplifier 260 through the optical fiber 250. . The light incident on the EDF 262 passes through the EDF 262 while being attenuated, and is incident on the optical power plug 264. The optical power puller 264 is, for example, a wavelength multiplex power puller with a small loss, and makes the light from the EDF 262 incident on the optical fiber 255. The optical power plug 282 is, for example, a wavelength loss multi-gravity bra with a small loss, and makes the light from the optical fiber 252 incident on the excitation light detector 204. The excitation light detector 204 detects the incident light. Further, the excitation light detector 204 compares the detected light level with a first predetermined level. The comparison result is sent to failure determination unit 206. The failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is equal to or higher than the first predetermined level. If so, the optical fibers 250 and 250 are determined to be normal. On the other hand, the failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of light incident on the excitation light detection unit 204 is lower than the first predetermined level. Indicates that a failure has occurred in one of the optical fibers 250 and 252.The failure determination unit 206 determines that the optical fibers 250 and 252 are normal. If it is determined, increase the light transmission power to the level at which the EDF 262 is appropriately pumped with respect to the pump light sources, 202 and 274, and start transmitting the pump light. Instruct. The excitation light sources 202 and 274 are controlled by the EDF 26 2. The transmission of the pump light is started by increasing the transmission power of the optical pump to a level at which 2 is appropriately pumped. The light transmitted from the excitation light source 274 has a different wavelength from the light transmitted from the excitation light source 202 and the signal light transmission unit 120. The excitation light, light from the source 274, passes through the optical power plug 282, the optical fiber 252 and the optical power plug 264 to excite the EDF 262. As a result, the signal light from the signal light transmitting section 220
D F 2 6 2によって増幅され、 光ファイバ 2 5 0を介して受信側の通信装置へ向 けて送られることになる。 The signal is amplified by the DF 262 and transmitted to the communication device on the receiving side via the optical fiber 250.
また、 障害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2の何れかに障害が生 じたと判定した場合には、 励起光源 2 0 2に対して光の送信停止を指示する。 励 起光源 2 0 2は、 この指示に応じて光の送信を停止する。  When determining that a failure has occurred in any of the optical fibers 250 and 52, the failure determination unit 206 instructs the pump light source 202 to stop transmitting light. The excitation light source 202 stops transmitting light according to this instruction.
次に、 第 6実施例について説明する。 送信側の通信装置において送信側光伝送 路障害検出システムを構成する励起光源 1 0 2は、 E D F 1 6 2を適切に励起さ せて、 信号光送信部 1 2 0からの信号光を受信側の通信装置まで伝送させるため に、 所定の高送出パワーで励起光を送信する。 なお、 この励起光は、 信号光送信 部 1 2 0から送信される信号光とは異なる波長を有する。 励起光源 1 0 2からの 励起光は、 光力プラ 1 4 0を介して光ファイバ 1 5 0を伝送され、 E D F 1 6 2 へ Λ¾"される。 E D F 1 6 2に入射された励起光は、 当該 E D F 1 6 2を通過し Next, a sixth embodiment will be described. The excitation light source 102 constituting the transmission-side optical transmission line fault detection system in the transmission-side communication device appropriately excites the EDF 162 to receive the signal light from the signal light transmission unit 120 on the reception side. The pumping light is transmitted at a predetermined high transmission power in order to transmit the communication light to the communication device. The pump light has a different wavelength from the signal light transmitted from the signal light transmitter 120. The excitation light from the excitation light source 102 is transmitted through the optical fiber 150 through the optical power plug 140 and is transmitted to the EDF 162. The excitation light incident on the EDF 162 is , Passing through the relevant EDF 16 2
、 光力プラ 1 6 4へ入射される。 It is incident on the optical power plug 16 4.
光力ブラ 1 6 4は、 信号光送信部 1 2 0から送信され、 光力ブラ 1 4 0、 光フ アイバ 1 5 0及び E D F 1 6 2を通過した信号光については受信側の通信装置へ 向けて送る。 また、 光力ブラ 1 6 4は、 励起光源 1 0 2から送信され、 光力ブラ 1 4 0、 光ファイバ 1 5 0及ぴ E D F 1 6 2を通過した励起光については光ファ ィバ 1 5 2へ入射する。 光ファイバ 1 5 2に入射された励起光は、 光力ブラ 1 8 The optical power bra 16 4 is transmitted from the signal light transmitting unit 12 0, and the signal light passing through the optical power bra 1 40, the optical fiber 150 5 and the EDF 16 2 is transmitted to the communication device on the receiving side. Send to Further, the optical power bra 16 4 is transmitted from the excitation light source 102, and the optical fiber 150 5 is used for the excitation light passing through the optical power bra 140, the optical fiber 150 and the EDF 16 2. Light is incident on 2. The excitation light that has entered the optical fiber 15 2
2を介して励起光検出部 1 0 4へ入射される。 . The light enters the excitation light detection unit 104 via 2. .
励起光検出部 1 0 4は、 入射される励起光を検出する。 更に、 励起光検出部 1 The excitation light detector 104 detects the incident excitation light. Furthermore, the excitation light detector 1
0 4は、 その検出した励起光のレベルと第 1 5の所定のレベルとを比較する。 比 較結果は、 障害判定部 1 0 6へ送られる。 In step 04, the level of the detected excitation light is compared with a fifteenth predetermined level. The comparison result is sent to the failure determination unit 106.
障害判定部 1 0 6は、 励起光検出部 1 0 4からの比較結果が、 当該励起光検出 部 1 0 4へ A される励起光のレベルが第 1 5の所定のレベル以上であることを 示している場合には、 P章害判定部 1 0 6は、 光ファイバ 1 5 0及び 1 5 2が正常 であると判定する。 一方、 励起光検出部 1 0 4からの比較結果が、 当該励起光検 出部 1 0 4へ入射される励起光のレベルが第 1 5の所定のレベル未満であること を示している場合には、 障害判定部 1 0 6は、 光ファイバ 1 5 0及ぴ 1 5 2の何 れかに障害が生じたと判定する。 The failure determination unit 106 determines that the comparison result from the excitation light detection unit 104 indicates that the level of the excitation light to be applied to the excitation light detection unit 104 is equal to or higher than the 15th predetermined level. In this case, the chapter P damage determination unit 106 determines that the optical fibers 150 and 152 are normal. On the other hand, when the comparison result from the excitation light detection unit 104 indicates that the level of the excitation light incident on the excitation light detection unit 104 is lower than the 15th predetermined level. The failure determination unit 106 determines that a failure has occurred in any of the optical fibers 150 and 152.
障害判定部 1 0 6は、 光ファイバ 1 5 0及ぴ 1 5 2の何れかに障害が生じたと 判定した場合には、 信号光送信部 1 2 0に対して信号光の送信停止を指示すると ともに、 励起光源 1 0 2及び 1 7 4に対して励起光の送信停止を指示する。 信号 光送信部 1 2 0は、 障害判定部 1 0 6からの指示に応じて信号光の送信を停止す る。 一方、 励起光源 1 0 2及び 1 7 4は、 障害判定部 1 0 6からの指示に応じて 励起光の送信を停止する。  When the failure determiner 106 determines that a failure has occurred in any of the optical fibers 150 and 152, it instructs the signal light transmitter 120 to stop transmitting signal light. Both of them instruct the excitation light sources 102 and 174 to stop transmitting the excitation light. The signal light transmitting unit 120 stops transmission of the signal light in response to an instruction from the failure determination unit 106. On the other hand, the excitation light sources 102 and 174 stop transmitting the excitation light in response to the instruction from the failure determination unit 106.
一方、 障害判定部 1 0 6は、 光ファイバ 1 5 0及ぴ 1 5 2が正常であると判定 した場合には、 信号光送信部 1 2 0及び励起光源 1 0 2及び 1 7 4に対する指示 を行わない。 このため、 信号光送信部 1 2 0は信号光の送信を継続し、 励起光源 1 0 2及ぴ 1 7 4は励起光の送信を継続する。  On the other hand, when the failure determiner 106 determines that the optical fibers 150 and 152 are normal, the fault determiner 106 issues an instruction to the signal light transmitter 120 and the pump light sources 102 and 174. Do not do. For this reason, the signal light transmitting unit 120 continues transmitting the signal light, and the pump light sources 102 and 174 continue transmitting the pump light.
. 一方、 受信側の通信装置内において受信側光伝送路障害検出システムを構成す る励起光源 2 0 2及び 2 7 4は、 励起光源 1 0 2及ぴ 1 7 4と同様、 E D F 2 6 2を適切に励起させて、 信号光送信部 1 2 0からの信号光を受信側の通信装置ま で伝送させるために、 所定の高送出パヮ一で励起光を送信する。 なお、 この励起 光は、 信号光送信部 1 2 0から送信される信号光とは異なる波長を有する。 励起 光源 2 0 2からの励起光は、 光力プラ 2 4 0を介して光ファイバ 2 5 0を伝送さ れ、 E D F 2 6 2へ入射される。 E D F 2 6 2に入射された励起光は、 更に光力 ブラ 2 6 4へ入射される。  On the other hand, in the communication equipment on the receiving side, the excitation light sources 202 and 274 constituting the optical transmission line fault detection system on the reception side are the same as the excitation light sources 102 and 174, and the EDF 266 In order to appropriately excite the signal and transmit the signal light from the signal light transmitting unit 120 to the communication device on the receiving side, the pumping light is transmitted at a predetermined high transmission rate. The pump light has a wavelength different from that of the signal light transmitted from the signal light transmitter 120. Excitation light from the excitation light source 202 is transmitted through the optical fiber 250 through the optical power plug 240 and is incident on the EDF 262. The excitation light incident on the EDF 262 is further incident on the optical power blur 264.
光力ブラ 2 6 4は、 信号光送信部 1 2 0力ら送信され、 光力ブラ 1 4 0、 光フ アイバ 1 5 0、 E D F 1 6 2、 光力プラ 1 6 4及ぴ光ファイバ 3 5 0を通過した 信号光については E D F 2 6 2へ入射する。 また、 光力プラ 2 6 4は、 励起光源 2 0 2から送信され、 光力プラ 2 4 0、 光ファイバ 2 5 0及び ED F 2 6 2を通 過した励起光については光ファイバ 2 5 2へ入射する。 光ファイバ 2 5 2に入射 された励起光は、 光力ブラ 2 8 2を介して励起光検出部 2 0 4へ入射される。 励起光検出部 2 0 4は、 入射される励起光を検出する。 更に、 励起光検出部 2 0 4は、 その検出した励起光のレベルと第 1 6の所定のレベルとを比較する。 比 較結果は、 P章害判定部 2 0 6へ送られる。 The optical power bra 2 64 is transmitted from the signal light transmitting unit 120, the optical power bra 140, the optical fiber 150, the EDF 16 2, the optical power 16 4 and the optical fiber 3 The signal light passing through 50 enters the EDF 262. The optical power plug 264 is transmitted from the excitation light source 202, and the excitation light transmitted through the optical power plug 240, the optical fiber 250, and the EDF 262 is transmitted through the optical fiber 250. Incident on. The excitation light incident on the optical fiber 252 is incident on the excitation light detection unit 204 via the optical power blur 282. The excitation light detector 204 detects the incident excitation light. Further, the excitation light detector 204 compares the detected level of the excitation light with a 16th predetermined level. The comparison result is sent to the Chapter P damage determination unit 206.
障害判定部 2 0 6は、 励起光検出部 2 0 4からの比較結果が、 当該励起光検出 部 2 0 4へ入射される励起光のレベルが第 1 6の所定のレベル以上であることを 示している場合には、 障害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2が正常 であると判定する。 一方、 励起光検出部 2 0 4からの比較結果が、 当該励起光検 出部 2 0 4へ入射される励起光のレベルが第 1 6の所定のレベル未満であること を示している場合には、 障害判定部 2 0 6は、 光ファイバ 2 5 0及ぴ 2 5 2の何 れかに障害が生じたと判定する。  The failure determination unit 206 determines that the comparison result from the excitation light detection unit 204 indicates that the level of the excitation light incident on the excitation light detection unit 204 is equal to or higher than the 16th predetermined level. In this case, the failure determination unit 206 determines that the optical fibers 250 and 250 are normal. On the other hand, when the comparison result from the excitation light detection unit 204 indicates that the level of the excitation light incident on the excitation light detection unit 204 is less than the 16th predetermined level. The failure determination unit 206 determines that a failure has occurred in any of the optical fibers 250 and 250.
障害判定部 2 0 6は、 光ファイバ 2 5 0及び 2 5 2の何れかに障害が生じたと 判定した場合には、 励起光源 2 0 2及び 2 7 4に対して励起光の送信停止を指示 する。 励起光源 2 0 2及び 2 7 4は、 障害判定部 2 0 6からの指示に応じて励起 光の送信を停止する。 このため、 励起光が光ファイバ 2 5 0及ぴ 2 5 2を伝送さ れることはない。 また、 信号光送信部 1 2 0から信号光が送信されたとしても、 E D F 2 6 2は励起されないため、 当該信号光が光ファイバ 2 5 0を伝送される ことはない。  When determining that one of the optical fibers 250 and 250 has failed, the failure determination unit 206 instructs the excitation light sources 202 and 274 to stop transmitting the excitation light. I do. The excitation light sources 202 and 274 stop transmitting the excitation light in response to an instruction from the failure determination unit 206. Thus, the pump light is not transmitted through the optical fibers 250 and 250. Further, even if the signal light is transmitted from the signal light transmitting unit 120, the EDF 262 is not excited, so that the signal light is not transmitted through the optical fiber 250.
一方、 障害判定部 2 0 6は、 光ファイバ 2 5 0及ぴ 2 5 2が正常であると判定 した場合には、 励起光源 2 0 2及び 2 7 4に対する指示を行わない。 このため、 励起光源 2 0 2及び 2 7 4は励起光の送信を継続する。  On the other hand, when the failure determiner 206 determines that the optical fibers 250 and 250 are normal, the failure determiner 206 does not issue an instruction to the pump light sources 202 and 274. Therefore, the excitation light sources 202 and 274 continue transmitting the excitation light.
図 4乃至図 6は、 励起光検出部 1 0 4の構成例を示す図である。 なお、 励起光 検出部 1 7 2、 2 0 4及び 2 7 2も励起光検出部 1 0 4と同様の構成を有する。 図 4に示す励起光検出部 1 0 4は、 フォトダイオード 1 0 8、 増幅器 1 1 0及ぴ 比較器 1 1 2を備える。 フォトダイオード 1 0 8は、 入力される光を電気信号に 変換して出力する。 増幅器 1 1 0は、 この電気信号を増幅して比較器 1 1 2へ出 力する。 比較器 1 1 2は、 入力される電気信号のレベル (電圧) と、 予め定めら れた所定のレベルである識別レベル (W ) とを比較し、 その比較結果を障害判 定部 1 0 6へ出力する。  FIG. 4 to FIG. 6 are diagrams illustrating a configuration example of the excitation light detection unit 104. Note that the excitation light detectors 170, 204, and 272 also have the same configuration as the excitation light detector 104. The excitation light detector 104 shown in FIG. 4 includes a photodiode 108, an amplifier 110, and a comparator 112. The photodiode 108 converts input light into an electric signal and outputs the electric signal. The amplifier 110 amplifies this electric signal and outputs it to the comparator 112. The comparator 112 compares the level (voltage) of the input electric signal with a predetermined identification level (W), which is a predetermined level, and compares the comparison result with the fault determination unit 106. Output to
図 5に示す励起光検出部 1 0 4は、 図 4と比較すると、 フォトダイォードの手 前に光フィルタ 1 1 4を備えた構成を有する。 この光フィルタ 1 1 4は、 入力さ れる光のうち、 所定の波長の光のみを出力する。 この光フィルタ 1 1 4を備える ことによって、 励起光検出部 1 0 4は、 入射される光に信号光と励起光とが混在 している場合においても、 励起光のみを抽出することが可能となる。 The excitation light detector 104 shown in FIG. 5 is different from the one shown in FIG. It has a configuration provided with an optical filter 114 before. The optical filter 114 outputs only light of a predetermined wavelength out of the input light. By providing the optical filter 114, the excitation light detection unit 104 can extract only the excitation light even when the incident light contains both the signal light and the excitation light. Become.
図 6に示す励起光検出部 1 0 4は、 図 5と比較すると、 比較器 1 1 2は、 入力 される電気信号のレベル (m±) と、 励起光源 1 0 2等の光送出パワーに比例す る豪とを比較している。 励起光源 1 0 2等は、 送信局側の通信装置から受信局 側の通信装置への信号光の伝送が開始される前は、 光ファイバ 1 5 0等の障害を 検出するために、 低い光送出パワーで光を送信するが、 送信局側の通信装置から 受信局側の通信装置への信号光の伝送が開始された には、 光増幅器 1 6 0内 の E D F 1 6 2を励起するためにも用いられ、 光送出パワーが非常に大きくなり 1 W以上に達する。 従って、 識別レベルを励起光源 1 0 2等の光送出パワーに比 例する電圧とすることにより、 例えば、 信号光の伝送が開始された後に光フアイ バ 1 5 0等に障害が生じた場合、 その障害によって励起光検出部 1 0 4における 励起光のレベルが低下したにもかかわらず、 識別レベルが低いために、 光フアイ バ 1 5 0等が正常であると誤って検出されてしまうことを防止することができる このように、 本実施形態における光伝送システムでは、 通信装置と当該通信装 置に対応する光増幅器 1 6 0等とを接続する光フアイバ 1 5 0等の何れかに切断 等の障害が生じた場合には、 その障害が生じた光ファイバ 1 5 0等を伝送されて 入射される光のレベルが確実に低下するため、 励起光 1 0 4等が当該光のレベル を検出することにより、 障害検出の確実性を向上させることができる。 また、 端 局である通信装置間で低い送出パワーの信号を互いに送ることによって障害を検 出するのではないため、 通信装置間の距離が長い場合にも、 通信装置と当該通信 装置に対応する光増幅器 1 6 0等との間の光ファイバ 1 5 0等に生じた障害の検 出の確実性を向上させることができる。  The excitation light detector 104 shown in FIG. 6 is different from that shown in FIG. 5 in that the comparator 112 is able to determine the level (m ±) of the input electric signal and the light transmission power of the excitation light source 102 and the like. Compares with proportionate Australia. Before the transmission of signal light from the communication device on the transmitting station side to the communication device on the receiving station side, the pump light source 102 and the like emit low light to detect a failure in the optical fiber 150 and the like. The transmitter transmits light, but when the transmission of signal light from the communication device on the transmitting station side to the communication device on the receiving station starts, the EDF 162 in the optical amplifier 160 is excited. The optical transmission power is very large, reaching 1 W or more. Therefore, by setting the discrimination level to a voltage proportional to the optical transmission power of the excitation light source 102, for example, when a failure occurs in the optical fiber 150, etc. after the transmission of the signal light has started, Even if the level of the excitation light in the excitation light detector 104 was reduced due to the fault, the optical fiber 150 etc. would be erroneously detected as normal due to the low identification level. As described above, in the optical transmission system according to the present embodiment, the communication device can be disconnected to any one of the optical fibers 150 and the like that connect the optical amplifier 160 and the like corresponding to the communication device. When a failure occurs, the level of the light that is transmitted and transmitted through the optical fiber 150 or the like in which the failure has occurred is reliably reduced, so that the excitation light 104 or the like detects the level of the light. By doing so, the certainty of fault detection It is possible to above. In addition, since faults are not detected by transmitting low transmission power signals between the communication devices that are the terminal stations, even when the distance between the communication devices is long, the communication device and the communication device can be used. It is possible to improve the reliability of detecting a failure that has occurred in the optical fiber 150 or the like between the optical amplifier 160 and the like.
また、 光ファイバ 1 5 0等に障害が生じた場合には、 信号光送信部 1 2 0や励 起光源 1 0 2等による光の送信が停止されるため、 光ファイバ 1 5 0等が陸上に 敷設されている場合に、 当該光ファイバ 1 5 0等から光力 S漏洩し、 人体に危険を 及ぼすことを防止することができる。 Further, when a failure occurs in the optical fiber 150, etc., the transmission of light by the signal light transmitting unit 120, the excitation light source 102, etc. is stopped, so that the optical fiber 150, etc. When laid, the optical power S leaks from the optical fiber 150 etc., causing a danger to the human body. Can be prevented.
なお、 光ファイバ 1 5 2及び 2 5 2が請求項記載の第 1の光伝送路に対応し、 励起光源 1 0 2及び 2 0 2が第 1の光源に対応し、 光ファイバ 1 5 0及び 2 5 0 が第 2の光伝送路に対応し、 励起光検出部 1 0 4及び 2 0 4が第 1の光検出手段 に対応し、 障害判定部 1 0 6及び 2 0 6が第 1の障害判定手段、 第 1の開始指示 手段、 第 1の増加指示手段、 第 1及び第 2の停止指示手段に対応する。 また、 光 ファイバ 1 5 4及び 2 5 4が請求項記載の第 3の光伝送路に対応し、 励起光源 1 7 0及び 2 7 0が第 2の光源に対応し、 励起光検出部 1 7 2及び 2 7 2が第 2の 光検出手段に対応し、 P章害判定部 1 0 6及び 2 0 6が第 2の障害判定手段、 第 2 の開始指示手段、 第 2の増加指示手段、 第 3及び第 4の停止指示手段に対応する  The optical fibers 15 2 and 25 2 correspond to the first optical transmission line described in the claims, the excitation light sources 102 and 202 correspond to the first light source, and the optical fibers 150 and The reference numeral 250 corresponds to the second optical transmission line, the excitation light detection units 104 and 204 correspond to the first light detection means, and the failure determination units 106 and 206 correspond to the first optical transmission line. Corresponds to the fault determination means, the first start instruction means, the first increase instruction means, the first and second stop instruction means. Further, the optical fibers 154 and 254 correspond to the third optical transmission line described in the claims, the pumping light sources 170 and 270 correspond to the second light source, and the pumping light detecting section 170. 2 and 272 correspond to the second light detection means, and the Chapter P damage determination units 106 and 206 correspond to the second failure determination means, the second start instruction means, the second increase instruction means, Corresponds to the third and fourth stop instruction means

Claims

請求の範囲 The scope of the claims
1 · 光通信装置と該光通信装置に対応する光増幅器とを接続する光伝送路の 障害を検出する光伝送路障害検出システムにおいて、 1 · In an optical transmission line fault detection system for detecting a fault in an optical transmission line connecting an optical communication device and an optical amplifier corresponding to the optical communication device,
第 1の光伝送路によって前記光増幅器と接続され、 前記第 1の光伝送路へ光を 送信する第 1の光源と、  A first light source connected to the optical amplifier by a first optical transmission line and transmitting light to the first optical transmission line;
前記第 1の光源から送信され、 前記第 1の光伝送路、 前記光増幅器及び第 2の 光伝送路を介して入射される光を検出する第 1の光検出手段と、  First light detection means for detecting light transmitted from the first light source and incident via the first optical transmission line, the optical amplifier and the second optical transmission line,
前記第 1の光検出手段により検出された光のレベルが所定レベル未満である場 合に前記第 1及び第 2の光伝送路の何れかに障害が生じたと判定し、 所定レベル 以上である場合に前記第 1及び第 2の光伝送路が正常であると判定する第 1の障 害判定手段と、  If the level of light detected by the first light detecting means is lower than a predetermined level, it is determined that a failure has occurred in any of the first and second optical transmission lines, and if the level is equal to or higher than a predetermined level. First failure determining means for determining that the first and second optical transmission lines are normal;
を備える光伝送路障害検出システム。  An optical transmission line fault detection system comprising:
2. 請求項 1に記載の光伝送路障害検出システムにおいて、 2. In the optical transmission line failure detection system according to claim 1,
前記第 1の障害判定手段により、 前記第 1及び第 2の光伝送路が正常であると 判定された場合に、 前記光通信装置に対して信号光の送信開始を指示する第 1の 開始指示手段を備える光伝送路障害検出システム。  A first start instruction for instructing the optical communication device to start transmitting signal light when the first failure determination unit determines that the first and second optical transmission paths are normal; An optical transmission line fault detection system comprising a means.
3. 請求項 1又は 2に記載の光伝送路障害検出システムにおいて、 前記第 1の障害判定手段により、 前記第 1及び第 2の光伝送路が正常であると 判定された場合に、 前記光増幅器を励起する光源に対して光の送出パワーの増加 を指示する第 1の増加指示手段を備える光伝送路障害検出システム。 3. The optical transmission line failure detection system according to claim 1 or 2, wherein the first failure determination unit determines that the first and second optical transmission lines are normal. An optical transmission line fault detection system comprising first increase instructing means for instructing a light source for exciting an amplifier to increase light transmission power.
4. 請求項 1乃至 3の何れかに記載の光伝送路障害検出システムにおいて、 前記第 1の障害判定手段により、 前記第 1及び第 2の光伝送路の何れかに障害 が生じたと判定された場合に、 前記光通信装置に対して信号光の送信停止を指示 する第 1の停止指示手段を備える光伝送路障害検出システム。 4. The optical transmission line failure detection system according to any one of claims 1 to 3, wherein the first failure determination unit determines that a failure has occurred in any of the first and second optical transmission lines. An optical transmission line failure detection system comprising first stop instruction means for instructing the optical communication device to stop transmitting signal light when the optical communication device has a failure.
5. 請求項 1乃至 4の何れかに記載の光伝送路障害検出システムにおいて、 前記第 1の障害判定手段により、 前記第 1及び第 2の光伝送路の何れかに障害 が生じたと判定された場合に、 前記第 1の光源に対して光の送信停止を指示する 第 2の停止指示手段を備える光伝送路障害検出システム。 5. The optical transmission line failure detection system according to any one of claims 1 to 4, wherein the first failure determination unit determines that a failure has occurred in any of the first and second optical transmission lines. An optical transmission line failure detection system including second stop instruction means for instructing the first light source to stop transmitting light when the first light source is stopped.
5  Five
6 , 請求項 1乃至 5の何れかに記載の光伝送路障害検出システムにおいて、 第 3の光伝送路によって前記光増幅器と接続され、 該第 3の光伝送路へ光を励 起する第 2の光源と、  6.The optical transmission line fault detection system according to any one of claims 1 to 5, wherein the second optical transmission line is connected to the optical amplifier by a third optical transmission line, and excites light to the third optical transmission line. Light source,
前記第 2の光源によって励起され、 前記第 3の光伝送路、 fit己光増幅器及び前 0 記第 1の光伝送路を介して入射される光を検出する第 2の光検出手段と、  A second light detection unit that is excited by the second light source and detects light incident through the third optical transmission line, the fit optical amplifier, and the first optical transmission line;
前記第 2の光検出手段により検出された光のレベルが所定レベル未満である場 合に前記第 1及び第 3の光伝送路の何れかに障害が生じたと判定し、 所定レベル 以上である場合に前記第 1及ぴ第 3の光伝送路が正常であると判定する第 2の障 害判定手段と、  If the level of light detected by the second light detection means is lower than a predetermined level, it is determined that a failure has occurred in any of the first and third optical transmission paths, and if the level is equal to or higher than a predetermined level. Second failure determining means for determining that the first and third optical transmission paths are normal;
L5 を備える光伝送路障害検出システム。  Optical transmission line fault detection system equipped with L5.
7. 請求項 6に記載の光伝送路障害検出システムにおいて、 7. In the optical transmission line failure detection system according to claim 6,
前記第 1及び第 2の障害判定手段により、 前記第 1乃至第 3の光伝送路が正常 であると判定された場合に、 前記光通信装置に対して信号光の送信開始を指示す 0 る第 2の開始指示手段を備える光伝送路障害検出システム。  If the first and second failure determination means determine that the first to third optical transmission paths are normal, the optical communication apparatus instructs the optical communication apparatus to start transmitting signal light. An optical transmission line fault detection system including second start instruction means.
8. 請求項 6又は 7に記載の光伝送路障害検出システム'において、 前記第 1及び第 2の障害判定手段により、 前記第 1乃至第 3の光伝送路が正常 であると判定された場合に、 前記光増幅器を励起する光源に対して光の送出パヮ 5 一の増加を指示する第 2の増加指示手段を備える光伝送路障害検出システム。 8. The optical transmission line failure detection system according to claim 6, wherein the first and second failure determination units determine that the first to third optical transmission lines are normal. An optical transmission line fault detection system comprising: a second increase instructing unit that instructs a light source that excites the optical amplifier to increase light transmission power.
9. 請求項 6乃至 8の何れかに記載の光伝送路障害検出システムにおいて、 前記第 1及び第 2の障害判定手段により、 前記第 1乃至第 3の光伝送路の何れ かに障害が生じたと判定された場合に、 前記光通信装置に対して信号光の送信停 止を指示する第 3の停止指示手段を備える光伝送路障害検出システム。 9. The optical transmission line failure detection system according to any one of claims 6 to 8, wherein a failure occurs in any of the first to third optical transmission lines by the first and second failure determination means. If it is determined that the transmission of the signal light to the optical communication device is stopped. An optical transmission line failure detection system including third stop instruction means for instructing stop.
1 0 . 請求項 6乃至 9の何れかに記載の光伝送路障害検出システムにおいて 前記第 1及び第 2の障害判定手段により、 前記第 1及び第 3の光伝送路の何れ かに障害が生じたと判定された場合に、 前記第 1及び第 2の光源に対して光の送 信停止を指示する第 4の停止指示手段を備える光伝送路障害検出システム。 10. In the optical transmission line failure detection system according to any one of claims 6 to 9, a failure occurs in any of the first and third optical transmission lines by the first and second failure determination means. An optical transmission line failure detection system comprising: fourth stop instruction means for instructing the first and second light sources to stop transmitting light when it is determined that the first and second light sources have stopped.
PCT/JP2003/004034 2003-03-28 2003-03-28 Optical transmission path failure detection system WO2004088881A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2003/004034 WO2004088881A1 (en) 2003-03-28 2003-03-28 Optical transmission path failure detection system
JP2004570145A JP4044560B2 (en) 2003-03-28 2003-03-28 Optical transmission line failure detection system
EP03816543A EP1610475B1 (en) 2003-03-28 2003-03-28 Optical transmission path failure detection system
US11/080,554 US7428354B2 (en) 2003-03-28 2005-03-16 System for detecting fault in optical-transmission path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/004034 WO2004088881A1 (en) 2003-03-28 2003-03-28 Optical transmission path failure detection system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/080,554 Continuation US7428354B2 (en) 2003-03-28 2005-03-16 System for detecting fault in optical-transmission path

Publications (1)

Publication Number Publication Date
WO2004088881A1 true WO2004088881A1 (en) 2004-10-14

Family

ID=33105327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004034 WO2004088881A1 (en) 2003-03-28 2003-03-28 Optical transmission path failure detection system

Country Status (4)

Country Link
US (1) US7428354B2 (en)
EP (1) EP1610475B1 (en)
JP (1) JP4044560B2 (en)
WO (1) WO2004088881A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110642B (en) * 2006-07-19 2010-12-08 中兴通讯股份有限公司 System fault detecting method and device
WO2012073952A1 (en) 2010-11-29 2012-06-07 古河電気工業株式会社 Fiber laser apparatus, and method of detecting abnormality of fiber laser apparatus
WO2023095283A1 (en) * 2021-11-26 2023-06-01 日本電信電話株式会社 Terminal device, communication method, and program

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721508B1 (en) 1998-12-14 2004-04-13 Tellabs Operations Inc. Optical line terminal arrangement, apparatus and methods
US7245800B1 (en) * 2004-09-08 2007-07-17 Lockheed Martin Corporation Fiber optic interconnect with visible laser indicator and fault detector
KR101227678B1 (en) * 2006-02-10 2013-01-30 삼성전자주식회사 System and method for human body communication
US20070201867A1 (en) * 2006-02-28 2007-08-30 Tellabs Petaluma, Inc. Method, apparatus, system and computer program product for identifying failing or failed optical network terminal(s) on an optical distribution network
WO2010116964A1 (en) * 2009-04-08 2010-10-14 株式会社 日立メディコ Biophotometer and method for determining disconnection of optical fiber
US20110013905A1 (en) * 2009-07-17 2011-01-20 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Active optical cable apparatus and method for detecting optical fiber breakage
US9331922B2 (en) * 2012-08-10 2016-05-03 Broadcom Corporation Automatic recover after loss of signal event in a network device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205243A (en) * 1997-09-18 1999-07-30 Lucent Technol Inc Automatic power stop system for optical transmission line
JPH11511620A (en) * 1995-09-15 1999-10-05 ペー・エッレ・エッレ・ビー・エレトロニカ・エス・ペー・アー System, method and apparatus for monitoring fiber optic cables

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2674558B2 (en) 1995-04-19 1997-11-12 日本電気株式会社 Optical communication device
GB9526176D0 (en) * 1995-12-21 1996-02-21 Stc Submarine Systems Ltd System fibre break detection in systems using ropas
JP3411436B2 (en) * 1996-01-12 2003-06-03 Kddi株式会社 Monitoring method of optical communication line
JPH09261187A (en) * 1996-03-19 1997-10-03 Fujitsu Ltd Remote amplifier and fault point orientation method in no-relay optical transmission system
US5914794A (en) * 1996-12-31 1999-06-22 Mci Communications Corporation Method of and apparatus for detecting and reporting faults in an all-optical communications system
US6344915B1 (en) * 1997-06-20 2002-02-05 Ciena Corporation System and method for shutting off an optical energy source in a communication system having optical amplifiers
US6011623A (en) * 1998-06-09 2000-01-04 Macdonald; Robert I. Fault detection system for an amplified optical transmission system
EP0981212A1 (en) * 1998-08-14 2000-02-23 Telefonaktiebolaget Lm Ericsson Path monitoring in optical communication systems
US6504630B1 (en) * 1998-12-04 2003-01-07 Lucent Technologies Inc. Automatic power shut-down arrangement for optical line systems
US6583899B1 (en) * 1998-12-31 2003-06-24 Cisco Photonics Italy S.R.L. Automatic protection system for an optical transmission system
US6134032A (en) * 1999-04-02 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for automatically identifying system faults in an optical communications system from repeater loop gain signatures
US6369708B2 (en) * 1999-08-12 2002-04-09 William P. Carney Intrusion alarm and detection system
US7046929B1 (en) * 1999-08-24 2006-05-16 Ciena Corporation Fault detection and isolation in an optical network
DE69941306D1 (en) * 1999-10-29 2009-10-01 Fujitsu Ltd OPTICAL TRANSMISSION DEVICE AND OPTICAL INTERMEDIATE AMPLIFIER
US6305851B1 (en) * 2000-01-12 2001-10-23 Ciena Corporation Systems and methods for detecting imperfect connections in optical systems
US6681079B1 (en) * 2000-05-18 2004-01-20 Nortel Networks Limited Optical fibre monitoring system
US7130537B1 (en) * 2000-08-25 2006-10-31 Alcatel Safety shutdown system for a WDM fiber optic communications network
JP4495321B2 (en) * 2000-08-29 2010-07-07 富士通株式会社 Light level control method
US6807001B1 (en) * 2001-04-17 2004-10-19 Sycamore Networks, Inc. Auto shutdown for distributed raman amplifiers on optical communication systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511620A (en) * 1995-09-15 1999-10-05 ペー・エッレ・エッレ・ビー・エレトロニカ・エス・ペー・アー System, method and apparatus for monitoring fiber optic cables
JPH11205243A (en) * 1997-09-18 1999-07-30 Lucent Technol Inc Automatic power stop system for optical transmission line

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1610475A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101110642B (en) * 2006-07-19 2010-12-08 中兴通讯股份有限公司 System fault detecting method and device
WO2012073952A1 (en) 2010-11-29 2012-06-07 古河電気工業株式会社 Fiber laser apparatus, and method of detecting abnormality of fiber laser apparatus
US8811434B2 (en) 2010-11-29 2014-08-19 Furukawa Electric Co., Ltd. Fiber laser apparatus and method of detecting failure of fiber laser apparatus
WO2023095283A1 (en) * 2021-11-26 2023-06-01 日本電信電話株式会社 Terminal device, communication method, and program

Also Published As

Publication number Publication date
EP1610475B1 (en) 2008-12-24
US20050157978A1 (en) 2005-07-21
EP1610475A1 (en) 2005-12-28
JPWO2004088881A1 (en) 2006-07-06
JP4044560B2 (en) 2008-02-06
US7428354B2 (en) 2008-09-23
EP1610475A4 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
US6547453B1 (en) Systems and methods for detecting fault conditions and detecting and preventing potentially dangerous conditions in an optical system
US7920787B2 (en) Method for detecting a check-back signal in an optical transmission system
US6891659B2 (en) Optical amplifiers, optical fiber raman amplifiers and optical systems
JP4509451B2 (en) Optical amplification device using Raman amplification
US7218442B2 (en) Optical communications system with fiber break detection in the presence of Raman amplification
US7428354B2 (en) System for detecting fault in optical-transmission path
US7664392B2 (en) Automatic power restoring method and optical communication system
US8576481B2 (en) Method and apparatus of detecting an opening in an optical transmission fiber of a ROPA system
US7957643B2 (en) Method and apparatus for automatically controlling optical signal power in optical transmission systems
US7864389B2 (en) Method of controlling optical amplifier located along an optical link
US20070103766A1 (en) Method for monitoring an optical transmission line by means of an optical amplifier and optical amplifier therefor
US10142026B2 (en) Raman pumping arrangement with improved OSC sensitivity
US10707638B2 (en) Integrated signal loss detection in Raman amplified fiber spans or other fiber spans
JP4648263B2 (en) Optical amplifier and optical transmission device
JP4018075B2 (en) Optical fiber fault isolation method
US20240305368A1 (en) Laser safety shutoff or power reduction for optically amplified fiber optic links with high transmission power
JP3824902B2 (en) Optical repeater and optical transmission terminal equipment
JPH08265257A (en) Optical transmission system
CN117375724A (en) Underwater equipment and communication system
US20040001721A1 (en) Methods and apparatus for monitoring optical transmissions

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004570145

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003816543

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11080554

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003816543

Country of ref document: EP